1
|
Li C, Xu J. Construction of Promoter-Ribosome Binding Site Library for Manipulating Gene Expression in the Hyperthermophilic Archaeon Thermococcus kodakarensis. ACS Synth Biol 2025. [PMID: 40424603 DOI: 10.1021/acssynbio.5c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
Extremely thermophilic archaea, such as Thermococcus kodakarensis, possess biotechnological potential as sources of either thermostable enzymes or biotransformation processes under high temperature. However, the absence of a tool for fine-tuning of gene expression impedes its advancement as a platform organism. Here, we constructed a genetic element library in T. kodakarensis, which includes constitutive promoters, inducible promoters, and ribosome binding site (RBS). The promoter library consisted of 76 constitutive promoters with expression strengths spanning a ∼8 × 103-fold dynamic range and 22 inducible promoters consisting of 15 maltodextrin-inducible promoters and 7 pressure-inducible promoters with maximum induction strength achieving a ∼8-fold increase. We also generated an RBS library containing 31 different RBS sequences, with translation strengths covering an ∼5-fold dynamic range. Utilizing the characterized and identified element library, we constructed a high hydrostatic pressure-inducible toxin-antitoxin (TA) system as the toxin counterselectable cassette regulated by an antitoxin switch for genetic modifications in T. kodakarensis to realize markerless gene disruption directly in rich medium. Moreover, the rational control of the relative expression levels of the TA system enhanced the knockout efficiency. We then replaced the native promoters of genes associated with hydrogen production pathways with various types and strengths of promoters, resulting in a 2.68-fold increase in hydrogen yield (59.4 mmol liter-1 vs 22.2 mmol liter-1). Therefore, the genetic toolbox developed in this work is highly significant for advancing fundamental biological research and biotechnological engineering of hyperthermophilic Thermococcales.
Collapse
Affiliation(s)
- Cong Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jun Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Kuschmierz L, Wagner A, Schmerling C, Busche T, Kalinowski J, Bräsen C, Siebers B. 5'-untranslated region sequences enhance plasmid-based protein production in Sulfolobus acidocaldarius. Front Microbiol 2024; 15:1443342. [PMID: 39654677 PMCID: PMC11627041 DOI: 10.3389/fmicb.2024.1443342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/21/2024] [Indexed: 12/12/2024] Open
Abstract
Sulfolobus acidocaldarius, a thermoacidophilic archaeon of the phylum Thermoproteota (former Crenarchaeota), is a widely used model organism for gene deletion studies and recombinant protein production. Previous research has demonstrated the efficacy of the saci_2122 promoter (Para), providing low basal activity and high pentose-dependent induction. However, the available expression vector does not include a 5'-terminal untranslated region (5'-UTR), a typical element found in bacterial expression vectors that usually enhances protein production in bacteria. To establish S. acidocaldarius as a production strain in biotechnology in the long term, it is intrinsically relevant to optimize its tools and capacities to increase production efficiencies. Here we show that protein production is increased by the integration of S. acidocaldarius 5'-UTRs into Para expression plasmids. Using the esterase Saci_1116 as a reporter protein, we observed a four-fold increase in soluble and active protein yield upon insertion of the saci_1322 (alba) 5'-UTR. Screening of four additional 5'-UTRs from other highly abundant proteins (thα, slaA, slaB, saci_0330) revealed a consistent enhancement in target protein production. Additionally, site-directed mutagenesis of the Shine-Dalgarno (SD) motif within the alba 5'-UTR revealed its significance for protein synthesis. Ultimately, the alba 5'-UTR optimized expression vector improved the expression of various proteins, including six glycosyltransferases and one hydroxyacyl-CoA dehydratase from S. acidocaldarius, and a malto-oligosyltrehalose trehalohydrolase from Saccharolobus solfataricus, demonstrating its applicability. Our results show that the integration of SD-motif containing 5'-UTRs significantly enhanced plasmid-based protein production in S. acidocaldarius. This advancement in recombinant expression not only broadens the utility of S. acidocaldarius as an archaeal expression platform but also marks an important step toward potential biotechnological applications.
Collapse
Affiliation(s)
- Laura Kuschmierz
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research (CWE), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Alexander Wagner
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research (CWE), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Christian Schmerling
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research (CWE), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Tobias Busche
- Microbial Genomics and Biotechnology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Christopher Bräsen
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research (CWE), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Bettina Siebers
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research (CWE), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
3
|
Liu S, Xiao F, Li Y, Zhang Y, Wang Y, Shi G. Establishment of the CRISPR-Cpf1 gene editing system in Bacillus licheniformis and multiplexed gene knockout. Synth Syst Biotechnol 2024; 10:39-48. [PMID: 39224148 PMCID: PMC11366866 DOI: 10.1016/j.synbio.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/13/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Bacillus licheniformis is a significant industrial microorganism. Traditional gene editing techniques relying on homologous recombination often exhibit low efficiency due to their reliance on resistance genes. Additionally, the established CRISPR gene editing technology, utilizing Cas9 endonuclease, faces challenges in achieving simultaneous knockout of multiple genes. To address this limitation, the CRISPR-Cpf1 system has been developed, enabling multiplexed gene editing across various microorganisms. Key to the efficient gene editing capability of this system is the rigorous screening of highly effective expression elements to achieve conditional expression of protein Cpf1. In this study, we employed mCherry as a reporter gene and harnessed P mal for regulating the expression of Cpf1 to establish the CRISPR-Cpf1 gene editing system in Bacillus licheniformis. Our system achieved a 100 % knockout efficiency for the single gene vpr and up to 80 % for simultaneous knockout of the double genes epr and mpr. Furthermore, the culture of a series of protease-deficient strains revealed that the protease encoded by aprE contributed significantly to extracellular enzyme activity (approximately 80 %), whereas proteases encoded by vpr, epr, and mpr genes contributed to a smaller proportion of extracellular enzyme activity. These findings provide support for effective molecular modification and metabolic regulation in industrial organisms.
Collapse
Affiliation(s)
- Suxin Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, PR China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, 214122, Jiangsu, PR China
| | - Fengxu Xiao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, PR China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, 214122, Jiangsu, PR China
| | - Youran Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, PR China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, 214122, Jiangsu, PR China
| | - Yupeng Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, PR China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, 214122, Jiangsu, PR China
| | - Yanling Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, PR China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, 214122, Jiangsu, PR China
| | - Guiyang Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, PR China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, 214122, Jiangsu, PR China
| |
Collapse
|
4
|
Archaea as a Model System for Molecular Biology and Biotechnology. Biomolecules 2023; 13:biom13010114. [PMID: 36671499 PMCID: PMC9855744 DOI: 10.3390/biom13010114] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Archaea represents the third domain of life, displaying a closer relationship with eukaryotes than bacteria. These microorganisms are valuable model systems for molecular biology and biotechnology. In fact, nowadays, methanogens, halophiles, thermophilic euryarchaeota, and crenarchaeota are the four groups of archaea for which genetic systems have been well established, making them suitable as model systems and allowing for the increasing study of archaeal genes' functions. Furthermore, thermophiles are used to explore several aspects of archaeal biology, such as stress responses, DNA replication and repair, transcription, translation and its regulation mechanisms, CRISPR systems, and carbon and energy metabolism. Extremophilic archaea also represent a valuable source of new biomolecules for biological and biotechnological applications, and there is growing interest in the development of engineered strains. In this review, we report on some of the most important aspects of the use of archaea as a model system for genetic evolution, the development of genetic tools, and their application for the elucidation of the basal molecular mechanisms in this domain of life. Furthermore, an overview on the discovery of new enzymes of biotechnological interest from archaea thriving in extreme environments is reported.
Collapse
|
5
|
Abstract
Archaea inhabit a wide variety of habitats and are well-placed to provide insights into the origins of eukaryotes. In this primer, we examine the available model archaeal genetic systems. We consider the limitations and barriers involved in genetically modifying different archaeal species, the techniques and breakthroughs that have contributed to their tractability, and potential areas for future development.
Collapse
Affiliation(s)
- Catherine Harrison
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Thorsten Allers
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK.
| |
Collapse
|
6
|
Characterization of a Novel Thermostable Dye-Linked l-Lactate Dehydrogenase Complex and Its Application in Electrochemical Detection. Int J Mol Sci 2021; 22:ijms222413570. [PMID: 34948373 PMCID: PMC8704557 DOI: 10.3390/ijms222413570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022] Open
Abstract
Flavoenzyme dye-linked l-lactate dehydrogenase (Dye-LDH) is primarily involved in energy generation through electron transfer and exhibits potential utility in electrochemical devices. In this study, a gene encoding a Dye-LDH homolog was identified in a hyperthermophilic archaeon, Sulfurisphaera tokodaii. This gene was part of an operon that consisted of four genes that were tandemly arranged in the Sf. tokodaii genome in the following order: stk_16540, stk_16550 (dye-ldh homolog), stk_16560, and stk_16570. This gene cluster was expressed in an archaeal host, Sulfolobus acidocaldarius, and the produced enzyme was purified to homogeneity and characterized. The purified recombinant enzyme exhibited Dye-LDH activity and consisted of two different subunits (products of stk_16540 (α) and stk_16550 (β)), forming a heterohexameric structure (α3β3) with a molecular mass of approximately 253 kDa. Dye-LDH also exhibited excellent stability, retaining full activity upon incubation at 70 °C for 10 min and up to 80% activity after 30 min at 50 °C and pH 6.5–8.0. A quasi-direct electron transfer (DET)-type Dye-LDH was successfully developed by modification of the recombinant enzyme with an artificial redox mediator, phenazine ethosulfate, through amine groups on the enzyme’s surface. This study is the first report describing the development of a quasi-DET-type enzyme by using thermostable Dye-LDH.
