1
|
Cardona GI, Escobar MC, Acosta-González A, Díaz-Ruíz N, Niño-García JP, Vasquez Y, Marrugo-Negrete J, Marqués S. Microbial diversity and abundance of Hg related genes from water, sediment and soil the Colombian amazon ecosystems impacted by artisanal and small-scale gold mining. CHEMOSPHERE 2024; 352:141348. [PMID: 38340998 DOI: 10.1016/j.chemosphere.2024.141348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
The Amazon region abounds in precious mineral resources including gold, copper, iron, and coltan. Artisanal and small-scale gold mining (ASGM) poses a severe risk in this area due to considerable mercury release into the surrounding ecosystems. Nonetheless, the impact of mercury on both the overall microbiota and the microbial populations involved in mercury transformation is not well understood. In this study we evaluated microbial diversity in samples of soil, sediment and water potentially associated with mercury contamination in two localities (Taraira and Tarapacá) in the Colombian Amazon Forest. To this end, we characterized the bacterial community structure and mercury-related functions in samples from sites with a chronic history of mercury contamination which today have different levels of total mercury content. We also determined mercury bioavailability and mobility in the samples with the highest THg and MeHg levels (up to 43.34 and 0.049 mg kg-1, respectively, in Taraira). Our analysis of mercury speciation showed that the immobile form of mercury predominated in soils and sediments, probably rendering it unavailable to microorganisms. Despite its long-term presence, mercury did not appear to alter the microbial community structure or composition, which was primarily shaped by environmental and physicochemical factors. However, an increase in the relative abundance of merA genes was detected in polluted sediments from Taraira. Several Hg-responsive taxa in soil and sediments were detected in sites with high levels of THg, including members of the Proteobacteria, Acidobacteria, Actinobacteria, Firmicutes and Chloroflexi phyla. The results suggest that mercury contamination at the two locations sampled may select mercury-adapted bacteria carrying the merA gene that could be used in bioremediation processes for the region.
Collapse
Affiliation(s)
- Gladys Inés Cardona
- Instituto Amazónico de Investigaciones Científicas SINCHI. Laboratorio de Biotecnología y Recursos Genéticos, Bogotá, Colombia.
| | - Maria Camila Escobar
- Instituto Amazónico de Investigaciones Científicas SINCHI. Laboratorio de Biotecnología y Recursos Genéticos, Bogotá, Colombia; Escuela de Microbiología. Universidad de Antioquia, Medellín, Colombia
| | | | - Natalie Díaz-Ruíz
- Escuela de Microbiología. Universidad de Antioquia, Medellín, Colombia
| | | | - Yaneth Vasquez
- Chemistry Department, Universidad de Córdoba, Montería, Colombia
| | - José Marrugo-Negrete
- Convergence Science and Technology Cluster, Universidad Central, Bogotá, Colombia
| | - Silvia Marqués
- Department of Biotechnology and Environmental Protection. Estación Experimental Del Zaidín. Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
2
|
Liu J, Li C, Ma W, Wu Z, Liu W, Wu W. Exploitation alters microbial community and its co-occurrence patterns in ionic rare earth mining sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165532. [PMID: 37454857 DOI: 10.1016/j.scitotenv.2023.165532] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/29/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
The exploitation of ion-adsorption rare earth elements (REEs) deposits results in serious ecological and environmental problems, which has attracted much attention. However, the influences of exploitation on the prokaryotic communities and their complex interactions remain poorly understood. In the present study, bacterial and archaeal communities, as well as ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA), in and around REEs mining area were investigated through high throughput sequencing and quantitative polymerase chain reaction (qPCR). Our results indicated that mining soil was characterized by poor soil structure, nutrient deficiency, and high concentrations of residual REEs. Oligotrophic bacteria (e.g., Chloroflexi and Acidobacteriota) were dominant in unexploited soil and mining soil, while copiotrophic bacteria (Proteobacteria and Actinobacteriota) were more abundant in surrounding soil. Nutrient was the key factor affecting microbial variation and abundance in mining soil. The bacterial community was more sensitive to REEs, while the archaeal communities were relatively stable. As the key members for ammonia oxidation, AOA outnumbered AOB in all the soil types, and the former was significantly influenced by pH, nutrients, and TREEs in mining soil. The microbial co-occurrence network analysis demonstrated that exploitation significantly influenced topological properties, decreased the complexity, and resulted in a much unstable network, leading to a more fragile microbial ecosystem in mining areas. Notably, the abundance of keystone taxa decreased after exploitation, and oligotrophic groups (Chloroflexi) replaced copiotrophic groups (Proteobacteria and Actinobacteriota) as the key to rebuilt a co-occurrence network, suggesting potentially important roles in maintaining network stability. The current results are of great significance to the ecological risk assessment of REEs exploitation.
Collapse
Affiliation(s)
- Jingjing Liu
- School of Energy and Machinery Engineering, Jiangxi University of Science and Technology, Nanchang 330013, China; Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control, Ganzhou 341099, China.
| | - Chun Li
- School of Energy and Machinery Engineering, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Wendan Ma
- School of Energy and Machinery Engineering, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Zengxue Wu
- School of Energy and Machinery Engineering, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Wei Liu
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Weixiang Wu
- Institute of Environmental Science and Technology, Zhejiang University, Hangzhou 310030, China
| |
Collapse
|
3
|
Feng G, Yong J, Liu Q, Chen H, Hu Y, Mao P. Remedial effect and operating status of a decommissioned uranium mill tailings (UMT) repository: A micro-ecological perspective based on bacterial community. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 340:117993. [PMID: 37094385 DOI: 10.1016/j.jenvman.2023.117993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/06/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
From a radioecological perspective, increasing attention has been paid to the long-term stabilisation of decommissioned uranium mill tailings (UMT) repositories. However, little is known about the evaluation of decommissioning and remedial effects of UMT repositories from a microecological perspective based on bacterial communities. Here, we analysed the distribution and structure of soil community assemblies along different vertical soil profiles in a decommissioned UMT repository and explored the impact of soil properties, including physicochemical parameters, metal(loid)s, and radionuclides, on the bacterial assemblage. We found that the α diversity of the bacterial community was unaffected by variations in different soil profiles and taxa were classified at the phylum level with small significant differences. In contrast, the bacterial community structure in and around the UMT repository showed significant differences; however, this difference was significantly affected by soil metal(loid)s and physicochemical properties rather than soil radionuclides. In addition, seven bacterial genera with significant differences between the inner and surrounding regions of the repository could be used as potential indicators to further investigate the remedial effects on soil environmental quality. These findings provide novel insights into the construction of an assessment system and in situ biomonitoring of UMT repositories from a microecological perspective based on bacterial communities.
Collapse
Affiliation(s)
- Guangwen Feng
- Research Center of Radiation Ecology and Ion Beam Biotechnology, College of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830017, PR China.
| | - Jinlong Yong
- Research Center of Radiation Ecology and Ion Beam Biotechnology, College of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830017, PR China
| | - Qian Liu
- School of Statistics and Data Science, Xinjiang University of Finance & Economics, Urumqi, Xinjiang, 830012, PR China
| | - Henglei Chen
- Research Center of Radiation Ecology and Ion Beam Biotechnology, College of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830017, PR China
| | - Youhua Hu
- Radiation Environment Supervision Station of Xinjiang, Urumqi, Xinjiang, 830000, PR China
| | - Peihong Mao
- Research Center of Radiation Ecology and Ion Beam Biotechnology, College of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830017, PR China
| |
Collapse
|
4
|
Indigenous microbial populations of abandoned mining sites and their role in natural attenuation. Arch Microbiol 2022; 204:251. [PMID: 35411412 DOI: 10.1007/s00203-022-02861-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 03/17/2022] [Accepted: 03/20/2022] [Indexed: 11/02/2022]
Abstract
Environmental contamination by toxic effluents discharged by anthropogenic activities including the mining industries has increased extensively in the recent past. Microbial communities and their biofilms inhabiting these extreme habitats have developed different adaptive strategies in metabolizing and transforming the persistent pollutants. They also play a crucial role in natural attenuation of these abandoned mining sites and act as a major driver of many biogeochemical processes, which helps in ecological rehabilitation and is a viable approach for restoration of wide stretches of land. In this review, the types of mine wastes including the overburden and mine drainage and the types of microbial communities thriving in such environments were probed in detail. The types of biofilms formed along with their possible role in metal bioremediation were also reviewed. This review also provides an overview of the shift in microbial communities in natural reclamation process and also provides an insight into the restoration of the enzyme activities of the soils which may help in further revegetation of abundant mining areas in a sustainable manner. Moreover, the role of indigenous microbiota in bioremediation of heavy metals and their plant growth-promoting activity weres discussed to assess their role in phytoremedial processes.
