1
|
Cui X, Wang Y, Li X, Li H, Yin R, Liu Y, Ma A, Yang S. A Positive Feedback Loop Between CXCL16 and the Inflammatory Factors IL-17A and TGF- β Promotes Large Artery Atherosclerosis by Activating the STAT3/NF- κB Pathway. Cardiovasc Ther 2025; 2025:2973633. [PMID: 40165931 PMCID: PMC11957866 DOI: 10.1155/cdr/2973633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 03/01/2025] [Indexed: 04/02/2025] Open
Abstract
CXC chemokine ligand 16 (CXCL16) expression is often observed in studies related to atherosclerosis (AS). However, the process by which CXCL16 promotes AS is still unknown. CXCL16 has the potential to be a therapeutic target for atherosclerotic disease, and we studied whether CXCL16 expression in carotid atherosclerotic plaques is correlated with plaque stability. The results revealed that the expression level of CXCL16 in unstable plaques was greater than that in stable plaques (p < 0.05). In an in vitro model, CXCL16 promoted the expression of interleukin-17A (IL-17A) and transforming growth factor-β (TGF-β) and the release of STAT3/NF-κB pathway-associated proteins by regulating the expression of IL-17A, TGF-β, and CXCL16. In conclusion, there is a positive feedback regulatory pathway between inflammatory factors and CXCL16 during the progression of carotid AS. Inflammatory factors and CXCL16 promote each other's expression and activate the STAT3/NF-κB pathway to promote carotid AS. CXCL16 is highly expressed in carotid atherosclerotic plaques, affecting plaque stability and further leading to the development of AS-related diseases such as ischaemic stroke. Thus, we hypothesise that CXCL16 is a potential therapeutic target for treating AS and AS-related diseases.
Collapse
Affiliation(s)
- Xuechen Cui
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuan Wang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xuening Li
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hong Li
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ruihua Yin
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yue Liu
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Aijun Ma
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shaonan Yang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Antonczyk A, Kluzek K, Herbich N, Boroujeni ME, Krist B, Wronka D, Karlik A, Przybyl L, Plewinski A, Wesoly J, Bluyssen HAR. Identification of ALEKSIN as a novel multi-IRF inhibitor of IRF- and STAT-mediated transcription in vascular inflammation and atherosclerosis. Front Pharmacol 2025; 15:1471182. [PMID: 39840103 PMCID: PMC11747033 DOI: 10.3389/fphar.2024.1471182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/03/2024] [Indexed: 01/23/2025] Open
Abstract
Cardiovascular diseases (CVDs) include atherosclerosis, which is an inflammatory disease of large and medium vessels that leads to atherosclerotic plaque formation. The key factors contributing to the onset and progression of atherosclerosis include the pro-inflammatory cytokines interferon (IFN)α and IFNγ and the pattern recognition receptor (PRR) Toll-like receptor 4 (TLR4). Together, they trigger the activation of IFN regulatory factors (IRFs) and signal transducer and activator of transcription (STAT)s. Based on their promoting role in atherosclerosis, we hypothesized that the inhibition of pro-inflammatory target gene expression through multi-IRF inhibitors may be a promising strategy to treat CVDs. Using comparative in silico docking of multiple IRF-DNA-binding domain (DBD) models on a multi-million natural compound library, we identified the novel multi-IRF inhibitor, ALEKSIN. This compound targets the DBD of IRF1, IRF2, and IRF8 with the same affinity and simultaneously inhibits the expression of multiple IRF target genes in human microvascular endothelial cells (HMECs) in response to IIFNα and IFNγ. Under the same conditions, ALEKSIN also inhibited the phosphorylation of STATs, potentially through low-affinity STAT-SH2 binding but with lower potency than the known multi-STAT inhibitor STATTIC. This was in line with the common inhibition of ALEKSIN and STATTIC observed on the genome-wide expression of pro-inflammatory IRF/STAT/NF-κB target genes, as well as on the migration of HMECs. Finally, we identified a novel signature of 46 ALEKSIN and STATTIC commonly inhibited pro-atherogenic target genes, which was upregulated in atherosclerotic plaques in the aortas of high-fat diet-fed ApoEKO mice and associated with inflammation, proliferation, adhesion, chemotaxis, and response to lipids. Interestingly, the majority of these genes could be linked to macrophage subtypes present in aortic plaques in HFD-fed LDLR-KO mice. Together, this suggests that ALEKSIN represents a novel class of multi-IRF inhibitors, which inhibits IRF-, STAT-, and NF-κB-mediated transcription and could offer great promise for the treatment of CVDs. Furthermore, the ALEKSIN and STATTIC commonly inhibited pro-inflammatory gene signature could help monitor plaque progression during experimental atherosclerosis.
