1
|
Chen F, Huang T, Wen G, Li K. Impact of artificial mixing and oxygenation on bacteria in a water transfer reservoir: Community succession and the role in water quality improvement. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168581. [PMID: 37967632 DOI: 10.1016/j.scitotenv.2023.168581] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/26/2023] [Accepted: 11/12/2023] [Indexed: 11/17/2023]
Abstract
Artificial mixing and oxygenation induced by water-lifting aerations (WLAs) have the potential to improve water quality in reservoirs. However, there is a limited understanding of the bacterial community composition, assembly, and mechanisms behind water quality improvement under the influence of WLAs, especially in a water transfer reservoir. Here, the dynamics and relationship between water quality, bacterial diversity, and composition during the pre-operation, in-operation, and post-operation stages of WLAs were analyzed using high-throughput sequencing technology to explore the effects of artificially regulated bacteria on water quality improvement. WLAs operation led to the elimination of water stratification, significant bottom oxygenation, and reduction in nutrient concentrations. In addition, the operation of WLAs significantly changed the bacterial community composition, with an increase in richness, negligible difference in diversity, and a significant increase in the abundance of species with pollutant degradation functions, resulting in a shift from stochastic to deterministic processes of the bacterial community assembly. As a result, enhancement of the dominant bacteria responsible for organic matter degradation and denitrification and suppression of the emergence of algae-related bacteria were observed during the WLAs operation, and the ecosystem stability improved. Multiple analyses indicated a direct correlation between artificial mixing and oxygenation; changes in the bacterial community; and the reduction of nitrogen, phosphorus, and permanganate index in the water column. This study provides novel insights into in situ water quality enhancement and a valuable reference for understanding bacterial change patterns under artificially intervened conditions in water transfer reservoirs.
Collapse
Affiliation(s)
- Fan Chen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Kai Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
2
|
Korponai K, Szuróczki S, Márton Z, Szabó A, Morais PV, Proença DN, Tóth E, Boros E, Márialigeti K, Felföldi T. Habitat distribution of the genus Belliella in continental waters and the description of Belliella alkalica sp. nov., Belliella calami sp. nov. and Belliella filtrata sp. nov. Int J Syst Evol Microbiol 2023; 73. [PMID: 37326610 DOI: 10.1099/ijsem.0.005928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Abstract
The genus Belliella belongs to the family Cyclobacteriaceae (order Cytophagales, phylum Bacteroidota) and harbours aerobic chemoheterotrophic bacteria. Members of this genus were isolated from various aquatic habitats, and our analysis based on global amplicon sequencing data revealed that their relative abundance can reach up to 5-10 % of the bacterioplankton in soda lakes and pans. Although a remarkable fraction of the most frequent genotypes that we identified from continental aquatic habitats is still uncultured, five new alkaliphilic Belliella strains were characterized in detail in this study, which were isolated from three different soda lakes and pans of the Carpathian Basin (Hungary). Cells of all strains were Gram-stain-negative, obligate aerobic, rod-shaped, non-motile and non-spore-forming. The isolates were oxidase- and catalase-positive, red-coloured, but did not contain flexirubin-type pigments; they formed bright red colonies that were circular, smooth and convex. Their major isoprenoid quinone was MK-7 and the predominant fatty acids were iso-C15 : 0, iso-C17 : 0 3-OH and summed feature 3 containing C16 : 1 ω6c and/or C16 : 1 ω7c. The polar lipid profiles contained phosphatidylethanolamine, an unidentified aminophospholipid, an unidentified glycolipid, and several unidentified lipids and aminolipids. Based on whole-genome sequences, the DNA G+C content was 37.0, 37.1 and 37.8 mol % for strains R4-6T, DMA-N-10aT and U6F3T, respectively. The distinction of three new species was confirmed by in silico genomic comparison. Orthologous average nucleotide identity (<85.4 %) and digital DNA-DNA hybridization values (<38.9 %) supported phenotypic, chemotaxonomic and 16S rRNA gene sequence data and, therefore, the following three novel species are proposed: Belliella alkalica sp. nov. (represented by strains R4-6T=DSM 111903T=JCM 34281T=UCCCB122T and S4-10), Belliella calami sp. nov. (DMA-N-10aT=DSM 107340T=JCM 34280T=UCCCB121T) and Belliella filtrata sp. nov. (U6F3T=DSM 111904T=JCM 34282T=UCCCB123T and U6F1). Emended descriptions of species Belliella aquatica, Belliella baltica, Belliella buryatensis, Belliella kenyensis and Belliella pelovolcani are also presented.
Collapse
Affiliation(s)
- Kristóf Korponai
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
- Agricultural Institute, Centre for Agricultural Research, Brunszvik utca 2, 2462 Martonvásár, Hungary
| | - Sára Szuróczki
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
| | - Zsuzsanna Márton
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
- Institute of Aquatic Ecology, Centre for Ecological Research, Karolina út 29, 1113 Budapest, Hungary
| | - Attila Szabó
- Institute of Aquatic Ecology, Centre for Ecological Research, Karolina út 29, 1113 Budapest, Hungary
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Lennart Hjelms Vag 9, 750 07 Uppsala, Sweden
| | - Paula V Morais
- Department of Life Sciences, Centre for Mechanical Engineering, Materials and Processes, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Diogo Neves Proença
- Department of Life Sciences, Centre for Mechanical Engineering, Materials and Processes, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Erika Tóth
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
| | - Emil Boros
- Institute of Aquatic Ecology, Centre for Ecological Research, Karolina út 29, 1113 Budapest, Hungary
| | - Károly Márialigeti
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
| | - Tamás Felföldi
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
- Institute of Aquatic Ecology, Centre for Ecological Research, Karolina út 29, 1113 Budapest, Hungary
| |
Collapse
|
3
|
Miralles-Robledillo JM, Martínez-Espinosa RM, Pire C. Analysis of the external signals driving the transcriptional regulation of the main genes involved in denitrification in Haloferax mediterranei. Front Microbiol 2023; 14:1109550. [PMID: 37007523 PMCID: PMC10062603 DOI: 10.3389/fmicb.2023.1109550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/21/2023] [Indexed: 03/18/2023] Open
Abstract
Haloferax mediterranei is the model microorganism for the study of the nitrogen cycle in haloarchaea. This archaeon not only assimilate N-species such as nitrate, nitrite, or ammonia, but also it can perform denitrification under low oxygen conditions, using nitrate or nitrite as alternative electron acceptors. However, the information currently available on the regulation of this alternative respiration in this kind of microorganism is scarce. Therefore, in this research, the study of haloarchaeal denitrification using H. mediterranei has been addressed by analyzing the promoter regions of the four main genes of denitrification (narGH, nirK, nor, and nosZ) through bioinformatics, reporter gene assays under oxic and anoxic conditions and by site-directed mutagenesis of the promoter regions. The results have shown that these four promoter regions share a common semi-palindromic motif that plays a role in the control of the expression levels of nor and nosZ (and probably nirK) genes. Regarding the regulation of the genes under study, it has been concluded that nirK, nor, and nosZ genes share some expression patterns, and therefore their transcription could be under the control of the same regulator whereas nar operon expression displays differences, such as the activation by dimethyl sulfoxide with respect to the expression in the absence of an electron acceptor, which is almost null under anoxic conditions. Finally, the study with different electron acceptors demonstrated that this haloarchaea does not need complete anoxia to perform denitrification. Oxygen concentrations around 100 μM trigger the activation of the four promoters. However, a low oxygen concentration per se is not a strong signal to activate the promoters of the main genes involved in this pathway; high activation also requires the presence of nitrate or nitrite as final electron acceptors.
