1
|
Flores-Félix JD, García-Fraile P, Saati-Santamaría Z. Harmony in diversity: Reorganizing the families within the order Pseudomonadales. Mol Phylogenet Evol 2025; 206:108321. [PMID: 40044097 DOI: 10.1016/j.ympev.2025.108321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 01/15/2025] [Accepted: 03/02/2025] [Indexed: 03/10/2025]
Abstract
An accurate and coherent bacterial taxonomy is essential for studying the ecological aspects of microorganisms and for understanding microbial communities and their dynamics. The order Pseudomonadales is of particular importance in biological research due to its ability to interact with eukaryotic hosts, including taxa of clinical relevance (e.g.: Pseudomonas, Moraxella, Acinetobacter), or due to its functions in soil and water ecosystems. Despite their relevance, we have identified several inconsistencies in the organisation of genera within families in this order. Here, we perform comprehensive phylogenetic and phylogenomic analyses to reorganise these taxa. Average amino acid identity (AAI) values shared within and between families support our reclassifications. We propose seven new families, including new ecologically relevant families (e.g.: Oceanobacteraceae fam. nov.), as well as several taxonomic emendations. Our results also support the inclusion of Cellvibrionales and Oceanospirillales within Pseudomonadales. This revised organisation provides a robust delineation of these taxa into families, characterised by AAI values ranging from 60% to 77%. AAI distances between families are predominantly below 60%. This reclassification contributes to establishment of a more reliable taxonomic framework within Gammaproteobacteria, providing the basis for a more comprehensive understanding of their evolution.
Collapse
Affiliation(s)
- José David Flores-Félix
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain; Institute for Agribiotechnology Research (CIALE), Universidad de Salamanca, Villamayor, Salamanca, Spain
| | - Paula García-Fraile
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain; Institute for Agribiotechnology Research (CIALE), Universidad de Salamanca, Villamayor, Salamanca, Spain; Associated Research Unit of Plant-Microorganism Interaction, Universidad de Salamanca - IRNASA-CSIC, Salamanca, Spain
| | - Zaki Saati-Santamaría
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain; Institute for Agribiotechnology Research (CIALE), Universidad de Salamanca, Villamayor, Salamanca, Spain; Institute of Microbiology of the Czech Academy of Sciences, Vídeňská, Prague, Czech Republic.
| |
Collapse
|
2
|
Medina-Chávez NO, Travisano M. Archaeal Communities: The Microbial Phylogenomic Frontier. Front Genet 2022; 12:693193. [PMID: 35154237 PMCID: PMC8826477 DOI: 10.3389/fgene.2021.693193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022] Open
Abstract
Archaea are a unique system for investigating the diversity of life. There are the most diverse group of organisms with the longest evolutionary history of life on Earth. Phylogenomic investigations reveal the complex evolutionary history of Archaea, overturning longstanding views of the history of life. They exist in the harshest environments and benign conditions, providing a system to investigate the basis for living in extreme environments. They are frequently members of microbial communities, albeit generally rare. Archaea were central in the evolution of Eukaryotes and can be used as a proxy for studying life on other planets. Future advances will depend not only upon phylogenomic studies but also on a better understanding of isolation and cultivation techniques.
Collapse
Affiliation(s)
- Nahui Olin Medina-Chávez
- Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, United States.,BioTechnology Institute, University of Minnesota, St. Paul, MN, United States
| | - Michael Travisano
- Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, United States.,BioTechnology Institute, University of Minnesota, St. Paul, MN, United States.,Minnesota Center for the Philosophy of Science, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
3
|
Characterization of a novel Vibrio parahaemolyticus host-phage pair and antibacterial effect against the host. Arch Virol 2022; 167:531-544. [DOI: 10.1007/s00705-021-05278-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/06/2021] [Indexed: 11/25/2022]
|
4
|
Effect of Carbon Sources in Carotenoid Production from Haloarcula sp. M1, Halolamina sp. M3 and Halorubrum sp. M5, Halophilic Archaea Isolated from Sonora Saltern, Mexico. Microorganisms 2021; 9:microorganisms9051096. [PMID: 34065163 PMCID: PMC8160830 DOI: 10.3390/microorganisms9051096] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 04/29/2021] [Accepted: 05/11/2021] [Indexed: 12/25/2022] Open
Abstract
The isolation and molecular and chemo-taxonomic identification of seventeen halophilic archaea from the Santa Bárbara saltern, Sonora, México, were performed. Eight strains were selected based on pigmentation. Molecular identification revealed that the strains belonged to the Haloarcula, Halolamina and Halorubrum genera. Neutral lipids (quinones) were identified in all strains. Glycolipid S-DGD was found only in Halolamina sp. strain M3; polar phospholipids 2,3-O-phytanyl-sn-glycerol-1-phosphoryl-3-sn-glycerol (PG), 2,3-di-O-phytanyl-sn-glycero-1-phospho-3′-sn-glycerol-1′-methyl phosphate (PGP-Me) and sodium salt 1-(3-sn-phosphatidyl)-rac-glycerol were found in all the strains; and one unidentified glyco-phospholipid in strains M1, M3 and M4. Strains M1, M3 and M5 were selected for further studies based on carotenoid production. The effect of glucose and succinic and glutamic acid on carotenoid production was assessed. In particular, carotenoid production and growth significantly improved in the presence of glucose in strains Haloarcula sp. M1 and Halorubrum sp. M5 but not in Halolamina sp. M3. Glutamic and succinic acid had no effect on carotenoid production, and even was negative for Halorubrum sp. M5. Growth was increased by glutamic and succinic acid on Haloarcula sp. M1 but not in the other strains. This work describes for first time the presence of halophilic archaea in the Santa Bárbara saltern and highlights the differences in the effect of carbon sources on the growth and carotenoid production of haloarchaea.
Collapse
|
5
|
Abstract
The brines of natural salt lakes with total salt concentrations exceeding 30% are often colored red by dense communities of halophilic microorganisms. Such red brines are found in the north arm of Great Salt Lake, Utah, in the alkaline hypersaline lakes of the African Rift Valley, and in the crystallizer ponds of coastal and inland salterns where salt is produced by evaporation of seawater or some other source of saline water. Red blooms were also reported in the Dead Sea in the past. Different types of pigmented microorganisms may contribute to the coloration of the brines. The most important are the halophilic archaea of the class Halobacteria that contain bacterioruberin carotenoids as well as bacteriorhodopsin and other retinal pigments, β-carotene-rich species of the unicellular green algal genus Dunaliella and bacteria of the genus Salinibacter (class Rhodothermia) that contain the carotenoid salinixanthin and the retinal protein xanthorhodopsin. Densities of prokaryotes in red brines often exceed 2-3×107 cells/mL. I here review the information on the biota of the red brines, the interactions between the organisms present, as well as the possible roles of the red halophilic microorganisms in the salt production process and some applied aspects of carotenoids and retinal proteins produced by the different types of halophiles inhabiting the red brines.