Collapse
Affiliation(s)
- Aleksandra Antonczyk
- Human Molecular Genetics Research Unit, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Katarzyna Kluzek
- Human Molecular Genetics Research Unit, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Natalia Herbich
- Human Molecular Genetics Research Unit, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Mahdi Eskandarian Boroujeni
- Human Molecular Genetics Research Unit, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Bart Krist
- Human Molecular Genetics Research Unit, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Dorota Wronka
- Laboratory of Mammalian Model Organisms, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Anna Karlik
- Laboratory of Mammalian Model Organisms, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Lukasz Przybyl
- Laboratory of Mammalian Model Organisms, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Adam Plewinski
- Animal Facility, Center for Advanced Technologies, Adam Mickiewicz University, Poznan, Poland
| | - Joanna Wesoly
- Laboratory of High Throughput Technologies, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Hans A. R. Bluyssen
- Human Molecular Genetics Research Unit, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
3
|
Zhang L, Li Y, Yang W, Lin L, Li J, Liu D, Li C, Wu J, Li Y. Protocatechuic aldehyde increases pericyte coverage and mitigates pericyte damage to enhance the atherosclerotic plaque stability. Biomed Pharmacother 2023; 168:115742. [PMID: 37871558 DOI: 10.1016/j.biopha.2023.115742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023] Open
Abstract
Pericyte dysfunction and loss contribute substantially to the destabilization and rupture of atherosclerotic plaques. Protocatechuic aldehyde (PCAD), a natural polyphenol, exerts anti-atherosclerotic effects. However, the effects and mechanisms of this polyphenol on pericyte recruitment, coverage, and pericyte function remain unknown. We here treated apolipoprotein E-deficient mice having high-fat diet-induced atherosclerosis with PCAD. PCAD achieved therapeutic effects similar to rosuvastatin in lowering lipid levels and thus preventing atherosclerosis progression. With PCAD administration, plaque phenotype exhibited higher stability with markedly reduced lesion vulnerability, which is characterized by reduced lipid content and macrophage accumulation, and a consequent increase in collagen deposition. PCAD therapy increased pericyte coverage in the plaques, reduced VEGF-A production, and inhibited intraplaque neovascularization. PCAD promoted pericyte proliferation, adhesion, and migration to mitigate ox-LDL-induced pericyte dysfunction, which thus maintained the capillary network structure and stability. Furthermore, TGFBR1 silencing partially reversed the protective effect exerted by PCAD on human microvascular pericytes. PCAD increased pericyte coverage and impeded ox-LDL-induced damages through TGF-β1/TGFBR1/Smad2/3 signaling. All these novel findings indicated that PCAD increases pericyte coverage and alleviates pericyte damage to improve the stability of atherosclerotic plaques, which is accomplished by regulating TGF-β1/TGFBR1/Smad2/3 signaling in pericytes.
Collapse
Affiliation(s)
- Lei Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yuan Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Wenqing Yang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lin Lin
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jie Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Dekun Liu
- Shool of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chao Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Jibiao Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Yunlun Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Shandong Provincial Engineering Laboratory of Traditional Chinese Medicine Precision Therapy for Cardiovascular Diseases, Jinan 250355, China.
| |
Collapse
|
4
|
Pei Z, Ji J, Gao Y, Wang H, Wu Y, Yang J, Yang Q, Zhang L. Exercise reduces hyperlipidemia-induced cardiac damage in apolipoprotein E-deficient mice via its effects against inflammation and oxidative stress. Sci Rep 2023; 13:9134. [PMID: 37277452 DOI: 10.1038/s41598-023-36145-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/30/2023] [Indexed: 06/07/2023] Open
Abstract
Cardiovascular disease is a high incidence and mortality rate disease worldwide. Exercise training has become an established evidence-based treatment strategy that is beneficial for many cardiovascular diseases. This study aimed to investigate the effects of exercise on hyperlipidemia-induced cardiac damage in apolipoprotein E-deficient (ApoE-/-) mice. Male ApoE-/- mice were randomly divided into the following four groups: normal diet (ND), normal diet + exercise training (ND + E), high-fat diet (HFD), and high-fat diet + exercise training (HFD + E). Exercise training consisted of swimming for 40 min, 5 days/week for 12 weeks. After 12 weeks, histopathological alterations in cardiac tissue and the serum were measured. Furthermore, the NOX4, NRF2, SIRT1, TGF-β, HO-1, collagen III, Smad3, Bax, Bak, Bcl-2, Bcl-xl, IL-1β, IL-6, and IL-18 expression levels were evaluated using immunohistochemistry and western blotting; Results: the serum levels of SIRT1, GSH-Px, and SOD were lower in ApoE-/- HFD mice compared with those in ApoE-/- HFD + E mice. Significant pathological changes were observed in the ApoE-/- HFD + E group compared with those in the ApoE-/- HFD group. Increased levels of oxidative stress, fibrosis, and apoptosis, and decreased antioxidant expression in the ApoE-/- HFD group compared with those in ApoE-/- HFD + E mice. Exercise exerts protective effects against cardiac damage caused by hyperlipidemia.
