1
|
Sugawara R, Hamada K, Ito H, Scala M, Ueda H, Tabata H, Ogata K, Nagata KI. A p.N92K variant of the GTPase RAC3 disrupts cortical neuron migration and axon elongation. J Biol Chem 2025; 301:108346. [PMID: 40015633 PMCID: PMC11968283 DOI: 10.1016/j.jbc.2025.108346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/05/2025] [Accepted: 02/19/2025] [Indexed: 03/01/2025] Open
Abstract
RAC3 encodes a small GTPase of the Rho family, crucial for actin cytoskeleton organization and signaling pathways. De novo deleterious variants in RAC3 cause neurodevelopmental disorder with structural brain anomalies and dysmorphic facies (NEDBAF). Disease-causing variants thus far reported are thought to impact key conserved regions within RAC3, such as the P-loop, switch I/II, and G boxes, which are essential for the interaction with regulatory proteins and effectors. Recently, however, a novel variant, c.276T > A, p.N92K, was identified in a prenatal case with complex brain malformations. This variant, located outside the core functional regions, represents a unique class of RAC3 pathogenic mutations. We investigated the variant's effects using in vitro, in silico, and in vivo approaches. Overexpression of RAC3-N92K in primary hippocampal neurons impaired differentiation, leading to round cell shape with lamellipodia, suggesting that RAC3-N92K is active. Biochemical studies showed that RAC3-N92K is (1) resistant to GAP-mediated inactivation, (2) responsive to GEF activation, and (3) capable of interacting with RAC effectors PAK1 and MLK2, as well as Rho-kinase 1, activating gene expression through SRF, NFκB, and AP1 pathways. Structural analyses suggest that N92K disrupts GAP interactions but preserves interactions with GEF, PAK1, and MLK2. In vivo, RAC3-N92K expression in embryonic mouse cortical neurons led to migration defects and periventricular clustering during corticogenesis, along with impaired axon elongation. These findings indicate that RAC3-N92K's activated state significantly disrupts cortical development, expanding the genetic and pathophysiological spectrum of NEDBAF.
Collapse
Affiliation(s)
- Ryota Sugawara
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan; United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Keisuke Hamada
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hidenori Ito
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
| | - Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Unit of Medical Genetics, IRCCS Giannina Gaslini Institute, Genova, Italy
| | - Hiroshi Ueda
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan; Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, Japan
| | - Hidenori Tabata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
| | - Kazuhiro Ogata
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Koh-Ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan; Department of Neurochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
2
|
Nishikawa M, Hayashi S, Nakayama A, Nishio Y, Shiraki A, Ito H, Maruyama K, Muramatsu Y, Ogi T, Mizuno S, Nagata KI. Pathophysiological significance of the p.E31G variant in RAC1 responsible for a neurodevelopmental disorder with microcephaly. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167520. [PMID: 39307291 DOI: 10.1016/j.bbadis.2024.167520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/04/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024]
Abstract
RAC1 encodes a Rho family small GTPase that regulates actin cytoskeletal reorganization and intracellular signaling pathways. Pathogenic RAC1 variants lead to a neurodevelopmental disorder with diverse phenotypic manifestations, including abnormalities in brain size and facial dysmorphism. However, the underlying pathophysiological mechanisms have yet to be elucidated. Here, we present the case of a school-aged male who exhibited global developmental delay, intellectual disability, and acquired microcephaly. Through whole exome sequencing, we identified a novel de novo variant in RAC1, (NM_006908.5): c.92 A > G,p.(E31G). We then examined the pathophysiological significance of the p.E31G variant by focusing on brain development. Biochemical analyses revealed that the recombinant RAC1-E31G had no discernible impact on the intrinsic GDP/GTP exchange activity. However, it exhibited a slight inhibitory effect on GTP hydrolysis. Conversely, it demonstrated a typical response to both a guanine-nucleotide exchange factor and a GTPase-activating protein. In transient expression analyses using COS7 cells, RAC1-E31G exhibited minimal interaction with the downstream effector PAK1, even in its GTP-bound state. Additionally, overexpression of RAC1-E31G was observed to exert a weak inhibitory effect on the differentiation of primary cultured hippocampal neurons. Moreover, in vivo studies employing in utero electroporation revealed that acute expression of RAC1-E31G resulted in impairments in axonal elongation and dendritic arborization in the young adult stage. These findings suggest that the p.E31G variant functions as a dominant-negative version in the PAK1-mediated signaling pathway and is responsible for the clinical features observed in the patient under investigation, namely microcephaly and intellectual disability.
Collapse
Affiliation(s)
- Masashi Nishikawa
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan
| | - Shin Hayashi
- Department of Genetics, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan
| | - Atsushi Nakayama
- Department of Pediatrics, Japanese Red Cross Aichi Medical Center Nagoya Daiichi Hospital, 3-35 Michishita-cho, Nagoya 453-8511, Japan
| | - Yosuke Nishio
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Furo-Cho, Nagoya 464-8602, Japan
| | - Anna Shiraki
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Nagoya 466-8550, Japan
| | - Hidenori Ito
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan
| | - Kouichi Maruyama
- Central Hospital, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan
| | - Yukako Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Nagoya 466-8550, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Furo-Cho, Nagoya 464-8602, Japan
| | - Seiji Mizuno
- Central Hospital, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan
| | - Koh-Ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan; Department of Neurochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Nagoya 466-8550, Japan.