Collapse
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
6
|
Diversity and ecology of culturable marine fungi associated with Posidonia oceanica leaves and their epiphytic algae Dictyota dichotoma and Sphaerococcus coronopifolius. FUNGAL ECOL 2020. [DOI: 10.1016/j.funeco.2019.100906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
Rodela ML, Sabet S, Peterson A, Dillon JG. Broad Environmental Tolerance for a Salicola Host-Phage Pair Isolated from the Cargill Solar Saltworks, Newark, CA, USA. Microorganisms 2019; 7:E106. [PMID: 31010175 PMCID: PMC6518143 DOI: 10.3390/microorganisms7040106] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/13/2019] [Accepted: 04/17/2019] [Indexed: 11/29/2022] Open
Abstract
Phages greatly influence the ecology and evolution of their bacterial hosts; however, compared to hosts, a relatively low number of phages, especially halophilic phages, have been studied. This study describes a comparative investigation of physicochemical tolerance between a strain of the halophilic bacterium, Salicola, isolated from the Cargill Saltworks (Newark, CA, USA) and its associated phage. The host grew in media between pH 6-8.5, had a salinity growth optimum of 20% total salts (ranging from 10%-30%) and an upper temperature growth limit of 48 °C. The host utilized 61 of 190 substrates tested using BIOLOG Phenotype MicroArrays. The CGφ29 phage, one of only four reported Salicola phages, is a DNA virus of the Siphoviridae family. Overall, the phage tolerated a broader range of environmental conditions than its host (salinity 0-30% total salts; pH 3-9; upper thermal limit 80 °C) and is the most thermotolerant halophilic phage ever reported. This study is the most comprehensive investigation to date of a Salicola host-phage pair and provides novel insights into extreme environmental tolerances among bacteriophages.
Collapse
Affiliation(s)
- Meghan L Rodela
- Department of Biological Sciences, California State University, Long Beach, CA 90840, USA.
| | - Shereen Sabet
- Department of Biological Sciences, California State University, Long Beach, CA 90840, USA.
| | - Allison Peterson
- Department of Biological Sciences, California State University, Long Beach, CA 90840, USA.
| | - Jesse G Dillon
- Department of Biological Sciences, California State University, Long Beach, CA 90840, USA.
| |
Collapse
|
8
|
Lee CJD, McMullan PE, O'Kane CJ, Stevenson A, Santos IC, Roy C, Ghosh W, Mancinelli RL, Mormile MR, McMullan G, Banciu HL, Fares MA, Benison KC, Oren A, Dyall-Smith ML, Hallsworth JE. NaCl-saturated brines are thermodynamically moderate, rather than extreme, microbial habitats. FEMS Microbiol Rev 2018; 42:672-693. [PMID: 29893835 DOI: 10.1093/femsre/fuy026] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 06/08/2018] [Indexed: 11/12/2022] Open
Abstract
NaCl-saturated brines such as saltern crystalliser ponds, inland salt lakes, deep-sea brines and liquids-of-deliquescence on halite are commonly regarded as a paradigm for the limit of life on Earth. There are, however, other habitats that are thermodynamically more extreme. Typically, NaCl-saturated environments contain all domains of life and perform complete biogeochemical cycling. Despite their reduced water activity, ∼0.755 at 5 M NaCl, some halophiles belonging to the Archaea and Bacteria exhibit optimum growth/metabolism in these brines. Furthermore, the recognised water-activity limit for microbial function, ∼0.585 for some strains of fungi, lies far below 0.755. Other biophysical constraints on the microbial biosphere (temperatures of >121°C; pH > 12; and high chaotropicity; e.g. ethanol at >18.9% w/v (24% v/v) and MgCl2 at >3.03 M) can prevent any cellular metabolism or ecosystem function. By contrast, NaCl-saturated environments contain biomass-dense, metabolically diverse, highly active and complex microbial ecosystems; and this underscores their moderate character. Here, we survey the evidence that NaCl-saturated brines are biologically permissive, fertile habitats that are thermodynamically mid-range rather than extreme. Indeed, were NaCl sufficiently soluble, some halophiles might grow at concentrations of up to 8 M. It may be that the finite solubility of NaCl has stabilised the genetic composition of halophile populations and limited the action of natural selection in driving halophile evolution towards greater xerophilicity. Further implications are considered for the origin(s) of life and other aspects of astrobiology.
Collapse
Affiliation(s)
- Callum J D Lee
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland
| | - Phillip E McMullan
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland
| | - Callum J O'Kane
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland
| | - Andrew Stevenson
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland
| | - Inês C Santos
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Chayan Roy
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - Wriddhiman Ghosh
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - Rocco L Mancinelli
- BAER Institute, Mail Stop 239-4, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Melanie R Mormile
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO 65401, USA
| | - Geoffrey McMullan
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland
| | - Horia L Banciu
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babes-Bolyai University, 400006 Cluj-Napoca, Romania
| | - Mario A Fares
- Department of Abiotic Stress, Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia 46022, Spain.,Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas-Universitat de Valencia (CSIC-UV), Valencia, 46980, Spain.,Department of Genetics, Smurfit Institute of Genetics, University of Dublin, Trinity College, Dublin 2, Dublin, Ireland
| | - Kathleen C Benison
- Department of Geology and Geography, West Virginia University, Morgantown, WV 26506-6300, USA
| | - Aharon Oren
- Department of Plant & Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat-Ram, Jerusalem 9190401, Israel
| | - Mike L Dyall-Smith
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland
| |
Collapse
|
9
|
Delgado-García M, Contreras-Ramos SM, Rodríguez JA, Mateos-Díaz JC, Aguilar CN, Camacho-Ruíz RM. Isolation of halophilic bacteria associated with saline and alkaline-sodic soils by culture dependent approach. Heliyon 2018; 4:e00954. [PMID: 30519656 PMCID: PMC6260430 DOI: 10.1016/j.heliyon.2018.e00954] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/10/2018] [Accepted: 11/16/2018] [Indexed: 11/30/2022] Open
Abstract
Cultivable halophilic microorganisms were isolated and identified from saline and alkaline-sodic soils: Cuatro Cienegas, Sayula and San Marcos lakes. Physicochemical characteristics of soils were determined to understand the relationship between those and the microorganisms isolated. The Cuatro Cienegas soils had a neutral pH, EC of 2.3–8 dS cm−1, classified as moderately saline. Whereas, the soils from Sayula and San Marcos lakes, had an alkaline pH, EC 15 to 65 dS m−1, typical of saline-sodic. We identified 23 cultivable halophilic bacteria using 16s rDNA, being Halobacillus sp., Marinococcus sp., and Alkalibacillus sp. the predominant genus by culture dependent approach. We found a correlation between the soils anion and cation content with the occurrence of different genus of halophilic bacteria in each studied site. Alkalibacillus sp. was predominant in Sayula and San Marcos lakes and was related to the high Na+ content; while Bacillus sp. and Halobacillus sp. were predominant in Cuatro Cienegas, their occurrence was related to a high content of Ca2+, Mg2+, and SO42-.