Collapse
|
7
|
Lewis AM, Recalde A, Bräsen C, Counts JA, Nussbaum P, Bost J, Schocke L, Shen L, Willard DJ, Quax TEF, Peeters E, Siebers B, Albers SV, Kelly RM. The biology of thermoacidophilic archaea from the order Sulfolobales. FEMS Microbiol Rev 2021; 45:fuaa063. [PMID: 33476388 PMCID: PMC8557808 DOI: 10.1093/femsre/fuaa063] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
Thermoacidophilic archaea belonging to the order Sulfolobales thrive in extreme biotopes, such as sulfuric hot springs and ore deposits. These microorganisms have been model systems for understanding life in extreme environments, as well as for probing the evolution of both molecular genetic processes and central metabolic pathways. Thermoacidophiles, such as the Sulfolobales, use typical microbial responses to persist in hot acid (e.g. motility, stress response, biofilm formation), albeit with some unusual twists. They also exhibit unique physiological features, including iron and sulfur chemolithoautotrophy, that differentiate them from much of the microbial world. Although first discovered >50 years ago, it was not until recently that genome sequence data and facile genetic tools have been developed for species in the Sulfolobales. These advances have not only opened up ways to further probe novel features of these microbes but also paved the way for their potential biotechnological applications. Discussed here are the nuances of the thermoacidophilic lifestyle of the Sulfolobales, including their evolutionary placement, cell biology, survival strategies, genetic tools, metabolic processes and physiological attributes together with how these characteristics make thermoacidophiles ideal platforms for specialized industrial processes.
Collapse
Affiliation(s)
- April M Lewis
- Department of Chemical and Biomolecular Engineering, North Carolina State University. Raleigh, NC 27695, USA
| | - Alejandra Recalde
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany
| | - Christopher Bräsen
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - James A Counts
- Department of Chemical and Biomolecular Engineering, North Carolina State University. Raleigh, NC 27695, USA
| | - Phillip Nussbaum
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany
| | - Jan Bost
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany
| | - Larissa Schocke
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - Lu Shen
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - Daniel J Willard
- Department of Chemical and Biomolecular Engineering, North Carolina State University. Raleigh, NC 27695, USA
| | - Tessa E F Quax
- Archaeal Virus–Host Interactions, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Eveline Peeters
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Bettina Siebers
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - Sonja-Verena Albers
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University. Raleigh, NC 27695, USA
| |
Collapse
|
8
|
Genome Editing of the Anaerobic Thermophile Thermoanaerobacter ethanolicus Using Thermostable Cas9. Appl Environ Microbiol 2020; 87:AEM.01773-20. [PMID: 33067194 DOI: 10.1128/aem.01773-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/04/2020] [Indexed: 12/11/2022] Open
Abstract
Thermoanaerobacter ethanolicus can produce acetate, lactate, hydrogen, and ethanol from sugars resulting from plant carbohydrate polymer degradation at temperatures above 65°C. T. ethanolicus is a promising candidate for thermophilic ethanol fermentations due to the utilization of both pentose and hexose. Although an ethanol balance model in T. ethanolicus has been developed, only a few physiological or biochemical experiments regarding the function of important enzymes in ethanol formation have been carried out. To address this issue, we developed a thermostable Cas9-based system for genome editing of T. ethanolicus As a proof of principle, three genes, including the thymidine kinase gene (tdk), acetaldehyde-alcohol dehydrogenase gene (adhE), and redox sensing protein gene (rsp), were chosen as editing targets, and these genes were edited successfully. As a genetic tool, we tested the gene knockout and a small DNA fragment knock-in. After optimization of the transformation strategies, 77% genome-editing efficiency was observed. Furthermore, our in vivo results revealed that redox sensing protein (RSP) plays a more important role in regulation of energy metabolism, including hydrogen production and ethanol formation. The genetic system provides us with an effective strategy to identify genes involved in biosynthesis and energy metabolism.IMPORTANCE Interest in thermophilic microorganisms as emerging metabolic engineering platforms to produce biofuels and chemicals has surged. Thermophilic microbes for biofuels have attracted great attention, due to their tolerance of high temperature and wide range of substrate utilization. On the basis of the biochemical experiments of previous investigation, the formation of ethanol was controlled via transcriptional regulation and influenced by the relevant properties of specific enzymes in T. ethanolicus Thus, there is an urgent need to understand the physiological function of these key enzymes, which requires genetic manipulations such as deletion or overexpression of genes encoding putative key enzymes. Here, we developed a thermostable Cas9-based engineering tool for gene editing in T. ethanolicus The thermostable Cas9-based genome-editing tool may further be applied to metabolically engineer T. ethanolicus to produce biofuels. This genetic system represents an important expansion of the genetic tool box of anaerobic thermophile T. ethanolicus strains.
Collapse
|
9
|
Satomura T, Emoto S, Kurosawa N, Ohshima T, Sakuraba H, Suye SI. Characterization of dye-linked d-amino acid dehydrogenase from Sulfurisphaera tokodaii expressed using an archaeal recombinant protein expression system. J Biosci Bioeng 2020; 130:247-252. [PMID: 32451245 DOI: 10.1016/j.jbiosc.2020.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/14/2020] [Accepted: 04/22/2020] [Indexed: 11/16/2022]
Abstract
A gene encoding a dye-linked d-amino acid dehydrogenase (Dye-DADH) homologue was found in a hyperthermophilic archaeon, Sulfurisphaera tokodaii. The predicted amino acid sequence suggested that the gene product is a membrane-bound type enzyme. The gene was overexpressed in Escherichia coli, but the recombinant protein was exclusively produced as an inclusion body. In order to avoid production of the inclusion body, an expression system using the thermoacidophilic archaeon Sulfolobus acidocaldarius instead of E. coli as the host cell was constructed. The gene was successfully expressed in Sulfolobus acidocaldarius, and its product was purified to homogeneity and characterized. The purified enzyme catalyzed the dehydrogenation of various d-amino acids, with d-phenylalanine being the most preferred substrate. The enzyme retained its full activity after incubation at 90 °C for 30 min and after incubation at pH 4.0-11.0 for 30 min at 50 °C. This is the first report on membrane-bound Dye-DADH from thermophilic archaea that was successfully expressed in an archaeal host.
Collapse
Affiliation(s)
- Takenori Satomura
- Division of Engineering, Faculty of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan; Life Science Innovation Center, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan.
| | - Shin Emoto
- Department of Applied Chemistry Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | - Norio Kurosawa
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| | - Toshihisa Ohshima
- Department of Biomedical Engineering, Faculty of Engineering, Osaka Institute of Technology, Ohmiya, 5-16-1 Asahi-ku, Osaka 535-8585, Japan
| | - Haruhiko Sakuraba
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| | - Shin-Ichiro Suye
- Division of Engineering, Faculty of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan; Life Science Innovation Center, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| |
Collapse
|
10
|
Zink IA, Pfeifer K, Wimmer E, Sleytr UB, Schuster B, Schleper C. CRISPR-mediated gene silencing reveals involvement of the archaeal S-layer in cell division and virus infection. Nat Commun 2019; 10:4797. [PMID: 31641111 PMCID: PMC6805947 DOI: 10.1038/s41467-019-12745-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 09/18/2019] [Indexed: 12/27/2022] Open
Abstract
The S-layer is a proteinaceous surface lattice found in the cell envelope of bacteria and archaea. In most archaea, a glycosylated S-layer constitutes the sole cell wall and there is evidence that it contributes to cell shape maintenance and stress resilience. Here we use a gene-knockdown technology based on an endogenous CRISPR type III complex to gradually silence slaB, which encodes the S-layer membrane anchor in the hyperthermophilic archaeon Sulfolobus solfataricus. Silenced cells exhibit a reduced or peeled-off S-layer lattice, cell shape alterations and decreased surface glycosylation. These cells barely propagate but increase in diameter and DNA content, indicating impaired cell division; their phenotypes can be rescued through genetic complementation. Furthermore, S-layer depleted cells are less susceptible to infection with the virus SSV1. Our study highlights the usefulness of the CRISPR type III system for gene silencing in archaea, and supports that an intact S-layer is important for cell division and virus susceptibility. The S-layer is a proteinaceous envelope often found in bacterial and archaeal cells. Here, the authors use CRISPR-based technology to silence slaB, encoding the S-layer membrane anchor, to show that an intact S-layer is important for cell division and virus susceptibility in the archaeon Sulfolobus solfataricus.