| |
Collapse
|
3
|
Kaneko N, Hirai K, Oshima M, Yura K, Hattori M, Maeda N, Ohtaka-Maruyama C. ADAMTS2 promotes radial migration by activating TGF-β signaling in the developing neocortex. EMBO Rep 2024; 25:3090-3115. [PMID: 38871984 PMCID: PMC11239934 DOI: 10.1038/s44319-024-00174-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 05/20/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024] Open
Abstract
The mammalian neocortex is formed by sequential radial migration of newborn excitatory neurons. Migrating neurons undergo a multipolar-to-bipolar transition at the subplate (SP) layer, where extracellular matrix (ECM) components are abundantly expressed. Here, we investigate the role of the ECM at the SP layer. We show that TGF-β signaling-related ECM proteins, and their downstream effector, p-smad2/3, are selectively expressed in the SP layer. We also find that migrating neurons express a disintegrin and metalloproteinase with thrombospondin motif 2 (ADAMTS2), an ECM metalloproteinase, just below the SP layer. Knockdown and knockout of Adamts2 suppresses the multipolar-to-bipolar transition of migrating neurons and disturbs radial migration. Time-lapse luminescence imaging of TGF-β signaling indicates that ADAMTS2 activates this signaling pathway in migrating neurons during the multipolar-to-bipolar transition at the SP layer. Overexpression of TGF-β2 in migrating neurons partially rescues migration defects in ADAMTS2 knockout mice. Our data suggest that ADAMTS2 secreted by the migrating multipolar neurons activates TGF-β signaling by ECM remodeling of the SP layer, which might drive the multipolar to bipolar transition.
Collapse
Affiliation(s)
- Noe Kaneko
- Developmental Neuroscience Project, Department of Brain & Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Life Science, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Kumiko Hirai
- Developmental Neuroscience Project, Department of Brain & Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Minori Oshima
- Developmental Neuroscience Project, Department of Brain & Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Life Science, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Kei Yura
- Department of Life Science, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
- School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Mitsuharu Hattori
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Nobuaki Maeda
- Developmental Neuroscience Project, Department of Brain & Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Chiaki Ohtaka-Maruyama
- Developmental Neuroscience Project, Department of Brain & Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| |
Collapse
|
4
|
Tabata H, Mori D, Matsuki T, Yoshizaki K, Asai M, Nakayama A, Ozaki N, Nagata KI. Histological Analysis of a Mouse Model of the 22q11.2 Microdeletion Syndrome. Biomolecules 2023; 13:biom13050763. [PMID: 37238632 DOI: 10.3390/biom13050763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
22q11.2 deletion syndrome (22q11.2DS) is associated with a high risk of developing various psychiatric and developmental disorders, including schizophrenia and early-onset Parkinson's disease. Recently, a mouse model of this disease, Del(3.0Mb)/+, mimicking the 3.0 Mb deletion which is most frequently found in patients with 22q11.2DS, was generated. The behavior of this mouse model was extensively studied and several abnormalities related to the symptoms of 22q11.2DS were found. However, the histological features of their brains have been little addressed. Here we describe the cytoarchitectures of the brains of Del(3.0Mb)/+ mice. First, we investigated the overall histology of the embryonic and adult cerebral cortices, but they were indistinguishable from the wild type. However, the morphologies of individual neurons were slightly but significantly changed from the wild type counterparts in a region-specific manner. The dendritic branches and/or dendritic spine densities of neurons in the medial prefrontal cortex, nucleus accumbens, and primary somatosensory cortex were reduced. We also observed reduced axon innervation of dopaminergic neurons into the prefrontal cortex. Given these affected neurons function together as the dopamine system to control animal behaviors, the impairment we observed may explain a part of the abnormal behaviors of Del(3.0Mb)/+ mice and the psychiatric symptoms of 22q11.2DS.
Collapse
Affiliation(s)
- Hidenori Tabata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan
| | - Daisuke Mori
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Brain and Mind Research Center, Nagoya University, Nagoya 466-8550, Japan
| | - Tohru Matsuki
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan
| | - Kaichi Yoshizaki
- Department of Disease Model, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan
| | - Masato Asai
- Department of Disease Model, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan
| | - Atsuo Nakayama
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan
- Department of Neurochemistry, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Norio Ozaki
- Pathophysiology of Mental Disorders, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Chikusa-ku, Nagoya 464-0814, Japan
| | - Koh-Ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan
- Department of Neurochemistry, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
5
|
Nishikawa M, Scala M, Umair M, Ito H, Waqas A, Striano P, Zara F, Costain G, Capra V, Nagata KI. Gain-of-function p.F28S variant in RAC3 disrupts neuronal differentiation, migration and axonogenesis during cortical development, leading to neurodevelopmental disorder. J Med Genet 2023; 60:223-232. [PMID: 35595279 DOI: 10.1136/jmedgenet-2022-108483] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/02/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND RAC3 encodes a Rho family small GTPase that regulates the behaviour and organisation of actin cytoskeleton and intracellular signal transduction. Variants in RAC3 can cause a phenotypically heterogeneous neurodevelopmental disorder with structural brain anomalies and dysmorphic facies. The pathomechanism of this recently discovered genetic disorder remains unclear. METHODS We investigated an early adolescent female with intellectual disability, drug-responsive epilepsy and white matter abnormalities. Through exome sequencing, we identified the novel de novo variant (NM_005052.3): c.83T>C (p.Phe28Ser) in RAC3. We then examined the pathophysiological significance of the p.F28S variant in comparison with the recently reported disease-causing p.Q61L variant, which results in a constitutively activated version of RAC3. RESULTS In vitro analyses revealed that the p.F28S variant was spontaneously activated by substantially increased intrinsic GTP/GDP-exchange activity and bound to downstream effectors tested, such as PAK1 and MLK2. The variant suppressed the differentiation of primary cultured hippocampal neurons and caused cell rounding with lamellipodia. In vivo analyses using in utero electroporation showed that acute expression of the p.F28S variant caused migration defects of excitatory neurons and axon growth delay during corticogenesis. Notably, defective migration was rescued by a dominant negative version of PAK1 but not MLK2. CONCLUSION Our results indicate that RAC3 is critical for brain development and the p.F28S variant causes morphological and functional defects in cortical neurons, likely due to the hyperactivation of PAK1.