Collapse
Affiliation(s)
- Mariana Delgado-García
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Av. Normalistas 800, 44270, Guadalajara, Jalisco, Mexico
| | - Silvia Maribel Contreras-Ramos
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Av. Normalistas 800, 44270, Guadalajara, Jalisco, Mexico
| | - Jorge Alberto Rodríguez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Av. Normalistas 800, 44270, Guadalajara, Jalisco, Mexico
| | - Juan Carlos Mateos-Díaz
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Av. Normalistas 800, 44270, Guadalajara, Jalisco, Mexico
| | - Cristóbal Noé Aguilar
- Departamento de Investigación en Alimentos, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Blvd. Venustiano Carranza, 25280, Saltillo, Coahuila, Mexico
| | - Rosa María Camacho-Ruíz
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Av. Normalistas 800, 44270, Guadalajara, Jalisco, Mexico
| |
Collapse
|
10
|
Jayanath G, Mohandas SP, Kachiprath B, Solomon S, Sajeevan T, Bright Singh I, Philip R. A novel solvent tolerant esterase of GDSGG motif subfamily from solar saltern through metagenomic approach: Recombinant expression and characterization. Int J Biol Macromol 2018; 119:393-401. [DOI: 10.1016/j.ijbiomac.2018.06.057] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 06/09/2018] [Accepted: 06/12/2018] [Indexed: 11/15/2022]
|
11
|
Remonsellez F, Castro-Severyn J, Pardo-Esté C, Aguilar P, Fortt J, Salinas C, Barahona S, León J, Fuentes B, Areche C, Hernández KL, Aguayo D, Saavedra CP. Characterization and Salt Response in Recurrent Halotolerant Exiguobacterium sp. SH31 Isolated From Sediments of Salar de Huasco, Chilean Altiplano. Front Microbiol 2018; 9:2228. [PMID: 30294311 PMCID: PMC6158405 DOI: 10.3389/fmicb.2018.02228] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/31/2018] [Indexed: 12/22/2022] Open
Abstract
Poly-extremophiles microorganisms have the capacity to inhabit hostile environments and can survive several adverse conditions that include as variations in temperature, pH, and salinity, high levels UV light and atmospheric pressure, and even the presence of toxic compounds and the formation of reactive oxygen species (ROS). A halotolerant Exiguobacterium strain was isolated from Salar de Huasco (Chilean Altiplano), a well-known shallow lake area with variable salinity levels, little human intervention, and extreme environmental conditions, which makes it ideal for the study of resistant mechanisms and the evolution of adaptations. This bacterial genus has not been extensively studied, although its cosmopolitan location indicates that it has high levels of plasticity and adaptive capacity. However, to date, there are no studies regarding the tolerance and resistance to salinity and osmotic pressure. We set out to characterize the Exiguobacterium sp. SH31 strain and describe its phenotypical and genotypical response to osmotic stress. In this context, as a first step to characterize the response to the SH31 strain to salinity and to establish the bases for a molecular study, we proposed to compare its response under three salt conditions (0, 25, and 50 g/l NaCl). Using different physiology, genomic, and transcriptomic approaches, we determined that the bacterium is able to grow properly in a NaCl concentration of up to 50 g/l; however, the best growth rate was observed at 25 g/l. Although the presence of flagella is not affected by salinity, motility was diminished at 25 g/l NaCl and abolished at 50 g/l. Biofilm formation was induced proportionally with increases in salinity, which was expected. These phenotypic results correlated with the expression of related genes: fliG and fliS Motility); opuBA and putP (transport); glnA, proC, gltA, and gbsA (compatible solutes); ywqC, bdlA, luxS y pgaC (biofilm and stress response); and therefore, we conclude that this strain effectively modifies gene expression and physiology in a differential manner when faced with different concentrations of NaCl and these modifications aid survival.