Collapse
Affiliation(s)
- Zuowei Pei
- Department of Central Laboratory, Central Hospital of Dalian University of Technology, No. 826 Xinan Road, Dalian, 116033, China
- Department of Cardiology, Central Hospital of Dalian University of Technology, Dalian, 116033, China
| | - Jun Ji
- Department of Central Laboratory, Central Hospital of Dalian University of Technology, No. 826 Xinan Road, Dalian, 116033, China
| | - Yanyan Gao
- Department of Central Laboratory, Central Hospital of Dalian University of Technology, No. 826 Xinan Road, Dalian, 116033, China
| | - Heshuang Wang
- Department of Central Laboratory, Central Hospital of Dalian University of Technology, No. 826 Xinan Road, Dalian, 116033, China
| | - Yuanyuan Wu
- Department of Central Laboratory, Central Hospital of Dalian University of Technology, No. 826 Xinan Road, Dalian, 116033, China
| | - Jin Yang
- Department of Central Laboratory, Central Hospital of Dalian University of Technology, No. 826 Xinan Road, Dalian, 116033, China
| | - Qin Yang
- Department of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, 210009, Jiangsu, China
| | - Li Zhang
- Department of Central Laboratory, Central Hospital of Dalian University of Technology, No. 826 Xinan Road, Dalian, 116033, China.
| |
Collapse
|
5
|
Shi G, Lin Y, Wu Y, Zhou J, Cao L, Chen J, Li Y, Tan N, Zhong S. Bacteroides fragilis Supplementation Deteriorated Metabolic Dysfunction, Inflammation, and Aorta Atherosclerosis by Inducing Gut Microbiota Dysbiosis in Animal Model. Nutrients 2022; 14:nu14112199. [PMID: 35684000 PMCID: PMC9183096 DOI: 10.3390/nu14112199] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 02/04/2023] Open
Abstract
Background: The gut microbial ecosystem is an important factor that regulates host health and the onset of chronic diseases, such as inflammatory bowel diseases, obesity, hyperlipidemia, and diabetes mellitus, which are important risk factors for atherosclerosis. However, the links among diet, microbiota composition, and atherosclerotic progression are unclear. Methods and results: Four-week-old mice (-/- mice, C57Bl/6) were randomly divided into two groups, namely, supplementation with culture medium (control, CTR) and Bacteroides fragilis (BFS), and were fed a high-fat diet. The gut microbiota abundance in feces was evaluated using the 16S rDNA cloning library construction, sequencing, and bioinformatics analysis. The atherosclerotic lesion was estimated using Oil Red O staining. Levels of CD36, a scavenger receptor implicated in atherosclerosis, and F4/80, a macrophage marker in small intestine, were quantified by quantitative real-time PCR. Compared with the CTR group, the BFS group showed increased food intake, fasting blood glucose level, body weight, low-density lipoprotein level, and aortic atherosclerotic lesions. BFS dramatically reduced Lactobacillaceae (LAC) abundance and increased Desulfovibrionaceae (DSV) abundance. The mRNA expression levels of CD36 and F4/80 in small intestine and aorta tissue in the BFS group were significantly higher than those in the CTR group. Conclusions: gut microbiota dysbiosis was induced by BFS. It was characterized by reduced LAC and increased DSV abundance and led to the deterioration of glucose/lipid metabolic dysfunction and inflammatory response, which likely promoted aorta plaque formation and the progression of atherosclerosis.
Collapse
Affiliation(s)
- Guoxiang Shi
- Guangdong Provincial Key Laboratory of Coronary, Department of Pharmacy, Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou 510080, China; (G.S.); (Y.L.); (Y.W.); (J.Z.); (J.C.)
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Jiangxi Hypertension Research Institute, Nanchang 335100, China
| | - Yubi Lin
- Guangdong Provincial Key Laboratory of Coronary, Department of Pharmacy, Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou 510080, China; (G.S.); (Y.L.); (Y.W.); (J.Z.); (J.C.)
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523710, China
| | - Yuanyuan Wu
- Guangdong Provincial Key Laboratory of Coronary, Department of Pharmacy, Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou 510080, China; (G.S.); (Y.L.); (Y.W.); (J.Z.); (J.C.)
| | - Jing Zhou
- Guangdong Provincial Key Laboratory of Coronary, Department of Pharmacy, Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou 510080, China; (G.S.); (Y.L.); (Y.W.); (J.Z.); (J.C.)
| | - Lixiang Cao
- School of Medicine, Sun Yat-sen University, Guangzhou 510317, China;
| | - Jiyan Chen
- Guangdong Provincial Key Laboratory of Coronary, Department of Pharmacy, Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou 510080, China; (G.S.); (Y.L.); (Y.W.); (J.Z.); (J.C.)
| | - Yong Li
- Department of Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510317, China
- Correspondence: (Y.L.); (N.T.); (S.Z.); Tel.: +8620-83827812-60298 (S.Z.)
| | - Ning Tan
- Guangdong Provincial Key Laboratory of Coronary, Department of Pharmacy, Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou 510080, China; (G.S.); (Y.L.); (Y.W.); (J.Z.); (J.C.)