Collapse
|
5
|
Metals Alter Membership but Not Diversity of a Headwater Stream Microbiome. Appl Environ Microbiol 2021; 87:AEM.02635-20. [PMID: 33452033 DOI: 10.1128/aem.02635-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/25/2020] [Indexed: 11/20/2022] Open
Abstract
Metal contamination from mining or natural weathering is a common feature of surface waters in the American west. Advances in microbial analyses have created the potential for routine sampling of aquatic microbiomes as a tool to assess the quality of stream habitat. We sought to determine if microbiome diversity and membership were affected by metal contamination and identify candidate microbial taxa to be used to indicate metal stress in stream ecosystems. We evaluated microbiome membership from sediments at multiple sites within the principal drainage of an EPA superfund site near the headwaters of the Upper Arkansas River, Leadville, CO. From each sample, we extracted DNA and sequenced the 16S rRNA gene amplicon on the Illumina MiSeq platform. We used the remaining sediments to simultaneously evaluate environmental metal concentrations. We also conducted an artificial stream mesocosm experiment using sediments collected from two of the observational study sites. The mesocosm experiment had a two-by-two factorial design: (i) location (upstream or downstream of contaminating tributary), and (ii) treatment (metal exposure or control). We found no difference in diversity between upstream and downstream sites in the field. Similarly, diversity changed very little following experimental metal exposure. However, microbiome membership differed between upstream and downstream locations and experimental metal exposure changed microbiome membership in a manner that depended on origin of the sediments used in each mesocosm.IMPORTANCE Our results suggest that microbiomes can be reliable indicators of ecosystem metal stress even when surface water chemistry and other metrics used to assess ecosystem health do not indicate ecosystem stress. Results presented in this study, in combination with previously published work on this same ecosystem, are consistent with the idea that a microbial response to metals at the base of the food web may be affecting primary consumers. If effects of metals are mediated through shifts in the microbiome, then microbial metrics, as presented here, may aid in the assessment of stream ecosystem health, which currently does not include assessments of the microbiome.
Collapse
|
6
|
Li S, Wu J, Huo Y, Zhao X, Xue L. Profiling multiple heavy metal contamination and bacterial communities surrounding an iron tailing pond in Northwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:141827. [PMID: 32889271 DOI: 10.1016/j.scitotenv.2020.141827] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
Northwest China is abundant in iron ore reserves and has become one of the important iron ore mining bases in China. However, the contamination and microbial community structure of iron tailing ponds in Northwest China have not been extensively investigated. In the present study, we characterized the main physicochemical properties, the multiple heavy metal contamination, and the bacterial community structure of the soils surrounding an iron tailing pond in Linze County, Zhangye city, Gansu Province. The tailing-associated soils were barren, exhibiting alkaline pH and low organic matter (OM), total nitrogen (TN) and total potassium (TK) compared with the control areas. There was considerable multiple heavy metal pollution in the iron tailing pond, mainly including lead (Pb), manganese (Mn), arsenic (As), cadmium (Cd), zinc (Zn), iron (Fe) and copper (Cu). Among the 303 identified core operational taxonomic units (OTUs), Actinobacteria, Proteobacteria and Deinococcus-Thermus were predominant at the phylum level, and Blastococcus, Arthrobacter, Marmoricola, Kocuria, Truepera, and Sphingomonadaceae were prevalent at a finer taxonomic level. The bacterial richness and diversity of the tailing samples were significantly lower than those of the reference samples. RDA, VPA and Spearman correlation analyses showed that the soil pH, CEC, OM, TP, TK, Cd, Pb, Ni, Zn, As and Mn had significant effects on the bacterial community composition and distribution. This work profiles the basic features of the soil physicochemical properties, the multiple heavy metal contamination and the bacterial community structure in an iron tailing pond in Northwest China, thereby providing a foundation for the future ecological remediation of the iron tailing environment in the area.
Collapse
Affiliation(s)
- Sha Li
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Lanzhou 730070, China
| | - Juanli Wu
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yanli Huo
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Lanzhou 730070, China
| | - Xu Zhao
- Institute of Soil, Fertilizer and Water-Saving Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Lingui Xue
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Lanzhou 730070, China.
| |
Collapse
|
7
|
Xu R, Sun X, Han F, Li B, Xiao E, Xiao T, Yang Z, Sun W. Impacts of antimony and arsenic co-contamination on the river sedimentary microbial community in an antimony-contaminated river. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:136451. [PMID: 32019010 DOI: 10.1016/j.scitotenv.2019.136451] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/29/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
Antimony (Sb) and arsenic (As) are toxic elements that occur widely in trace soil concentrations. Expansion of mining activities has increased Sb and As pollution, thus posing a severe threat to human welfare and ecological systems worldwide. Knowledge regarding the composition and adaptation of the microbial communities in these metal(loid) contaminated sites is still limited. In the current study, samples along a river flowing through the world's largest Sb mining area (Xikuangshan) were selected to investigate the microbial response to different Sb or As species. A comprehensive analysis of geochemical parameters, high-throughput sequencing, and statistical methods were applied to reveal the different effects of Sb and As on sedimentary microorganisms. Results suggested that the majority of the Sb and As fractions were not bioavailable. The Sb extractable fraction had a stronger effect on the microbial community compared with its As counterpart. Random forest analyses indicated that the easily exchangeable Sb fraction and specifically sorbed surface-bound fraction were the two most selective variables shaping microbial community diversity. A total of 11 potential keystone phyla, such as bacteria associated with the Bacteroidetes, Proteobacteria, and Firmicutes, were identified according to a molecular ecological network analysis. Strong correlations (|R| > 0.7, P < 0.05) were identified among the indigenous microbial community and pH (negative), sulfate (negative), and exchangeable Sb fraction (positive). Bacteria associated with the genera Geobacter, Phormidium, Ignavibacterium, Desulfobulbus, Ferruginibacter, Fluviicola, Methylotenera, and Scytonema, were predicted to tolerate or metabolize the Sb extractable fraction.
Collapse
Affiliation(s)
- Rui Xu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Xiaoxu Sun
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Feng Han
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Baoqin Li
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China
| | - Enzong Xiao
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Tangfu Xiao
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Zhaohui Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Weimin Sun
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou 510650, China.
| |
Collapse
|
8
|
Ávila MP, Oliveira-Junior ES, Reis MP, Hester ER, Diamantino C, Veraart AJ, Lamers LPM, Kosten S, Nascimento AMA. The Water Hyacinth Microbiome: Link Between Carbon Turnover and Nutrient Cycling. MICROBIAL ECOLOGY 2019; 78:575-588. [PMID: 30706113 DOI: 10.1007/s00248-019-01331-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
Water hyacinth (WH), a large floating plant, plays an important role in the biogeochemistry and ecology of many freshwaters globally. Its biogeochemical impact on wetland functioning is strongly mediated by the microbiome associated with its roots. However, little is known about the structure and function of this WH rhizobiome and its relation to wetland ecosystem functioning. Here, we unveil the core and transient rhizobiomes of WH and their key biogeochemical functions in two of the world's largest wetlands: the Amazon and the Pantanal. WH hosts a highly diverse microbial community shaped by spatiotemporal changes. Proteobacteria lineages were most common, followed by Actinobacteria and Planctomycetes. Deltaproteobacteria and Sphingobacteriia predominated in the core microbiome, potentially associated with polysaccharide degradation and fermentation of plant-derived carbon. Conversely, a plethora of lineages were transient, including highly abundant Acinetobacter, Acidobacteria subgroup 6, and methanotrophs, thus assuring diverse taxonomic signatures in the two different wetlands. Our findings point out that methanogenesis is a key driver of, and proxy for, community structure, especially during seasonal plant decline. We provide ecologically relevant insights into the WH microbiome, which is a key element linking plant-associated carbon turnover with other biogeochemical fluxes in tropical wetlands.