Collapse
Affiliation(s)
- Masashi Nishikawa
- Department of Molecular Neurobiology, Aichi Developmental Disability Center, Kasugai, Japan
| | - Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy .,Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia.,Department of Life Sciences, School of Science, University of Management and Technology, Lahore, Pakistan
| | - Hidenori Ito
- Department of Molecular Neurobiology, Aichi Developmental Disability Center, Kasugai, Japan
| | - Ahmed Waqas
- Department Zoology, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.,Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Federico Zara
- Unit of Medical Genetics, IRCCS Giannina Gaslini Institute, Genova, Italy
| | - Gregory Costain
- Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Valeria Capra
- Unit of Medical Genetics, IRCCS Giannina Gaslini Institute, Genova, Italy
| | - Koh-Ichi Nagata
- Department of Molecular Neurobiology, Aichi Developmental Disability Center, Kasugai, Japan .,Department of Neurochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
6
|
Scala M, Nishikawa M, Ito H, Tabata H, Khan T, Accogli A, Davids L, Ruiz A, Chiurazzi P, Cericola G, Schulte B, Monaghan KG, Begtrup A, Torella A, Pinelli M, Denommé-Pichon AS, Vitobello A, Racine C, Mancardi MM, Kiss C, Guerin A, Wu W, Gabau Vila E, Mak BC, Martinez-Agosto JA, Gorin MB, Duz B, Bayram Y, Carvalho CMB, Vengoechea JE, Chitayat D, Tan TY, Callewaert B, Kruse B, Bird LM, Faivre L, Zollino M, Biskup S, Striano P, Nigro V, Severino M, Capra V, Costain G, Nagata KI. Variant-specific changes in RAC3 function disrupt corticogenesis in neurodevelopmental phenotypes. Brain 2022; 145:3308-3327. [PMID: 35851598 PMCID: PMC9473360 DOI: 10.1093/brain/awac106] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 02/01/2022] [Accepted: 03/13/2022] [Indexed: 01/17/2023] Open
Abstract
Variants in RAC3, encoding a small GTPase RAC3 which is critical for the regulation of actin cytoskeleton and intracellular signal transduction, are associated with a rare neurodevelopmental disorder with structural brain anomalies and facial dysmorphism. We investigated a cohort of 10 unrelated participants presenting with global psychomotor delay, hypotonia, behavioural disturbances, stereotyped movements, dysmorphic features, seizures and musculoskeletal abnormalities. MRI of brain revealed a complex pattern of variable brain malformations, including callosal abnormalities, white matter thinning, grey matter heterotopia, polymicrogyria/dysgyria, brainstem anomalies and cerebellar dysplasia. These patients harboured eight distinct de novo RAC3 variants, including six novel variants (NM_005052.3): c.34G > C p.G12R, c.179G > A p.G60D, c.186_188delGGA p.E62del, c.187G > A p.D63N, c.191A > G p.Y64C and c.348G > C p.K116N. We then examined the pathophysiological significance of these novel and previously reported pathogenic variants p.P29L, p.P34R, p.A59G, p.Q61L and p.E62K. In vitro analyses revealed that all tested RAC3 variants were biochemically and biologically active to variable extent, and exhibited a spectrum of different affinities to downstream effectors including p21-activated kinase 1. We then focused on the four variants p.Q61L, p.E62del, p.D63N and p.Y64C in the Switch II region, which is essential for the biochemical activity of small GTPases and also a variation hot spot common to other Rho family genes, RAC1 and CDC42. Acute expression of the four variants in embryonic mouse brain using in utero electroporation caused defects in cortical neuron morphology and migration ending up with cluster formation during corticogenesis. Notably, defective migration by p.E62del, p.D63N and p.Y64C were rescued by a dominant negative version of p21-activated kinase 1. Our results indicate that RAC3 variants result in morphological and functional defects in cortical neurons during brain development through variant-specific mechanisms, eventually leading to heterogeneous neurodevelopmental phenotypes.