Collapse
Affiliation(s)
- Francisco Remonsellez
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Antofagasta, Chile
- Centro de Investigación Tecnológica del Agua en el Desierto (CEITSAZA), Universidad Católica del Norte, Antofagasta, Chile
| | - Juan Castro-Severyn
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Coral Pardo-Esté
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Pablo Aguilar
- Lake and Glacier Ecology Research Group, Institute of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Jonathan Fortt
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Antofagasta, Chile
| | - Cesar Salinas
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Sergio Barahona
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Antofagasta, Chile
| | - Joice León
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Antofagasta, Chile
| | - Bárbara Fuentes
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Antofagasta, Chile
| | - Carlos Areche
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Klaudia L. Hernández
- Centro de Investigación Marina Quintay, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - Daniel Aguayo
- Center for Bioinformatics and Integrative Biology, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Claudia P. Saavedra
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| |
Collapse
|
12
|
Nanca CL, Neri KD, Ngo ACR, Bennett RM, Dedeles GR. Degradation of Polycyclic Aromatic Hydrocarbons by Moderately Halophilic Bacteria from Luzon Salt Beds. J Health Pollut 2018; 8:180915. [PMID: 30524874 PMCID: PMC6257169 DOI: 10.5696/2156-9614-8.19.180915] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/12/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Polycyclic aromatic hydrocarbons (PAHs) are common environmental contaminants which are highly toxic due to their carcinogenic and mutagenic effects. They are released into the environment by incomplete combustion of solid and liquid fuels, accidental spillage of oils and seepage from industrial activities. One of the promising processes mitigating PAHs is through biodegradation. However, conventional microbiological treatment processes do not function well at high salt concentrations. Hence, utilization of halophilic bacteria should be considered. OBJECTIVES This study aimed to assess the ability of halophilic bacteria isolated from local salt beds in Pangasinan and Cavite, the Philippines, to degrade PAHs pyrene, fluorene and fluoranthene. METHODS Polycyclic aromatic hydrocarbon-tolerant halophilic bacteria collected from two sampling sites were phenotypically characterized, molecularly identified and tested to determine their potential to degrade the PAHs pyrene, fluorene and fluoranthene at a hypersaline condition. Best PAH degraders were then assayed to identify the optimal degradation using such parameters as pH, temperature and PAH concentration. Testing for enzyme degradation was also done to determine their baseline information. Extraction and analysis of degraded PAHs were performed using centrifugation and UV-vis spectrophotometry. RESULTS Twelve isolates from both collection sites tolerated and grew in culture with selected PAHs. These were identified into four genera (Halobacillus, Halomonas, Chromohalobacter, and Pontibacillus). Selected best isolates in a series of biodegradation assays with the above-mentioned parameters were Halobacillus B (Collection of Microbial Strains (CMS) 1802) (=trueperi) (Gram-positive) for pyrene and fluoranthene, and Halomonas A (CMS 1901) (Gram-negative) for fluorene. Degrader biomass and PAH degradation were invariably negatively correlated. Qualitative tests with and without peptone as a nitrogen source implied enzymatic degradation. DISCUSSION Polycyclic aromatic hydrocarbons utilized by these halophilic bacteria served as a sole source of carbon and energy. Implications of biodegradation of the two best isolates show that high molecular weight (HMW) (4-ring) pyrene tends to be degraded better by Gram-positive bacteria and low molecular weight (3-ring) fluorene by Gram-negative degraders. CONCLUSIONS Halophilic bacteria constitute an untapped natural resource for biotechnology in the Philippines. The present study demonstrated their potential use in bioremediation of recalcitrant hydrocarbons in the environment. COMPETING INTERESTS The authors declare no competing financial interests.
Collapse
Affiliation(s)
- Carolyn L. Nanca
- The Graduate School, University of Santo Tomas, Manila, Philippines
- Laboratory of Pure and Applied Microbiology, Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
- Department of Sciences, Senior High School, University of Santo Tomas, Manila, Philippines
| | - Kimberly D. Neri
- The Graduate School, University of Santo Tomas, Manila, Philippines
- Laboratory of Pure and Applied Microbiology, Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| | | | - Reuel M. Bennett
- Collection of Microbial Strains, University of Santo Tomas, Manila, Philippines
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
| | - Gina R. Dedeles
- The Graduate School, University of Santo Tomas, Manila, Philippines
- Laboratory of Pure and Applied Microbiology, Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
- Collection of Microbial Strains, University of Santo Tomas, Manila, Philippines
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
| |
Collapse
|
13
|
Boyadzhieva I, Tomova I, Radchenkova N, Kambourova M, Poli A, Vasileva-Tonkova E. Diversity of Heterotrophic Halophilic Bacteria Isolated from Coastal Solar Salterns, Bulgaria and Their Ability to Synthesize Bioactive Molecules with Biotechnological Impact. Microbiology (Reading) 2018. [DOI: 10.1134/s0026261718040033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
14
|
Analysis of the bacteriorhodopsin-producing haloarchaea reveals a core community that is stable over time in the salt crystallizers of Eilat, Israel. Extremophiles 2016; 20:747-57. [PMID: 27444744 DOI: 10.1007/s00792-016-0864-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/11/2016] [Indexed: 10/21/2022]
Abstract
Stability of microbial communities can impact the ability of dispersed cells to colonize a new habitat. Saturated brines and their halophile communities are presumed to be steady state systems due to limited environmental perturbations. In this study, the bacteriorhodopsin-containing fraction of the haloarchaeal community from Eilat salt crystallizer ponds was sampled five times over 3 years. Analyses revealed the existence of a constant core as several OTUs were found repeatedly over the length of the study: OTUs comprising 52 % of the total cloned and sequenced PCR amplicons were found in every sample, and OTUs comprising 89 % of the total sequences were found in more than one, and often more than two samples. LIBSHUFF and UNIFRAC analyses showed statistical similarity between samples and Spearman's coefficient denoted significant correlations between OTU pairs, indicating non-random patterns in abundance and co-occurrence of detected OTUs. Further, changes in the detected OTUs were statistically linked to deviations in salinity. We interpret these results as indicating the existence of an ever-present core bacteriorhodopsin-containing Eilat crystallizer community that fluctuates in population densities, which are controlled by salinity rather than the extinction of some OTUs and their replacement through immigration and colonization.
Collapse
|
15
|
Comparative analysis of prokaryotic diversity in solar salterns in eastern Anatolia (Turkey). Extremophiles 2016; 20:589-601. [PMID: 27306996 DOI: 10.1007/s00792-016-0845-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 05/31/2016] [Indexed: 10/21/2022]
Abstract
The prokaryotic communities of four salterns (Bingöl, Fadlum, Kemah, and Tuzlagözü) in Turkey were examined and compared using the cultivation and cultivation-independent methods [fluorescence in situ hybridization (FISH) and 454 pyrosequencing]. FISH analysis with universal probes revealed that feeding waters carried 1.6 × 10(2)-1.7 × 10(3) cells mL(-1), while crystallization ponds carried 3.8 × 10(6)-2.0 × 10(7) cells mL(-1) that were mostly haloarchaea, including square cells (except for Kemah). High-throughput 16S rRNA-based gene sequencing showed that the most frequent archaeal OTUs in Bingöl, Fadlum, Tuzlagözü, and Kemah samples were affiliated with Haloquadratum (76.8 %), Haloarcula (27.8 %), Halorubrum (49.6 %), and Halonotius (59.8 %), respectively. Bacteroidetes was the dominant bacterial phylum in Bingöl and Fadlum, representing 71.5 and 79.5 % of the bacterial OTUs (respectively), while the most abundant bacterial phylum found in the Kemah saltern was Proteobacteria (79.6 %). The majority of the bacterial OTUs recovered from Tuzlagözü belonged to the Cyanobacteria (35.7 %), Bacteroidetes (35.0 %), and Proteobacteria (25.5 %) phyla. Cultivation studies revealed that the archaeal isolates were closely related to the genera Halobacterium, Haloarcula, and Halorubrum. Bacterial isolates were confined to two phyla, Proteobacteria (Alphaproteobacteria and Gammaproteobacteria classes) and Bacteroidetes. Comparative analysis showed that members of the Euryarchaeota, Bacteroidetes, Proteobacteria, and Cyanobacteria phyla were major inhabitants of the solar salterns.