Collapse
Affiliation(s)
- Marcelo P Ávila
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Ernandes S Oliveira-Junior
- Department of Aquatic Ecology and Environmental Biology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands
| | - Mariana P Reis
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Eric R Hester
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands
| | - Cristiane Diamantino
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Annelies J Veraart
- Department of Aquatic Ecology and Environmental Biology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands
| | - Leon P M Lamers
- Department of Aquatic Ecology and Environmental Biology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands
| | - Sarian Kosten
- Department of Aquatic Ecology and Environmental Biology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands
| | - Andréa M A Nascimento
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
9
|
Kasemodel MC, Sakamoto IK, Varesche MBA, Rodrigues VGS. Potentially toxic metal contamination and microbial community analysis in an abandoned Pb and Zn mining waste deposit. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 675:367-379. [PMID: 31030143 DOI: 10.1016/j.scitotenv.2019.04.223] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/28/2019] [Accepted: 04/14/2019] [Indexed: 05/20/2023]
Abstract
Bioindicators have been widely used to assess the contamination of lead/zinc (Pb/Zn) in smelter areas, mining waste disposal areas and in areas containing slags from Pb ore smelting. In this context, the analysis involving microorganisms has gained prominence as a complementary tool in studies aimed at assessing contaminated sites. Therefore, the objective of this study was to assess the contamination of Pb, Zn and cadmium (Cd) in an area where a PbZn smelter operated, using the integration of geochemical and microbial data. The experimental analysis was conducted to characterize the soil collected at three different sites (samples NS, EW and EP). The analysis conducted was physicochemical, metal concentration, metal speciation and analysis of the microbial community through high-throughput sequencing technique. Through the results it was observed that the high concentrations of metals altered the bacterial community present in the soil. Differences were noted between the microbial communities according to the sampling site, especially in sample EP, collected at the margin of the dirt road, which presented higher metal concentrations and microbial diversity. The main phyla detected in the samples were: Proteobacteria, Bacteroidetes and Acidobacteria. Bacteria tolerant to the presence of potentially toxic metals (PTM), such as Rhodoplanes, Kaistobacter, Sphingomonas and Flavisolibacter were identified in the analyzed samples. The phylogenetic groups identified in the study area are similar to those obtained in other studies in metal contaminated areas. The differences between the bacterial communities in each sample indicate that the concentration of PTM may have influenced the microbial community in the soil. Thus, it is noted the importance of the integration of geochemical and microbial data to evaluate the impact of the improper disposal of high PTM concentrated slags in natural soils.
Collapse
|
10
|
Moreira-Grez B, Muñoz-Rojas M, Kariman K, Storer P, O’Donnell AG, Kumaresan D, Whiteley AS. Reconditioning Degraded Mine Site Soils With Exogenous Soil Microbes: Plant Fitness and Soil Microbiome Outcomes. Front Microbiol 2019; 10:1617. [PMID: 31354694 PMCID: PMC6636552 DOI: 10.3389/fmicb.2019.01617] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/28/2019] [Indexed: 02/01/2023] Open
Abstract
Mining of mineral resources substantially alters both the above and below-ground soil ecosystem, which then requires rehabilitation back to a pre-mining state. For belowground rehabilitation, recovery of the soil microbiome to a state which can support key biogeochemical cycles, and effective plant colonization is usually required. One solution proposed has been to translate microbial inocula from agricultural systems to mine rehabilitation scenarios, as a means of reconditioning the soil microbiome for planting. Here, we experimentally determine both the aboveground plant fitness outcomes and belowground soil microbiome effects of a commercially available soil microbial inocula (SMI). We analyzed treatment effects at four levels of complexity; no SMI addition control, Nitrogen addition alone, SMI addition and SMI plus Nitrogen addition over a 12-week period. Our culture independent analyses indicated that SMIs had a differential response over the 12-week incubation period, where only a small number of the consortium members persisted in the semi-arid ecosystem, and generated variable plant fitness responses, likely due to plant-microbiome physiological mismatching and low survival rates of many of the SMI constituents. We suggest that new developments in custom-made SMIs to increase rehabilitation success in mine site restoration are required, primarily based upon the need for SMIs to be ecologically adapted to both the prevailing edaphic conditions and a wide range of plant species likely to be encountered.
Collapse
Affiliation(s)
- Benjamin Moreira-Grez
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Miriam Muñoz-Rojas
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- Kings Park Science, Department of Biodiversity, Conservation and Attractions, Perth, WA, Australia
| | - Khalil Kariman
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Paul Storer
- Troforte Innovations Pty Ltd., Perth, WA, Australia
| | | | - Deepak Kumaresan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
- School of Biological Sciences, Queen’s University of Belfast, Belfast, United Kingdom
| | - Andrew S. Whiteley
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
11
|
Ávila MP, Brandão LPM, Brighenti LS, Tonetta D, Reis MP, Stæhr PA, Asmala E, Amado AM, Barbosa FAR, Bezerra-Neto JF, Nascimento AMA. Linking shifts in bacterial community with changes in dissolved organic matter pool in a tropical lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 672:990-1003. [PMID: 30981171 DOI: 10.1016/j.scitotenv.2019.04.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/15/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
Bacterioplankton communities have a pivotal role in the global carbon cycle. Still the interaction between microbial community and dissolved organic matter (DOM) in freshwater ecosystems remains poorly understood. Here, we report results from a 12-day mesocosm study performed in the epilimnion of a tropical lake, in which inorganic nutrients and allochthonous DOM were supplemented under full light and shading. Although the production of autochthonous DOM triggered by nutrient addition was the dominant driver of changes in bacterial community structure, temporal covariations between DOM optical proxies and bacterial community structure revealed a strong influence of community shifts on DOM fate. Community shifts were coupled to a successional stepwise alteration of the DOM pool, with different fractions being selectively consumed by specific taxa. Typical freshwater clades as Limnohabitans and Sporichthyaceae were associated with consumption of low molecular weight carbon, whereas Gammaproteobacteria and Flavobacteria utilized higher molecular weight carbon, indicating differences in DOM preference among clades. Importantly, Verrucomicrobiaceae were important in the turnover of freshly produced autochthonous DOM, ultimately affecting light availability and dissolved organic carbon concentrations. Our findings suggest that taxonomically defined bacterial assemblages play definite roles when influencing DOM fate, either by changing specific fractions of the DOM pool or by regulating light availability and DOC levels.
Collapse
Affiliation(s)
- Marcelo P Ávila
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Luciana P M Brandão
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Ludmila S Brighenti
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Denise Tonetta
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Mariana P Reis
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil.
| | - Peter A Stæhr
- Department of Bioscience, Aarhus University, Frederiksborgvej 399, Box 358, 4000 Roskilde, Denmark
| | - Eero Asmala
- Department of Bioscience, Aarhus University, Frederiksborgvej 399, Box 358, 4000 Roskilde, Denmark; Tvärminne Zoological Station, University of Helsinki, J.A. Palménin tie 260, 10900 Hanko, Finland
| | - André M Amado
- Limnology Laboratory, Department of Oceanography and Limnology, Universidade Federal do Rio Grande do Norte, Rio Grande do Norte, Brazil
| | - Francisco A R Barbosa
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - José F Bezerra-Neto
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Andréa M A Nascimento
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil.
| |
Collapse
|
12
|
Lemmel F, Maunoury-Danger F, Fanesi A, Leyval C, Cébron A. Soil Properties and Multi-Pollution Affect Taxonomic and Functional Bacterial Diversity in a Range of French Soils Displaying an Anthropisation Gradient. MICROBIAL ECOLOGY 2019; 77:993-1013. [PMID: 30467715 DOI: 10.1007/s00248-018-1297-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 11/16/2018] [Indexed: 05/20/2023]
Abstract
The intensive industrial activities of the twentieth century have left behind highly contaminated wasteland soils. It is well known that soil parameters and the presence of pollutants shape microbial communities. But in such industrial waste sites, the soil multi-contamination with organic (polycyclic aromatic hydrocarbons, PAH) and metallic (Zn, Pb, Cd) pollutants and long-term exposure may induce a selection pressure on microbial communities that may modify soil functioning. The aim of our study was to evaluate the impact of long-term multi-contamination and soil characteristics on bacterial taxonomic and functional diversity as related to the carbon cycle. We worked on 10 soils from northeast of France distributed into three groups (low anthropised controls, slag heaps, and settling ponds) based on their physico-chemical properties (texture, C, N) and pollution level. We assessed bacterial taxonomic diversity by 16S rDNA Illumina sequencing, and functional diversity using Biolog® and MicroResp™ microtiter plate tools. Although taxonomic diversity at the phylum level was not different among the soil groups, many operational taxonomic units were influenced by metal or PAH pollution, and by soil texture and total nitrogen content. Functional diversity was not influenced by PAH contamination while metal pollution selected microbial communities with reduced metabolic functional diversity but more tolerant to zinc. Limited microbial utilisation of carbon substrates in metal-polluted soils was mainly due to the nitrogen content. Based on these two observations, we hypothesised that reduced microbial activity and lower carbon cycle-related functional diversity may have contributed to the accumulation of organic matter in the soils that exhibited the highest levels of metal pollution.