Collapse
Affiliation(s)
- Isabelle Anna Zink
- Archaea Biology and Ecogenomics Division, Althanstraße 14, University of Vienna, A-1090, Vienna, Austria
| | - Kevin Pfeifer
- Archaea Biology and Ecogenomics Division, Althanstraße 14, University of Vienna, A-1090, Vienna, Austria.,Institute for Synthetic Bioarchitectures, Muthgasse 11/II, University of Natural Resources and Life Sciences, A-1190, Vienna, Austria
| | - Erika Wimmer
- Archaea Biology and Ecogenomics Division, Althanstraße 14, University of Vienna, A-1090, Vienna, Austria
| | - Uwe B Sleytr
- Institute of Biophysics, Muthgasse 11/II, University of Natural Resources and Life Sciences, A-1190, Vienna, Austria
| | - Bernhard Schuster
- Institute for Synthetic Bioarchitectures, Muthgasse 11/II, University of Natural Resources and Life Sciences, A-1190, Vienna, Austria
| | - Christa Schleper
- Archaea Biology and Ecogenomics Division, Althanstraße 14, University of Vienna, A-1090, Vienna, Austria.
| |
Collapse
|
11
|
Extreme thermophiles as emerging metabolic engineering platforms. Curr Opin Biotechnol 2019; 59:55-64. [DOI: 10.1016/j.copbio.2019.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/31/2019] [Accepted: 02/09/2019] [Indexed: 02/06/2023]
|
12
|
Orell A, Tripp V, Aliaga-Tobar V, Albers SV, Maracaja-Coutinho V, Randau L. A regulatory RNA is involved in RNA duplex formation and biofilm regulation in Sulfolobus acidocaldarius. Nucleic Acids Res 2019. [PMID: 29529252 PMCID: PMC5961385 DOI: 10.1093/nar/gky144] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Non-coding RNAs (ncRNA) are involved in essential biological processes in all three domains of life. The regulatory potential of ncRNAs in Archaea is, however, not fully explored. In this study, RNA-seq analyses identified a set of 29 ncRNA transcripts in the hyperthermophilic archaeon Sulfolobus acidocaldarius that were differentially expressed in response to biofilm formation. The most abundant ncRNA of this set was found to be resistant to RNase R treatment (RNase R resistant RNA, RrrR(+)) due to duplex formation with a reverse complementary RNA (RrrR(−)). The deletion of the RrrR(+) gene resulted in significantly impaired biofilm formation, while its overproduction increased biofilm yield. RrrR(+) was found to act as an antisense RNA against the mRNA of a hypothetical membrane protein. The RrrR(+) transcript was shown to be stabilized by the presence of the RrrR(−) strand in S. acidocaldarius cell extracts. The accumulation of these RrrR duplexes correlates with an apparent absence of dsRNA degrading RNase III domains in archaeal proteins.
Collapse
Affiliation(s)
- Alvaro Orell
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Strasse 10, Marburg 35043, Germany.,Centro de Genómica y Bioinformática, Facultad de Ciencias, UniversidadMayor, Santiago, Chile
| | - Vanessa Tripp
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Strasse 10, Marburg 35043, Germany
| | - Victor Aliaga-Tobar
- 3Programa de Doctorado en Genómica Integrativa, Vicerrectoría de Investigación,Universidad Mayor, Santiago, Chile
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology II - Microbiology, University Freiburg, Germany
| | - Vinicius Maracaja-Coutinho
- Centro de Genómica y Bioinformática, Facultad de Ciencias, UniversidadMayor, Santiago, Chile.,Departamento de Bioquímica y Biología Molecular,Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Lennart Randau
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Strasse 10, Marburg 35043, Germany
| |
Collapse
|
13
|
Zeldes BM, Loder AJ, Counts JA, Haque M, Widney KA, Keller LM, Albers S, Kelly RM. Determinants of sulphur chemolithoautotrophy in the extremely thermoacidophilicSulfolobales. Environ Microbiol 2019; 21:3696-3710. [DOI: 10.1111/1462-2920.14712] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/04/2019] [Accepted: 06/09/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Benjamin M. Zeldes
- Department of Chemical and Biomolecular EngineeringNorth Carolina State University Raleigh NC 27695‐7905 USA
| | - Andrew J. Loder
- Department of Chemical and Biomolecular EngineeringNorth Carolina State University Raleigh NC 27695‐7905 USA
| | - James A. Counts
- Department of Chemical and Biomolecular EngineeringNorth Carolina State University Raleigh NC 27695‐7905 USA
| | - Mashkurul Haque
- Department of Chemical and Biomolecular EngineeringNorth Carolina State University Raleigh NC 27695‐7905 USA
| | - Karl A. Widney
- Department of Chemical and Biomolecular EngineeringNorth Carolina State University Raleigh NC 27695‐7905 USA
| | - Lisa M. Keller
- Department of Chemical and Biomolecular EngineeringNorth Carolina State University Raleigh NC 27695‐7905 USA
| | - Sonja‐Verena Albers
- Institute of Biology II – MicrobiologyUniversity of Freiburg Freiburg Germany
| | - Robert M. Kelly
- Department of Chemical and Biomolecular EngineeringNorth Carolina State University Raleigh NC 27695‐7905 USA
| |
Collapse
|
14
|
Straub CT, Counts JA, Nguyen DMN, Wu CH, Zeldes BM, Crosby JR, Conway JM, Otten JK, Lipscomb GL, Schut GJ, Adams MWW, Kelly RM. Biotechnology of extremely thermophilic archaea. FEMS Microbiol Rev 2018; 42:543-578. [PMID: 29945179 DOI: 10.1093/femsre/fuy012] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 06/23/2018] [Indexed: 12/26/2022] Open
Abstract
Although the extremely thermophilic archaea (Topt ≥ 70°C) may be the most primitive extant forms of life, they have been studied to a limited extent relative to mesophilic microorganisms. Many of these organisms have unique biochemical and physiological characteristics with important biotechnological implications. These include methanogens that generate methane, fermentative anaerobes that produce hydrogen gas with high efficiency, and acidophiles that can mobilize base, precious and strategic metals from mineral ores. Extremely thermophilic archaea have also been a valuable source of thermoactive, thermostable biocatalysts, but their use as cellular systems has been limited because of the general lack of facile genetics tools. This situation has changed recently, however, thereby providing an important avenue for understanding their metabolic and physiological details and also opening up opportunities for metabolic engineering efforts. Along these lines, extremely thermophilic archaea have recently been engineered to produce a variety of alcohols and industrial chemicals, in some cases incorporating CO2 into the final product. There are barriers and challenges to these organisms reaching their full potential as industrial microorganisms but, if these can be overcome, a new dimension for biotechnology will be forthcoming that strategically exploits biology at high temperatures.
Collapse
Affiliation(s)
- Christopher T Straub
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - James A Counts
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Diep M N Nguyen
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Chang-Hao Wu
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Benjamin M Zeldes
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - James R Crosby
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Jonathan M Conway
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Jonathan K Otten
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Gina L Lipscomb
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Gerrit J Schut
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| |
Collapse
|
15
|
Quehenberger J, Shen L, Albers SV, Siebers B, Spadiut O. Sulfolobus - A Potential Key Organism in Future Biotechnology. Front Microbiol 2017; 8:2474. [PMID: 29312184 PMCID: PMC5733018 DOI: 10.3389/fmicb.2017.02474] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/28/2017] [Indexed: 11/13/2022] Open
Abstract
Extremophilic organisms represent a potentially valuable resource for the development of novel bioprocesses. They can act as a source for stable enzymes and unique biomaterials. Extremophiles are capable of carrying out microbial processes and biotransformations under extremely hostile conditions. Extreme thermoacidophilic members of the well-characterized genus Sulfolobus are outstanding in their ability to thrive at both high temperatures and low pH. This review gives an overview of the biological system Sulfolobus including its central carbon metabolism and the development of tools for its genetic manipulation. We highlight findings of commercial relevance and focus on potential industrial applications. Finally, the current state of bioreactor cultivations is summarized and we discuss the use of Sulfolobus species in biorefinery applications.