Collapse
Affiliation(s)
- Jose María Miralles-Robledillo
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Alicante, Spain
| | - Rosa María Martínez-Espinosa
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Alicante, Spain
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Alicante, Spain
| | - Carmen Pire
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Alicante, Spain
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Alicante, Spain
- *Correspondence: Carmen Pire,
| |
Collapse
|
4
|
Szilveszter S, Fikó DR, Máthé I, Felföldi T, Ráduly B. Kinetic characterization of a new phenol degrading Acinetobacter towneri strain isolated from landfill leachate treating bioreactor. World J Microbiol Biotechnol 2023; 39:79. [PMID: 36646861 PMCID: PMC9842574 DOI: 10.1007/s11274-022-03487-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 12/05/2022] [Indexed: 01/18/2023]
Abstract
The objective of this study was to establish and to mathematically describe the phenol degrading properties of a new Acinetobacter towneri CFII-87 strain, isolated from a bioreactor treating landfill leachate. For this purpose, the biokinetic parameters of phenol biodegradation at various initial phenol concentrations of the A. towneri CFII-87 strain have been experimentally measured, and four different mathematical inhibition models (Haldane, Yano, Aiba and Edwards models) have been used to simulate the substrate-inhibited phenol degradation process. The results of the batch biodegradation experiments show that the new A. towneri CFII-87 strain grows on and metabolizes phenol up to 1000 mg/L concentration, manifests significant substrate inhibition and lag time only at concentrations above 800 mg/L phenol, and has a maximum growth rate at 300 mg/L initial phenol concentration. The comparison of the model predictions with the experimental phenol and biomass data revealed that the Haldane, Aiba and Edwards models can be used with success to describe the phenol biodegradation process by A. towneri CFII-87, while the Yano model, especially at higher initial phenol concentrations, fails to describe the process. The best performing inhibition model was the Edwards model, presenting correlation coefficients of R2 > 0.98 and modelling efficiency of ME > 0.94 for the prediction of biomass and phenol concentrations on the validation datasets. The calculated biokinetic model parameters place this new strain among the bacteria with the highest tolerance towards phenol. The results suggest that the A. towneri CFII-87 strain can potentially be used in the treatment of phenolic wastewaters.
Collapse
Affiliation(s)
- Szabolcs Szilveszter
- Department of Bioengineering, Sapientia Hungarian University of Transylvania, P-ța Libertății 1, 530104, Miercurea Ciuc, Jud. HR, Romania
| | - Dezső-Róbert Fikó
- Department of Bioengineering, Sapientia Hungarian University of Transylvania, P-ța Libertății 1, 530104, Miercurea Ciuc, Jud. HR, Romania
- Department of Analytical Chemistry and Environmental Engineering, University POLITEHNICA of Bucharest, Str. Gheorghe Polizu 1-7, Bucharest, Romania
| | - István Máthé
- Department of Bioengineering, Sapientia Hungarian University of Transylvania, P-ța Libertății 1, 530104, Miercurea Ciuc, Jud. HR, Romania
| | - Tamás Felföldi
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter stny. 1/C, Budapest, 1117, Hungary
- Centre for Ecological Research, Institute of Aquatic Ecology, Karolina út 29., Budapest, 1113, Hungary
| | - Botond Ráduly
- Department of Bioengineering, Sapientia Hungarian University of Transylvania, P-ța Libertății 1, 530104, Miercurea Ciuc, Jud. HR, Romania.
| |
Collapse
|
5
|
Wang Z, Liu F, Li E, Yuan Y, Yang Y, Xu M, Qiu R. Network analysis reveals microbe-mediated impacts of aeration on deep sediment layer microbial communities. Front Microbiol 2022; 13:931585. [PMID: 36246296 PMCID: PMC9561788 DOI: 10.3389/fmicb.2022.931585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/08/2022] [Indexed: 11/24/2022] Open
Abstract
Over-aeration is a common remediation strategy for black and odorous water bodies, in which oxygen is introduced to impact aquatic microbial communities as an electron acceptor of high redox potential. In this study, black-odorous freshwater sediments were cultured for 9 weeks under aeration to investigate microbial covariations at different depths and time points. Based on community 16S rRNA gene sequencing, the microbial covariations were visualized using phylogenetic microbial ecological networks (pMENs). In the spatial scale, we identified smaller and more compact pMENs across all layers compared with the anaerobic control sediments, in terms of network size, average node connectivity, and modularity. The aerated middle layer had the most connectors, the least module hubs, a network hub, shorter average path length, and predominantly positive covariations. In addition, a significant sulfate accumulation in the aerated middle layer indicated the most intense sulfide oxidation, possibly because aeration prompted sediment surface Desulfobulbaceae, known as cable bacteria, to reach the middle layer. In the time scale, similarly, aeration led to smaller pMEN sizes and higher portions of positive covariations. Therefore, we conclude that elevated dissolved oxygen at the water-sediment interface may impact not only the surface sediment but also the subsurface and/or deep sediment microbial communities mediated by microorganisms, particularly by Desulfobulbaceae.
Collapse
Affiliation(s)
- Zhenyu Wang
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Feifei Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Enze Li
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Yongqiang Yuan
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang, China
| | - Yonggang Yang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Meiying Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Meiying Xu
| | - Rongliang Qiu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- *Correspondence: Rongliang Qiu
| |
Collapse
|
6
|
Where the Little Ones Play the Main Role-Picophytoplankton Predominance in the Soda and Hypersaline Lakes of the Carpathian Basin. Microorganisms 2022; 10:microorganisms10040818. [PMID: 35456867 PMCID: PMC9030754 DOI: 10.3390/microorganisms10040818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
The extreme environmental conditions of the diverse saline inland waters (soda lakes and pans, hypersaline lakes and ponds) of the Carpathian Basin are an advantage for picophytoplankton. The abundance of picophytoplankton in these waters can be up to several orders of magnitude higher than that in freshwater shallow lakes, but differences are also found within different saline water types: higher picophytoplankton abundances were observed in hypersaline lakes compared to humic soda lakes, and their highest numbers were detected in turbid soda lakes. Moreover, their contribution to phytoplankton biomass is higher than that in shallow freshwater lakes with similar trophic states. Based on long-term data, their ratio within the phytoplankton increased with turbidity in the case of turbid soda lakes, while, in hypersaline lakes, their proportion increased with salinity. Picocyanobacteria were only detected with high abundance (>106−107 cells/mL) in turbid soda lakes, while picoeukaryotes occurred in high numbers in both turbid and hypersaline lakes. Despite the extreme conditions of the lakes, the diversity of picophytoplankton is remarkable, with the dominance of non-marine Synechococcus/Cyanobium, Choricystis, Chloroparva and uncultured trebouxiophycean green algae in the soda lakes, and marine Synechococcus and Picochlorum in the hypersaline lakes.
Collapse
|
7
|
Csitári B, Bedics A, Felföldi T, Boros E, Nagy H, Máthé I, Székely AJ. Anion-type modulates the effect of salt stress on saline lake bacteria. Extremophiles 2022; 26:12. [PMID: 35137260 PMCID: PMC8825391 DOI: 10.1007/s00792-022-01260-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/10/2022] [Indexed: 11/29/2022]
Abstract
Beside sodium chloride, inland saline aquatic systems often contain other anions than chloride such as hydrogen carbonate and sulfate. Our understanding of the biological effects of salt composition diversity is limited; therefore, the aim of this study was to examine the effect of different anions on the growth of halophilic bacteria. Accordingly, the salt composition and concentration preference of 172 strains isolated from saline and soda lakes that differed in ionic composition was tested using media containing either carbonate, chloride or sulfate as anion in concentration values ranging from 0 to 0.40 mol/L. Differences in salt-type preference among bacterial strains were observed in relationship to the salt composition of the natural habitat they were isolated from indicating specific salt-type adaptation. Sodium carbonate represented the strongest selective force, while majority of strains was well-adapted to growth even at high concentrations of sodium sulfate. Salt preference was to some extent associated with taxonomy, although variations even within the same bacterial species were also identified. Our results suggest that the extent of the effect of dissolved salts in saline lakes is not limited to their concentration but the type of anion also substantially impacts the growth and survival of individual microorganisms.
Collapse
Affiliation(s)
- Bianka Csitári
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/c, 1117, Budapest, Hungary
- Department of Ecology and Genetics/Limnology, Uppsala University EBC, Norbyvägen 18D, 75236, Uppsala, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, 17165, Stockholm, Sweden
| | - Anna Bedics
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/c, 1117, Budapest, Hungary
- Depatment of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter Károly utca 1, 2100, Gödöllő, Hungary
| | - Tamás Felföldi
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/c, 1117, Budapest, Hungary
- Institute of Aquatic Ecology, Centre for Ecological Research, Karolina u. 29, 1113, Budapest, Hungary
| | - Emil Boros
- Institute of Aquatic Ecology, Centre for Ecological Research, Karolina u. 29, 1113, Budapest, Hungary
| | - Hajnalka Nagy
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/c, 1117, Budapest, Hungary
| | - István Máthé
- Department of Bioengineering, Sapientia Hungarian University of Transylvania, Piaţa Libertăţii 1, 530104, Miercurea Ciuc, Romania
| | - Anna J Székely
- Department of Ecology and Genetics/Limnology, Uppsala University EBC, Norbyvägen 18D, 75236, Uppsala, Sweden.