Collapse
Affiliation(s)
- Florian Lemmel
- Université de Lorraine, CNRS, LIEC, 54000, Nancy, France
| | | | - Andrea Fanesi
- Université de Lorraine, CNRS, LIEC, 54000, Nancy, France
| | - Corinne Leyval
- Université de Lorraine, CNRS, LIEC, 54000, Nancy, France
| | - Aurélie Cébron
- Université de Lorraine, CNRS, LIEC, 54000, Nancy, France.
| |
Collapse
|
13
|
Cui H, Liu LL, Dai JR, Yu XN, Guo X, Yi SJ, Zhou DY, Guo WH, Du N. Bacterial community shaped by heavy metals and contributing to health risks in cornfields. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 166:259-269. [PMID: 30273849 DOI: 10.1016/j.ecoenv.2018.09.096] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/18/2018] [Accepted: 09/21/2018] [Indexed: 05/21/2023]
Abstract
Scientists are increasingly aware that heavy metal contamination in soils, especially in farmland ecosystems, can negatively affect human health and alter the bacterial community that plays a critical role in plant growth and heavy metal accumulation. The goal of the present paper was to uncover how various heavy metals and non-metallic elements affect human health and bacterial diversity in cornfields and to explore the contribution of soil bacteria to heavy metal accumulation in crops. Soil samples were collected from five counties in Shandong Province, China, where abnormally high levels of heavy metals and metalloids were caused by mining and heavy industry. We calculated a hazard quotient (HQ) to evaluate the health risk these heavy metals cause and analyzed the soil bacterial community using 16S rRNA gene sequencing. The HQ results showed that As posed the greatest threat to human health followed by Pb although concentrations of all metals did not reach the health risk threshold. Meanwhile, principal component analysis (PCA) and redundancy analysis (RDA) revealed soil bacterial richness was significantly influenced by As, Ni, and Cr as well as pH and phosphorus, but not by the species diversity of aboveground weeds. The most abundant bacteria in our study region were heavy metal tolerant groups, specifically Actinobacteria and Proteobacteria. Moreover, correlation analysis suggested that Actinobacteria might reduce the phytoaccumulation of Cr, Cu, Zn, and Hg in corn, while Proteobacteria might weaken phytoaccumulation of Pb, Ni, As, and Cd. Our results verified that heavy metals play an important role in shaping the soil bacterial community. Using native bacteria in farmland provides a potential biological strategy for reducing the health risk posed by heavy metals related to food consumption.
Collapse
Affiliation(s)
- Han Cui
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Le-Le Liu
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Jie-Rui Dai
- Shandong Institute of Geological Survey, Jinan 250000, China
| | - Xiao-Na Yu
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Xiao Guo
- School of landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China
| | - Shi-Jie Yi
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Da-You Zhou
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Wei-Hua Guo
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Ning Du
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao 266237, China.
| |
Collapse
|
14
|
Kisková J, Perháčová Z, Vlčko L, Sedláková J, Kvasnová S, Pristaš P. The Bacterial Population of Neutral Mine Drainage Water of Elizabeth's Shaft (Slovinky, Slovakia). Curr Microbiol 2018; 75:988-996. [PMID: 29532150 PMCID: PMC7160218 DOI: 10.1007/s00284-018-1472-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 03/05/2018] [Indexed: 11/25/2022]
Abstract
Although neutral mine drainage is the less frequent subject of the interest than acid mine drainage, it can have adverse environmental effects caused mainly by precipitation of dissolved Fe. The aim of the study was to characterize the composition of bacterial population in environment with high concentration of iron and sulfur compounds represented by neutral mine drainage water of Elizabeth's shaft, Slovinky (Slovakia). Direct microscopic observations, cultivation methods, and 454 pyrosequencing of the 16S rRNA gene amplicons were used to examine the bacterial population. Microscopic observations identified iron-oxidizing Proteobacteria of the genera Gallionella and Leptothrix which occurrence was not changed during the years 2008-2014. Using 454 pyrosequencing, there were identified members of 204 bacterial genera that belonged to 25 phyla. Proteobacteria (69.55%), followed by Chloroflexi (10.31%) and Actinobacteria (4.24%) dominated the bacterial community. Genera Azotobacter (24.52%) and Pseudomonas (14.15%), followed by iron-oxidizing Proteobacteria Dechloromonas (11%) and Methyloversatilis (8.53%) were most abundant within bacterial community. Typical sulfur bacteria were detected with lower frequency, e.g., Desulfobacteraceae (0.25%), Desulfovibrionaceae (0.16%), or Desulfobulbaceae (0.11%). Our data indicate that the composition of bacterial community of the Elizabeth's shaft drainage water reflects observed neutral pH, high level of iron and sulfur ions in this aquatic habitat.
Collapse
Affiliation(s)
- Jana Kisková
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, 041 54, Košice, Slovakia.
| | - Zuzana Perháčová
- Department of Biology and General Ecology, Faculty of Ecology and Environmental Sciences, Technical University in Zvolen, 960 53, Zvolen, Slovakia
| | - Ladislav Vlčko
- Department of Biology and General Ecology, Faculty of Ecology and Environmental Sciences, Technical University in Zvolen, 960 53, Zvolen, Slovakia
| | - Jana Sedláková
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, 041 54, Košice, Slovakia
| | - Simona Kvasnová
- Department of Biology and Ecology, Faculty of Natural Science, Matej Bel University, 974 01, Banská Bystrica, Slovakia
| | - Peter Pristaš
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, 041 54, Košice, Slovakia
- Institute of Animal Physiology, Centre of Biosciences of Slovak Academy of Sciences, 041 01, Košice, Slovakia
| |
Collapse
|
15
|
Fernandes CC, Kishi LT, Lopes EM, Omori WP, Souza JAMD, Alves LMC, Lemos EGDM. Bacterial communities in mining soils and surrounding areas under regeneration process in a former ore mine. Braz J Microbiol 2018; 49:489-502. [PMID: 29452849 PMCID: PMC6066727 DOI: 10.1016/j.bjm.2017.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 11/06/2017] [Accepted: 12/04/2017] [Indexed: 01/19/2023] Open
Abstract
Human activities on the Earth's surface change the landscape of natural ecosystems. Mining practices are one of the most severe human activities, drastically altering the chemical, physical and biological properties of the soil environment. Bacterial communities in soil play an important role in the maintenance of ecological relationships. This work shows bacterial diversity, metabolic repertoire and physiological behavior in five ecosystems samples with different levels of impact. These ecosystems belong to a historical area in Iron Quadrangle, Minas Gerais, Brazil, which suffered mining activities until its total depletion without recovery since today. The results revealed Proteobacteria as the most predominant phylum followed by Acidobacteria, Verrucomicrobia, Planctomycetes, and Bacteroidetes. Soils that have not undergone anthropological actions exhibit an increase ability to degrade carbon sources. The richest soil with the high diversity was found in ecosystems that have suffered anthropogenic action. Our study shows profile of diversity inferring metabolic profile, which may elucidate the mechanisms underlying changes in community structure in situ mining sites in Brazil. Our data comes from contributing to know the bacterial diversity, relationship between these bacteria and can explore strategies for natural bioremediation in mining areas or adjacent areas under regeneration process in iron mining areas.