Collapse
Affiliation(s)
- Julian Quehenberger
- Research Division Biochemical Engineering, Faculty of Technical Chemistry, Institute of Chemical, Environmental and Biological Engineering, Vienna University of Technology, Vienna, Austria
| | - Lu Shen
- Department of Molecular Enzyme Technology and Biochemistry, Faculty of Chemistry – Biofilm Centre, University of Duisburg-Essen, Essen, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology II-Microbiology, Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Bettina Siebers
- Department of Molecular Enzyme Technology and Biochemistry, Faculty of Chemistry – Biofilm Centre, University of Duisburg-Essen, Essen, Germany
| | - Oliver Spadiut
- Research Division Biochemical Engineering, Faculty of Technical Chemistry, Institute of Chemical, Environmental and Biological Engineering, Vienna University of Technology, Vienna, Austria
| |
Collapse
|
16
|
Barjona do Nascimento Coutinho P, Friedl C, Buchholz R, Stute SC. Chemical regulation of Fea1 driven transgene expression in Chlamydomonas reinhardtii. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Le TN, Wagner A, Albers SV. A conserved hexanucleotide motif is important in UV-inducible promoters in Sulfolobus acidocaldarius. MICROBIOLOGY-SGM 2017; 163:778-788. [PMID: 28463103 PMCID: PMC5817253 DOI: 10.1099/mic.0.000455] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Upon DNA damage, Sulfolobales exhibit a global gene regulatory response resulting in the expression of DNA transfer and repair proteins and the repression of the cell division machinery. Because the archaeal DNA damage response is still poorly understood, we investigated the promoters of the highly induced ups operon. Ups pili are involved in cellular aggregation and DNA exchange between cells. With LacS reporter gene assays we identified a conserved, non-palindromic hexanucleotide motif upstream of the ups core promoter elements to be essential for promoter activity. Substitution of this cis regulatory motif in the ups promoters resulted in abolishment of cellular aggregation and reduced DNA transfer. By screening the Sulfolobus acidocaldarius genome we identified a total of 214 genes harbouring the hexanucleotide motif in their respective promoter regions. Many of these genes were previously found to be regulated upon UV light treatment. Given the fact that the identified motif is conserved among S. acidocaldarius and Sulfolobus tokodaii promoters, we speculate that a common regulatory mechanism is present in these two species in response to DNA-damaging conditions.
Collapse
Affiliation(s)
- Thuong Ngoc Le
- Molecular Biology of Archaea, Institute of Biology II - Microbiology, University of Freiburg, Schaenzlestrasse 1, 79104 Freiburg, Germany
| | - Alexander Wagner
- Molecular Biology of Archaea, Institute of Biology II - Microbiology, University of Freiburg, Schaenzlestrasse 1, 79104 Freiburg, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology II - Microbiology, University of Freiburg, Schaenzlestrasse 1, 79104 Freiburg, Germany
| |
Collapse
|
18
|
Zander A, Willkomm S, Ofer S, van Wolferen M, Egert L, Buchmeier S, Stöckl S, Tinnefeld P, Schneider S, Klingl A, Albers SV, Werner F, Grohmann D. Guide-independent DNA cleavage by archaeal Argonaute from Methanocaldococcus jannaschii. Nat Microbiol 2017; 2:17034. [PMID: 28319081 PMCID: PMC7616673 DOI: 10.1038/nmicrobiol.2017.34] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 02/10/2017] [Indexed: 12/17/2022]
Abstract
Prokaryotic Argonaute proteins acquire guide strands derived from invading or mobile genetic elements, via an unknown pathway, to direct guide-dependent cleavage of foreign DNA. Here, we report that Argonaute from the archaeal organism Methanocaldococcus jannaschii (MjAgo) possesses two modes of action: the canonical guide-dependent endonuclease activity and a non-guided DNA endonuclease activity. The latter allows MjAgo to process long double-stranded DNAs, including circular plasmid DNAs and genomic DNAs. Degradation of substrates in a guide-independent fashion primes MjAgo for subsequent rounds of DNA cleavage. Chromatinized genomic DNA is resistant to MjAgo degradation, and recombinant histones protect DNA from cleavage in vitro. Mutational analysis shows that key residues important for guide-dependent target processing are also involved in guide-independent MjAgo function. This is the first characterization of guide-independent cleavage activity for an Argonaute protein potentially serving as a guide biogenesis pathway in a prokaryotic system.
Collapse
Affiliation(s)
- Adrian Zander
- Department of Microbiology & Archaea Centre, University of Regensburg, Regensburg, 93053, Germany
| | - Sarah Willkomm
- Department of Microbiology & Archaea Centre, University of Regensburg, Regensburg, 93053, Germany
| | - Sapir Ofer
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, LondonWC1E 6BT, United Kingdom
| | - Marleen van Wolferen
- Molecular Biology of Archaea, Institute of Biology II, University of Freiburg, Microbiology, Schaenzlestraße 1, 79104Freiburg, Germany
| | - Luisa Egert
- Department of Microbiology & Archaea Centre, University of Regensburg, Regensburg, 93053, Germany
| | - Sabine Buchmeier
- Institute of Physical and Theoretical Chemistry – NanoBioSciences, Technische Universität Braunschweig-BRICS, Rebenring 56, 38106Braunschweig, Germany
| | - Sarah Stöckl
- Department of Microbiology & Archaea Centre, University of Regensburg, Regensburg, 93053, Germany
| | - Philip Tinnefeld
- Institute of Physical and Theoretical Chemistry – NanoBioSciences, Technische Universität Braunschweig-BRICS, Rebenring 56, 38106Braunschweig, Germany
| | - Sabine Schneider
- Center for Integrated Protein Science Munich CIPSM, Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Andreas Klingl
- Biocentre of the LMU Munich, Department Biology I – Plant Development, Großhadernerstr. 2-4, 82152 Planegg-Martinstried, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology II, University of Freiburg, Microbiology, Schaenzlestraße 1, 79104Freiburg, Germany
| | - Finn Werner
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, LondonWC1E 6BT, United Kingdom
| | - Dina Grohmann
- Department of Microbiology & Archaea Centre, University of Regensburg, Regensburg, 93053, Germany
| |
Collapse
|
19
|
Genetic technologies for extremely thermophilic microorganisms of Sulfolobus, the only genetically tractable genus of crenarchaea. SCIENCE CHINA-LIFE SCIENCES 2017; 60:370-385. [DOI: 10.1007/s11427-016-0355-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 12/18/2016] [Indexed: 12/26/2022]
|
20
|
Loder AJ, Zeldes BM, Conway JM, Counts JA, Straub CT, Khatibi PA, Lee LL, Vitko NP, Keller MW, Rhaesa AM, Rubinstein GM, Scott IM, Lipscomb GL, Adams MW, Kelly RM. Extreme Thermophiles as Metabolic Engineering Platforms: Strategies and Current Perspective. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807796.ch14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Andrew J. Loder
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - Benjamin M. Zeldes
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - Jonathan M. Conway
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - James A. Counts
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - Christopher T. Straub
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - Piyum A. Khatibi
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - Laura L. Lee
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - Nicholas P. Vitko
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - Matthew W. Keller
- University of Georgia; Department of Biochemistry and Molecular Biology; Life Sciences Bldg., University of Georgia, Athens GA 30602-7229, USA
| | - Amanda M. Rhaesa
- University of Georgia; Department of Biochemistry and Molecular Biology; Life Sciences Bldg., University of Georgia, Athens GA 30602-7229, USA
| | - Gabe M. Rubinstein
- University of Georgia; Department of Biochemistry and Molecular Biology; Life Sciences Bldg., University of Georgia, Athens GA 30602-7229, USA
| | - Israel M. Scott
- University of Georgia; Department of Biochemistry and Molecular Biology; Life Sciences Bldg., University of Georgia, Athens GA 30602-7229, USA
| | - Gina L. Lipscomb
- University of Georgia; Department of Biochemistry and Molecular Biology; Life Sciences Bldg., University of Georgia, Athens GA 30602-7229, USA
| | - Michael W.W. Adams
- University of Georgia; Department of Biochemistry and Molecular Biology; Life Sciences Bldg., University of Georgia, Athens GA 30602-7229, USA
| | - Robert M. Kelly
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| |
Collapse
|
21
|
Tripp V, Martin R, Orell A, Alkhnbashi OS, Backofen R, Randau L. Plasticity of archaeal C/D box sRNA biogenesis. Mol Microbiol 2016; 103:151-164. [PMID: 27743417 DOI: 10.1111/mmi.13549] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2016] [Indexed: 01/11/2023]
Abstract
Archaeal and eukaryotic organisms contain sets of C/D box s(no)RNAs with guide sequences that determine ribose 2'-O-methylation sites of target RNAs. The composition of these C/D box sRNA sets is highly variable between organisms and results in varying RNA modification patterns which are important for ribosomal RNA folding and stability. Little is known about the genomic organization of C/D box sRNA genes in archaea. Here, we aimed to obtain first insights into the biogenesis of these archaeal C/D box sRNAs and analyzed the genetic context of more than 300 archaeal sRNA genes. We found that the majority of these genes do not possess independent promoters but are rather located at positions that allow for co-transcription with neighboring genes and their start or stop codons were frequently incorporated into the conserved boxC and D motifs. The biogenesis of plasmid-encoded C/D box sRNA variants was analyzed in vivo in Sulfolobus acidocaldarius. It was found that C/D box sRNA maturation occurs independent of their genetic context and relies solely on the presence of intact RNA kink-turn structures. The observed plasticity of C/D box sRNA biogenesis is suggested to enable their accelerated evolution and, consequently, allow for adjustments of the RNA modification landscape.