Collapse
Affiliation(s)
| | | | | | - Hidenori Tabata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan
| | - Tayyaba Khan
- Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Andrea Accogli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Laura Davids
- Department of Human Genetics, Emory Healthcare, Atlanta, GA 30322, USA
| | - Anna Ruiz
- Genetics Laboratory, UDIAT-Centre Diagnòstic, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de, Barcelona, Sabadell, Spain
| | - Pietro Chiurazzi
- Dipartimento Universitario Scienze della Vita e Sanità Pubblica, Sezione di Medicina Genomica, Università Cattolica Sacro Cuore, Rome, Italy,Genetica Medica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Gabriella Cericola
- Neuropediatric Department, Helios-Klinikum Hildesheim, Hildesheim, Germany
| | | | | | | | - Annalaura Torella
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy,Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Michele Pinelli
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | - Anne Sophie Denommé-Pichon
- INSERM UMR1231 Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, Dijon, France,Laboratoire de Génétique Moléculaire, UF Innovation en diagnostic génomique des maladies rares, Plateau Technique de Biologie, CHU de Dijon Bourgogne, Dijon, France,Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'interrégion Est, FHU TRANSLAD, Hôpital d'Enfants, CHU de Dijon Bourgogne, Dijon, France
| | - Antonio Vitobello
- INSERM UMR1231 Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, Dijon, France,Laboratoire de Génétique Moléculaire, UF Innovation en diagnostic génomique des maladies rares, Plateau Technique de Biologie, CHU de Dijon Bourgogne, Dijon, France
| | - Caroline Racine
- Laboratoire de Génétique Moléculaire, UF Innovation en diagnostic génomique des maladies rares, Plateau Technique de Biologie, CHU de Dijon Bourgogne, Dijon, France,Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'interrégion Est, FHU TRANSLAD, Hôpital d'Enfants, CHU de Dijon Bourgogne, Dijon, France
| | - Maria Margherita Mancardi
- Unit of Child Neuropsychiatry, Department of Medical and Surgical Neuroscience and Rehabilitation, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Courtney Kiss
- Division of Medical Genetics, Department of Pediatrics, Queen’s University, Kingston, ON K7L 2V7, Canada
| | - Andrea Guerin
- Division of Medical Genetics, Department of Pediatrics, Queen’s University, Kingston, ON K7L 2V7, Canada
| | - Wendy Wu
- Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada,Queen’s University, Kingston, ON, Canada
| | - Elisabeth Gabau Vila
- Paediatric Unit, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de, Barcelona, Sabadell, Spain
| | - Bryan C Mak
- Department of Human Genetics, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
| | - Julian A Martinez-Agosto
- Department of Human Genetics, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA,Department of Pediatrics, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
| | - Michael B Gorin
- Department of Human Genetics, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA,Department of Ophthalmology, Jules Stein Eye Institute, David Geffen School of Medicine, UCLA, Los Angeles 90095, CA, USA,Brain Research Institute, UCLA, Los Angeles 90095, CA, USA
| | - Bugrahan Duz
- Haseki Training and Research Hospital, Istanbul, Turkey
| | - Yavuz Bayram
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Claudia M B Carvalho
- Pacific Northwest Research Institute, Seattle, WA 98122, USA,Baylor College of Medicine, Houston, TX 77030, USA
| | | | - David Chitayat
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada,Division of Clinical and Metabolic Genetics, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Tiong Yang Tan
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, and Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Bert Callewaert
- Center for Medical Genetics, Ghent University Hospital, Gent, Belgium
| | - Bernd Kruse
- Neuropediatric Department, Helios-Klinikum Hildesheim, Hildesheim, Germany
| | - Lynne M Bird
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA,Genetics/Dysmorphology, Rady Children’s Hospital San Diego, San Diego, CA, USA
| | - Laurence Faivre
- INSERM UMR1231 Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, Dijon, France,Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'interrégion Est, FHU TRANSLAD, Hôpital d'Enfants, CHU de Dijon Bourgogne, Dijon, France
| | - Marcella Zollino
- Dipartimento Universitario Scienze della Vita e Sanità Pubblica, Sezione di Medicina Genomica, Università Cattolica Sacro Cuore, Rome, Italy,Genetica Medica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Saskia Biskup
- Praxis für Humangenetik, Tübingen, Germany,CeGaT GmbH, Tübingen, Germany
| | | | | | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy,Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Vincenzo Nigro
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy,Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | | | - Valeria Capra
- Correspondence may also be addressed to: Valeria Capra Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy E-mail:
| | - Gregory Costain
- Correspondence may also be addressed to: Gregory Costain Division of Clinical and Metabolic Genetics Department of Pediatrics The Hospital for Sick Children Toronto, Ontario, Canada E-mail:
| | - Koh ichi Nagata
- Correspondence to: Koh-ichi Nagata Department of Molecular Neurobiology Institute for Developmental Research Aichi Human Service Center, 713-8 Kamiya Kasugai, Aichi 480-0392, Japan E-mail:
| |
Collapse
|
7
|
Nishikawa M, Ito H, Tabata H, Ueda H, Nagata KI. Impaired Function of PLEKHG2, a Rho-Guanine Nucleotide-Exchange Factor, Disrupts Corticogenesis in Neurodevelopmental Phenotypes. Cells 2022; 11:cells11040696. [PMID: 35203342 PMCID: PMC8870177 DOI: 10.3390/cells11040696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/08/2022] [Accepted: 02/15/2022] [Indexed: 02/06/2023] Open
Abstract
Homozygosity of the p.Arg204Trp variation in the Pleckstrin homology and RhoGEF domain containing G2 (PLEKHG2) gene, which encodes a Rho family-specific guanine nucleotide-exchange factor, is responsible for microcephaly with intellectual disability. However, the role of PLEKHG2 during neurodevelopment remains unknown. In this study, we analyzed mouse Plekhg2 function during cortical development, both in vitro and in vivo. The p.Arg200Trp variant in mouse (Plekhg2-RW), which corresponds to the p.Arg204Trp variant in humans, showed decreased guanine nucleotide-exchange activity for Rac1, Rac3, and Cdc42. Acute knockdown of Plekhg2 using in utero electroporation-mediated gene transfer did not affect the migration of excitatory neurons during corticogenesis. On the other hand, silencing Plekhg2 expression delayed dendritic arbor formation at postnatal day 7 (P7), perhaps because of impaired Rac/Cdc42 and p21-activated kinase 1 signaling pathways. This phenotype was rescued by expressing an RNAi-resistant version of wildtype Plekhg2, but not of Plekhg2-RW. Axon pathfinding was also impaired in vitro and in vivo in Plekhg2-deficient cortical neurons. At P14, knockdown of Plekhg2 was observed to cause defects in dendritic spine morphology formation. Collectively, these results strongly suggest that PLEKHG2 has essential roles in the maturation of axon, dendrites, and spines. Moreover, impairment of PLEKHG2 function is most likely to cause defects in neuronal functions that lead to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Masashi Nishikawa
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan; (M.N.); (H.I.); (H.T.)