Collapse
|
16
|
Liu W, Zhang G, Xian W, Yang J, Yang L, Xiao M, Jiang H, Li WJ. Halomonas xiaochaidanensis sp. nov., isolated from a salt lake sediment. Arch Microbiol 2016; 198:761-6. [PMID: 27177899 DOI: 10.1007/s00203-016-1235-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/16/2016] [Accepted: 05/05/2016] [Indexed: 11/30/2022]
Abstract
A short-rod-shaped moderately halophilic bacterium, designated CUG 00002(T), was isolated from the sediment of Xiaochaidan salt lake in Qinghai Province, China by using R2A medium. The cells were Gram-staining negative, aerobic, forming creamy and circular colonies with diameters of 2-3 mm on R2A agar when incubated at 30 °C for 3 days. 16S rRNA gene-based phylogenetic analysis indicated that strain CUG 00002(T) belonged to the genus Halomonas in the class Gammaproteobacteria, showing highest sequence similarity of 97.1 and 96.7 % to Halomonas mongoliensis Z-7009(T) (=DSM 17332=VKM B2353) and Halomonas shengliensis SL014B-85(T) (=CGMCC 1.6444(T)=LMG 23897(T)), respectively. The predominant isoprenoid quinone was ubiquinone-9 (Q9), and the major fatty acids were C16:0, summed feature 3 (comprising C16:1 ω7c and/or C16:1 ω6c) and summed feature 8 (comprising C18:1 ω7c or C18:1 ω6c). The genomic DNA G+C content of strain CUG 00002(T) was 61.8 mol%. The above characteristics were consistent with the placement of the organism in the genus Halomonas. The level of DNA-DNA relatedness between CUG 00002(T) and its most closely related strain H. mongoliensis Z-7009(T) was 41.0 ± 1.6 %. Based on the results of phenotypic, phylogenetic and biochemical analyses, strain CUG 00002(T) represents a novel species of the genus Halomonas, for which the name Halomonas xiaochaidanensis sp. nov. is proposed. The type strain is CUG 00002(T) (=CCTCC AB 2014152(T)=KCTC 42685(T)).
Collapse
Affiliation(s)
- Wen Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, People's Republic of China
| | - Guojing Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, People's Republic of China
| | - Wendong Xian
- Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Jian Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, People's Republic of China
| | - Lingling Yang
- Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Min Xiao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, People's Republic of China.
| | - Wen-Jun Li
- Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, People's Republic of China. .,State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
17
|
Oren A. Life in Hypersaline Environments. THEIR WORLD: A DIVERSITY OF MICROBIAL ENVIRONMENTS 2016. [DOI: 10.1007/978-3-319-28071-4_8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Exploring the multiple biotechnological potential of halophilic microorganisms isolated from two Argentinean salterns. Extremophiles 2015; 19:1133-43. [PMID: 26369649 DOI: 10.1007/s00792-015-0785-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/30/2015] [Indexed: 10/23/2022]
Abstract
The biodiversity and biotechnological potential of microbes from central Argentinean halophilic environments have been poorly explored. Salitral Negro and Colorada Grande salterns are neutral hypersaline basins exploded for NaCl extraction. As part of an ecological analysis of these environments, two bacterial and seven archaeal representatives were isolated, identified and examined for their biotechnological potential. The presence of hydrolases (proteases, amylases, lipases, cellulases and nucleases) and bioactive molecules (surfactants and antimicrobial compounds) was screened. While all the isolates exhibited at least one of the tested activities or biocompounds, the species belonging to Haloarcula genus were the most active, also producing antimicrobial compounds against their counterparts. In general, the biosurfactants were more effective against olive oil and aromatic compounds than detergents (SDS or Triton X-100). Our results demonstrate the broad spectrum of activities with biotechnological potential exhibited by the microorganisms inhabiting the Argentinean salterns and reinforce the importance of screening pristine extreme environments to discover interesting/novel bioactive molecules.
Collapse
|
19
|
Biodiversity of Halophilic and Halotolerant Actinobacteria. SUSTAINABLE DEVELOPMENT AND BIODIVERSITY 2015. [DOI: 10.1007/978-3-319-14595-2_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Tiwari R, Singh S, Shukla P, Nain L. Novel cold temperature active β-glucosidase from Pseudomonas lutea BG8 suitable for simultaneous saccharification and fermentation. RSC Adv 2014. [DOI: 10.1039/c4ra09784j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
21
|
Diversity of cultivable halophilic archaea and bacteria from superficial hypersaline sediments of Tunisian solar salterns. Antonie van Leeuwenhoek 2014; 106:675-92. [PMID: 25064091 DOI: 10.1007/s10482-014-0238-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 07/14/2014] [Indexed: 10/25/2022]
Abstract
Prokaryotes in the superficial sediments are ecologically important microorganisms that are responsible for the decomposition, mineralization and subsequent recycling of organic matter. The aim of this study was to explore the phylogenetic and functional diversity of halophilic archaea and bacteria isolated from the superficial sediments of solar salterns at Sfax, Tunisia. Sixty four strains were isolated from crystallizer (TS18) and non-crystallizer (M1) ponds and submitted to genotypic characterization and evaluation by amplified ribosomal RNA restriction analysis (ARDRA) techniques. Our findings revealed that the archaeal diversity observed for 29 isolates generated five distinct patterns from the non-crystallizer M1 pond, with Halorubrum chaoviator as the most prevalent cultivable species. However, in the TS18 crystallizer pond, ten restriction patterns were observed, with the prevalence of haloarchaea EB27K, a not yet identified genotype. The construction of a neighbour-joining tree of 16S rRNA gene sequences resulted in the division of the potential new species into two major groups, with four strains closely related to the sequence of the unculturable haloarchaeon EB27K and one strain to the recently described Halovenus aranensis strain. The 35 bacterial strains observed in this work were present only in the non-crystallizer pond (M1) and presented two distinct ARDRA patterns. These strains belonged to the γ-proteobacteria subdivision, with members of Salicola marasensis (83%) being the most predominant species among the isolates. 16S rRNA gene sequencing revealed that Salicola strains displayed different degrees of homogeneity. The results from pulsed field gel electrophoresis assays showed that the Salicola isolates could be clustered in two distinct groups with different genome sizes.