- Correspondence: (Y.L.); (N.T.); (S.Z.); Tel.: +8620-83827812-60298 (S.Z.)
| | - Shilong Zhong
- Guangdong Provincial Key Laboratory of Coronary, Department of Pharmacy, Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou 510080, China; (G.S.); (Y.L.); (Y.W.); (J.Z.); (J.C.)
- Correspondence: (Y.L.); (N.T.); (S.Z.); Tel.: +8620-83827812-60298 (S.Z.)
| |
Collapse
|
6
|
The Role of Exercise in Reducing Hyperlipidemia-Induced Neuronal Damage in Apolipoprotein E-Deficient Mice. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5512518. [PMID: 34409103 PMCID: PMC8367587 DOI: 10.1155/2021/5512518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/13/2021] [Accepted: 07/16/2021] [Indexed: 12/14/2022]
Abstract
Hyperlipidemia causes nervous system-related diseases. Exercise training has developed into an established evidence-based treatment strategy that is beneficial for neuronal injury. This study investigated the effect of exercise on hyperlipidemia-induced neuronal injury in apolipoprotein E-deficient (ApoE-/-) mice. Male ApoE-/- mice (age: 8 weeks) were randomly divided into four groups as follows: mice fed a normal diet (ND), normal diet+swimming training (ND+S), high-fat diet (HD), and high-fat diet+swimming (HD+S). Exercise training consisted of swimming for 40 min/day, 5 days/week for 12 weeks. After 12 weeks, we measured serum levels of total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-c). We also evaluated glial fibrillary acidic protein (GFAP) expression levels using immunohistochemistry, real-time PCR, and immunoblotting. In addition, NLR family pyrin domain-containing 3 (NLRP3), interleukin- (IL-) 18, caspase-1, Bax, Bcl-2, and phosphorylated extracellular signal-regulated kinase (p-ERK) expression levels were measured using immunoblotting. Serum levels of TG, TC, and LDL-c were lower in ApoE-/- HD+S mice than in ApoE-/- HD mice. Immunohistochemistry, real-time PCR, and immunoblotting showed increased levels of GFAP in the ApoE-/- HD group. Immunoblotting revealed increased levels of NLRP3, IL-18, caspase-1, Bax, Bcl-2, and p-ERK in the ApoE-/- HD group; however, they were significantly suppressed in the ApoE-/- HD+S group. Therefore, exercise has protective effects against neuronal injury caused by hyperlipidemia.
Collapse
|
7
|
Chen XN, Ge QH, Zhao YX, Guo XC, Zhang JP. Effect of Si-Miao-Yong-An decoction on the differentiation of monocytes, macrophages, and regulatory T cells in ApoE -/- mice. JOURNAL OF ETHNOPHARMACOLOGY 2021; 276:114178. [PMID: 33945857 DOI: 10.1016/j.jep.2021.114178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/03/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Si-Miao-Yong-An decoction (SMYAD) is a renowned traditional Chinese medicinal formula. SMYAD was originally recorded in the "Shi Shi Mi Lu", which was edited by medical scientist Chen Shi'duo during the Qing Dynasty. SMYAD has been traditionally used to treat thromboangiitis obliterans. At present, it is mainly used in clinical applications and research of cardiovascular diseases. AIM OF THE STUDY To explore the effects of SMYAD on the pathological changes of atherosclerosis (AS) and the differentiation of monocytes, macrophages, and regulatory T (Treg) cells in apolipoprotein E knockout (ApoE-/-) mice. MATERIALS AND METHODS Eight C57BL/6J mice, which were fed with normal diet for 16 weeks, were used as control group. Forty ApoE-/- mice were randomly divided into model group, atorvastatin group, SMYAD low-dose (SMYAD-LD) group, SMYAD medium-dose (SMYAD-MD) group, and SMYAD high-dose (SMYAD-HD) group. ApoE-/- mice were fed with western diet (WD) for 8 weeks, and the drugs were continuously administered for 8 weeks. The levels of serum total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) were measured by the esterase method. Morphological changes of the aortic sinus in mice were observed by hematoxylin-eosin (HE) staining, the lipid infiltration of the aorta and aortic sinus were observed by oil red O staining, and the spleen index was calculated. The proportion of Ly6Chigh and Ly6Clow monocyte subsets, macrophages, and their M1 phenotype, as well as Treg cells in spleen were measured by flow cytometry. The expressions of cluster of differentiation 36 (CD36), scavenger receptor A1 (SRA1), lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), F4/80, and fork head frame protein 3 (FOXP3) in aortic sinus were assessed by immunohistochemical staining. The serum levels of oxidized low density lipoprotein (ox-LDL), interleukin-1β (IL-1β), IL-18, transforming growth factor-β (TGF-β), and IL-10 were measured by enzyme-linked immunosorbent assays (ELISA). RESULTS Compared with the model group, the level of serum TC and LDL-C decreased in the SMYAD group, the pathological changes of aortic sinus decreased, and lipid infiltration of aorta and aortic sinus also decreased. These decreases were accompanied by a significant downregulation of CD36, SRA1, and LOX-1. Furthermore, the proportions of Ly6Chigh pro-inflammatory monocyte subsets, macrophages, and their M1 phenotypes in spleen decreased significantly, while the proportion of Treg cells increased. In addition, while the expression of F4/80 decreased, the expression of FOXP3 increased in the aorta sinus. The levels of serum pro-inflammatory factors IL-1β and IL-18 decreased. CONCLUSIONS SMYAD can improve the pathological changes associated with AS and can inhibit lipid deposition in ApoE-/- mice induced by WD diet. The likely mechanism is the inhibition of the differentiation and recruitment of monocytes and macrophages, the promotion of the differentiation and recruitment of Treg cells, as well as the reduction of the secretion of pro-inflammatory factors.