| | - Hidenori Ito
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan; (M.N.); (H.I.); (H.T.)
| | - Hidenori Tabata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan; (M.N.); (H.I.); (H.T.)
| | - Hiroshi Ueda
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan;
| | - Koh-ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan; (M.N.); (H.I.); (H.T.)
- Department of Neurochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Nagoya 466-8550, Japan
- Correspondence: ; Tel.: +81-568-88-0811
| |
Collapse
|
8
|
Liang C, Carrel D, Singh NK, Hiester LL, Fanget I, Kim H, Firestein BL. Carboxypeptidase E Independently Changes Microtubule Glutamylation, Dendritic Branching, and Neuronal Migration. ASN Neuro 2022; 14:17590914211062765. [PMID: 35014548 PMCID: PMC8755936 DOI: 10.1177/17590914211062765] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Neuronal migration and dendritogenesis are dependent on dynamic changes to the microtubule (MT) network. Among various factors that regulate MT dynamics and stability, post-translational modifications (PTMs) of MTs play a critical role in conferring specificity of regulatory protein binding to MTs. Thus, it is important to understand the regulation of PTMs during brain development as multiple developmental processes are dependent on MTs. In this study, we identified that carboxypeptidase E (CPE) changes tubulin polyglutamylation, a major PTM in the brain, and we examine the impact of CPE-mediated changes to polyglutamylation on cortical neuron migration and dendrite morphology. We show, for the first time, that overexpression of CPE increases the level of polyglutamylated α-tubulin while knockdown decreases the level of polyglutamylation. We also demonstrate that CPE-mediated changes to polyglutamylation are dependent on the CPE zinc-binding motif and that this motif is necessary for CPE action on p150Glued localization. However, overexpression of a CPE mutant that does not increase MT glutamylation mimics the effects of overexpression of wild type CPE on dendrite branching. Furthermore, although overexpression of wild type CPE does not alter cortical neuron migration, overexpression of the mutant may act in a dominant-negative manner as it decreases the number of neurons that reach the cortical plate (CP), as we previously reported for CPE knockdown. Overall, our data suggest that CPE changes MT glutamylation and redistribution of p150Glued and that this function of CPE is independent of its role in shaping dendrite development but plays a partial role in regulating cortical neuron migration.
Collapse
Affiliation(s)
- Chen Liang
- Department of Cell Biology and Neuroscience, Rutgers, 242612The State University of New Jersey, Piscataway, NJ, USA.,Molecular Biosciences Graduate Program, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Damien Carrel
- SPPIN Laboratory, 555089Université de Paris, Centre National de la Recherche Scientifique UMR 8003, Paris, France
| | - Nisha K Singh
- Department of Cell Biology and Neuroscience, Rutgers, 242612The State University of New Jersey, Piscataway, NJ, USA.,Molecular Biosciences Graduate Program, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Liam L Hiester
- Department of Cell Biology and Neuroscience, Rutgers, 242612The State University of New Jersey, Piscataway, NJ, USA
| | - Isabelle Fanget
- SPPIN Laboratory, 555089Université de Paris, Centre National de la Recherche Scientifique UMR 8003, Paris, France
| | - Hyuck Kim
- Department of Cell Biology and Neuroscience, Rutgers, 242612The State University of New Jersey, Piscataway, NJ, USA
| | - Bonnie L Firestein
- Department of Cell Biology and Neuroscience, Rutgers, 242612The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
9
|
A Xenotransplant Model of Human Brain Tumors in Wild-Type Mice. iScience 2019; 23:100813. [PMID: 31931429 PMCID: PMC6957874 DOI: 10.1016/j.isci.2019.100813] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 10/22/2019] [Accepted: 12/24/2019] [Indexed: 12/11/2022] Open
Abstract
The development of adequate model systems to study human malignancies is crucial for basic and preclinical research. Here, we exploit the “immune-privileged” developmental time window to achieve orthotopic xenotransplantation of human brain tumor cells in wild-type (WT) mice. We find that, when transplanted in utero, human glioblastoma (GBM) cells readily integrate in the embryonic mouse brain mirroring key tumor-associated pathological features such as infiltration, vascularization, and complex tumor microenvironment including reactive astrocytes and host immune cell infiltration. Remarkably, activation of the host IBA1 tumor-associated microglia/macrophages depends on the type of glioma cell transplanted, suggesting our approach allows one to study human GBM interactions with the immune system of WT host mice. The embryonic engraftment model complements existing ones, providing a rapid and valuable alternative to study fundamental biology of human brain tumors in immune competent mice. Human glioblastoma cells quickly form tumors in brain of WT mouse embryos Glioblastoma xenografts mirror several key characteristics of the original tumor Host IBA1+ microglia/macrophages associate with glioblastoma xenografts Activation of IBA1+ tumor-associated cells depends on the type of xenograft
Collapse
|
10
|
Xu Z, Chen Y, Chen Y. Spatiotemporal Regulation of Rho GTPases in Neuronal Migration. Cells 2019; 8:cells8060568. [PMID: 31185627 PMCID: PMC6627650 DOI: 10.3390/cells8060568] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/01/2019] [Accepted: 06/04/2019] [Indexed: 12/17/2022] Open
Abstract
Neuronal migration is essential for the orchestration of brain development and involves several contiguous steps: interkinetic nuclear movement (INM), multipolar–bipolar transition, locomotion, and translocation. Growing evidence suggests that Rho GTPases, including RhoA, Rac, Cdc42, and the atypical Rnd members, play critical roles in neuronal migration by regulating both actin and microtubule cytoskeletal components. This review focuses on the spatiotemporal-specific regulation of Rho GTPases as well as their regulators and effectors in distinct steps during the neuronal migration process. Their roles in bridging extracellular signals and cytoskeletal dynamics to provide optimal structural support to the migrating neurons will also be discussed.