Collapse
|
22
|
Baxter BK, Gunde-Cimerman N, Oren A. Salty sisters: The women of halophiles. Front Microbiol 2014; 5:192. [PMID: 24926287 PMCID: PMC4045239 DOI: 10.3389/fmicb.2014.00192] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 04/10/2014] [Indexed: 01/02/2023] Open
Abstract
A history of halophile research reveals the commitment of scientists to uncovering the secrets of the limits of life, in particular life in high salt concentration and under extreme osmotic pressure. During the last 40 years, halophile scientists have indeed made important contributions to extremophile research, and prior international halophiles congresses have documented both the historical and the current work. During this period of salty discoveries, female scientists, in general, have grown in number worldwide. But those who worked in the field when there were small numbers of women sometimes saw their important contributions overshadowed by their male counterparts. Recent studies suggest that modern female scientists experience gender bias in matters such as conference invitations and even representation among full professors. In the field of halophilic microbiology, what is the impact of gender bias? How has the participation of women changed over time? What do women uniquely contribute to this field? What are factors that impact current female scientists to a greater degree? This essay emphasizes the “her story” (not “history”) of halophile discovery.
Collapse
Affiliation(s)
- Bonnie K Baxter
- Great Salt Lake Institute, Westminster College Salt Lake City, UT, USA
| | - Nina Gunde-Cimerman
- Molecular Genetics and Microbiology, University of Ljubljana Ljubljana, Slovenia ; Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins Ljubljana, Slovenia
| | - Aharon Oren
- Department of Plant and Environmental Sciences, The Institute of Life Sciences, The Edmond J. Safra Campus, The Hebrew University of Jerusalem Givat Ram, Israel
| |
Collapse
|
23
|
Isolation and characterization of a protease-producing novel haloalkaliphilic bacterium Halobiforma sp. strain BNMIITR from Sambhar lake in Rajasthan, India. ANN MICROBIOL 2014. [DOI: 10.1007/s13213-014-0906-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
24
|
Jose PA, Jebakumar SRD. Unexplored hypersaline habitats are sources of novel actinomycetes. Front Microbiol 2014; 5:242. [PMID: 24904555 PMCID: PMC4034035 DOI: 10.3389/fmicb.2014.00242] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 05/04/2014] [Indexed: 11/13/2022] Open
Affiliation(s)
- Polpass Arul Jose
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University Madurai, India
| | | |
Collapse
|
25
|
Leuko S, Rettberg P, Pontifex AL, Burns BP. On the response of halophilic archaea to space conditions. Life (Basel) 2014; 4:66-76. [PMID: 25370029 PMCID: PMC4187150 DOI: 10.3390/life4010066] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 02/10/2014] [Accepted: 02/17/2014] [Indexed: 11/16/2022] Open
Abstract
Microorganisms are ubiquitous and can be found in almost every habitat and ecological niche on Earth. They thrive and survive in a broad spectrum of environments and adapt to rapidly changing external conditions. It is of great interest to investigate how microbes adapt to different extreme environments and with modern human space travel, we added a new extreme environment: outer space. Within the last 50 years, technology has provided tools for transporting microbial life beyond Earth's protective shield in order to study in situ responses to selected conditions of space. This review will focus on halophilic archaea, as, due to their ability to survive in extremes, they are often considered a model group of organisms to study responses to the harsh conditions associated with space. We discuss ground-based simulations, as well as space experiments, utilizing archaea, examining responses and/or resistance to the effects of microgravity and UV in particular. Several halophilic archaea (e.g., Halorubrum chaoviator) have been exposed to simulated and actual space conditions and their survival has been determined as well as the protective effects of halite shown. Finally, the intriguing potential of archaea to survive on other planets or embedded in a meteorite is postulated.
Collapse
Affiliation(s)
- Stefan Leuko
- Deutsches Zentrum für Luft- und Raumfahrt, Institut für Luft- und Raumfahrtmedizin, Abteilung Strahlenbiologie, Arbeitsgruppe Astrobiologie, Linder Höhe, Köln 51147, Germany.
| | - Petra Rettberg
- Deutsches Zentrum für Luft- und Raumfahrt, Institut für Luft- und Raumfahrtmedizin, Abteilung Strahlenbiologie, Arbeitsgruppe Astrobiologie, Linder Höhe, Köln 51147, Germany.
| | - Ashleigh L Pontifex
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney NSW 2052, Australia.
| | - Brendan P Burns
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney NSW 2052, Australia.
| |
Collapse
|
26
|
Chen S, Wang C, Xu JP, Yang ZL. Molecular characterization of pHRDV1, a new virus-like mobile genetic element closely related to pleomorphic viruses in haloarchaea. Extremophiles 2013; 18:195-206. [PMID: 24374718 DOI: 10.1007/s00792-013-0599-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 11/14/2013] [Indexed: 11/30/2022]
Abstract
A novel haloarchaeal plasmid, pHRDV1 (13,053 bp), was isolated from the haloarchaeal isolate Halorubrum sp. T3. Molecular and bioinformatics analyses showed that this element is a double-stranded circular DNA molecule containing two putative transcripts with opposite directions. The amino acid sequences of six of the nineteen predicted open reading frames were similar to those found in haloarchaeal pleomorphic viruses, such as Halorubrum pleomorphic virus 3 and Halogeometricum pleomorphic virus 1. There was also a strong conservation in gene order between the plasmid and these viruses. All three conserved viral proteins (VPs), which are characteristic of haloarchaeal pleomorphic viruses VP3, VP4 and VP8, were found in pHRDV1. Furthermore, a typical repressor-operator system similar to haloarchaeal myovirus φCh1, was found on the genome of pHRDV1. However, no viral particles were detected in the supernatants of Halorubrum sp. T3, either in the presence or absence of mitomycin C. These results imply that plasmid pHRDV1 is a distinctive virus-like mobile genetic element that harbors some unique properties that make it different from all of the known haloarchaeal plasmids or viruses.