Collapse
Affiliation(s)
- Vanessa Tripp
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Strasse 10, Marburg, 35043, Germany.,LOEWE Center for Synthetic Microbiology, SYNMIKRO, Karl-von-Frisch-Strasse 16, Marburg, 35043, Germany
| | - Roman Martin
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Strasse 10, Marburg, 35043, Germany
| | - Alvaro Orell
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Strasse 10, Marburg, 35043, Germany
| | - Omer S Alkhnbashi
- Bioinformatics group, Department of Computer Science, University of Freiburg, Georges-Köhler-Allee 106, Freiburg, 79110, Germany
| | - Rolf Backofen
- Bioinformatics group, Department of Computer Science, University of Freiburg, Georges-Köhler-Allee 106, Freiburg, 79110, Germany.,BIOSS Centre for Biological Signalling Studies, Cluster of Excellence, University of Freiburg, Germany
| | - Lennart Randau
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Strasse 10, Marburg, 35043, Germany.,LOEWE Center for Synthetic Microbiology, SYNMIKRO, Karl-von-Frisch-Strasse 16, Marburg, 35043, Germany
| |
Collapse
|
22
|
Hoffmann L, Schummer A, Reimann J, Haurat MF, Wilson AJ, Beeby M, Warscheid B, Albers SV. Expanding the archaellum regulatory network - the eukaryotic protein kinases ArnC and ArnD influence motility of Sulfolobus acidocaldarius. Microbiologyopen 2016; 6. [PMID: 27771939 PMCID: PMC5300886 DOI: 10.1002/mbo3.414] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/06/2016] [Accepted: 09/14/2016] [Indexed: 01/15/2023] Open
Abstract
Expression of the archaellum, the archaeal‐type IV pilus‐like rotating motility structure is upregulated under nutrient limitation. This is controlled by a network of regulators, called the archaellum regulatory network (arn). Several of the components of this network in Sulfolobus acidocaldarius can be phosphorylated, and the deletion of the phosphatase PP2A results in strongly increased motility during starvation, indicating a role for phosphorylation in the regulation of motility. Analysis of the motility of different protein kinase deletion strains revealed that deletion of saci_0965, saci_1181, and saci_1193 resulted in reduced motility, whereas the deletion of saci_1694 resulted in hypermotility. Here ArnC (Saci_1193) and ArnD (Saci_1694) are characterized. Purified ArnC and ArnD phosphorylate serine and threonine residues in the C‐terminus of the repressor ArnB. arnC is upregulated in starvation medium, whereas arnD is constitutively expressed. However, while differences in the expression and levels of flaB were observed in the ΔarnD strain during growth under rich conditions, under nutrient limiting conditions the ΔarnC and ΔarnD strains showed no large differences in the expression levels of the archaellum or of the studied regulators. This suggests that next to the regulation via the archaellum regulatory network additional regulatory mechanisms of expression and/or activity of the archaellum exist.
Collapse
Affiliation(s)
- Lena Hoffmann
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, Microbiology, University of Freiburg, Freiburg, Germany
| | - Andreas Schummer
- Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Julia Reimann
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, Microbiology, University of Freiburg, Freiburg, Germany
| | - Maria F Haurat
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, Microbiology, University of Freiburg, Freiburg, Germany
| | - Amanda J Wilson
- Department of Life Sciences, Imperial College of London, London, UK
| | - Morgan Beeby
- Department of Life Sciences, Imperial College of London, London, UK
| | - Bettina Warscheid
- Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Sonja-V Albers
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, Microbiology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
23
|
Efficient bioreduction of 2-hydroxyacetophenone to ( S )-1-phenyl-1, 2-ethanediol through homologous expression of ( S )-carbonyl reductase II in Candida parapsilosis CCTCC M203011. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.05.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Abstract
The intercellular transfer of DNA is a phenomenon that occurs in all domains of life and is a major driving force of evolution. Upon UV-light treatment, cells of the crenarchaeal genus Sulfolobus express Ups pili, which initiate cell aggregate formation. Within these aggregates, chromosomal DNA, which is used for the repair of DNA double-strand breaks, is exchanged. Because so far no clear homologs of bacterial DNA transporters have been identified among the genomes of Archaea, the mechanisms of archaeal DNA transport have remained a puzzling and underinvestigated topic. Here we identify saci_0568 and saci_0748, two genes from Sulfolobus acidocaldarius that are highly induced upon UV treatment, encoding a transmembrane protein and a membrane-bound VirB4/HerA homolog, respectively. DNA transfer assays showed that both proteins are essential for DNA transfer between Sulfolobus cells and act downstream of the Ups pili system. Our results moreover revealed that the system is involved in the import of DNA rather than the export. We therefore propose that both Saci_0568 and Saci_0748 are part of a previously unidentified DNA importer. Given the fact that we found this transporter system to be widely spread among the Crenarchaeota, we propose to name it the Crenarchaeal system for exchange of DNA (Ced). In this study we have for the first time to our knowledge described an archaeal DNA transporter.
Collapse
|
25
|
Suzuki S, Kurosawa N. Disruption of the gene encoding restriction endonuclease SuaI and development of a host–vector system for the thermoacidophilic archaeon Sulfolobus acidocaldarius. Extremophiles 2016; 20:139-48. [DOI: 10.1007/s00792-016-0807-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 01/05/2016] [Indexed: 11/29/2022]
|
26
|
Zeldes BM, Keller MW, Loder AJ, Straub CT, Adams MWW, Kelly RM. Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals. Front Microbiol 2015; 6:1209. [PMID: 26594201 PMCID: PMC4633485 DOI: 10.3389/fmicb.2015.01209] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/19/2015] [Indexed: 01/06/2023] Open
Abstract
Enzymes from extremely thermophilic microorganisms have been of technological interest for some time because of their ability to catalyze reactions of industrial significance at elevated temperatures. Thermophilic enzymes are now routinely produced in recombinant mesophilic hosts for use as discrete biocatalysts. Genome and metagenome sequence data for extreme thermophiles provide useful information for putative biocatalysts for a wide range of biotransformations, albeit involving at most a few enzymatic steps. However, in the past several years, unprecedented progress has been made in establishing molecular genetics tools for extreme thermophiles to the point that the use of these microorganisms as metabolic engineering platforms has become possible. While in its early days, complex metabolic pathways have been altered or engineered into recombinant extreme thermophiles, such that the production of fuels and chemicals at elevated temperatures has become possible. Not only does this expand the thermal range for industrial biotechnology, it also potentially provides biodiverse options for specific biotransformations unique to these microorganisms. The list of extreme thermophiles growing optimally between 70 and 100°C with genetic toolkits currently available includes archaea and bacteria, aerobes and anaerobes, coming from genera such as Caldicellulosiruptor, Sulfolobus, Thermotoga, Thermococcus, and Pyrococcus. These organisms exhibit unusual and potentially useful native metabolic capabilities, including cellulose degradation, metal solubilization, and RuBisCO-free carbon fixation. Those looking to design a thermal bioprocess now have a host of potential candidates to choose from, each with its own advantages and challenges that will influence its appropriateness for specific applications. Here, the issues and opportunities for extremely thermophilic metabolic engineering platforms are considered with an eye toward potential technological advantages for high temperature industrial biotechnology.
Collapse
Affiliation(s)
- Benjamin M Zeldes
- Department of Chemical and Biomolecular Engineering, North Carolina State University Raleigh, NC, USA
| | - Matthew W Keller
- Department of Biochemistry and Molecular Biology, University of Georgia Athens, GA, USA
| | - Andrew J Loder
- Department of Chemical and Biomolecular Engineering, North Carolina State University Raleigh, NC, USA
| | - Christopher T Straub
- Department of Chemical and Biomolecular Engineering, North Carolina State University Raleigh, NC, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia Athens, GA, USA
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University Raleigh, NC, USA
| |
Collapse
|
27
|
Anjum RS, Bray SM, Blackwood JK, Kilkenny ML, Coelho MA, Foster BM, Li S, Howard JA, Pellegrini L, Albers SV, Deery MJ, Robinson NP. Involvement of a eukaryotic-like ubiquitin-related modifier in the proteasome pathway of the archaeon Sulfolobus acidocaldarius. Nat Commun 2015; 6:8163. [PMID: 26348592 PMCID: PMC4569737 DOI: 10.1038/ncomms9163] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 07/25/2015] [Indexed: 01/04/2023] Open
Abstract
In eukaryotes, the covalent attachment of ubiquitin chains directs substrates to the proteasome for degradation. Recently, ubiquitin-like modifications have also been described in the archaeal domain of life. It has subsequently been hypothesized that ubiquitin-like proteasomal degradation might also operate in these microbes, since all archaeal species utilize homologues of the eukaryotic proteasome. Here we perform a structural and biochemical analysis of a ubiquitin-like modification pathway in the archaeon Sulfolobus acidocaldarius. We reveal that this modifier is homologous to the eukaryotic ubiquitin-related modifier Urm1, considered to be a close evolutionary relative of the progenitor of all ubiquitin-like proteins. Furthermore we demonstrate that urmylated substrates are recognized and processed by the archaeal proteasome, by virtue of a direct interaction with the modifier. Thus, the regulation of protein stability by Urm1 and the proteasome in archaea is likely representative of an ancient pathway from which eukaryotic ubiquitin-mediated proteolysis has evolved.