Collapse
Affiliation(s)
- Zhenyan Xu
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, Guangdong, China.
| | - Yuewen Chen
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, Guangdong, China.
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen 518057, Guangdong, China.
| | - Yu Chen
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, Guangdong, China.
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen 518057, Guangdong, China.
| |
Collapse
|
11
|
John JP, Thirunavukkarasu P, Ishizuka K, Parekh P, Sawa A. An in-silico approach for discovery of microRNA-TF regulation of DISC1 interactome mediating neuronal migration. NPJ Syst Biol Appl 2019; 5:17. [PMID: 31098296 PMCID: PMC6504871 DOI: 10.1038/s41540-019-0094-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 04/15/2019] [Indexed: 11/25/2022] Open
Abstract
Neuronal migration constitutes an important step in corticogenesis; dysregulation of the molecular mechanisms mediating this crucial step in neurodevelopment may result in various neuropsychiatric disorders. By curating experimental data from published literature, we identified eight functional modules involving Disrupted-in-schizophrenia 1 (DISC1) and its interacting proteins that regulate neuronal migration. We then identified miRNAs and transcription factors (TFs) that form functional feedback loops and regulate gene expression of the DISC1 interactome. Using this curated data, we conducted in-silico modeling of the DISC1 interactome involved in neuronal migration and identified the proteins that either facilitate or inhibit neuronal migrational processes. We also studied the effect of perturbation of miRNAs and TFs in feedback loops on the DISC1 interactome. From these analyses, we discovered that STAT3, TCF3, and TAL1 (through feedback loop with miRNAs) play a critical role in the transcriptional control of DISC1 interactome thereby regulating neuronal migration. To the best of our knowledge, regulation of the DISC1 interactome mediating neuronal migration by these TFs has not been previously reported. These potentially important TFs can serve as targets for undertaking validation studies, which in turn can reveal the molecular processes that cause neuronal migration defects underlying neurodevelopmental disorders. This underscores the importance of the use of in-silico techniques in aiding the discovery of mechanistic evidence governing important molecular and cellular processes. The present work is one such step towards the discovery of regulatory factors of the DISC1 interactome that mediates neuronal migration.
Collapse
Affiliation(s)
- John P. John
- Multimodal Brain Image Analysis Laboratory (MBIAL), National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029 India
- Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029 India
| | - Priyadarshini Thirunavukkarasu
- Multimodal Brain Image Analysis Laboratory (MBIAL), National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029 India
- Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029 India
| | - Koko Ishizuka
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD 21287 USA
| | - Pravesh Parekh
- Multimodal Brain Image Analysis Laboratory (MBIAL), National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029 India
- Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029 India
| | - Akira Sawa
- Departments of Psychiatry, Mental Health, Neuroscience, and Biomedical Engineering, School of Medicine, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21287 USA
| |
Collapse
|
12
|
Molinard-Chenu A, Dayer A. The Candidate Schizophrenia Risk Gene DGCR2 Regulates Early Steps of Corticogenesis. Biol Psychiatry 2018; 83:692-706. [PMID: 29305086 DOI: 10.1016/j.biopsych.2017.11.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Alterations in early steps of cortical circuit assembly are thought to play a critical role in vulnerability to schizophrenia (SZ), but the pathogenic impact of SZ-risk mutations on corticogenesis remains to be determined. DiGeorge syndrome critical region 2 (DGCR2) is located in the 22q11.2 locus, whose deletion is a major risk factor for SZ. Moreover, exome sequencing of individuals with idiopathic SZ identified a rare missense mutation in DGCR2, further suggesting that DGCR2 is involved in SZ. METHODS Here we investigated the function of Dgcr2 and the pathogenic impact of the SZ-risk DGCR2 mutation in mouse corticogenesis using in utero electroporation targeted to projection neurons. RESULTS Dgcr2 knockdown impaired radial locomotion and final translocation of projection neurons, leading to persistent laminar positioning alterations. The DGCR2 missense SZ-risk mutation had a pathogenic impact on projection neuron laminar allocation by reducing protein expression. Mechanistically, we identified Dgcr2 as a novel member of the Reelin complex, regulating the phosphorylation of Reelin-dependent substrates and the expression of Reelin-dependent transcriptional targets. CONCLUSIONS Overall, this study provides biological evidence that the SZ-risk gene DGCR2 regulates critical steps of early corticogenesis possibly through a Reelin-dependent mechanism. Additionally, we found that the SZ-risk mutation in DGCR2 has a pathogenic impact on cortical formation by reducing protein expression level, suggesting a functional role for DGCR2 haploinsufficiency in the 22q11.2 deletion syndrome.