Collapse
Affiliation(s)
- Shaoxing Chen
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China,
| | | | | | | |
Collapse
|
27
|
Dillon JG, Carlin M, Gutierrez A, Nguyen V, McLain N. Patterns of microbial diversity along a salinity gradient in the Guerrero Negro solar saltern, Baja CA Sur, Mexico. Front Microbiol 2013; 4:399. [PMID: 24391633 PMCID: PMC3868825 DOI: 10.3389/fmicb.2013.00399] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 12/04/2013] [Indexed: 01/28/2023] Open
Abstract
The goal of this study was to use environmental sequencing of 16S rRNA and bop genes to compare the diversity of planktonic bacteria and archaea across ponds with increasing salinity in the Exportadora de Sal (ESSA) evaporative saltern in Guerrero Negro, Baja CA S., Mexico. We hypothesized that diverse communities of heterotrophic bacteria and archaea would be found in the ESSA ponds, but that bacterial diversity would decrease relative to archaea at the highest salinities. Archaeal 16S rRNA diversity was higher in Ponds 11 and 12 (370 and 380 g l(-1) total salts, respectively) compared to Pond 9 (180 g l(-1) total salts). Both Pond 11 and 12 communities had high representation (47 and 45% of clones, respectively) by Haloquadratum walsbyi-like (99% similarity) lineages. The archaeal community in Pond 9 was dominated (79%) by a single uncultured phylotype with 99% similarity to sequences recovered from the Sfax saltern in Tunisia. This pattern was mirrored in bop gene diversity with greater numbers of highly supported phylotypes including many Haloquadratum-like sequences from the two highest salinity ponds. In Pond 9, most bop sequences, were not closely related to sequences in databases. Bacterial 16S rRNA diversity was higher than archaeal in both Pond 9 and Pond 12 samples, but not Pond 11, where a non-Salinibacter lineage within the Bacteroidetes >98% similar to environmental clones recovered from Lake Tuz in Turkey and a saltern in Chula Vista, CA was most abundant (69% of community). This OTU was also the most abundant in Pond 12, but only represented 14% of clones in the more diverse pond. The most abundant OTU in Pond 9 (33% of community) was 99% similar to an uncultured gammaproteobacterial clone from the Salton Sea. Results suggest that the communities of saltern bacteria and archaea vary even in ponds with similar salinity and further investigation into the ecology of diverse, uncultured halophile communities is warranted.
Collapse
Affiliation(s)
- Jesse G Dillon
- Department of Biological Sciences, California State University Long Beach, CA, USA
| | - Mark Carlin
- Department of Biological Sciences, California State University Long Beach, CA, USA
| | - Abraham Gutierrez
- Department of Biological Sciences, California State University Long Beach, CA, USA
| | - Vivian Nguyen
- Department of Biological Sciences, California State University Long Beach, CA, USA
| | - Nathan McLain
- Department of Biological Sciences, California State University Long Beach, CA, USA
| |
Collapse
|
28
|
Atanasova NS, Pietilä MK, Oksanen HM. Diverse antimicrobial interactions of halophilic archaea and bacteria extend over geographical distances and cross the domain barrier. Microbiologyopen 2013; 2:811-25. [PMID: 23929527 PMCID: PMC3831642 DOI: 10.1002/mbo3.115] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 06/17/2013] [Accepted: 06/24/2013] [Indexed: 11/07/2022] Open
Abstract
The significance of antimicrobial substances, halocins, produced by halophilic archaea and bacteria thriving in hypersaline environments is relatively unknown. It is suggested that their production might increase species diversity and give transient competitive advances to the producer strain. Halocin production is considered to be common among halophilic archaea, but there is a lack of information about halocins produced by bacteria in highly saline environments. We studied the antimicrobial activity of 68 halophilic archaea and 22 bacteria isolated from numerous geographically distant hypersaline environments. Altogether 144 antimicrobial interactions were found between the strains and aside haloarchaea, halophilic bacteria from various genera were identified as halocin producers. Close to 80% of the interactions were detected between microorganisms from different genera and in few cases, even across the domain boundary. Several of the strains produced halocins with a wide inhibitory spectrum as has been observed before. Most of the antimicrobial interactions were found between strains from distant sampling sites indicating that hypersaline environments around the world have similar microorganisms with the potential to produce wide activity range antimicrobials.
Collapse
Affiliation(s)
- Nina S Atanasova
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, Viikinkaari 5, PO Box 56, 00014, Helsinki, Finland
| | | | | |
Collapse
|
29
|
Oren A. Salinibacter: an extremely halophilic bacterium with archaeal properties. FEMS Microbiol Lett 2013; 342:1-9. [PMID: 23373661 DOI: 10.1111/1574-6968.12094] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Revised: 01/29/2013] [Accepted: 01/29/2013] [Indexed: 12/17/2022] Open
Abstract
The existence of large number of a member of the Bacteroidetes in NaCl-saturated brines in saltern crystallizer ponds was first documented in 1999 based on fluorescence in situ hybridization studies. Isolation of the organism and its description as Salinibacter ruber followed soon. It is a rod-shaped, red-orange pigmented, extreme halophile that grows optimally at 20-30% salt. The genus is distributed worldwide in hypersaline environments. Today, the genus Salinibacter includes three species, and a somewhat less halophilic relative, Salisaeta longa, has also been documented. Although belonging to the Bacteria, Salinibacter shares many features with the Archaea of the family Halobacteriaceae that live in the same habitat. Both groups use KCl for osmotic adjustment of their cytoplasm, both mainly possess salt-requiring enzymes with a large excess of acidic amino acids, and both contain different retinal pigments: light-driven proton pumps, chloride pumps, and light sensors. Salinibacter produces an unusual carotenoid, salinixanthin that forms a light antenna and transfers energy to the retinal group of xanthorhodopsin, a light-driven proton pump. Other unusual features of Salinibacter and Salisaeta include the presence of novel sulfonolipids (halocapnine derivatives). Salinibacter has become an excellent model for metagenomic, biogeographic, ecological, and evolutionary studies.
Collapse
Affiliation(s)
- Aharon Oren
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
30
|
Copeland E, Choy N, Gabani P, Singh OV. Biosynthesis of Extremolytes: Radiation Resistance and Biotechnological Implications. Extremophiles 2012. [DOI: 10.1002/9781118394144.ch15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
31
|
Visualization and curve-parameter estimation strategies for efficient exploration of phenotype microarray kinetics. PLoS One 2012; 7:e34846. [PMID: 22536335 PMCID: PMC3334903 DOI: 10.1371/journal.pone.0034846] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 03/08/2012] [Indexed: 11/19/2022] Open
Abstract
Background The Phenotype MicroArray (OmniLog® PM) system is able to simultaneously capture a large number of phenotypes by recording an organism's respiration over time on distinct substrates. This technique targets the object of natural selection itself, the phenotype, whereas previously addressed ‘-omics’ techniques merely study components that finally contribute to it. The recording of respiration over time, however, adds a longitudinal dimension to the data. To optimally exploit this information, it must be extracted from the shapes of the recorded curves and displayed in analogy to conventional growth curves. Methodology The free software environment R was explored for both visualizing and fitting of PM respiration curves. Approaches using either a model fit (and commonly applied growth models) or a smoothing spline were evaluated. Their reliability in inferring curve parameters and confidence intervals was compared to the native OmniLog® PM analysis software. We consider the post-processing of the estimated parameters, the optimal classification of curve shapes and the detection of significant differences between them, as well as practically relevant questions such as detecting the impact of cultivation times and the minimum required number of experimental repeats. Conclusions We provide a comprehensive framework for data visualization and parameter estimation according to user choices. A flexible graphical representation strategy for displaying the results is proposed, including 95% confidence intervals for the estimated parameters. The spline approach is less prone to irregular curve shapes than fitting any of the considered models or using the native PM software for calculating both point estimates and confidence intervals. These can serve as a starting point for the automated post-processing of PM data, providing much more information than the strict dichotomization into positive and negative reactions. Our results form the basis for a freely available R package for the analysis of PM data.