Collapse
Affiliation(s)
- Camila Cesário Fernandes
- UNESP - Univ Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Departamento de Tecnologia, Jaboticabal, SP, Brazil
| | - Luciano Takeshi Kishi
- UNESP - Univ Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Departamento de Tecnologia, Jaboticabal, SP, Brazil
| | - Erica Mendes Lopes
- UNESP - Univ Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Departamento de Tecnologia, Jaboticabal, SP, Brazil
| | - Wellington Pine Omori
- UNESP - Univ Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Departamento de Biologia Aplicada à Agropecuária, Laboratório de Genética Aplicada, Jaboticabal, SP, Brazil
| | - Jackson Antonio Marcondes de Souza
- UNESP - Univ Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Departamento de Biologia Aplicada à Agropecuária, Laboratório de Genética Aplicada, Jaboticabal, SP, Brazil
| | - Lucia Maria Carareto Alves
- UNESP - Univ Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Departamento de Tecnologia, Jaboticabal, SP, Brazil
| | - Eliana Gertrudes de Macedo Lemos
- UNESP - Univ Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Departamento de Tecnologia, Jaboticabal, SP, Brazil.
| |
Collapse
|
16
|
Laroche O, Wood SA, Tremblay LA, Ellis JI, Lear G, Pochon X. A cross-taxa study using environmental DNA/RNA metabarcoding to measure biological impacts of offshore oil and gas drilling and production operations. MARINE POLLUTION BULLETIN 2018; 127:97-107. [PMID: 29475721 DOI: 10.1016/j.marpolbul.2017.11.042] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 11/16/2017] [Accepted: 11/20/2017] [Indexed: 06/08/2023]
Abstract
Standardized ecosystem-based monitoring surveys are critical for providing information on marine ecosystem health. Environmental DNA/RNA (eDNA/eRNA) metabarcoding may facilitate such surveys by quickly and effectively characterizing multi-trophic levels. In this study, we assessed the suitability of eDNA/eRNA metabarcoding to evaluate changes in benthic assemblages of bacteria, Foraminifera and other eukaryotes along transects at three offshore oil and gas (O&G) drilling and production sites, and compared these to morphologically characterized macro-faunal assemblages. Bacterial communities were the most responsive to O&G activities, followed by Foraminifera, and macro-fauna (the latter assessed by morphology). The molecular approach enabled detection of hydrocarbon degrading taxa such as the bacteria Alcanivorax and Microbulbifer at petroleum impacted stations. Most identified indicator taxa, notably among macro-fauna, were highly specific to site conditions. Based on our results we suggest that eDNA/eRNA metabarcoding can be used as a stand-alone method for biodiversity assessment or as a complement to morphology-based monitoring approaches.
Collapse
Affiliation(s)
- Olivier Laroche
- Coastal and Freshwater Group, Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; School of Biological Sciences, University of Auckland, Private Bag 349, Warkworth 0941, New Zealand.
| | - Susanna A Wood
- Coastal and Freshwater Group, Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; Environmental Research Institute, The University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand
| | - Louis A Tremblay
- Coastal and Freshwater Group, Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; School of Biological Sciences, University of Auckland, Private Bag 349, Warkworth 0941, New Zealand
| | - Joanne I Ellis
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Centre, Thuwal 23955-6900, Saudi Arabia
| | - Gavin Lear
- School of Biological Sciences, University of Auckland, Private Bag 349, Warkworth 0941, New Zealand
| | - Xavier Pochon
- Coastal and Freshwater Group, Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; Institute of Marine Science, University of Auckland, Private Bag 349, Warkworth 0941, New Zealand
| |
Collapse
|
17
|
Min X, Wang Y, Chai L, Yang Z, Liao Q. High-resolution analyses reveal structural diversity patterns of microbial communities in Chromite Ore Processing Residue (COPR) contaminated soils. CHEMOSPHERE 2017; 183:266-276. [PMID: 28550784 DOI: 10.1016/j.chemosphere.2017.05.105] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/15/2017] [Accepted: 05/18/2017] [Indexed: 06/07/2023]
Abstract
To explore how heavy metal contamination in Chromite Ore Processing Residue (COPR) disposal sites determine the dissimilarities of indigenous microbial communities, 16S rRNA gene MiSeq sequencing and advanced statistical methods were applied. 13 soil samples were collected from three COPR disposal sites in Mouding of southwestern, Shangnan of northwestern and Yima of central China. The results of analyses of variance (ANOVA), similarities (ANOSIM), and non-metric multidimensional scaling (NMDS) showed that the structural diversity of the microbial communities in the samples with high total chromium (Cr) content (more than 300 mg kg-1; High group) were significantly lesser than in the Low group (less than 90 mg kg-1) regardless of their geographical distribution. But their diversity had virtually rehabilitated under the pressures of long-term metal contamination. Furthermore, the similarity percentage (SIMPER) analysis indicated that the major dissimilarity contributors Micrococcaceae, Delftia, and Streptophyta, possibly having Cr(VI)-resistant and/or Cr(VI)-reducing capability, were dominant in the High group, while Ramlibacter and Gemmatimonas with potential resistances to other heavy metals were prevalent in the Low group. In addition, the multivariate regression tree (MRT), aggregated boosted tree (ABT), and Mantel test revealed that total Cr content affiliated with Cr(VI) was the principal factor shaping the dissimilarities between the soil microbial communities in the COPR sites. Our findings provide a deep insight of the influence of these heavy metals on the microbial communities in the COPR disposal sites and will facilitate bioremediation on such site.
Collapse
Affiliation(s)
- Xiaobo Min
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China; National Engineering Research Center for Heavy Metals Pollution Control and Treatment, 410083, Changsha, China
| | - Yangyang Wang
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China; College of Environment and Planning, Henan University, 475004, Kaifeng, China
| | - Liyuan Chai
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China; National Engineering Research Center for Heavy Metals Pollution Control and Treatment, 410083, Changsha, China
| | - Zhihui Yang
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China; National Engineering Research Center for Heavy Metals Pollution Control and Treatment, 410083, Changsha, China
| | - Qi Liao
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083, Changsha, China; National Engineering Research Center for Heavy Metals Pollution Control and Treatment, 410083, Changsha, China.
| |
Collapse
|
18
|
Garaiyurrebaso O, Garbisu C, Blanco F, Lanzén A, Martín I, Epelde L, Becerril JM, Jechalke S, Smalla K, Grohmann E, Alkorta I. Long-term effects of aided phytostabilisation on microbial communities of metal-contaminated mine soil. FEMS Microbiol Ecol 2016; 93:fiw252. [DOI: 10.1093/femsec/fiw252] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/21/2016] [Accepted: 12/22/2016] [Indexed: 11/14/2022] Open
|
19
|
Archaea in Natural and Impacted Brazilian Environments. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2016; 2016:1259608. [PMID: 27829818 PMCID: PMC5086508 DOI: 10.1155/2016/1259608] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/08/2016] [Indexed: 11/26/2022]
Abstract
In recent years, archaeal diversity surveys have received increasing attention. Brazil is a country known for its natural diversity and variety of biomes, which makes it an interesting sampling site for such studies. However, archaeal communities in natural and impacted Brazilian environments have only recently been investigated. In this review, based on a search on the PubMed database on the last week of April 2016, we present and discuss the results obtained in the 51 studies retrieved, focusing on archaeal communities in water, sediments, and soils of different Brazilian environments. We concluded that, in spite of its vast territory and biomes, the number of publications focusing on archaeal detection and/or characterization in Brazil is still incipient, indicating that these environments still represent a great potential to be explored.
Collapse
|
20
|
Reis MP, Dias MF, Costa PS, Ávila MP, Leite LR, de Araújo FMG, Salim ACM, Bucciarelli-Rodriguez M, Oliveira G, Chartone-Souza E, Nascimento AMA. Metagenomic signatures of a tropical mining-impacted stream reveal complex microbial and metabolic networks. CHEMOSPHERE 2016; 161:266-273. [PMID: 27441985 DOI: 10.1016/j.chemosphere.2016.06.097] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/24/2016] [Accepted: 06/26/2016] [Indexed: 06/06/2023]
Abstract
Bacteria from aquatic ecosystems significantly contribute to biogeochemical cycles, but details of their community structure in tropical mining-impacted environments remain unexplored. In this study, we analyzed a bacterial community from circumneutral-pH tropical stream sediment by 16S rRNA and shotgun deep sequencing. Carrapatos stream sediment, which has been exposed to metal stress due to gold and iron mining (21 [g Fe]/kg), revealed a diverse community, with predominance of Proteobacteria (39.4%), Bacteroidetes (12.2%), and Parcubacteria (11.4%). Among Proteobacteria, the most abundant reads were assigned to neutrophilic iron-oxidizing taxa, such as Gallionella, Sideroxydans, and Mariprofundus, which are involved in Fe cycling and harbor several metal resistance genes. Functional analysis revealed a large number of genes participating in nitrogen and methane metabolic pathways despite the low concentrations of inorganic nitrogen in the Carrapatos stream. Our findings provide important insights into bacterial community interactions in a mining-impacted environment.