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, 75007, Uppsala, Sweden.
| |
Collapse
|
8
|
Extremophilic Microorganisms in Central Europe. Microorganisms 2021; 9:microorganisms9112326. [PMID: 34835450 PMCID: PMC8620676 DOI: 10.3390/microorganisms9112326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 11/17/2022] Open
Abstract
Extremophiles inhabit a wide variety of environments. Here we focus on extremophiles in moderate climates in central Europe, and particularly in Slovenia. Although multiple types of stress often occur in the same habitat, extremophiles are generally combined into groups according to the main stressor to which they are adapted. Several types of extremophiles, e.g., oligotrophs, are well represented and diverse in subsurface environments and karst regions. Psychrophiles thrive in ice caves and depressions with eternal snow and ice, with several globally distributed snow algae and psychrophilic bacteria that have been discovered in alpine glaciers. However, this area requires further research. Halophiles thrive in salterns while thermophiles inhabit thermal springs, although there is little data on such microorganisms in central Europe, despite many taxa being found globally. This review also includes the potential use of extremophiles in biotechnology and bioremediation applications.
Collapse
|
9
|
Zerva I, Remmas N, Melidis P, Ntougias S. Biotreatment efficiency, hydrolytic potential and bacterial community dynamics in an immobilized cell bioreactor treating caper processing wastewater under highly saline conditions. BIORESOURCE TECHNOLOGY 2021; 325:124694. [PMID: 33454565 DOI: 10.1016/j.biortech.2021.124694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/02/2021] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Although caper processing wastewaters (CPW) are characterized by high organic content and salt concentration, no attempt has been made to treat these effluents. In this study, an immobilized cell bioreactor efficiently treated CPW even at hypersaline conditions (100 g/L salinity). Nitrogen was mainly assimilated during biotreatment, as nitrification was inhibited at elevated salinities. The hydrolytic potential was assessed by determining glucanase, xylanase, glucosidase, lipase and protease activities, which were negatively affected above 20 g/L salinity as the consequence of the inhibition of non-halotolerant microbiota. Succession of non-halotolerant taxa by the slightly halotolerant bacteria Defluviimonas, Amaricoccus, Arenibacter, Formosa and Muricauda, and then by the moderately/extremely halotolerant genera Halomonas, Roseovarius and Idiomarina occurred over salinity increase. Diversity indices were reduced during transition from moderately saline to hypersaline conditions. A distinct network was formed at hypersaline conditions, consisting of the halotolerant genera Halomonas, Idiomarina, Saliterribacillus and Gracilibacillus.
Collapse
Affiliation(s)
- Ioanna Zerva
- Laboratory of Wastewater Management and Treatment Technologies, Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, 67132 Xanthi, Greece
| | - Nikolaos Remmas
- Laboratory of Wastewater Management and Treatment Technologies, Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, 67132 Xanthi, Greece
| | - Paraschos Melidis
- Laboratory of Wastewater Management and Treatment Technologies, Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, 67132 Xanthi, Greece
| | - Spyridon Ntougias
- Laboratory of Wastewater Management and Treatment Technologies, Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, 67132 Xanthi, Greece.
| |
Collapse
|
10
|
Biopolymer production by halotolerant bacteria isolated from Caatinga biome. Braz J Microbiol 2021; 52:547-559. [PMID: 33491139 DOI: 10.1007/s42770-021-00426-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 01/06/2021] [Indexed: 12/21/2022] Open
Abstract
Saline environments are extreme habitats with a high diversity of microorganisms source of a myriad of biomolecules. These microorganisms are assigned as extremophiles recognized to be producers of new natural compounds, which can be synthesized by helping to survive under harshness and extreme conditions. In Brazil, in the saline and semi-arid region of Areia Branca (Caatinga biome), halotolerant bacteria (able to growth at high NaCl concentrations) were isolated from rhizosphere of native plants Blutaparon portulacoides and Spergularia sp. and their biopolymer production was studied. A total of 25 bacterial isolates were identified at genus level based on 16S rRNA gene sequence analysis. Isolates were mainly Gram-positive bacteria from Bacillaceae, Staphylococcaceae, Microbacteriaceae, and Bacillales XII incertae sedis families, affiliates to Bacillus, Staphylococcus, Curtobacterium, and Exiguobacterium genera, respectively. One of the Gram-negative isolates was identified as member of the Pseudomonadaceae family, genus Pseudomonas. All the identified strains were halotolerant bacteria with optimum growth at 0.6-2.0 M salt concentrations. Assays for biopolymer production showed that the halotolerant strains are a rich source of compounds as polyhydroxyalkanoates (PHA), biodegradable biopolymer, such as poly(3-hydroxybutyrate) (PHB) produced from low-cost substrates, and exopolysaccharides (EPS), such as hyaluronic acid (HA), metabolite of great interest to the cosmetic and pharmaceutical industry. Also, eight bacterial EPS extracts showed immunostimulatory activity, promising results that can be used in biomedical applications. Overall, our findings demonstrate that these biomolecules can be produced in culture medium with 0.6-2.0 M NaCl concentrations, relevant feature to avoid costly production processes. This is the first report of biopolymer-producing bacteria from a saline region of Caatinga biome that showed important biological activities.
Collapse
|
11
|
Lippai A, Farkas R, Szuróczki S, Szabó A, Felföldi T, Toumi M, Tóth E. Microbiological investigations of two thermal baths in Budapest, Hungary. Report: effect of bathing and pool operation type on water quality. JOURNAL OF WATER AND HEALTH 2020; 18:1020-1032. [PMID: 33328372 DOI: 10.2166/wh.2020.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In Hungary, which is famous for its thermal baths, according to the regulations, waters are investigated in hygienic aspects with standard cultivation methods. In the present study, two thermal baths were investigated (the well and three different pool waters in both) using cultivation methods, taxon-specific polymerase chain reactions (PCRs), multiplex PCRs and next-generation amplicon sequencing. Mainly members of the natural microbial community of the well waters and bacteria originating from the environment were detected but several opportunistic pathogenic taxa, e.g., Pseudomonas aeruginosa, P. stutzeri, Acinetobacter johnsoni, Acinetobacter baumanni, Moraxella osloensis, Microbacterium paraoxydans, Legionella spp., Stenotrophomonas maltophilia and Staphylococcus aureus were revealed by the applied methods. Pools with charging-unloading operation had higher microscopic cell counts, colony-forming unit (CFU) counts, number of cocci, P. aeruginosa and S. aureus compared to the recirculation systems. Bacteria originating from human sources (e.g., skin) were identified in the pool waters with less than 1% relative abundance, and their presence was sporadic in the pools. Comparing the microbiological quality of the pools based on the first sampling time and the following four months' period it was revealed that recirculation operation type has better water quality than the charging-unloading pool operation from a hygienic point of view.