Collapse
Affiliation(s)
- Rana S. Anjum
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Sian M. Bray
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - John K. Blackwood
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Mairi L. Kilkenny
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Matthew A. Coelho
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Benjamin M. Foster
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Shurong Li
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Julie A. Howard
- Department of Biochemistry and Cambridge Systems Biology Centre, Cambridge Centre for Proteomics, Cambridge CB2 1QR, UK
| | - Luca Pellegrini
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Michael J. Deery
- Department of Biochemistry and Cambridge Systems Biology Centre, Cambridge Centre for Proteomics, Cambridge CB2 1QR, UK
| | - Nicholas P. Robinson
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| |
Collapse
|
28
|
The Confluence of Heavy Metal Biooxidation and Heavy Metal Resistance: Implications for Bioleaching by Extreme Thermoacidophiles. MINERALS 2015. [DOI: 10.3390/min5030397] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
DNA Processing Proteins Involved in the UV-Induced Stress Response of Sulfolobales. J Bacteriol 2015; 197:2941-51. [PMID: 26148716 DOI: 10.1128/jb.00344-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/23/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The ups operon of Sulfolobus species is highly induced upon UV stress. Previous studies showed that the pili encoded by this operon are involved in cellular aggregation, which is essential for subsequent DNA exchange between cells, resulting in homologous recombination. The presence of this pilus system increases the fitness of Sulfolobus cells under UV light-induced stress conditions, as the transfer of DNA takes place in order to repair UV-induced DNA lesions via homologous recombination. Four conserved genes (saci_1497 to saci_1500) which encode proteins with putative DNA processing functions are present downstream of the ups operon. In this study, we show that after UV treatment the cellular aggregation of strains with saci_1497, saci_1498, and saci_1500 deletions is similar to that of wild-type strains; their survival rates, however, were reduced and similar to or lower than those of the pilus deletion strains, which could not aggregate anymore. DNA recombination assays indicated that saci_1498, encoding a ParB-like protein, plays an important role in DNA transfer. Moreover, biochemical analysis showed that the endonuclease III encoded by saci_1497 nicks UV-damaged DNA. In addition, RecQ-like helicase Saci_1500 is able to unwind homologous recombination intermediates, such as Holliday junctions. Interestingly, a saci_1500 deletion mutant was more sensitive to UV light but not to the replication-stalling agents hydroxyurea and methyl methanesulfonate, suggesting that Saci_1500 functions specifically in the UV damage pathway. Together these results suggest a role of Saci_1497 to Saci_1500 in the repair or transfer of DNA that takes place after UV-induced damage to the genomic DNA of Sulfolobus acidocaldarius. IMPORTANCE Sulfolobales species increase their fitness after UV stress by a UV-inducible pilus system that enables high rates of DNA exchange between cells. Downstream of the pilus operon, three genes that seem to play a role in the repair or transfer of the DNA between Sulfolobus cells were identified, and their possible functions are discussed. Next to the previously described role of UV-inducible pili in the exchange of DNA, we have thereby increased our knowledge of DNA transfer at the level of DNA processing. This paper therefore contributes to the overall understanding of the DNA exchange mechanism among Sulfolobales cells.
Collapse
|
30
|
Understanding DNA Repair in Hyperthermophilic Archaea: Persistent Gaps and Other Reasons to Focus on the Fork. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2015; 2015:942605. [PMID: 26146487 PMCID: PMC4471258 DOI: 10.1155/2015/942605] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/21/2015] [Indexed: 11/17/2022]
Abstract
Although hyperthermophilic archaea arguably have a great need for efficient DNA repair, they lack members of several DNA repair protein families broadly conserved among bacteria and eukaryotes. Conversely, the putative DNA repair genes that do occur in these archaea often do not generate the expected phenotype when deleted. The prospect that hyperthermophilic archaea have some unique strategies for coping with DNA damage and replication errors has intellectual and technological appeal, but resolving this question will require alternative coping mechanisms to be proposed and tested experimentally. This review evaluates a combination of four enigmatic properties that distinguishes the hyperthermophilic archaea from all other organisms: DNA polymerase stalling at dU, apparent lack of conventional NER, lack of MutSL homologs, and apparent essentiality of homologous recombination proteins. Hypothetical damage-coping strategies that could explain this set of properties may provide new starting points for efforts to define how archaea differ from conventional models of DNA repair and replication fidelity.
Collapse
|
31
|
Li X, Fu L, Li Z, Ma X, Xiao X, Xu J. Genetic tools for the piezophilic hyperthermophilic archaeon Pyrococcus yayanosii. Extremophiles 2014; 19:59-67. [PMID: 25391810 DOI: 10.1007/s00792-014-0705-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/28/2014] [Indexed: 11/30/2022]
Abstract
The hyperthermophile Pyrococcus yayanosii CH1 is the only high-pressure-requiring microorganism obtained thus far within the archaea domain or among all non-psychrophiles in any domain. In this study, we developed a genetic manipulation system for P. yayanosii after first isolating a facultatively piezophilic derivative strain, designated P. yayanosii A1. The 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase gene was overexpressed in strain P. yayanosii A1 and was demonstrated to confer host cell resistance against simvastatin. Furthermore, using simvastatin as a selection marker, the endogenous pyrF of P. yayanosii A1 was disrupted through homologous recombination, thus generating the additional host strain P. yayanosii A2 (ΔpyrF). A markerless gene disruption vector was constructed by incorporating a pyrF-sim (R) cassette that enables the combined use of simvastatin resistance for positive selection and 5-FOA for counter selection. The utility of this versatile disruption system was demonstrated by deleting the carbon-nitrogen hydrolase of P. yayanosii strain A1. These results demonstrate that a variety of genetic tools are now in place to study unknown gene function and the molecular mechanisms of piezophilic adaptation in P. yayanosii.
Collapse
Affiliation(s)
- Xuegong Li
- Institute of Oceanology, Shanghai Jiao Tong University, Minhang Dongchuan Road 800, Shanghai, 200240, China
| | | | | | | | | | | |
Collapse
|
32
|
Functional characterization of the origin of replication of pRN1 from Sulfolobus islandicus REN1H1. PLoS One 2013; 8:e84664. [PMID: 24376833 PMCID: PMC3869888 DOI: 10.1371/journal.pone.0084664] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 11/18/2013] [Indexed: 11/19/2022] Open
Abstract
Plasmid pRN1 from Sulfolobus islandicus REN1H1 is believed to replicate by a rolling circle mechanism but its origin and mechanism of replication are not well understood. We sought to create minimal expression vectors based on pRN1 that would be useful for heterologous gene expression in S. acidocaldarius, and in the process improve our understanding of the mechanism of replication. We constructed and transformed shuttle vectors that harbored different contiguous stretches of DNA from pRN1 into S. acidocaldarius E4-39, a uracil auxotroph. A 232-bp region 3’ of orf904 was found to be critical for pRN1 replication and is therefore proposed to be the putative origin of replication. This 232-bp region contains a 100-bp stem-loop structure believed to be the double-strand origin of replication. The loop of the 100-bp structure contains a GTG tri-nucleotide motif, a feature that was previously reported to be important for the primase activity of Orf904. This putative origin and the associated orf56 and orf904 were identified as the minimal replicon of pRN1 because transformants of plasmids lacking any of these three features were not recovered. Plasmids lacking orf904 and orf56 but harboring the putative origin were transformable when orf904 and orf56 were provided in-trans; a 75-bp region 5’ of the orf904 start codon was found to be essential for this complementation. Detailed knowledge of the pRN1 origin of replication will broaden the application of the plasmid as a genetic tool for Sulfolobus species.
Collapse
|
33
|
Affiliation(s)
- Joel A. Farkas
- Department of Microbiology and Center for RNA Biology, Ohio State University, Columbus, Ohio 43210
| | - Jonathan W. Picking
- Department of Microbiology and Center for RNA Biology, Ohio State University, Columbus, Ohio 43210
| | - Thomas J. Santangelo
- Department of Microbiology and Center for RNA Biology, Ohio State University, Columbus, Ohio 43210
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523;
| |
Collapse
|
34
|
Investigation of the malE promoter and MalR, a positive regulator of the maltose regulon, for an improved expression system in Sulfolobus acidocaldarius. Appl Environ Microbiol 2013; 80:1072-81. [PMID: 24271181 DOI: 10.1128/aem.03050-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, the regulator MalR (Saci_1161) of the TrmB family from Sulfolobus acidocaldarius was identified and was shown to be involved in transcriptional control of the maltose regulon (Saci_1660 to Saci_1666), including the ABC transporter (malEFGK), α-amylase (amyA), and α-glycosidase (malA). The ΔmalR deletion mutant exhibited a significantly decreased growth rate on maltose and dextrin but not on sucrose. The expression of the genes organized in the maltose regulon was induced only in the presence of MalR and maltose in the growth medium, indicating that MalR, in contrast to its TrmB and TrmB-like homologues, is an activator of the maltose gene cluster. Electrophoretic mobility shift assays revealed that the binding of MalR to malE was independent of sugars. Here we report the identification of the archaeal maltose regulator protein MalR, which acts as an activator and controls the expression of genes involved in maltose transport and metabolic conversion in S. acidocaldarius, and its use for improvement of the S. acidocaldarius expression system under the control of an optimized maltose binding protein (malE) promoter by promoter mutagenesis.