Collapse
Affiliation(s)
- Mariana P Reis
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Marcela F Dias
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Patrícia S Costa
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Marcelo P Ávila
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Laura R Leite
- Centro de Pesquisas René Rachou Fundação Oswaldo Cruz, Av. Augusto de Lima 1715, Belo Horizonte, Minas Gerais 30190-002, Brazil
| | - Flávio M G de Araújo
- Centro de Pesquisas René Rachou Fundação Oswaldo Cruz, Av. Augusto de Lima 1715, Belo Horizonte, Minas Gerais 30190-002, Brazil
| | - Anna C M Salim
- Centro de Pesquisas René Rachou Fundação Oswaldo Cruz, Av. Augusto de Lima 1715, Belo Horizonte, Minas Gerais 30190-002, Brazil
| | - Mônica Bucciarelli-Rodriguez
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Guilherme Oliveira
- Centro de Pesquisas René Rachou Fundação Oswaldo Cruz, Av. Augusto de Lima 1715, Belo Horizonte, Minas Gerais 30190-002, Brazil; Instituto Tecnológico Vale, Rua Boaventura da Silva 955, Belém, Pará 66055-090, Brazil
| | - Edmar Chartone-Souza
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Andréa M A Nascimento
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais 31270-901, Brazil.
| |
Collapse
|
21
|
Roosa S, Prygiel E, Lesven L, Wattiez R, Gillan D, Ferrari BJD, Criquet J, Billon G. On the bioavailability of trace metals in surface sediments: a combined geochemical and biological approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:10679-10692. [PMID: 26884242 DOI: 10.1007/s11356-016-6198-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 01/28/2016] [Indexed: 06/05/2023]
Abstract
The bioavailability of metals was estimated in three river sediments (Sensée, Scarpe, and Deûle Rivers) impacted by different levels of Cu, Cd, Pb, and Zn (Northern France). For that, a combination of geochemistry and biological responses (bacteria and chironomids) was used. The results obtained illustrate the complexity of the notion of "bioavailability." Indeed, geochemical indexes suggested a low toxicity, even in surface sediments with high concentrations of total metals and a predicted severe effect levels for the organisms. This was also suggested by the abundance of total bacteria as determined by DAPI counts, with high bacterial cell numbers even in contaminated areas. However, a fraction of metals may be bioavailable as it was shown for chironomid larvae which were able to accumulate an important quantity of metals in surface sediments within just a few days.We concluded that (1) the best approach to estimate bioavailability in the selected sediments is a combination of geochemical and biological approaches and that (2) the sediments in the Deûle and Scarpe Rivers are highly contaminated and may impact bacterial populations but also benthic invertebrates.
Collapse
Affiliation(s)
- Stéphanie Roosa
- Unité biotechnologie, Materia Nova, Rue des foudriers 1, 7822, Ghislenghien, Belgium.
- Proteomics and Microbiology Lab, Research Institute for Biosciences, Mons University, 20 Place du Parc, 7000, Mons, Belgium.
| | - Emilie Prygiel
- Laboratory LASIR (UMR 8516 CNRS-Université Lille 1), 9655, Villeneuve d'Ascq, France
| | - Ludovic Lesven
- Laboratory LASIR (UMR 8516 CNRS-Université Lille 1), 9655, Villeneuve d'Ascq, France
| | - Ruddy Wattiez
- Proteomics and Microbiology Lab, Research Institute for Biosciences, Mons University, 20 Place du Parc, 7000, Mons, Belgium
| | - David Gillan
- Proteomics and Microbiology Lab, Research Institute for Biosciences, Mons University, 20 Place du Parc, 7000, Mons, Belgium
| | - Benoît J D Ferrari
- Centre Ecotox Eawag/EPFL, EPFL-ENAC-IIE-GE, Station 2, 1015, Lausanne, Switzerland
| | - Justine Criquet
- Laboratory LASIR (UMR 8516 CNRS-Université Lille 1), 9655, Villeneuve d'Ascq, France
| | - Gabriel Billon
- Laboratory LASIR (UMR 8516 CNRS-Université Lille 1), 9655, Villeneuve d'Ascq, France
| |
Collapse
|
22
|
Oliveira-Pinto C, Costa PS, Reis MP, Chartone-Souza E, Nascimento AMA. Diversity of gene cassettes and the abundance of the class 1 integron-integrase gene in sediment polluted by metals. Extremophiles 2016; 20:283-9. [PMID: 26961777 DOI: 10.1007/s00792-016-0820-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/23/2016] [Indexed: 11/25/2022]
Abstract
The integron-gene cassette system has typically been associated with antibiotic-resistant pathogens. However, the diversity of gene cassettes and the abundance of class 1 integrons outside of the clinical context are not fully explored. Primers targeting the conserved segments of attC recombination sites were used to amplify gene cassettes from the sediment of the Mina stream, which exhibited a higher degree of stress to metal pollution in the dry season than the rainy season. Of the 143 total analyzed sequences, 101 had no matches to proteins in the database, where cassette open reading frames could be identified by homology with database entries. There was a predominance of sequences encoding essential cellular functions. Each season that was sampled yielded a specific pool of gene cassettes. Real-time PCR revealed that 8.5 and 41.6 % of bacterial cells potentially harbored a class 1 integron in the rainy and dry seasons, respectively. In summary, our findings demonstrate that most of the gene cassettes have no ascribable function and, apparently, historically metal-contaminated sediment favors the maintenance of bacteria containing the intI1 gene. Thus, the diversity of gene cassettes is far from being fully explored deserving further attention.
Collapse
Affiliation(s)
- Clarisse Oliveira-Pinto
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Patrícia S Costa
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Mariana P Reis
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Edmar Chartone-Souza
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Andréa M A Nascimento
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| |
Collapse
|
23
|
Ni C, Horton DJ, Rui J, Henson MW, Jiang Y, Huang X, Learman DR. High concentrations of bioavailable heavy metals impact freshwater sediment microbial communities. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1189-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
24
|
Pereira LB, Vicentini R, Ottoboni LMM. Characterization of the core microbiota of the drainage and surrounding soil of a Brazilian copper mine. Genet Mol Biol 2015; 38:484-9. [PMID: 26537607 PMCID: PMC4763313 DOI: 10.1590/s1415-475738420150025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 07/20/2015] [Indexed: 11/21/2022] Open
Abstract
The core microbiota of a neutral mine drainage and the surrounding high heavy metal content soil at a Brazilian copper mine were characterized by 16S rDNA pyrosequencing. The core microbiota of the drainage was dominated by the generalist genus Meiothermus. The soil samples contained a more heterogeneous bacterial community, with the presence of both generalist and specialist bacteria. Both environments supported mainly heterotrophic bacteria, including organisms resistant to heavy metals, although many of the bacterial groups identified remain poorly characterized. The results contribute to the understanding of bacterial communities in soils impacted by neutral mine drainage, for which information is scarce, and demonstrate that heavy metals can play an important role in shaping the microbial communities in mine environments.
Collapse
Affiliation(s)
- Letícia Bianca Pereira
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Renato Vicentini
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Laura M M Ottoboni
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brazil
| |
Collapse
|
25
|
The Microbiota and Abundance of the Class 1 Integron-Integrase Gene in Tropical Sewage Treatment Plant Influent and Activated Sludge. PLoS One 2015; 10:e0131532. [PMID: 26115093 PMCID: PMC4482650 DOI: 10.1371/journal.pone.0131532] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 06/03/2015] [Indexed: 01/22/2023] Open
Abstract
Bacteria are assumed to efficiently remove organic pollutants from sewage in sewage treatment plants, where antibiotic-resistance genes can move between species via mobile genetic elements known as integrons. Nevertheless, few studies have addressed bacterial diversity and class 1 integron abundance in tropical sewage. Here, we describe the extant microbiota, using V6 tag sequencing, and quantify the class 1 integron-integrase gene (intI1) in raw sewage (RS) and activated sludge (AS). The analysis of 1,174,486 quality-filtered reads obtained from RS and AS samples revealed complex and distinct bacterial diversity in these samples. The RS sample, with 3,074 operational taxonomic units, exhibited the highest alpha-diversity indices. Among the 25 phyla, Proteobacteria, Bacteroidetes and Firmicutes represented 85% (AS) and 92% (RS) of all reads. Increased relative abundance of Micrococcales, Myxococcales, and Sphingobacteriales and reduced pathogen abundance were noted in AS. At the genus level, differences were observed for the dominant genera Simplicispira and Diaphorobacter (AS) as well as for Enhydrobacter (RS). The activated sludge process decreased (55%) the amount of bacteria harboring the intI1 gene in the RS sample. Altogether, our results emphasize the importance of biological treatment for diminishing pathogenic bacteria and those bearing the intI1 gene that arrive at a sewage treatment plant.