Collapse
|
32
|
Bourne CR, Wakeham N, Bunce RA, Berlin KD, Barrow WW. Classifying compound mechanism of action for linking whole cell phenotypes to molecular targets. J Mol Recognit 2012; 25:216-23. [PMID: 22434711 PMCID: PMC3703735 DOI: 10.1002/jmr.2174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Drug development programs have proven successful when performed at a whole cell level, thus incorporating solubility and permeability into the primary screen. However, linking those results to the target within the cell has been a major setback. The Phenotype Microarray system, marketed and sold by Biolog, seeks to address this need by assessing the phenotype in combination with a variety of chemicals with known mechanism of action (MOA). We have evaluated this system for usefulness in deducing the MOA for three test compounds. To achieve this, we constructed a database with 21 known antimicrobials, which served as a comparison for grouping our unknown MOA compounds. Pearson correlation and Ward linkage calculations were used to generate a dendrogram that produced clustering largely by known MOA, although there were exceptions. Of the three unknown compounds, one was definitively placed as an antifolate. The second and third compounds' MOA were not clearly identified, likely because the unique MOA was not represented within the database. The availability of the database generated in this report for Staphylococcus aureus ATCC 29213 will increase the accessibility of this technique to other investigators. From our analysis, the Phenotype Microarray system can group compounds with clear MOA, but the distinction of unique or broadly acting MOA at this time is less clear.
Collapse
Affiliation(s)
- Christina R. Bourne
- Department of Veterinary Pathobiology, Oklahoma State University, 250 McElroy Hall, Stillwater OK 74078
| | - Nancy Wakeham
- Department of Veterinary Pathobiology, Oklahoma State University, 250 McElroy Hall, Stillwater OK 74078
| | - Richard A. Bunce
- Department of Chemistry, Oklahoma State University, 107 Physical Sciences 1, Stillwater OK 74078
| | - K. Darrell Berlin
- Department of Chemistry, Oklahoma State University, 107 Physical Sciences 1, Stillwater OK 74078
| | - William W. Barrow
- Department of Veterinary Pathobiology, Oklahoma State University, 250 McElroy Hall, Stillwater OK 74078
| |
Collapse
|
33
|
Vahed SZ, Forouhandeh H, Hassanzadeh S, Klenk HP, Hejazi MA, Hejazi MS. Isolation and characterization of halophilic bacteria from Urmia Lake in Iran. Microbiology (Reading) 2011. [DOI: 10.1134/s0026261711060191] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
34
|
Atanasova NS, Roine E, Oren A, Bamford DH, Oksanen HM. Global network of specific virus-host interactions in hypersaline environments. Environ Microbiol 2011; 14:426-40. [PMID: 22003883 DOI: 10.1111/j.1462-2920.2011.02603.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hypersaline environments are dominated by archaea and bacteria and are almost entirely devoid of eukaryotic organisms. In addition, hypersaline environments contain considerable numbers of viruses. Currently, there is only a limited amount of information about these haloviruses. The ones described in detail mostly resemble head-tail bacteriophages, whereas observations based on direct microscopy of the hypersaline environmental samples highlight the abundance of non-tailed virus-like particles. Here we studied nine spatially distant hypersaline environments for the isolation of new halophilic archaea (61 isolates), halophilic bacteria (24 isolates) and their viruses (49 isolates) using a culture-dependent approach. The obtained virus isolates approximately double the number of currently described archaeal viruses. The new isolates could be divided into three tailed and two non-tailed virus morphotypes, suggesting that both types of viruses are widely distributed and characteristic for haloarchaeal viruses. We determined the sensitivity of the hosts against all isolated viruses. It appeared that the host ranges of numerous viruses extend to hosts in distant locations, supporting the idea that there is a global exchange of microbes and their viruses. It suggests that hypersaline environments worldwide function like a single habitat.
Collapse
Affiliation(s)
- Nina S Atanasova
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, Viikinkaari 5, Helsinki, Finland
| | | | | | | | | |
Collapse
|
35
|
Narasingarao P, Podell S, Ugalde JA, Brochier-Armanet C, Emerson JB, Brocks JJ, Heidelberg KB, Banfield JF, Allen EE. De novo metagenomic assembly reveals abundant novel major lineage of Archaea in hypersaline microbial communities. ISME JOURNAL 2011; 6:81-93. [PMID: 21716304 DOI: 10.1038/ismej.2011.78] [Citation(s) in RCA: 244] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This study describes reconstruction of two highly unusual archaeal genomes by de novo metagenomic assembly of multiple, deeply sequenced libraries from surface waters of Lake Tyrrell (LT), a hypersaline lake in NW Victoria, Australia. Lineage-specific probes were designed using the assembled genomes to visualize these novel archaea, which were highly abundant in the 0.1-0.8 μm size fraction of lake water samples. Gene content and inferred metabolic capabilities were highly dissimilar to all previously identified hypersaline microbial species. Distinctive characteristics included unique amino acid composition, absence of Gvp gas vesicle proteins, atypical archaeal metabolic pathways and unusually small cell size (approximately 0.6 μm diameter). Multi-locus phylogenetic analyses demonstrated that these organisms belong to a new major euryarchaeal lineage, distantly related to halophilic archaea of class Halobacteria. Consistent with these findings, we propose creation of a new archaeal class, provisionally named 'Nanohaloarchaea'. In addition to their high abundance in LT surface waters, we report the prevalence of Nanohaloarchaea in other hypersaline environments worldwide. The simultaneous discovery and genome sequencing of a novel yet ubiquitous lineage of uncultivated microorganisms demonstrates that even historically well-characterized environments can reveal unexpected diversity when analyzed by metagenomics, and advances our understanding of the ecology of hypersaline environments and the evolutionary history of the archaea.
Collapse
Affiliation(s)
- Priya Narasingarao
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|