Collapse
|
35
|
Polysaccharide-degrading thermophiles generated by heterologous gene expression in Geobacillus kaustophilus HTA426. Appl Environ Microbiol 2013; 79:5151-8. [PMID: 23793634 DOI: 10.1128/aem.01506-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Thermophiles have important advantages over mesophiles as host organisms for high-temperature bioprocesses, functional production of thermostable enzymes, and efficient expression of enzymatic activities in vivo. To capitalize on these advantages of thermophiles, we describe here a new inducible gene expression system in the thermophile Geobacillus kaustophilus HTA426. Six promoter regions in the HTA426 genome were identified and analyzed for expression profiles using β-galactosidase reporter assay. This analysis identified a promoter region upstream of a putative amylose-metabolizing gene cluster that directed high-level expression of the reporter gene. The expression was >280-fold that without a promoter and was further enhanced 12-fold by maltose addition. In association with a multicopy plasmid, this promoter region was used to express heterologous genes. Several genes, including a gene whose product was insoluble when expressed in Escherichia coli, were successfully expressed as soluble proteins, with yields of 0.16 to 59 mg/liter, and conferred new functions to G. kaustophilus strains. Remarkably, cellulase and α-amylase genes conferred the ability to degrade cellulose paper and insoluble starch at high temperatures, respectively, generating thermophiles with the potential to degrade plant biomass. Our results demonstrate that this novel expression system expands the potential applications of G. kaustophilus.
Collapse
|
36
|
Abstract
ABSTRACT
Low rates of replication errors in chromosomal genes of
Sulfolobus
spp. demonstrate that these extreme thermoacidophiles can maintain genome integrity in environments with high temperature and low pH. In contrast to this genetic stability, we observed unusually frequent mutation of the β-
d
-glycosidase gene (
lacS
) of a shuttle plasmid (pJ
lacS
) propagated in
Sulfolobus acidocaldarius
. The resulting Lac
−
mutants also grew faster than the Lac
+
parent, thereby amplifying the impact of the frequent
lacS
mutations on the population. We developed a mutant accumulation assay and corrections for the effects of copy number and differential growth for this system; the resulting measurements and calculations yielded a corrected rate of 5.1 × 10
−4
mutational events at the
lacS
gene per plasmid replication. Analysis of independent
lacS
mutants revealed three types of mutations: (i) G·C-to-A·T transitions, (ii) slipped-strand events, and (iii) deletions. These mutations were frequent in plasmid-borne
lacS
expressed at a high level but not in single-copy
lacS
in the chromosome or at lower levels of expression in a plasmid. Substitution mutations arose at only two of 12 potential priming sites of the DNA primase of the pRN1 replicon, but nearly all these mutations created nonsense (chain termination) codons. The spontaneous mutation rate of plasmid-borne
lacS
was 175-fold higher under high-expression than under low-expression conditions. The results suggest that important DNA repair or replication fidelity functions are impaired or overwhelmed in pJ
lacS
, with results analogous to those of the “transcription-associated mutagenesis” seen in bacteria and eukaryotes.
Collapse
|
37
|
Agl16, a thermophilic glycosyltransferase mediating the last step of N-Glycan biosynthesis in the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius. J Bacteriol 2013; 195:2177-86. [PMID: 23475978 DOI: 10.1128/jb.00035-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recently, the S-layer protein of Sulfolobus acidocaldarius was shown to be N-linked with a tribranched hexasaccharide, composed of Man2Glc1GlcNAc2 and a sulfated sugar called sulfoquinovose. To identify genes involved in the biosynthesis and attachment of this glycan, markerless in-frame deletions of genes coding for predicted glycosyltransferases were created. The successful deletion of agl16, coding for a glycosyltransferase, resulted in the S-layer protein and archaellins having reduced molecular weights, as visualized by Coomassie staining or immunoblotting. This analysis indicated a change in the N-glycan composition. Nano-liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses confirmed that the glycan of the S-layer protein from the agl16 deletion mutant was a pentasaccharide, which was missing a terminal hexose residue. High-performance liquid chromatography (HPLC) analyses of the hydrolyzed N-glycan indicated that the missing hexose is a glucose residue. A physiological characterization of the agl16 deletion mutant revealed a significant effect on the growth at elevated salt concentrations. At 300 mM NaCl, the doubling time of the Δagl16 mutant was increased 2-fold compared to that of the background strain. Furthermore, the incomplete glycan structure of the Δagl16 deletion strain affected the assembly and function of the archaellum, as exemplified by semisolid Gelrite plate analysis, in which the motility is decreased according to the N-glycan size.
Collapse
|
38
|
Lassak K, Peeters E, Wróbel S, Albers SV. The one-component system ArnR: a membrane-bound activator of the crenarchaeal archaellum. Mol Microbiol 2013; 88:125-39. [PMID: 23461567 DOI: 10.1111/mmi.12173] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2013] [Indexed: 11/29/2022]
Abstract
Linking the motility apparatus to signal transduction systems enables microbes to precisely control their swimming behaviour according to environmental conditions. Bacteria have therefore evolved a complex chemotaxis machinery, which has presumably spread through lateral gene transfer into the euryarchaeal subkingdom. By contrast Crenarchaeota encode no chemotaxis-like proteins but are nevertheless able to connect external stimuli to archaellar derived motility. This raises fundamental questions about the underlying regulatory mechanisms. Recently, we reported that the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius becomes motile upon nutrient starvation by promoting transcription of flaB encoding the filament forming subunits. Here we describe two transcriptional activators as paralogous one-component-systems Saci_1180 and Saci_1171 (ArnR and ArnR1). Deletions of arnR and arnR1 resulted in diminished flaB expression and accordingly the deletion mutants revealed impaired swimming motility. We further identified two inverted repeat sequences located upstream of the flaB core promoter of S. acidocaldarius. These cis-regulatory elements were shown to be critical for ArnR and ArnR1 mediated flaB gene expression in vivo. Finally, bioinformatic analysis revealed ArnR to be conserved not only in Sulfolobales but also in the crenarchaeal order of Desulfurococcales and thus might represent a more general control mechanism of archaeal motility.
Collapse
Affiliation(s)
- Kerstin Lassak
- Molecular Biology of Archaea, Max Planck Institute for terrestrial Microbiology, Karl-von-Frisch-Strasse 10, 35043 Marburg, Germany
| | | | | | | |
Collapse
|
39
|
Atomi H, Imanaka T, Fukui T. Overview of the genetic tools in the Archaea. Front Microbiol 2012; 3:337. [PMID: 23060865 PMCID: PMC3462420 DOI: 10.3389/fmicb.2012.00337] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Accepted: 09/01/2012] [Indexed: 01/17/2023] Open
Abstract
This section provides an overview of the genetic systems developed in the Archaea. Genetic manipulation is possible in many members of the halophiles, methanogens, Sulfolobus, and Thermococcales. We describe the selection/counterselection principles utilized in each of these groups, which consist of antibiotics and their resistance markers, and auxotrophic host strains and complementary markers. The latter strategy utilizes techniques similar to those developed in yeast. However, Archaea are resistant to many of the antibiotics routinely used for selection in the Bacteria, and a number of strategies specific to the Archaea have been developed. In addition, examples utilizing the genetic systems developed for each group will be briefly described.
Collapse
Affiliation(s)
- Haruyuki Atomi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku Kyoto, Japan ; JST, CREST, Sanbancho, Chiyoda-ku Tokyo, Japan
| | | | | |
Collapse
|
40
|
Reimann J, Lassak K, Khadouma S, Ettema TJG, Yang N, Driessen AJM, Klingl A, Albers SV. Regulation of archaella expression by the FHA and von Willebrand domain-containing proteins ArnA and ArnB inSulfolobus acidocaldarius. Mol Microbiol 2012; 86:24-36. [DOI: 10.1111/j.1365-2958.2012.08186.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
41
|
Wagner M, van Wolferen M, Wagner A, Lassak K, Meyer BH, Reimann J, Albers SV. Versatile Genetic Tool Box for the Crenarchaeote Sulfolobus acidocaldarius. Front Microbiol 2012; 3:214. [PMID: 22707949 PMCID: PMC3374326 DOI: 10.3389/fmicb.2012.00214] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 05/24/2012] [Indexed: 11/14/2022] Open
Abstract
For reverse genetic approaches inactivation or selective modification of genes are required to elucidate their putative function. Sulfolobus acidocaldarius is a thermoacidophilic Crenarchaeon which grows optimally at 76°C and pH 3. As many antibiotics do not withstand these conditions the development of a genetic system in this organism is dependent on auxotrophies. Therefore we constructed a pyrE deletion mutant of S. acidocaldarius wild type strain DSM639 missing 322 bp called MW001. Using this strain as the starting point, we describe here different methods using single as well as double crossover events to obtain markerless deletion mutants, tag genes genomically and ectopically integrate foreign DNA into MW001. These methods enable us to construct single, double, and triple deletions strains that can still be complemented with the pRN1 based expression vector. Taken together we have developed a versatile and robust genetic tool box for the crenarchaeote S. acidocaldarius that will promote the study of unknown gene functions in this organism and makes it a suitable host for synthetic biology approaches.