Collapse
MESH Headings
- Animals
- Aorta/metabolism
- Aorta/pathology
- Apolipoproteins E/genetics
- CD36 Antigens/metabolism
- Calcium-Binding Proteins/metabolism
- Carrier Proteins/metabolism
- Cell Differentiation/drug effects
- Cholesterol/blood
- Cholesterol, HDL/blood
- Cholesterol, LDL/blood
- Cytokines/blood
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Forkhead Transcription Factors/metabolism
- Lipoproteins, LDL/blood
- Macrophages/drug effects
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Monocytes/drug effects
- Plaque, Atherosclerotic/drug therapy
- Plaque, Atherosclerotic/metabolism
- Plaque, Atherosclerotic/pathology
- Receptors, G-Protein-Coupled/metabolism
- Scavenger Receptors, Class E/metabolism
- Spleen/drug effects
- Spleen/metabolism
- T-Lymphocytes, Regulatory/drug effects
- Triglycerides/blood
- Mice
Collapse
Affiliation(s)
- Xin-Nong Chen
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qi-Hui Ge
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi-Xuan Zhao
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiao-Chen Guo
- Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jun-Ping Zhang
- Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
8
|
Chen DY, Sawamura T, Dixon RAF, Sánchez-Quesada JL, Chen CH. Autoimmune Rheumatic Diseases: An Update on the Role of Atherogenic Electronegative LDL and Potential Therapeutic Strategies. J Clin Med 2021; 10:1992. [PMID: 34066436 PMCID: PMC8124242 DOI: 10.3390/jcm10091992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/20/2021] [Accepted: 05/02/2021] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis has been linked with an increased risk of atherosclerotic cardiovascular disease (ASCVD). Autoimmune rheumatic diseases (AIRDs) are associated with accelerated atherosclerosis and ASCVD. However, the mechanisms underlying the high ASCVD burden in patients with AIRDs cannot be explained only by conventional risk factors despite disease-specific factors and chronic inflammation. Nevertheless, the normal levels of plasma low-density lipoprotein (LDL) cholesterol observed in most patients with AIRDs do not exclude the possibility of increased LDL atherogenicity. By using anion-exchange chromatography, human LDL can be divided into five increasingly electronegative subfractions, L1 to L5, or into electropositive and electronegative counterparts, LDL (+) and LDL (-). Electronegative L5 and LDL (-) have similar chemical compositions and can induce adverse inflammatory reactions in vascular cells. Notably, the percentage of L5 or LDL (-) in total LDL is increased in normolipidemic patients with AIRDs. Electronegative L5 and LDL (-) are not recognized by the normal LDL receptor but instead signal through the lectin-like oxidized LDL receptor 1 (LOX-1) to activate inflammasomes involving interleukin 1β (IL-1β). Here, we describe the detailed mechanisms of AIRD-related ASCVD mediated by L5 or LDL (-) and discuss the potential targeting of LOX-1 or IL-1β signaling as new therapeutic modalities for these diseases.