Collapse
Affiliation(s)
- Aude Molinard-Chenu
- Department of Psychiatry, University of Geneva Medical School, Geneva, Switzerland; Department of Basic Neurosciences, University of Geneva Medical School, Geneva, Switzerland; Institute of Genetics and Genomics in Geneva, University of Geneva Medical Center, Geneva, Switzerland
| | - Alexandre Dayer
- Department of Psychiatry, University of Geneva Medical School, Geneva, Switzerland; Department of Basic Neurosciences, University of Geneva Medical School, Geneva, Switzerland; Institute of Genetics and Genomics in Geneva, University of Geneva Medical Center, Geneva, Switzerland.
| |
Collapse
|
13
|
Ishizuka K, Tabata H, Ito H, Kushima I, Noda M, Yoshimi A, Usami M, Watanabe K, Morikawa M, Uno Y, Okada T, Mori D, Aleksic B, Ozaki N, Nagata KI. Possible involvement of a cell adhesion molecule, Migfilin, in brain development and pathogenesis of autism spectrum disorders. J Neurosci Res 2017; 96:789-802. [PMID: 29114925 DOI: 10.1002/jnr.24194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 11/07/2022]
Abstract
Migfilin, encoded by FBLIM1 at the 1p36 locus, is a multi-domain adaptor protein essential for various cellular processes such as cell morphology and migration. Small deletions and duplications at the 1p36 locus, monosomy of which results in neurodevelopmental disorders and multiple congenital anomalies, have also been identified in patients with autism spectrum disorder (ASD). However, the impact of FBLIM1, the gene within 1p36, on the pathogenesis of ASD is unknown. In this study, we performed morphological analyses of migfilin to elucidate its role in brain development. Migfilin was detected specifically in the embryonic and perinatal stages of the mouse brain. Either silencing or overexpression of migfilin in embryos following in utero electroporation disrupted Neocortical neuronal migration. Additionally, neurite elongation was impaired when migfilin was silenced in cultured mouse hippocampal neurons. We then screened FBLIM1 for rare exonic deletions/duplications in 549 Japanese ASD patients and 824 controls, detecting one case of ASD and intellectual delay that harbored a 26-kb deletion at 1p36.21 that solely included the C-terminal exon of FBLIM1. The FBLIM1 mRNA expression level in this case was reduced compared to levels in individuals without FBLIM1 deletion. Our findings indicate that tightly regulated expression of migfilin is essential for neuronal development and that FBLIM1 disruption may be related to the phenotypes associated with ASD and related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Kanako Ishizuka
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hidenori Tabata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| | - Hidenori Ito
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mariko Noda
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| | - Akira Yoshimi
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahide Usami
- Department of Child and Adolescent Psychiatry, Kohnodai Hospital, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Kyota Watanabe
- Hiroshima City Center for Children's Health and Development, Hiroshima, Japan
| | - Mako Morikawa
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yota Uno
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Okada
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Daisuke Mori
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Branko Aleksic
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koh-Ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan.,Department of Neurochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
14
|
Wiegreffe C, Feldmann S, Gaessler S, Britsch S. Time-lapse Confocal Imaging of Migrating Neurons in Organotypic Slice Culture of Embryonic Mouse Brain Using In Utero Electroporation. J Vis Exp 2017. [PMID: 28784978 DOI: 10.3791/55886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In utero electroporation is a rapid and powerful approach to study the process of radial migration in the cerebral cortex of developing mouse embryos. It has helped to describe the different steps of radial migration and characterize the molecular mechanisms controlling this process. To directly and dynamically analyze migrating neurons they have to be traced over time. This protocol describes a workflow that combines in utero electroporation with organotypic slice culture and time-lapse confocal imaging, which allows for a direct examination and dynamic analysis of radially migrating cortical neurons. Furthermore, detailed characterization of migrating neurons, such as migration speed, speed profiles, as well as radial orientation changes, is possible. The method can easily be adapted to perform functional analyses of genes of interest in radially migrating cortical neurons by loss and gain of function as well as rescue experiments. Time-lapse imaging of migrating neurons is a state-of-the-art technique that once established is a potent tool to study the development of the cerebral cortex in mouse models of neuronal migration disorders.