Collapse
|
26
|
Metagenome of a microbial community inhabiting a metal-rich tropical stream sediment. PLoS One 2015; 10:e0119465. [PMID: 25742617 PMCID: PMC4351183 DOI: 10.1371/journal.pone.0119465] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 01/29/2015] [Indexed: 12/21/2022] Open
Abstract
Here, we describe the metagenome and functional composition of a microbial community in a historically metal-contaminated tropical freshwater stream sediment. The sediment was collected from the Mina Stream located in the Iron Quadrangle (Brazil), one of the world's largest mining regions. Environmental DNA was extracted and was sequenced using SOLiD technology, and a total of 7.9 Gbp was produced. A taxonomic profile that was obtained by comparison to the Greengenes database revealed a complex microbial community with a dominance of Proteobacteria and Parvarcheota. Contigs were recruited by bacterial and archaeal genomes, especially Candidatus Nitrospira defluvii and Nitrosopumilus maritimus, and their presence implicated them in the process of N cycling in the Mina Stream sediment (MSS). Functional reconstruction revealed a large, diverse set of genes for ammonium assimilation and ammonification. These processes have been implicated in the maintenance of the N cycle and the health of the sediment. SEED subsystems functional annotation unveiled a high degree of diversity of metal resistance genes, suggesting that the prokaryotic community is adapted to metal contamination. Furthermore, a high metabolic diversity was detected in the MSS, suggesting that the historical arsenic contamination is no longer affecting the prokaryotic community. These results expand the current knowledge of the microbial taxonomic and functional composition of tropical metal-contaminated freshwater sediments.
Collapse
|
27
|
Zhang J, Wang LH, Yang JC, Liu H, Dai JL. Health risk to residents and stimulation to inherent bacteria of various heavy metals in soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 508:29-36. [PMID: 25437950 DOI: 10.1016/j.scitotenv.2014.11.064] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 11/18/2014] [Accepted: 11/20/2014] [Indexed: 06/04/2023]
Abstract
The toxicities and effects of various metals and metalloids would be misunderstood by health risks based on their concentrations, when their effects on bacterial and ecological functions in soil are disregarded. This study investigated the concentrations and health risks of heavy metals, soil properties, and bacterial 16S rRNA gene in soil around the largest fresh water lake in North China. The health risks posed by Mn and As were higher than those of other heavy metals and metalloids. Mn, As, and C were significantly correlated with the bacterial species richness indices. According to canonical correspondence analysis, species richness was mainly affected by Mn, Pb, As, and organic matter, while species evenness was mainly affected by Mn, pH, N, C, Cd, and Pb. Covariable analysis confirmed that most effects of metals on bacterial diversity were attributed to the combined effects of metals and soil properties rather than single metals. Most bacteria detected in (almost) all soil were identified as Gammaproteobacteria. Specific bacteria belonging to Proteobacteria (Gamma, Alpha, Epsilon, and Beta), Firmicutes, Actinobacteria, Cyanobacterium, Nitrospirae, and Fusobacterium were only identified in soil with high concentrations of Mn, Pb, and As, indicating their remediation potency. Bacterial abilities and mechanisms in pollutant resistance and element cycling in the region were also discussed.
Collapse
Affiliation(s)
- Juan Zhang
- Environmental Research Institute, Shandong University, Jinan 250100, China; School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Li-Hong Wang
- Shandong Analysis and Test Center, Shandong Academy of Sciences, Jinan 250014, China
| | - Jun-Cheng Yang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hui Liu
- Environmental Research Institute, Shandong University, Jinan 250100, China
| | - Jiu-Lan Dai
- Environmental Research Institute, Shandong University, Jinan 250100, China.
| |
Collapse
|
28
|
Santos AB, Reis MP, Costa PS, Ávila MP, Lima-Bittencourt CI, Barbosa FAR, Chartone-Souza E, Nascimento AMA. Environmental diversity of bacteria in a warm monomictic tropical freshwater lake. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1048-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
29
|
Epelde L, Lanzén A, Blanco F, Urich T, Garbisu C. Adaptation of soil microbial community structure and function to chronic metal contamination at an abandoned Pb-Zn mine. FEMS Microbiol Ecol 2014; 91:1-11. [PMID: 25764532 DOI: 10.1093/femsec/fiu007] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Toxicity of metals released from mine tailings may cause severe damage to ecosystems. A diversity of microorganisms, however, have successfully adapted to such sites. In this study, our objective was to advance the understanding of the indigenous microbial communities of mining-impacted soils. To this end, a metatranscriptomic approach was used to study a heavily metal-contaminated site along a metal concentration gradient (up to 3220 000 and 97 000 mg kg(-1) of Cd, Pb and Zn, respectively) resulting from previous mining. Metal concentration, soil pH and amount of clay were the most important factors determining the structure of soil microbial communities. Interestingly, evenness of the microbial communities, but not its richness, increased with contamination level. Taxa with high metabolic plasticity like Ktedonobacteria and Chloroflexi were found with higher relative abundance in more contaminated samples. However, several taxa belonging to the phyla Actinobacteria and Acidobacteria followed opposite trends in relation to metal pollution. Besides, functional transcripts related to transposition or transfer of genetic material and membrane transport, potentially involved in metal resistance mechanisms, had a higher expression in more contaminated samples. Our results provide an insight into microbial communities in long-term metal-contaminated environments and how they contrast to nearby sites with lower contamination.
Collapse
Affiliation(s)
- Lur Epelde
- NEIKER-Tecnalia, Department of Ecology and Natural Resources, Soil Microbial Ecology Group, c/ Berreaga 1, E-48160 Derio, Spain
| | - Anders Lanzén
- NEIKER-Tecnalia, Department of Ecology and Natural Resources, Soil Microbial Ecology Group, c/ Berreaga 1, E-48160 Derio, Spain
| | - Fernando Blanco
- NEIKER-Tecnalia, Department of Ecology and Natural Resources, Soil Microbial Ecology Group, c/ Berreaga 1, E-48160 Derio, Spain
| | - Tim Urich
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Carlos Garbisu
- NEIKER-Tecnalia, Department of Ecology and Natural Resources, Soil Microbial Ecology Group, c/ Berreaga 1, E-48160 Derio, Spain
| |
Collapse
|
30
|
Reis MP, Avila MP, Costa PS, Barbosa FAR, Laanbroek HJ, Chartone-Souza E, Nascimento AMA. The influence of human settlement on the distribution and diversity of iron-oxidizing bacteria belonging to the Gallionellaceae in tropical streams. Front Microbiol 2014; 5:630. [PMID: 25505456 PMCID: PMC4241827 DOI: 10.3389/fmicb.2014.00630] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 11/04/2014] [Indexed: 01/20/2023] Open
Abstract
Among the neutrophilic iron-oxidizing bacteria (FeOB), Gallionella is one of the most abundant genera in freshwater environments. By applying qPCR and DGGE based on 16S rRNA gene-directed primers targeting Gallionellaceae, we delineated the composition and abundance of the Gallionellaceae-related FeOB community in streams differentially affected by metal mining, and explored the relationships between these community characteristics and environmental variables. The sampling design included streams historically impacted by mining activity and a non-impacted stream. The sediment and water samples harbored a distinct community represented by Gallionella, Sideroxydans, and Thiobacillus species. Sequences affiliated with Gallionella were exclusively observed in sediments impacted by mining activities, suggesting an adaptation of this genus to these environments. In contrast, Sideroxydans-related sequences were found in all sediments including the mining impacted locations. The highest and lowest relative frequencies of Gallionellaceae-related FeOB were associated with the lowest and highest concentrations of Fe, respectively. The data enclosed here clearly show distinct species-specific ecological niches, with Gallionella species dominating in sediments impacted by anthropogenic activities over Sideroxydans species.