Collapse
Affiliation(s)
- Anett Lippai
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary E-mail: ; Eurofins KVI-PLUSZ Environmental Testing Office Ltd, Szállító utca 6, 1211 Budapest, Hungary
| | - Rózsa Farkas
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary E-mail:
| | - Sára Szuróczki
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary E-mail:
| | - Attila Szabó
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary E-mail:
| | - Tamás Felföldi
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary E-mail:
| | - Marwene Toumi
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary E-mail:
| | - Erika Tóth
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary E-mail:
| |
Collapse
|
12
|
An evaluation of the core bacterial communities associated with hypersaline environments in the Qaidam Basin, China. Arch Microbiol 2020; 202:2093-2103. [PMID: 32488562 DOI: 10.1007/s00203-020-01927-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 05/15/2020] [Accepted: 05/26/2020] [Indexed: 12/31/2022]
Abstract
Hypersaline lakes and saltern areas are important industrial and biodiversity resources in the Qaidam Basin of China that reside at > 2600 m asl. Most hypersaline environments in this area are characterized by saturated salinity (~ 300 g/L salinity), nearly neutral pH, intense ultraviolet radiation, and extremely variable temperature fluctuations. The core bacterial communities associated with these stressful environments have nevertheless remained uninvestigated. 16S rRNA gene Illumina sequencing analyses revealed that the bacterial communities were dominated by core lineages including the Proteobacteria (39.4-64.6%) and the Firmicutes (17.0-42.7%). However, the relative abundances of common lineages, and especially the five most abundant taxa of Pseudomonas, Lactococcus, Anoxybacillus, Acinetobacter, and Brevundimonas, were highly variable across communities and closely associated with hypersaline characteristics in the samples. Network analysis revealed the presence of co-occurrence high relative abundance taxa (cluster I) that were highly correlated across all hypersaline samples. Additionally, temperature, total organic carbon, K+, and Mg2+ correlated highest with taxonomic distributions across communities. These results highlight the potential mechanisms that could underlie survival and adaptation to these extreme hypersaline ecosystems.
Collapse
|
13
|
Banciu HL, Enache M, Rodriguez RM, Oren A, Ventosa A. Ecology and physiology of halophilic microorganisms - Thematic issue based on papers presented at Halophiles 2019 - 12th International Conference on Halophilic Microorganisms, Cluj-Napoca, Romania, 24-28 June, 2019. FEMS Microbiol Lett 2020; 366:5717654. [PMID: 31996927 DOI: 10.1093/femsle/fnz250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 12/11/2019] [Indexed: 01/27/2023] Open
Abstract
In June 2019, the 12th International Conference on Halophilic Microorganisms - Halophiles 2019, was held in Cluj-Napoca, Romania. This thematic issue of FEMS Microbiology Letters contains papers based on lectures and posters presented at the conference. We here provide a short overview of past research on hypersaline environments in Romania and the microorganisms inhabiting them, and briefly present the papers published in this thematic issue.
Collapse
Affiliation(s)
- Horia L Banciu
- Department of Molecular Biology and Biotechnology and Center for Systems Biology, Biodiversity and Bioresources, Babeș-Bolyai University, 5-7 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Mădălin Enache
- Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, Bucharest, Romania
| | - Rafael Montalvo Rodriguez
- Biology Department, University of Puerto Rico at Mayagüez, Call Box 9000, Mayagüez, Puerto Rico 00681
| | - Aharon Oren
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Calle Profesor García González 2, ES-41012 Sevilla, Spain
| |
Collapse
|
14
|
Baricz A, Chiriac CM, Andrei AȘ, Bulzu PA, Levei EA, Cadar O, Battes KP, Cîmpean M, Șenilă M, Cristea A, Muntean V, Alexe M, Coman C, Szekeres EK, Sicora CI, Ionescu A, Blain D, O'Neill WK, Edwards J, Hallsworth JE, Banciu HL. Spatio-temporal insights into microbiology of the freshwater-to-hypersaline, oxic-hypoxic-euxinic waters of Ursu Lake. Environ Microbiol 2020; 23:3523-3540. [PMID: 31894632 DOI: 10.1111/1462-2920.14909] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 12/22/2019] [Accepted: 12/26/2019] [Indexed: 12/30/2022]
Abstract
Ursu Lake is located in the Middle Miocene salt deposit of Central Romania. It is stratified, and the water column has three distinct water masses: an upper freshwater-to-moderately saline stratum (0-3 m), an intermediate stratum exhibiting a steep halocline (3-3.5 m), and a lower hypersaline stratum (4 m and below) that is euxinic (i.e. anoxic and sulphidic). Recent studies have characterized the lake's microbial taxonomy and given rise to intriguing ecological questions. Here, we explore whether the communities are dynamic or stable in relation to taxonomic composition, geochemistry, biophysics, and ecophysiological functions during the annual cycle. We found: (i) seasonally fluctuating, light-dependent communities in the upper layer (≥0.987-0.990 water-activity), a stable but phylogenetically diverse population of heterotrophs in the hypersaline stratum (water activities down to 0.762) and a persistent plate of green sulphur bacteria that connects these two (0.958-0.956 water activity) at 3-3.5 to 4 m; (ii) communities that might be involved in carbon- and sulphur-cycling between and within the lake's three main water masses; (iii) uncultured lineages including Acetothermia (OP1), Cloacimonetes (WWE1), Marinimicrobia (SAR406), Omnitrophicaeota (OP3), Parcubacteria (OD1) and other Candidate Phyla Radiation bacteria, and SR1 in the hypersaline stratum (likely involved in the anaerobic steps of carbon- and sulphur-cycling); and (iv) that species richness and habitat stability are associated with high redox-potentials. Ursu Lake has a unique and complex ecology, at the same time exhibiting dynamic fluctuations and stability, and can be used as a modern analogue for ancient euxinic water bodies and comparator system for other stratified hypersaline systems.
Collapse
Affiliation(s)
- Andreea Baricz
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, 5-7 Clinicilor Str., 400006, Cluj-Napoca, Romania
| | - Cecilia Maria Chiriac
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, 5-7 Clinicilor Str., 400006, Cluj-Napoca, Romania.,National Institute of Research and Development for Biological Sciences, Institute of Biological Research, 48 Republicii Str., 400015, Cluj-Napoca, Romania
| | - Adrian-Ștefan Andrei
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, 5-7 Clinicilor Str., 400006, Cluj-Napoca, Romania.,Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 702/7, 370 05 České, Budějovice, Czech Republic
| | - Paul-Adrian Bulzu
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, 5-7 Clinicilor Str., 400006, Cluj-Napoca, Romania.,Institute for Interdisciplinary Research in Bio-Nano-Sciences, 42 A. Treboniu Laurian Str., Babeş-Bolyai University, 400271, Cluj-Napoca, Romania
| | - Erika Andrea Levei
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Str., 400293, Cluj-Napoca, Romania
| | - Oana Cadar
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Str., 400293, Cluj-Napoca, Romania
| | - Karina Paula Battes
- Department of Taxonomy and Ecology, Faculty of Biology and Geology, Babeş-Bolyai University, 5-7 Clinicilor Str., 400006, Cluj-Napoca, Romania
| | - Mirela Cîmpean
- Department of Taxonomy and Ecology, Faculty of Biology and Geology, Babeş-Bolyai University, 5-7 Clinicilor Str., 400006, Cluj-Napoca, Romania
| | - Marin Șenilă
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Str., 400293, Cluj-Napoca, Romania
| | - Adorján Cristea
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, 5-7 Clinicilor Str., 400006, Cluj-Napoca, Romania.,Institute for Interdisciplinary Research in Bio-Nano-Sciences, 42 A. Treboniu Laurian Str., Babeş-Bolyai University, 400271, Cluj-Napoca, Romania
| | - Vasile Muntean
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, 5-7 Clinicilor Str., 400006, Cluj-Napoca, Romania
| | - Mircea Alexe
- Department of Physical and Technical Geography, Faculty of Geography, Babeş-Bolyai University, 5-7 Clinicilor Str., 400006, Cluj-Napoca, Romania
| | - Cristian Coman
- National Institute of Research and Development for Biological Sciences, Institute of Biological Research, 48 Republicii Str., 400015, Cluj-Napoca, Romania
| | - Edina Kriszta Szekeres
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, 5-7 Clinicilor Str., 400006, Cluj-Napoca, Romania.,National Institute of Research and Development for Biological Sciences, Institute of Biological Research, 48 Republicii Str., 400015, Cluj-Napoca, Romania
| | - Cosmin Ionel Sicora
- Biological Research Center Jibou, 16 Wesselenyi Miklos Str., 455200, Jibou, Romania
| | - Artur Ionescu
- Faculty of Environmental Science and Engineering, Babeş-Bolyai University, 30 Fantanele Str., 400294, Cluj-Napoca, Romania