Collapse
Affiliation(s)
| | | | | | - Stefan Britsch
- Institute of Molecular and Cellular Anatomy, Ulm University
| |
Collapse
|
15
|
del Toro D, Ruff T, Cederfjäll E, Villalba A, Seyit-Bremer G, Borrell V, Klein R. Regulation of Cerebral Cortex Folding by Controlling Neuronal Migration via FLRT Adhesion Molecules. Cell 2017; 169:621-635.e16. [DOI: 10.1016/j.cell.2017.04.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 02/09/2017] [Accepted: 04/07/2017] [Indexed: 12/31/2022]
|
16
|
Copenhaver PF, Kögel D. Role of APP Interactions with Heterotrimeric G Proteins: Physiological Functions and Pathological Consequences. Front Mol Neurosci 2017; 10:3. [PMID: 28197070 PMCID: PMC5281615 DOI: 10.3389/fnmol.2017.00003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/05/2017] [Indexed: 12/27/2022] Open
Abstract
Following the discovery that the amyloid precursor protein (APP) is the source of β-amyloid peptides (Aβ) that accumulate in Alzheimer’s disease (AD), structural analyses suggested that the holoprotein resembles a transmembrane receptor. Initial studies using reconstituted membranes demonstrated that APP can directly interact with the heterotrimeric G protein Gαo (but not other G proteins) via an evolutionarily G protein-binding motif in its cytoplasmic domain. Subsequent investigations in cell culture showed that antibodies against the extracellular domain of APP could stimulate Gαo activity, presumably mimicking endogenous APP ligands. In addition, chronically activating wild type APP or overexpressing mutant APP isoforms linked with familial AD could provoke Go-dependent neurotoxic responses, while biochemical assays using human brain samples suggested that the endogenous APP-Go interactions are perturbed in AD patients. More recently, several G protein-dependent pathways have been implicated in the physiological roles of APP, coupled with evidence that APP interacts both physically and functionally with Gαo in a variety of contexts. Work in insect models has demonstrated that the APP ortholog APPL directly interacts with Gαo in motile neurons, whereby APPL-Gαo signaling regulates the response of migratory neurons to ligands encountered in the developing nervous system. Concurrent studies using cultured mammalian neurons and organotypic hippocampal slice preparations have shown that APP signaling transduces the neuroprotective effects of soluble sAPPα fragments via modulation of the PI3K/Akt pathway, providing a mechanism for integrating the stress and survival responses regulated by APP. Notably, this effect was also inhibited by pertussis toxin, indicating an essential role for Gαo/i proteins. Unexpectedly, C-terminal fragments (CTFs) derived from APP have also been found to interact with Gαs, whereby CTF-Gαs signaling can promote neurite outgrowth via adenylyl cyclase/PKA-dependent pathways. These reports offer the intriguing perspective that G protein switching might modulate APP-dependent responses in a context-dependent manner. In this review, we provide an up-to-date perspective on the model that APP plays a variety of roles as an atypical G protein-coupled receptor in both the developing and adult nervous system, and we discuss the hypothesis that disruption of these normal functions might contribute to the progressive neuropathologies that typify AD.
Collapse
Affiliation(s)
- Philip F Copenhaver
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Sciences University, Portland OR, USA
| | - Donat Kögel
- Experimental Neurosurgery, Goethe University Frankfurt Frankfurt am Main, Germany
| |
Collapse
|
17
|
Copenhaver PF, Ramaker JM. Neuronal migration during development and the amyloid precursor protein. CURRENT OPINION IN INSECT SCIENCE 2016; 18:1-10. [PMID: 27939704 PMCID: PMC5157842 DOI: 10.1016/j.cois.2016.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/06/2016] [Indexed: 06/06/2023]
Abstract
The Amyloid Precursor Protein (APP) is the source of amyloid peptides that accumulate in Alzheimer's disease. However, members of the APP family are strongly expressed in the developing nervous systems of invertebrates and vertebrates, where they regulate neuronal guidance, synaptic remodeling, and injury responses. In contrast to mammals, insects express only one APP ortholog (APPL), simplifying investigations into its normal functions. Recent studies have shown that APPL regulates neuronal migration in the developing insect nervous system, analogous to the roles ascribed to APP family proteins in the mammalian cortex. The comparative simplicity of insect systems offers new opportunities for deciphering the signaling mechanisms by which this enigmatic class of proteins contributes to the formation and function of the nervous system.
Collapse
Affiliation(s)
- Philip F Copenhaver
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Jenna M Ramaker
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA; Department of Pathology, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
18
|
Ito H, Morishita R, Tabata H, Nagata K. Visualizing septin and cell dynamics in mammalian brain slices. Methods Cell Biol 2016; 136:295-309. [PMID: 27473916 DOI: 10.1016/bs.mcb.2016.03.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Correct neuronal migration is crucial for the brain architecture and function. During brain development, excitatory and inhibitory neurons generated in the ventricular zone (VZ) of the dorsal telencephalon and ganglionic medial eminence, respectively, move to their final destinations in tightly regulated spatiotemporal manners. While a variety of morphological methods have been applied to neurobiology, in utero electroporation (IUE) technique is one of the most powerful tools for rapid gain- and loss-of-function studies of brain development. This method enables us to introduce genes of interest into VZ progenitor and stem cells of rodent embryos, and to observe resulting phenotypes such as proliferation, migration, and cell morphology at later stages. In this chapter, we first summarize basic immunohistochemistry methods that are foundations for any advanced methods and showed data on the distribution of Sept6, Sept9, and Sept14 as examples. Then, IUE method is described where functional analyses of Sept14 during brain development are used as examples. We subsequently refer to the in vivo electroporation (IVE)-mediated gene transfer, which is conceptually the same method as IUE, into granule cells of hippocampal dentate gyrus in neonatal mice. Finally, an IUE-based time-lapse imaging method is explained as an advanced technique for the analyses of cortical neuron migration. IUE and IVE methods and the application would contribute greatly to the morphological analyses of septins as well as other molecules to elucidate their neuronal functions and pathophysiological roles in various neurological and psychiatric disorders.
Collapse
Affiliation(s)
- H Ito
- Aichi Human Service Center, Kasugai, Japan
| | | | - H Tabata
- Aichi Human Service Center, Kasugai, Japan
| | - K Nagata
- Aichi Human Service Center, Kasugai, Japan; Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|