Collapse
Affiliation(s)
- Der-Yuan Chen
- Translational Medicine Center, China Medical University Hospital, Taichung 404, Taiwan;
- Rheumatology and Immunology Center, China Medical University Hospital, Taichung 404, Taiwan
- College of Medicine, China Medical University, Taichung 404, Taiwan
| | - Tatsuya Sawamura
- Department of Molecular Pathophysiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan;
- Department of Life Innovation, Institute for Biomedical Sciences, Shinshu University, Matsumoto 390-8621, Japan
| | - Richard A. F. Dixon
- Molecular Cardiology Research Laboratories, Texas Heart Institute, Houston, TX 77030, USA;
| | - José Luis Sánchez-Quesada
- Cardiovascular Biochemistry Group, Biomedical Research Institute IIB Sant Pau, 08041 Barcelona, Spain;
- CIBER of Diabetes and Metabolic Diseases (CIBERDEM), 08041 Barcelona, Spain
| | - Chu-Huang Chen
- Department of Life Innovation, Institute for Biomedical Sciences, Shinshu University, Matsumoto 390-8621, Japan
- Vascular and Medicinal Research, Texas Heart Institute, Houston, TX 77030, USA
- New York Heart Research Foundation, Mineola, NY 11501, USA
| |
Collapse
|
9
|
Peng H, Tang J, Zhao S, Shen L, Xu D. Inhibition of Soluble Epoxide Hydrolase in Macrophages Ameliorates the Formation of Foam Cells - Role of Heme Oxygenase-1. Circ J 2019; 83:2555-2566. [PMID: 31666457 DOI: 10.1253/circj.cj-19-0352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2024]
Abstract
BACKGROUND Accumulation of foam cells in the neointima represents an early stage of atherosclerosis. 1-trifluoromethoxyphenyl-3-(1-propionylpiperidine-4-yl) urea (TPPU), a novel soluble epoxide hydrolase inhibitor (sEHi), effectively elevates epoxyeicosatrienoic acid (EET) levels. The effects of EETs on macrophages foam cells formation are poorly understood. METHODS AND RESULTS Incubation of foam cells with TPPU markedly ameliorate cholesterol deposition in oxidized low-density lipoprotein (oxLDL)-loaded macrophages by increasing the levels of EETs. Notably, TPPU treatment significantly inhibits oxLDL internalization and promotes cholesterol efflux. The elevation of EETs results in a decrease of class A scavenger receptor (SR-A) expression via downregulation of activator protein 1 (AP-1) expression. Additionally, TPPU selectively increases protein but not the mRNA level of ATP-binding cassette transporter A1 (ABCA1) through the reduction of calpain activity that stabilizes the protein. Moreover, TPPU treatment reduces the cholesterol content of macrophages and inhibits atherosclerotic plaque formation in apolipoprotein E-deficient mice. These changes induced by TPPU are dependent on heme oxygenase-1 (HO-1) activation. CONCLUSIONS The present study findings elucidate a precise mechanism of regulating cholesterol uptake and efflux in macrophages, which involves the prevention of atherogenesis by increasing the levels of EETs with TPPU.
Collapse
Affiliation(s)
| | - Jianjun Tang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University
| | - Shuiping Zhao
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University
| | - Li Shen
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University
| | - Danyan Xu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University
| |
Collapse
|
10
|
Shibata MA, Harada-Shiba M, Shibata E, Tosa H, Matoba Y, Hamaoka H, Iinuma M, Kondo Y. Crude α-Mangostin Suppresses the Development of Atherosclerotic Lesions in Apoe-Deficient Mice by a Possible M2 Macrophage-Mediated Mechanism. Int J Mol Sci 2019; 20:ijms20071722. [PMID: 30959963 PMCID: PMC6480575 DOI: 10.3390/ijms20071722] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 12/14/2022] Open
Abstract
Lifestyle choices play a significant role in the etiology of atherosclerosis. Male Apoe−/− mice that develop spontaneous atherosclerotic lesions were fed 0%, 0.3%, and 0.4% mangosteen extracts, composed largely of α-mangostin (MG), for 17 weeks. Body weight gains were significantly decreased in both MG-treated groups compared to the control, but the general condition remained good throughout the study. The levels of total cholesterol (decreased very-low-density lipoprotein in lipoprotein profile) and triglycerides decreased significantly in the MG-treated mice in conjunction with decreased hepatic HMG-CoA synthase and Fatty acid transporter. Additionally, increased serum lipoprotein lipase activity and histopathology further showed a significant reduction in atherosclerotic lesions at both levels of MG exposure. Real-time PCR analysis for macrophage indicators showed a significant elevation in the levels of Cd163, an M2 macrophage marker, in the lesions of mice receiving 0.4% MG. However, the levels of Nos2, associated with M1 macrophages, showed no change. In addition, quantitative immunohistochemical analysis of macrophage subtypes showed a tendency for increased M2 populations (CD68+/CD163+) in the lesions of mice given 0.4% MG. In further analysis of the cytokine-polarizing macrophage subtypes, the levels of Interleukin13 (Il13), associated with M2 polarization, were significantly elevated in lesions exposed to 0.4% MG. Thus, MG could suppress the development of atherosclerosis in Apoe−/− mice, possibly through an M2 macrophage-mediated mechanism.