Collapse
Affiliation(s)
- Michaela Wagner
- Molecular Biology of Archaea, Max Planck Institute for Terrestrial Microbiology Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
42
|
A synthetic arabinose-inducible promoter confers high levels of recombinant protein expression in hyperthermophilic archaeon Sulfolobus islandicus. Appl Environ Microbiol 2012; 78:5630-7. [PMID: 22660711 DOI: 10.1128/aem.00855-12] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite major progresses in genetic studies of hyperthermophilic archaea, recombinant protein production in these organisms always suffers from low yields and a robust expression system is still in great demand. Here we report a versatile vector that confers high levels of protein expression in Sulfolobus islandicus, a hyperthermophilic crenarchaeon. Two expression vectors, pSeSD and pEXA, harboring 11 unique restriction sites were constructed. They contain coding sequences of two hexahistidine (6×His) peptide tags and those coding for two protease sites, the latter of which make it possible to remove the peptide tags from expressed recombinant proteins. While pEXA employed an araS promoter for protein expression, pSeSD utilized P(araS-SD), an araS derivative promoter carrying an engineered ribosome-binding site (RBS; a Shine-Dalgarno [SD] sequence). We found that P(araS-SD) directed high levels of target gene expression. More strikingly, N-terminal amino acid sequencing of recombinant proteins unraveled that the protein synthesized from pEXA-N-lacS lacked the designed 6×His tag and that translation initiation did not start at the ATG codon of the fusion gene. Instead, it started at multiple sites downstream of the 6×His codons. Intriguingly, inserting an RBS site upstream of the ATG codon regained the expression of the 6×His tag, as shown with pSeSD-N-lacS. These results have yielded novel insight into the archaeal translation mechanism. The crenarchaeon Sulfolobus can utilize N-terminal coding sequences of proteins to specify translation initiation in the absence of an RBS site.
Collapse
|
43
|
Lassak K, Neiner T, Ghosh A, Klingl A, Wirth R, Albers SV. Molecular analysis of the crenarchaeal flagellum. Mol Microbiol 2011; 83:110-24. [DOI: 10.1111/j.1365-2958.2011.07916.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Development of a simvastatin selection marker for a hyperthermophilic acidophile, Sulfolobus islandicus. Appl Environ Microbiol 2011; 78:568-74. [PMID: 22081574 DOI: 10.1128/aem.06095-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report here a novel selectable marker for the hyperthermophilic crenarchaeon Sulfolobus islandicus. The marker cassette is composed of the sac7d promoter and the hmg gene coding for the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase (P(sac7d)-hmg), which confers simvastatin resistance to this crenarchaeon. The basic plasmid vector pSSR was constructed by substituting the pyrEF gene of the expression vector pSeSD for P(sac7d)-hmg with which the Sulfolobus expression plasmids pSSRlacS, pSSRAherA, and pSSRNherA were constructed. Characterization of Sulfolobus transformants carrying pSSRlacS indicated that the plasmid was properly maintained under selection. High-level expression of the His(6)-tagged HerA helicase was obtained with the cells harboring pSSRAherA. The establishment of two efficient selectable markers (pyrEF and hmg) was subsequently exploited for genetic analysis. A herA merodiploid strain of S. islandicus was constructed using pyrEF marker and used as the host to obtain pSSRNherA transformant with simvastatin selection. While the gene knockout (ΔherA) cells generated from the herA merodiploid cells failed to form colonies in the presence of 5-fluoroorotic acid (5-FOA), the mutant cells could be rescued by expression of the gene from a plasmid (pSSRNherA), because their transformants formed colonies on a solid medium containing 5-FOA and simvastatin. This demonstrates that HerA is essential for cell viability of S. islandicus. To our knowledge, this is the first application of an antibiotic selectable marker in genetic study for a hyperthermophilic acidophile and in the crenarchaeal lineage.
Collapse
|
45
|
Henche AL, Koerdt A, Ghosh A, Albers SV. Influence of cell surface structures on crenarchaeal biofilm formation using a thermostable green fluorescent protein. Environ Microbiol 2011; 14:779-93. [DOI: 10.1111/j.1462-2920.2011.02638.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
46
|
Meyer BH, Zolghadr B, Peyfoon E, Pabst M, Panico M, Morris HR, Haslam SM, Messner P, Schäffer C, Dell A, Albers SV. Sulfoquinovose synthase - an important enzyme in the N-glycosylation pathway of Sulfolobus acidocaldarius. Mol Microbiol 2011; 82:1150-63. [PMID: 22059775 DOI: 10.1111/j.1365-2958.2011.07875.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recently, the Surface (S)-layer glycoprotein of the thermoacidophilic crenarchaeote Sulfolobus acidocaldarius was found to be N-glycosylated with a heterogeneous family of glycans, with the largest having a composition Glc(1)Man(2)GlcNAc(2) plus 6-sulfoquinovose. However, genetic analyses of genes involved in the N-glycosylation process in Crenarchaeota were missing so far. In this study we identify a gene cluster involved in the biosynthesis of sulfoquinovose and important for the assembly of the S-layer N-glycans. A successful markerless in-frame deletion of agl3 resulted in a decreased molecular mass of the S-layer glycoprotein SlaA and the flagellin FlaB, indicating a change in the N-glycan composition. Analyses with nanoLC ES-MS/MS confirmed the presence of only a reduced trisaccharide structure composed of Man(1) GlcNAc(2) , missing the sulfoquinovose, a mannose and glucose. Biochemical studies of the recombinant Agl3 confirmed the proposed function as a UDP-sulfoquinovose synthase. Furthermore, S. acidocaldarius cells lacking agl3 had a significantly lower growth rate at elevated salt concentrations compared with the background strain, underlining the importance of the N-glycosylation to maintain an intact and stable cell envelope, to enable the survival of S. acidocaldarius in its extreme environment.
Collapse
Affiliation(s)
- Benjamin H Meyer
- Molecular Biology of Archaea, Max-Planck Institute for terrestrial Microbiology, Karl-von-Frisch-Strasse 10, 35043 Marburg
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Atomi H, Sato T, Kanai T. Application of hyperthermophiles and their enzymes. Curr Opin Biotechnol 2011; 22:618-26. [DOI: 10.1016/j.copbio.2011.06.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 06/14/2011] [Accepted: 06/16/2011] [Indexed: 12/27/2022]
|
48
|
Mei Y, Peng N, Zhao S, Hu Y, Wang H, Liang Y, She Q. Exceptional thermal stability and organic solvent tolerance of an esterase expressed from a thermophilic host. Appl Microbiol Biotechnol 2011; 93:1965-74. [PMID: 21847512 DOI: 10.1007/s00253-011-3504-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 07/07/2011] [Accepted: 07/19/2011] [Indexed: 11/29/2022]
Abstract
A protein expression system recently developed for the thermophilic crenarchaeon Sulfolobus islandicus was employed to produce recombinant protein for EstA, a thermophilic esterase encoded in the same organism. Large amounts of protein were readily obtained by an affinity protein purification, giving SisEstA. Upon Escherichia coli expression, only the thioredoxin-tagged EstA recombinant protein was soluble. The fusion protein was then purified, and removing the protein tag yielded EcSisEstA. Both forms of the thermophilic EstA enzyme were characterized. We found that SisEstA formed dimer exclusively in solution, whereas EcSisEstA appeared solely as monomer. The former exhibited a stronger resistance to organic solvents than the latter in general, having a much higher temperature optimum (90°C vs. 65°C). More strikingly, SisEstA exhibited a half-life that was more than 32-fold longer than that of EcSisEstA at 90°C. This indicated that thermophilic enzymes yielded from homologous expression should be better biocatalysts than those obtained from mesophilic expression.
Collapse
Affiliation(s)
- Yuxia Mei
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
49
|
Hawkins AS, Han Y, Lian H, Loder AJ, Menon AL, Iwuchukwu IJ, Keller M, Leuko TT, Adams MW, Kelly RM. Extremely Thermophilic Routes to Microbial Electrofuels. ACS Catal 2011. [DOI: 10.1021/cs2003017] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aaron S. Hawkins
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Yejun Han
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Hong Lian
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Andrew J. Loder
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Angeli L. Menon
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - Ifeyinwa J. Iwuchukwu
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - Matthew Keller
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - Therese T. Leuko
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - Michael W.W. Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - Robert M. Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| |
Collapse
|
50
|
The sulfolobicin genes of Sulfolobus acidocaldarius encode novel antimicrobial proteins. J Bacteriol 2011; 193:4380-7. [PMID: 21725003 DOI: 10.1128/jb.05028-11] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Crenarchaea, such as Sulfolobus acidocaldarius and Sulfolobus tokodaii, produce antimicrobial proteins called sulfolobicins. These antimicrobial proteins inhibit the growth of closely related species. Here we report the identification of the sulfolobicin-encoding genes in S. acidocaldarius. The active sulfolobicin comprises two proteins that are equipped with a classical signal sequence. These proteins are secreted by the cells and found to be membrane vesicle associated. Gene inactivation studies demonstrate that both proteins are required for the bacteriostatic antimicrobial activity. Sulfolobicins constitute a novel class of antimicrobial proteins without detectable homology to any other protein.
Collapse
|