| | - David Blain
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 7BL, UK
| | - William Kenneth O'Neill
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 7BL, UK
| | - Jessica Edwards
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 7BL, UK
| | - John Edward Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 7BL, UK
| | - Horia Leonard Banciu
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, 5-7 Clinicilor Str., 400006, Cluj-Napoca, Romania.,Institute for Interdisciplinary Research in Bio-Nano-Sciences, 42 A. Treboniu Laurian Str., Babeş-Bolyai University, 400271, Cluj-Napoca, Romania
| |
Collapse
|
15
|
Bhatnagar S, Cowley ES, Kopf SH, Pérez Castro S, Kearney S, Dawson SC, Hanselmann K, Ruff SE. Microbial community dynamics and coexistence in a sulfide-driven phototrophic bloom. ENVIRONMENTAL MICROBIOME 2020; 15:3. [PMID: 33902727 PMCID: PMC8066431 DOI: 10.1186/s40793-019-0348-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/25/2019] [Indexed: 05/30/2023]
Abstract
BACKGROUND Lagoons are common along coastlines worldwide and are important for biogeochemical element cycling, coastal biodiversity, coastal erosion protection and blue carbon sequestration. These ecosystems are frequently disturbed by weather, tides, and human activities. Here, we investigated a shallow lagoon in New England. The brackish ecosystem releases hydrogen sulfide particularly upon physical disturbance, causing blooms of anoxygenic sulfur-oxidizing phototrophs. To study the habitat, microbial community structure, assembly and function we carried out in situ experiments investigating the bloom dynamics over time. RESULTS Phototrophic microbial mats and permanently or seasonally stratified water columns commonly contain multiple phototrophic lineages that coexist based on their light, oxygen and nutrient preferences. We describe similar coexistence patterns and ecological niches in estuarine planktonic blooms of phototrophs. The water column showed steep gradients of oxygen, pH, sulfate, sulfide, and salinity. The upper part of the bloom was dominated by aerobic phototrophic Cyanobacteria, the middle and lower parts by anoxygenic purple sulfur bacteria (Chromatiales) and green sulfur bacteria (Chlorobiales), respectively. We show stable coexistence of phototrophic lineages from five bacterial phyla and present metagenome-assembled genomes (MAGs) of two uncultured Chlorobaculum and Prosthecochloris species. In addition to genes involved in sulfur oxidation and photopigment biosynthesis the MAGs contained complete operons encoding for terminal oxidases. The metagenomes also contained numerous contigs affiliating with Microviridae viruses, potentially affecting Chlorobi. Our data suggest a short sulfur cycle within the bloom in which elemental sulfur produced by sulfide-oxidizing phototrophs is most likely reduced back to sulfide by Desulfuromonas sp. CONCLUSIONS The release of sulfide creates a habitat selecting for anoxygenic sulfur-oxidizing phototrophs, which in turn create a niche for sulfur reducers. Strong syntrophism between these guilds apparently drives a short sulfur cycle that may explain the rapid development of the bloom. The fast growth and high biomass yield of Chlorobi-affiliated organisms implies that the studied lineages of green sulfur bacteria can thrive in hypoxic habitats. This oxygen tolerance is corroborated by oxidases found in MAGs of uncultured Chlorobi. The findings improve our understanding of the ecology and ecophysiology of anoxygenic phototrophs and their impact on the coupled biogeochemical cycles of sulfur and carbon.
Collapse
Affiliation(s)
- Srijak Bhatnagar
- Department of Biological Sciences, University of Calgary, Calgary, AB Canada
| | - Elise S. Cowley
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI USA
| | - Sebastian H. Kopf
- Department of Geological Sciences, University of Colorado, Boulder, CO USA
| | - Sherlynette Pérez Castro
- Ecosystems Center and J. Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA USA
| | - Sean Kearney
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Scott C. Dawson
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, CA USA
| | | | - S. Emil Ruff
- Ecosystems Center and J. Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA USA
| |
Collapse
|
16
|
Kalwasińska A, Deja-Sikora E, Szabó A, Felföldi T, Kosobucki P, Brzezinska MS, Walczak M. Salino-alkaline lime of anthropogenic origin a reservoir of diverse microbial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 655:842-854. [PMID: 30481711 DOI: 10.1016/j.scitotenv.2018.11.246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 06/09/2023]
Abstract
This paper presents study on the microbiome of a unique extreme environment - saline and alkaline lime, a by-product of soda ash and table salt production in Janikowo, central Poland. High-throughput 16S rDNA amplicon sequencing was used to reveal the structure of bacterial and archaeal communities in the lime samples, taken from repository ponds differing in salinity (2.3-25.5% NaCl). Surprisingly abundant and diverse bacterial communities were discovered in this extreme environment. The most important geochemical drivers of the observed microbial diversity were salinity, calcium ions, nutrients, and water content. The bacterial and archaeal communities in saline, alkaline lime were similar to those found in natural haloalkaline environments. Although the archaeal contribution to the whole microbial community was lower than 4%, the four archaeal genera Natronomonas, Halorubrum, Halobellus, and Halapricum constituted the core microbiome of saline, alkaline lime - a set of OTUs (> 0.1% of total archaeal relative abundance) present in all samples under study. The high proportion of novel, unclassified archaeal and bacterial sequences (not identified at 97% similarity level) in the 16S rRNA gene libraries indicated that potentially new genera, especially within the class of Thermoplasmata inhabit this unique environment.
Collapse
Affiliation(s)
- Agnieszka Kalwasińska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland.
| | - Edyta Deja-Sikora
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland; Department of Microbiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
| | - Attila Szabó
- Department of Microbiology, ELTE Eötvös Loránd University, PázmányPéterstny. 1/c. H-1117 Budapest, Hungary
| | - Tamás Felföldi
- Department of Microbiology, ELTE Eötvös Loránd University, PázmányPéterstny. 1/c. H-1117 Budapest, Hungary
| | - Przemysław Kosobucki
- Department of Food Analysis and Environmental Protection, Faculty of Chemical Technology and Engineering, UTP University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland
| | - Maria Swiontek Brzezinska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
| | - Maciej Walczak
- Department of Environmental Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
| |
Collapse
|
17
|
Lee CJD, McMullan PE, O'Kane CJ, Stevenson A, Santos IC, Roy C, Ghosh W, Mancinelli RL, Mormile MR, McMullan G, Banciu HL, Fares MA, Benison KC, Oren A, Dyall-Smith ML, Hallsworth JE. NaCl-saturated brines are thermodynamically moderate, rather than extreme, microbial habitats. FEMS Microbiol Rev 2018; 42:672-693. [PMID: 29893835 DOI: 10.1093/femsre/fuy026] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 06/08/2018] [Indexed: 11/12/2022] Open
Abstract
NaCl-saturated brines such as saltern crystalliser ponds, inland salt lakes, deep-sea brines and liquids-of-deliquescence on halite are commonly regarded as a paradigm for the limit of life on Earth. There are, however, other habitats that are thermodynamically more extreme. Typically, NaCl-saturated environments contain all domains of life and perform complete biogeochemical cycling. Despite their reduced water activity, ∼0.755 at 5 M NaCl, some halophiles belonging to the Archaea and Bacteria exhibit optimum growth/metabolism in these brines. Furthermore, the recognised water-activity limit for microbial function, ∼0.585 for some strains of fungi, lies far below 0.755. Other biophysical constraints on the microbial biosphere (temperatures of >121°C; pH > 12; and high chaotropicity; e.g. ethanol at >18.9% w/v (24% v/v) and MgCl2 at >3.03 M) can prevent any cellular metabolism or ecosystem function. By contrast, NaCl-saturated environments contain biomass-dense, metabolically diverse, highly active and complex microbial ecosystems; and this underscores their moderate character. Here, we survey the evidence that NaCl-saturated brines are biologically permissive, fertile habitats that are thermodynamically mid-range rather than extreme. Indeed, were NaCl sufficiently soluble, some halophiles might grow at concentrations of up to 8 M. It may be that the finite solubility of NaCl has stabilised the genetic composition of halophile populations and limited the action of natural selection in driving halophile evolution towards greater xerophilicity. Further implications are considered for the origin(s) of life and other aspects of astrobiology.