Collapse
Affiliation(s)
- Mariana P Reis
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Marcelo P Avila
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Patrícia S Costa
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Francisco A R Barbosa
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Hendrikus J Laanbroek
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO - KNAW) Wageningen, Netherlands ; Institute of Environmental Biology, Utrecht University Utrecht, Netherlands
| | - Edmar Chartone-Souza
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Andréa M A Nascimento
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| |
Collapse
|
31
|
Pereira LB, Vicentini R, Ottoboni LMM. Changes in the bacterial community of soil from a neutral mine drainage channel. PLoS One 2014; 9:e96605. [PMID: 24796430 PMCID: PMC4010462 DOI: 10.1371/journal.pone.0096605] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 04/09/2014] [Indexed: 02/02/2023] Open
Abstract
Mine drainage is an important environmental disturbance that affects the chemical and biological components in natural resources. However, little is known about the effects of neutral mine drainage on the soil bacteria community. Here, a high-throughput 16S rDNA pyrosequencing approach was used to evaluate differences in composition, structure, and diversity of bacteria communities in samples from a neutral drainage channel, and soil next to the channel, at the Sossego copper mine in Brazil. Advanced statistical analyses were used to explore the relationships between the biological and chemical data. The results showed that the neutral mine drainage caused changes in the composition and structure of the microbial community, but not in its diversity. The Deinococcus/Thermus phylum, especially the Meiothermus genus, was in large part responsible for the differences between the communities, and was positively associated with the presence of copper and other heavy metals in the environmental samples. Other important parameters that influenced the bacterial diversity and composition were the elements potassium, sodium, nickel, and zinc, as well as pH. The findings contribute to the understanding of bacterial diversity in soils impacted by neutral mine drainage, and demonstrate that heavy metals play an important role in shaping the microbial population in mine environments.
Collapse
Affiliation(s)
- Letícia Bianca Pereira
- Center for Molecular Biology and Genetic Engineering (CBMEG), State University of Campinas – UNICAMP, Campinas, SP, Brazil
| | - Renato Vicentini
- Center for Molecular Biology and Genetic Engineering (CBMEG), State University of Campinas – UNICAMP, Campinas, SP, Brazil
| | - Laura M. M. Ottoboni
- Center for Molecular Biology and Genetic Engineering (CBMEG), State University of Campinas – UNICAMP, Campinas, SP, Brazil
- * E-mail:
| |
Collapse
|
32
|
Costa PS, Scholte LLS, Reis MP, Chaves AV, Oliveira PL, Itabayana LB, Suhadolnik MLS, Barbosa FAR, Chartone-Souza E, Nascimento AMA. Bacteria and genes involved in arsenic speciation in sediment impacted by long-term gold mining. PLoS One 2014; 9:e95655. [PMID: 24755825 PMCID: PMC3995719 DOI: 10.1371/journal.pone.0095655] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 03/31/2014] [Indexed: 11/19/2022] Open
Abstract
The bacterial community and genes involved in geobiocycling of arsenic (As) from sediment impacted by long-term gold mining were characterized through culture-based analysis of As-transforming bacteria and metagenomic studies of the arsC, arrA, and aioA genes. Sediment was collected from the historically gold mining impacted Mina stream, located in one of the world’s largest mining regions known as the “Iron Quadrangle”. A total of 123 As-resistant bacteria were recovered from the enrichment cultures, which were phenotypically and genotypically characterized for As-transformation. A diverse As-resistant bacteria community was found through phylogenetic analyses of the 16S rRNA gene. Bacterial isolates were affiliated with Proteobacteria, Firmicutes, and Actinobacteria and were represented by 20 genera. Most were AsV-reducing (72%), whereas AsIII-oxidizing accounted for 20%. Bacteria harboring the arsC gene predominated (85%), followed by aioA (20%) and arrA (7%). Additionally, we identified two novel As-transforming genera, Thermomonas and Pannonibacter. Metagenomic analysis of arsC, aioA, and arrA sequences confirmed the presence of these genes, with arrA sequences being more closely related to uncultured organisms. Evolutionary analyses revealed high genetic similarity between some arsC and aioA sequences obtained from isolates and clone libraries, suggesting that those isolates may represent environmentally important bacteria acting in As speciation. In addition, our findings show that the diversity of arrA genes is wider than earlier described, once none arrA-OTUs were affiliated with known reference strains. Therefore, the molecular diversity of arrA genes is far from being fully explored deserving further attention.
Collapse
Affiliation(s)
- Patrícia S. Costa
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais; Belo Horizonte, Brazil
| | - Larissa L. S. Scholte
- Grupo de Genômica e Biologia Computacional, Centro de Pesquisas René Rachou (CPqRR), Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Brazil
| | - Mariana P. Reis
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais; Belo Horizonte, Brazil
| | - Anderson V. Chaves
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais; Belo Horizonte, Brazil
| | - Pollyanna L. Oliveira
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais; Belo Horizonte, Brazil
| | - Luiza B. Itabayana
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais; Belo Horizonte, Brazil
| | - Maria Luiza S. Suhadolnik
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais; Belo Horizonte, Brazil
| | - Francisco A. R. Barbosa
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais; Belo Horizonte, Brazil
| | - Edmar Chartone-Souza
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais; Belo Horizonte, Brazil
| | - Andréa M. A. Nascimento
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais; Belo Horizonte, Brazil
- * E-mail:
| |
Collapse
|
33
|
Zhang Y, Chen L, Sun R, Dai T, Tian J, Liu R, Wen D. Effect of wastewater disposal on the bacterial and archaeal community of sea sediment in an industrial area in China. FEMS Microbiol Ecol 2014; 88:320-32. [DOI: 10.1111/1574-6941.12298] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 02/03/2014] [Accepted: 02/04/2014] [Indexed: 11/26/2022] Open
Affiliation(s)
- Yan Zhang
- School of Environment; Tsinghua University; Beijing China
| | - Lujun Chen
- School of Environment; Tsinghua University; Beijing China
- Zhejiang Provincial Key Laboratory of Water Science and Technology; Department of Environmental Technology and Ecology; Yangtze Delta Region Institute of Tsinghua University; Zhejiang Jiaxing China
| | - Renhua Sun
- College of Environmental Sciences and Engineering; Peking University; Beijing China
| | - Tianjiao Dai
- College of Environmental Sciences and Engineering; Peking University; Beijing China
| | - Jinping Tian
- School of Environment; Tsinghua University; Beijing China
| | - Rui Liu
- Zhejiang Provincial Key Laboratory of Water Science and Technology; Department of Environmental Technology and Ecology; Yangtze Delta Region Institute of Tsinghua University; Zhejiang Jiaxing China
| | - Donghui Wen
- College of Environmental Sciences and Engineering; Peking University; Beijing China
| |
Collapse
|
34
|
Role and characteristics of problematic biofilms within the removal and mobility of trace metals in a pilot-scale membrane bioreactor. Process Biochem 2013. [DOI: 10.1016/j.procbio.2013.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Cardinali-Rezende J, Araújo JC, Almeida PGS, Chernicharo CAL, Sanz JL, Chartone-Souza E, Nascimento AMA. Organic loading rate and food-to-microorganism ratio shape prokaryotic diversity in a demo-scale up-flow anaerobic sludge blanket reactor treating domestic wastewater. Antonie van Leeuwenhoek 2013; 104:993-1003. [PMID: 24000090 DOI: 10.1007/s10482-013-0018-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 08/24/2013] [Indexed: 12/01/2022]
Abstract
We investigated the microbial community in an up-flow anaerobic sludge blanket (UASB) reactor treating domestic wastewater (DW) during two different periods of organic loading rate (OLR) and food-to-microorganism (F/M) ratio. 16S rDNA clone libraries were generated, and quantitative real-time PCR (qPCR) analyses were performed. Fluctuations in the OLR and F/M ratio affected the abundance and the composition of the UASB prokaryotic community, mainly at the species level, as well as the performance of the UASB reactor. The qPCR analysis suggested that there was a decrease in the bacterial cell number during the rainy season, when the OLR and F/M ratio were lower. However, the bacterial diversity was higher during this time, suggesting that the community degraded more diversified substrates. The diversity and the abundance of the archaeal community were higher when the F/M ratio was lower. Shifts in the methanogenic community composition might have influenced the route of methane production, with methane produced by acetotrophic methanogens (dry season), and by hydrogenotrophic, methylotrophic and acetotrophic methanogens (rainy season). This study revealed higher levels of bacterial diversity, metabolic specialization and chemical oxygen demand removal efficiency of the DW UASB reactor during the rainy season.
Collapse
Affiliation(s)
- Juliana Cardinali-Rezende
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG, 31270-901, Brazil
| | | | | | | | | | | | | |
Collapse
|