Collapse
Affiliation(s)
- Masa-Aki Shibata
- Department of Anatomy and Cell Biology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan.
| | - Mariko Harada-Shiba
- Department of Molecular Innovation in Lipidology, National Cerebral & Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan.
| | - Eiko Shibata
- Department of Molecular Innovation in Lipidology, National Cerebral & Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan.
| | | | - Yoshinobu Matoba
- Ecoresource Institute Co., Ltd., Minokamo, Gifu 505-0042, Japan.
| | - Hitomi Hamaoka
- Department of Anatomy and Cell Biology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan.
| | | | - Yoichi Kondo
- Department of Anatomy and Cell Biology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan.
| |
Collapse
|
11
|
Zhang X, Liu H, Hao Y, Xu L, Zhang T, Liu Y, Guo L, Zhu L, Pei Z. Coenzyme Q10 protects against hyperlipidemia-induced cardiac damage in apolipoprotein E-deficient mice. Lipids Health Dis 2018; 17:279. [PMID: 30526612 PMCID: PMC6286539 DOI: 10.1186/s12944-018-0928-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/26/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Hyperlipidemia is a well-established risk factor for cardiac damage, which can lead to cardiovascular diseases. Many studies have shown that Coenzyme Q10(CoQ10) protects against cardiac damage in vivo. The aim of this study was to investigate the possible protective effects of CoQ10 against cardiac damage in apolipoprotein E-deficient (ApoE-/-) mice. METHODS Eight-week-old male C57BL/6 and ApoE-/- mice were randomly divided into four groups: C57BL/6 mice fed a normal diet (C57BL/6 group); C57BL/6 mice fed a normal diet + CoQ10 (C57BL/6 + CoQ10 group); ApoE-/- mice fed a high-fat diet (ApoE-/- HD group), and ApoE-/- mice fed a high-fat diet + CoQ10 (ApoE-/- HD + CoQ10 group). All groups were fed the different diets for 16 weeks. Blood samples were obtained from the inferior vena cava and collected in serum tubes. The samples were then stored at - 80 °C until used. Coronal sections of heart tissues were fixed in 10% formalin and then embedded in paraffin for histological evaluation. The remainder of the heart tissues was snap-frozen in liquid nitrogen for mRNA or immunohistochemical analysis. RESULTS The metabolic parameters such as total cholesterol (TC), low-density lipoprotein-cholesterol (LDL-c), and triglycerides (TG) levels were lower in ApoE-/-HD + CoQ10 mice than in ApoE-/- HD mice. There were significant pathophysiological changes (H&E, PAS, Masson and CD68 staining) in ApoE-/- mice in the HD group compared with those in the HD + CoQ10 group. CoQ10 reduced HD-induced cardiac tissue damage via autophagy (p62 and LC3), as evidenced by immunoblotting, immunohistochemistry, and RT-qPCR. CoQ10 also inhibited inflammation (IL-6 and TNF-α) gene expression in ApoE-/- mice. CONCLUSIONS These results indicate that CoQ10 is a potential therapeutic target for cardiac damage caused by hyperlipidemia.
Collapse
Affiliation(s)
- Xiaoqing Zhang
- Department of Infection, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, China
| | - Hongyang Liu
- Department of Heart Intensive Care Unit, the First Affiliated Hospital of Dalian Medical University, No.193 Lianhe Road, Dalian, China
| | - Yuhua Hao
- Department of Infection, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, China
| | - Lulu Xu
- Department of Infection, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, China
| | - Tiemei Zhang
- Department of Infection, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, China
| | - Yingshu Liu
- Department of Endocrinology, Dalian Municipal Central Hospital, 42 Xuegong Road, Dalian, China
| | - Lipeng Guo
- Department of Cardiology, Dalian Third People' Hospital Affiliated to Dalian Medical University, No.40 Qianshan Road, Dalian, China
| | - Liyue Zhu
- Rehabilitation Center, Zhejiang Hospital, 12 Lingyin Road, Hangzhou, Zhejiang, China
| | - Zuowei Pei
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, China.
| |
Collapse
|
12
|
Li Y, Liu J, Huang JW, Song JC, Ma ZL, Shi HB. In vivo MRI detection of atherosclerosis in ApoE-deficient mice by using tenascin-C-targeted USPIO. Acta Radiol 2018; 59:1431-1437. [PMID: 29566551 DOI: 10.1177/0284185118762613] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Atherosclerosis is the main cause of cardiovascular and cerebrovascular diseases. Non-invasive molecular imaging to detect and characterize the plaques is essential for reducing life-threatening cardiovascular events. PURPOSE To investigate the possibility of the anti-tenascin-C-USPIO specific probe as a molecular marker of atherosclerotic plaques detected by 7.0-T magnetic resonance imaging (MRI). MATERIAL AND METHODS Twenty ApoE-/- mice fed with a high fat diet were used for detecting the aorta arch atherosclerotic plaques by 7.0-T MRI at 16 and 24 weeks. Ten mice in the targeted group were injected with anti-tenascin-C-USPIO and another ten in the control group were injected with pure USPIO (n = 5 each time point in each group). Histopathologic examination was used to evaluate the plaques and immunohistochemistry analysis was used to compare tenascin-C expression. RESULTS The relative signal intensity (rSI) changes of the targeted group decreased more than those of the control group (16 weeks: -15.65 ± 0.78% vs. -3.43 ± 2.57%; 24 weeks: -26.38 ± 1.54% vs. -11.12 ± 1.60%, respectively; P < 0.05). Histopathological analyses demonstrated visible atherosclerotic plaques formation and development over time from 16 weeks to 24 weeks. Tenascin-C expression of the plaques at 24 weeks was higher than that at 16 weeks (0.22 ± 0.04 vs. 0.13 ± 0.02, P < 0.05). The MR images correlated well with the progression of atherosclerotic plaques. CONCLUSION Tenascin-C expression increased with the progression of atherosclerosis. Anti-tenascin-C-USPIO could provide a useful molecular imaging tool for detecting and monitoring atherosclerotic plaques by MRI.