Collapse
Affiliation(s)
- Callum J D Lee
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland
| | - Phillip E McMullan
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland
| | - Callum J O'Kane
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland
| | - Andrew Stevenson
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland
| | - Inês C Santos
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Chayan Roy
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - Wriddhiman Ghosh
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - Rocco L Mancinelli
- BAER Institute, Mail Stop 239-4, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Melanie R Mormile
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO 65401, USA
| | - Geoffrey McMullan
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland
| | - Horia L Banciu
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babes-Bolyai University, 400006 Cluj-Napoca, Romania
| | - Mario A Fares
- Department of Abiotic Stress, Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia 46022, Spain.,Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas-Universitat de Valencia (CSIC-UV), Valencia, 46980, Spain.,Department of Genetics, Smurfit Institute of Genetics, University of Dublin, Trinity College, Dublin 2, Dublin, Ireland
| | - Kathleen C Benison
- Department of Geology and Geography, West Virginia University, Morgantown, WV 26506-6300, USA
| | - Aharon Oren
- Department of Plant & Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat-Ram, Jerusalem 9190401, Israel
| | - Mike L Dyall-Smith
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland
| |
Collapse
|
18
|
Máthé I, Tóth E, Mentes A, Szabó A, Márialigeti K, Schumann P, Felföldi T. A new Rhizobium species isolated from the water of a crater lake, description of Rhizobium aquaticum sp. nov. Antonie van Leeuwenhoek 2018; 111:2175-2183. [DOI: 10.1007/s10482-018-1110-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 06/01/2018] [Indexed: 11/28/2022]
|
19
|
Mentes A, Szabó A, Somogyi B, Vajna B, Tugyi N, Csitári B, Vörös L, Felföldi T. Differences in planktonic microbial communities associated with three types of macrophyte stands in a shallow lake. FEMS Microbiol Ecol 2018; 94:4675209. [PMID: 29206918 DOI: 10.1093/femsec/fix164] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 11/27/2017] [Indexed: 11/13/2022] Open
Abstract
Little is known about how various substances from living and decomposing aquatic macrophytes affect the horizontal patterns of planktonic bacterial communities. Study sites were located within Lake Kolon, which is a freshwater marsh and can be characterised by open-water sites and small ponds with different macrovegetation (Phragmites australis, Nymphea alba and Utricularia vulgaris). Our aim was to reveal the impact of these macrophytes on the composition of the planktonic microbial communities using comparative analysis of environmental parameters, microscopy and pyrosequencing data. Bacterial 16S rRNA gene sequences were dominated by members of phyla Proteobacteria (36%-72%), Bacteroidetes (12%-33%) and Actinobacteria (5%-26%), but in the anoxic sample the ratio of Chlorobi (54%) was also remarkable. In the phytoplankton community, Cryptomonas sp., Dinobryon divergens, Euglena acus and chrysoflagellates had the highest proportion. Despite the similarities in most of the measured environmental parameters, the inner ponds had different bacterial and algal communities, suggesting that the presence and quality of macrophytes directly and indirectly controlled the composition of microbial plankton.
Collapse
Affiliation(s)
- Anikó Mentes
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/c., H-1117 Budapest, Hungary
| | - Attila Szabó
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/c., H-1117 Budapest, Hungary
| | - Boglárka Somogyi
- Balaton Limnological Institute, MTA Centre for Ecological Research, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| | - Balázs Vajna
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/c., H-1117 Budapest, Hungary
| | - Nóra Tugyi
- Balaton Limnological Institute, MTA Centre for Ecological Research, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| | - Bianka Csitári
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/c., H-1117 Budapest, Hungary
| | - Lajos Vörös
- Balaton Limnological Institute, MTA Centre for Ecological Research, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| | - Tamás Felföldi
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/c., H-1117 Budapest, Hungary
| |
Collapse
|
20
|
Changes in bacterial and archaeal communities during the concentration of brine at the graduation towers in Ciechocinek spa (Poland). Extremophiles 2017; 22:233-246. [PMID: 29260386 PMCID: PMC5847177 DOI: 10.1007/s00792-017-0992-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/08/2017] [Indexed: 11/15/2022]
Abstract
This study evaluates the changes in bacterial and archaeal community structure during the gradual evaporation of water from the brine (extracted from subsurface Jurassic deposits) in the system of graduation towers located in Ciechocinek spa, Poland. The communities were assessed with 16S rRNA gene sequencing (MiSeq, Illumina) and microscopic methods. The microbial cell density determined by direct cell count was at the order of magnitude of 107 cells/mL. It was found that increasing salt concentration was positively correlated with both the cell counts, and species-level diversity of bacterial and archaeal communities. The archaeal community was mostly constituted by members of the phylum Euryarchaeota, class Halobacteria and was dominated by Halorubrum-related sequences. The bacterial community was more diverse, with representatives of the phyla Proteobacteria and Bacteroidetes as the most abundant. The proportion of Proteobacteria decreased with increasing salt concentration, while the proportion of Bacteroidetes increased significantly in the more concentrated samples. Representatives of the genera Idiomarina, Psychroflexus, Roseovarius, and Marinobacter appeared to be tolerant to changes of salinity. During the brine concentration, the relative abundances of Sphingobium and Sphingomonas were significantly decreased and the raised contributions of genera Fabibacter and Fodinibius were observed. The high proportion of novel (not identified at 97% similarity level) bacterial reads (up to 42%) in the 16S rRNA gene sequences indicated that potentially new bacterial taxa inhabit this unique environment.
Collapse
|
21
|
Felföldi T, Fikó RD, Mentes A, Kovács E, Máthé I, Schumann P, Tóth E. Quisquiliibacterium transsilvanicum gen. nov., sp. nov., a novel betaproteobacterium isolated from a waste-treating bioreactor. Int J Syst Evol Microbiol 2017; 67:4742-4746. [PMID: 28950929 DOI: 10.1099/ijsem.0.002368] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A new betaproteobacterium, CGI-09T, was isolated from an activated sludge bioreactor which treated landfill leachate. Based on 16S rRNA gene sequence analysis, the new strain shared the highest pairwise similarity values with members of the order Burkholderiales: Derxia gummosa IAM 13946T (family Alcaligenaceae), 93.7 % and Lautropia mirabilis DSM 11362T (family Burkholderiaceae), 93.6 %. Cells of strain CGI-09T were rod-shaped and non-motile. The new strain was oxidase and catalase positive and capable of reducing nitrate to nitrite. The predominant fatty acids were C16 : 1 ω7c, C16 : 0, cycloC17 : 0 and C18 : 1 ω7c, the major respiratory quinone was Q-8, and the detected polar lipids were phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine and an unknown phospholipid. The G+C content of the genomic DNA of strain CGI-09T was 70.2 mol%. The new bacterium can be distinguished from the members of genera Derxia and Lautropia based on its non-motile cells, arginine dihydrolase activity, its high cyclo C17 : 0 fatty acid content and the lack of hydroxy fatty acids. On the basis of the phenotypic, chemotaxonomic and molecular data, strain CGI-09T is considered to represent a new genus and species within the family Burkholderiaceae, for which the name Quisquiliibacterium transsilvanicum gen. nov., sp. nov. is proposed. The type strain is CGI-09T (=DSM 29781T=JCM 31785T).
Collapse
Affiliation(s)
- Tamás Felföldi
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/c, 1117 Budapest, Hungary.,Department of Bioengineering, Sapientia Hungarian University of Transylvania, Piaţa Libertăţii 1, 530104 Miercurea Ciuc, Romania
| | - Róbert Dezső Fikó
- Department of Bioengineering, Sapientia Hungarian University of Transylvania, Piaţa Libertăţii 1, 530104 Miercurea Ciuc, Romania
| | - Anikó Mentes
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/c, 1117 Budapest, Hungary
| | - Erika Kovács
- Department of Bioengineering, Sapientia Hungarian University of Transylvania, Piaţa Libertăţii 1, 530104 Miercurea Ciuc, Romania
| | - István Máthé
- Department of Bioengineering, Sapientia Hungarian University of Transylvania, Piaţa Libertăţii 1, 530104 Miercurea Ciuc, Romania
| | - Peter Schumann
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Erika Tóth
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/c, 1117 Budapest, Hungary
| |
Collapse
|
22
|
Kalwasińska A, Felföldi T, Szabó A, Deja-Sikora E, Kosobucki P, Walczak M. Microbial communities associated with the anthropogenic, highly alkaline environment of a saline soda lime, Poland. Antonie van Leeuwenhoek 2017; 110:945-962. [PMID: 28382378 PMCID: PMC5486852 DOI: 10.1007/s10482-017-0866-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 03/28/2017] [Indexed: 11/30/2022]
Abstract
Soda lime is a by-product of the Solvay soda process for the production of sodium carbonate from limestone and sodium chloride. Due to a high salt concentration and alkaline pH, the lime is considered as a potential habitat of haloalkaliphilic and haloalkalitolerant microbial communities. This artificial and unique environment is nutrient-poor and devoid of vegetation, due in part to semi-arid, saline and alkaline conditions. Samples taken from the surface layer of the lime and from the depth of 2 m (both having pH ~11 and ECe up to 423 dS m−1) were investigated using culture-based (culturing on alkaline medium) and culture-independent microbiological approaches (microscopic analyses and pyrosequencing). A surprisingly diverse bacterial community was discovered in this highly saline, alkaline and nutrient-poor environment, with the bacterial phyla Proteobacteria (representing 52.8% of the total bacterial community) and Firmicutes (16.6%) showing dominance. Compared to the surface layer, higher bacterial abundance and diversity values were detected in the deep zone, where more stable environmental conditions may occur. The surface layer was dominated by members of the genera Phenylobacterium, Chelativorans and Skermanella, while in the interior layer the genus Fictibacillus was dominant. The culturable aerobic, haloalkaliphilic bacteria strains isolated in this study belonged mostly to the genus Bacillus and were closely related to the species Bacillus pseudofirmus, B. cereus, B. plakortidis, B. thuringensis and B. pumilus.
Collapse
Affiliation(s)
- Agnieszka Kalwasińska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, Poland.
| | - Tamás Felföldi
- Department of Microbiology, Eötvös Loránd University, Budapest, Hungary
| | - Attila Szabó
- Department of Microbiology, Eötvös Loránd University, Budapest, Hungary
| | - Edyta Deja-Sikora
- Department of Environmental Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, Poland
| | - Przemysław Kosobucki
- Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Toruń, Poland
| | - Maciej Walczak
- Department of Environmental Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
23
|
Táncsics A, Máthé I, Benedek T, Tóth EM, Atasayar E, Spröer C, Márialigeti K, Felföldi T, Kriszt B. Rhodococcus sovatensis sp. nov., an actinomycete isolated from the hypersaline and heliothermal Lake Ursu. Int J Syst Evol Microbiol 2017; 67:190-196. [DOI: 10.1099/ijsem.0.001514] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- András Táncsics
- Regional University Center of Excellence in Environmental Industry, Szent István University, Páter K. u. 1, H-2100 Gödöllő, Hungary
| | - István Máthé
- Department of Bioengineering, Sapientia Hungarian University of Transylvania, Piaţa Libertăţii 1, R-530104, Miercurea Ciuc, Romania
| | - Tibor Benedek
- Regional University Center of Excellence in Environmental Industry, Szent István University, Páter K. u. 1, H-2100 Gödöllő, Hungary
| | - Erika M. Tóth
- Department of Microbiology, Eötvös Loránd University, Pázmány P. sétány 1/C, H-1117 Budapest, Hungary
| | - Ewelina Atasayar
- DSMZ – German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, D-38124, Braunschweig, Germany
| | - Cathrin Spröer
- DSMZ – German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, D-38124, Braunschweig, Germany
| | - Károly Márialigeti
- Department of Microbiology, Eötvös Loránd University, Pázmány P. sétány 1/C, H-1117 Budapest, Hungary
| | - Tamás Felföldi
- Department of Microbiology, Eötvös Loránd University, Pázmány P. sétány 1/C, H-1117 Budapest, Hungary
- Department of Bioengineering, Sapientia Hungarian University of Transylvania, Piaţa Libertăţii 1, R-530104, Miercurea Ciuc, Romania
| | - Balázs Kriszt
- Department of Environmental Protection and Environmental Safety, Szent István University, Páter K. u. 1, H-2100 Gödöllő, Hungary
| |
Collapse
|
24
|
Felföldi T, Schumann P, Mentes A, Kéki Z, Máthé I, Tóth EM. Caenimicrobium hargitense gen. nov., sp. nov., a new member of the family Alcaligenaceae (Betaproteobacteria) isolated from activated sludge. Int J Syst Evol Microbiol 2016; 67:627-632. [PMID: 27902326 DOI: 10.1099/ijsem.0.001674] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A new betaproteobacterium, CGII-59m2T, was isolated from an activated sludge bioreactor which treated landfill leachate. The 16S rRNA gene sequence analysis revealed that strain CGII-59m2T belonged to the family Alcaligenaceae and shared the highest pairwise similarity values with Parapusillimonas granuli LMG 24012T (97.7 %), various species of the genus Bordetella (97.3-97.0 %) and Candidimonas nitroreducens LMG 24812T (97.0 %). Cells of strain CGII-59m2T were rod-shaped, non-motile, and oxidase- and catalase-positive. The predominant fatty acids were C16 : 1ω7c, C16 : 0, cyclo C17 : 0 and C18 : 1ω7c, the major respiratory quinone was Q-8, and the main polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and an unknown phospholipid. The G+C content of the genomic DNA of strain CGII-59m2T was 62.3 mol%. The new bacterium can be distinguished from the closely related type strains based on its non-motile cells and its high C16 : 1ω7c fatty acid content. On the basis of the phenotypic, chemotaxonomic and molecular data, strain CGII-59m2T is considered to represent a novel species of a new genus, for which the name Caenimicrobium hargitense gen. nov., sp. nov. is proposed. The type strain is CGII-59m2T (=DSM 29806T=NCAIM B.02615T).
Collapse
Affiliation(s)
- Tamás Felföldi
- Department of Bioengineering, Sapientia Hungarian University of Transylvania, Piaţa Libertăţii 1, 530104 Miercurea Ciuc, Romania.,Department of Microbiology, Eötvös Loránd University, Pázmány Péter stny. 1/c, 1117 Budapest, Hungary
| | - Peter Schumann
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Anikó Mentes
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter stny. 1/c, 1117 Budapest, Hungary
| | - Zsuzsa Kéki
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter stny. 1/c, 1117 Budapest, Hungary
| | - István Máthé
- Department of Bioengineering, Sapientia Hungarian University of Transylvania, Piaţa Libertăţii 1, 530104 Miercurea Ciuc, Romania
| | - Erika M Tóth
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter stny. 1/c, 1117 Budapest, Hungary
| |
Collapse
|
25
|
Felföldi T, Mentes A, Schumann P, Kéki Z, Máthé I, Márialigeti K, Tóth EM. Rufibacter quisquiliarum sp. nov., a new member of the phylum Bacteroidetes isolated from a bioreactor treating landfill leachate. Int J Syst Evol Microbiol 2016; 66:5150-5154. [PMID: 27612451 DOI: 10.1099/ijsem.0.001488] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel bacterium, CAI-18bT, was isolated from a bioreactor that treated landfill leachate using an oligotrophic growth medium. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that strain CAI-18bT is a member of the genus Rufibacter, showing 97.1 % pairwise similarity to Rufibacter roseus H359T, 96.4 % to Rufibacter tibetensis 1351T, 96.4 % to Rufibacter glacialis MDT1-10-3T and 96.0 % to Rufibacter immobilis MCC P1T. Strain CAI-18bT was rod-shaped, motile, oxidase- and catalase-positive. The predominant fatty acids were iso-C15 : 0 (24.1 %) and iso-C17 : 1 I (22.3 %), the major respiratory quinone was MK-7, and the predominant polar lipids were phosphatidylethanolamine and an unknown aminophospholipid. The G+C content of the genomic DNA of strain CAI-18bT was 50.7 mol%. The novel bacterium can be distinguished from related type strains based on its ability to assimilate N-acetylglucosamine and gentiobiose. On the basis of the phenotypic, chemotaxonomic and molecular data, strain CAI-18bT represents a novel species of the genus Rufibacter, for which the name Rufibacter quisquiliarum sp. nov. is proposed. The type strain is CAI-18bT (=DSM 29854T=NCAIM B.02614T).