Collapse
Affiliation(s)
- Yan Li
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Jun Liu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Jun-wen Huang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Jia-cheng Song
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Zhan-long Ma
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Hai-bin Shi
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| |
Collapse
|
13
|
Guan L, Geng X, Shen J, Yip J, Li F, Du H, Ji Z, Ding Y. PM2.5 inhalation induces intracranial atherosclerosis which may be ameliorated by omega 3 fatty acids. Oncotarget 2018; 9:3765-3778. [PMID: 29423081 PMCID: PMC5790498 DOI: 10.18632/oncotarget.23347] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/26/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Intracranial atherosclerosis (ICA) a major health problem. This study investigated whether inhalation of fine airborne particulate matters (PM2.5) causes ICA and whether omega-3 fatty acids (O3FA) attenuated the development of ICA. RESULTS Twelve but not 6 week exposure significantly increased triglycerides (TG) in normal chow diet (NCD), while PM2.5 enhanced all lipid profiles (TG, low density lipoprotein (LDL) and cholesterol (CHO)) after both 6 and 12-week exposure with high-cholesterol diet (HCD). PM2.5 exposure for 12 but not 6 weeks significantly induced middle cerebral artery (MCA) narrowing and thickening, in association with the enhanced expression of inflammatory cytokines, (interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α), monocyte chemoattractant protein-1 (MCP-1), interferon gamma (IFN-γ)), vascular cell adhesion molecule 1 (VCAM-1) and inducible nitric oxide synthase (iNOS). O3FA significantly attenuated vascular alterations, even without favorable changes in lipid profiles, in association with reduced expression of IL-6, TNF-α, MCP-1, IFN-γ, VCAM-1 and iNOS in brain vessels. CONCLUSIONS PM2.5 exposure for 12 weeks aggravates ICA in a dietary model (HCD + short-term L-NAME), which may be mediated by vascular inflammation. O3FA dietary supplementation prevents ICA development and inflammatory reaction in cerebral vessels. METHODS Adult Sprague-Dawly rats were under filtered air (FA) or PM2.5 exposure with NCD or HCD for 6 or 12 weeks. Half of the HCD rats were treated with O3FA (5 mg/kg/day) by gavage. A total of 600 mg NG-nitro-L-arginine methyl ester (L-NAME, 3 mg/mL) per rat was administered over two weeks as supplementation in the HCD group. Blood lipids, including LDL, CHO, TG and high density lipoprotein (HDL), were measured at 6 and 12 weeks. ICA was determined by lumen diameter and thickness of the MCA. Inflammatory markers, IL-6, TNF-α, MCP-1, IFN-γ, VCAM-1 and iNOS were assessed by real-time PCR for mRNA and Western blot for protein expression.
Collapse
Affiliation(s)
- Longfei Guan
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Tongzhou Qu, China
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Tongzhou Qu, China
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Tongzhou Qu, China
| | - Jiamei Shen
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Tongzhou Qu, China
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - James Yip
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Fengwu Li
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Tongzhou Qu, China
| | - Huishan Du
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Tongzhou Qu, China
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Tongzhou Qu, China
| | - Zhili Ji
- Department of General Surgery, Beijing Luhe Hospital, Capital Medical University, Tongzhou Qu, China
| | - Yuchuan Ding
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Tongzhou Qu, China
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
14
|
Wang D, Wu Y, Liu C, Wang Y, Li Y, Luo L, Zhao Y, Ke Z, Huang C, Fan S. Ethyl acetate extract of crabapple fruit is the cholesterol-lowering fraction. RSC Adv 2017. [DOI: 10.1039/c7ra06585j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hypercholesterolemia is highly associated with cardiovascular diseases (CVDs) such as atherosclerosis.
Collapse
Affiliation(s)
- Dongshan Wang
- School of Pharmacy
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
| | - Yingchun Wu
- School of Pharmacy
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
| | - Chuhe Liu
- School of Pharmacy
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
| | - Yahui Wang
- School of Pharmacy
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
| | - Yin Li
- School of Pharmacy
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
| | - Lingling Luo
- School of Pharmacy
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
| | - Yuanyuan Zhao
- School of Pharmacy
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
| | - Zunli Ke
- School of Pharmacy
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
| | - Cheng Huang
- School of Pharmacy
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
| | - Shengjie Fan
- School of Pharmacy
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
| |
Collapse
|