Collapse
Affiliation(s)
- Tamás Felföldi
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter stny. 1/c, 1117 Budapest, Hungary.,Department of Bioengineering, Sapientia Hungarian University of Transylvania, Piaţa Libertăţii 1, 530104 Miercurea Ciuc, Romania
| | - Anikó Mentes
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter stny. 1/c, 1117 Budapest, Hungary
| | - Peter Schumann
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Zsuzsa Kéki
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter stny. 1/c, 1117 Budapest, Hungary
| | - István Máthé
- Department of Bioengineering, Sapientia Hungarian University of Transylvania, Piaţa Libertăţii 1, 530104 Miercurea Ciuc, Romania
| | - Károly Márialigeti
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter stny. 1/c, 1117 Budapest, Hungary
| | - Erika M Tóth
- Department of Microbiology, Eötvös Loránd University, Pázmány Péter stny. 1/c, 1117 Budapest, Hungary
| |
Collapse
|
26
|
Zhong ZP, Liu Y, Miao LL, Wang F, Chu LM, Wang JL, Liu ZP. Prokaryotic Community Structure Driven by Salinity and Ionic Concentrations in Plateau Lakes of the Tibetan Plateau. Appl Environ Microbiol 2016; 82:1846-1858. [PMID: 26746713 PMCID: PMC4784034 DOI: 10.1128/aem.03332-15] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 12/31/2015] [Indexed: 02/06/2023] Open
Abstract
The prokaryotic community composition and diversity and the distribution patterns at various taxonomic levels across gradients of salinity and physiochemical properties in the surface waters of seven plateau lakes in the Qaidam Basin, Tibetan Plateau, were evaluated using Illumina MiSeq sequencing. These lakes included Lakes Keluke (salinity, <1 g/liter), Qing (salinity, 5.5 to 6.6 g/liter), Tuosu (salinity, 24 to 35 g/liter), Dasugan (salinity, 30 to 33 g/liter), Gahai (salinity, 92 to 96 g/liter), Xiaochaidan (salinity, 94 to 99 g/liter), and Gasikule (salinity, 317 to 344 g/liter). The communities were dominated by Bacteria in lakes with salinities of <100 g/liter and by Archaea in Lake Gasikule. The clades At12OctB3 and Salinibacter, previously reported only in hypersaline environments, were found in a hyposaline lake (salinity, 5.5 to 6.6 g/liter) at an abundance of ∼1.0%, indicating their ecological plasticity. Salinity and the concentrations of the chemical ions whose concentrations covary with salinity (Mg(2+), K(+), Cl(-), Na(+), SO4 (2-), and Ca(2+)) were found to be the primary environmental factors that directly or indirectly determined the composition and diversity at the level of individual clades as well as entire prokaryotic communities. The distribution patterns of two phyla, five classes, five orders, five families, and three genera were well predicted by salinity. The variation of the prokaryotic community structure also significantly correlated with the dissolved oxygen concentration, pH, the total nitrogen concentration, and the PO4 (3-) concentration. Such correlations varied depending on the taxonomic level, demonstrating the importance of comprehensive correlation analyses at various taxonomic levels in evaluating the effects of environmental variable factors on prokaryotic community structures. Our findings clarify the distribution patterns of the prokaryotic community composition in plateau lakes at the levels of individual clades as well as whole communities along gradients of salinity and ionic concentrations.
Collapse
Affiliation(s)
- Zhi-Ping Zhong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Ying Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Li-Li Miao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Fang Wang
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, People's Republic of China
| | - Li-Min Chu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, People's Republic of China
| | - Jia-Li Wang
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, People's Republic of China
- Institute of Shandong River Wetlands, Laiwu, People's Republic of China
| | - Zhi-Pei Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
27
|
Andrei AŞ, Robeson MS, Baricz A, Coman C, Muntean V, Ionescu A, Etiope G, Alexe M, Sicora CI, Podar M, Banciu HL. Contrasting taxonomic stratification of microbial communities in two hypersaline meromictic lakes. ISME JOURNAL 2015; 9:2642-56. [PMID: 25932617 DOI: 10.1038/ismej.2015.60] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 02/14/2015] [Accepted: 03/18/2015] [Indexed: 11/09/2022]
Abstract
Hypersaline meromictic lakes are extreme environments in which water stratification is associated with powerful physicochemical gradients and high salt concentrations. Furthermore, their physical stability coupled with vertical water column partitioning makes them important research model systems in microbial niche differentiation and biogeochemical cycling. Here, we compare the prokaryotic assemblages from Ursu and Fara Fund hypersaline meromictic lakes (Transylvanian Basin, Romania) in relation to their limnological factors and infer their role in elemental cycling by matching taxa to known taxon-specific biogeochemical functions. To assess the composition and structure of prokaryotic communities and the environmental factors that structure them, deep-coverage small subunit (SSU) ribosomal RNA (rDNA) amplicon sequencing, community domain-specific quantitative PCR and physicochemical analyses were performed on samples collected along depth profiles. The analyses showed that the lakes harbored multiple and diverse prokaryotic communities whose distribution mirrored the water stratification patterns. Ursu Lake was found to be dominated by Bacteria and to have a greater prokaryotic diversity than Fara Fund Lake that harbored an increased cell density and was populated mostly by Archaea within oxic strata. In spite of their contrasting diversity, the microbial populations indigenous to each lake pointed to similar physiological functions within carbon degradation and sulfate reduction. Furthermore, the taxonomy results coupled with methane detection and its stable C isotope composition indicated the presence of a yet-undescribed methanogenic group in the lakes' hypersaline monimolimnion. In addition, ultrasmall uncultivated archaeal lineages were detected in the chemocline of Fara Fund Lake, where the recently proposed Nanohaloarchaeota phylum was found to thrive.
Collapse
Affiliation(s)
- Adrian-Ştefan Andrei
- Institute for Interdisciplinary Research in Bio-Nano-Sciences, Molecular Biology Center, Babeş-Bolyai University, Cluj-Napoca, Romania.,Department of Molecular Biology and Biotechnology, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Michael S Robeson
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.,Fish, Wildlife and Conservation Biology, Colorado State University, Fort Collins, CO, USA
| | - Andreea Baricz
- Department of Molecular Biology and Biotechnology, Babeş-Bolyai University, Cluj-Napoca, Romania.,National Institute of Research and Development for Biological Sciences (NIRDBS), Institute of Biological Research, Cluj-Napoca, Romania
| | - Cristian Coman
- Department of Molecular Biology and Biotechnology, Babeş-Bolyai University, Cluj-Napoca, Romania.,National Institute of Research and Development for Biological Sciences (NIRDBS), Institute of Biological Research, Cluj-Napoca, Romania
| | - Vasile Muntean
- Department of Molecular Biology and Biotechnology, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Artur Ionescu
- Faculty of Environmental Science and Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Giuseppe Etiope
- Faculty of Environmental Science and Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania.,Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy
| | - Mircea Alexe
- Faculty of Geography, Babeş-Bolyai University, Cluj-Napoca, Romania
| | | | - Mircea Podar
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.,Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Horia Leonard Banciu
- Institute for Interdisciplinary Research in Bio-Nano-Sciences, Molecular Biology Center, Babeş-Bolyai University, Cluj-Napoca, Romania.,Department of Molecular Biology and Biotechnology, Babeş-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
28
|
Oren A. Halophilic microbial communities and their environments. Curr Opin Biotechnol 2015; 33:119-24. [PMID: 25727188 DOI: 10.1016/j.copbio.2015.02.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 01/04/2015] [Accepted: 02/13/2015] [Indexed: 10/23/2022]
Abstract
Use of culture-independent studies have greatly increased our understanding of the microbiology of hypersaline lakes (the Dead Sea, Great Salt Lake) and saltern ponds in recent years. Exciting new information has become available on the microbial processes in Antarctic lakes and in deep-sea brines. These studies led to the recognition of many new lineages of microorganisms not yet available for study in culture, and their cultivation in the laboratory is now a major challenge. Studies of the metabolic potentials of different halophilic microorganisms, Archaea as well as Bacteria, shed light on the possibilities and the limitations of life at high salt concentrations, and also show their potential for applications in bioremediation.
Collapse
Affiliation(s)
- Aharon Oren
- Department of Plant & Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat-Ram, Jerusalem 91904, Israel.
| |
Collapse
|
29
|
Culturable diversity of aerobic halophilic archaea (Fam. Halobacteriaceae) from hypersaline, meromictic Transylvanian lakes. Extremophiles 2015; 19:525-37. [DOI: 10.1007/s00792-015-0738-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 01/27/2015] [Indexed: 10/24/2022]
|