1
|
Saeed M, Tasleem M, Shoaib A, Alabdallah NM, Alam MJ, El Asmar Z, Jamal QMS, Bardakci F, Ansari IA, Ansari MJ, Wang F, Badraoui R, Yadav DK. Investigation of antidiabetic properties of shikonin by targeting aldose reductase enzyme: In silico and in vitro studies. Biomed Pharmacother 2022; 150:112985. [PMID: 35658219 DOI: 10.1016/j.biopha.2022.112985] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 02/08/2023] Open
Abstract
Diabetes is a complicated multifactorial disorder in which the patient generally observes polyphagia, polydipsia, and polyuria due to uncontrolled growth in blood sugar levels. For its management, the pharmaceutical industry is working day and night to find a better drug with no or least toxicity. That's why nowadays a more focused branch is to use herbal phytoconstituents for its prevention. Shikonin is a naphthoquinone natural dye that is isolated from the plants of the Boraginaceae family and has proven its role as an anti-cancer, anti-inflammatory, and anti-gonadotrophic agent. In our previous study, we have published its anti-diabetic action by inhibiting the enzyme protein tyrosine phosphatase 1B. In this study, we were more focused on finding out the role of Shikonin and its pharmacophores by inhibiting the action of aldose reductase (AR) enzyme. The study was conducted using pharmacophore modeling, molecular docking, and molecular dynamics simulation studies. The absorption, distribution, metabolism, excretion (ADME), and toxicity profile were also evaluated in this study. Along with all the computational biology parameters we also focused on the in vitro activity and kinetic study of inhibitory activity of Shikonin against aldose reductase.
Collapse
Affiliation(s)
- Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail 81451, Saudi Arabia.
| | - Munazzah Tasleem
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Ambreen Shoaib
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, P.O. Box No. 114, Jazan 45142, Saudi Arabia
| | - Nadiyah M Alabdallah
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Md Jahoor Alam
- Department of Biology, College of Sciences, University of Hail, Hail 81451, Saudi Arabia
| | - Zeina El Asmar
- Department of Biology, College of Sciences, University of Hail, Hail 81451, Saudi Arabia
| | - Qazi Mohammad Sajid Jamal
- Department of Health Informatics, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
| | - Fevzi Bardakci
- Department of Biology, College of Sciences, University of Hail, Hail 81451, Saudi Arabia
| | | | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad, Mahatma Jyotiba Phule Rohilkhand University, Bareilly 244001, India
| | - Feng Wang
- Department of Medical Oncology, Cancer Center, West China Hospital, West China Medical School, Sichuan University, Sichuan, PR China.
| | - Riadh Badraoui
- Department of Biology, College of Sciences, University of Hail, Hail 81451, Saudi Arabia; Section of Histology-Cytology, Medicine Faculty of Tunis, University of Tunis El Manar, La Rabta-Tunis, 1007, Tunisia
| | - Dharmendra Kumar Yadav
- Department of Pharmacy and Gachon Institute of Pharmaceutical Science, College of Pharmacy, Gachon University, Yeonsu-gu, Incheon 21924, South Korea.
| |
Collapse
|
2
|
Diao Z, Han Y, Chen Y, Zhang R, Li J. The clinical utility of microsatellite instability in colorectal cancer. Crit Rev Oncol Hematol 2020; 157:103171. [PMID: 33290824 DOI: 10.1016/j.critrevonc.2020.103171] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/17/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
Microsatellite instability (MSI) became the spotlight after the US FDA' s approval of MSI as an indication of immunotherapy for cancer patients. Immunohistochemical detection of loss of MMR proteins and PCR amplification of specific microsatellite repeats are widely used in clinical practice. Next-generation sequencing is a promising tool for identifying MSI patients. Circulating tumour DNA provides a convenient alternative when tumour tissue is unavailable. MSI detection is an effective tool to screen for Lynch syndrome. Early-stage CRC patients with MSI generally have a better prognosis and a reduced response to chemotherapy; instead, they are more likely to respond to immunotherapy. In this review, we aimed to assess the clinical utility of MSI as a biomarker in CRC. We will provide an overview of the available methods for evaluation of the analytical validity of MSI detection and elaborate the evidence on the clinical validity of MSI in the management of CRC patients.
Collapse
Affiliation(s)
- Zhenli Diao
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China; Peking University Fifth School of Clinical Medicine, Beijing Hospital, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing, PR China
| | - Yanxi Han
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing, PR China
| | - Yuqing Chen
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China; Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing, PR China
| | - Rui Zhang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China; Beijing Engineering Research Center of Laboratory Medicine, Beijing, PR China.
| | - Jinming Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China.
| |
Collapse
|
3
|
RASAL1 and ROS1 Gene Variants in Hereditary Breast Cancer. Cancers (Basel) 2020; 12:cancers12092539. [PMID: 32906649 PMCID: PMC7563829 DOI: 10.3390/cancers12092539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/27/2020] [Accepted: 09/03/2020] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Breast cancer is the second leading cause of death in women. Identifying novel genetic factors conferring BC predisposition is crucial to predict who is at increased risk of developing the disease, allowing for early detection and therapy, and optimized patient management. We identified germline pathogenic variants in familial breast cancer patients in ROS1 and RASAL1 genes. Further analysis in independent patient group will help understanding the role of these novel genes in breast cancer predisposition. Abstract Breast cancer (BC) is the second leading cause of death in women. BC patients with family history or clinical features suggestive of inherited predisposition are candidate to genetic testing to determine whether a hereditary cancer syndrome is present. We aimed to identify new predisposing variants in familial BC patients using next-generation sequencing approaches. We performed whole exome sequencing (WES) in first-degree cousin pairs affected by hereditary BC negative at the BRCA1/2 (BReast CAncer gene 1/2) testing. Targeted analysis, for the genes resulting mutated via WES, was performed in additional 131 independent patients with a suspected hereditary predisposition (negative at the BRCA1/2 testing). We retrieved sequencing data for the mutated genes from WES of 197 Italian unrelated controls to perform a case-controls collapsing analysis. We found damaging variants in NPL (N-Acetylneuraminate Pyruvate Lyase), POLN (DNA Polymerase Nu), RASAL1 (RAS Protein Activator Like 1) and ROS1 (ROS Proto-Oncogene 1, Receptor Tyrosine Kinase), shared by the corresponding cousin pairs. We demonstrated that the splice site alterations identified in NPL and ROS1 (in two different pairs, respectively) impaired the formation of the correct transcripts. Target analysis in additional patients identified novel and rare damaging variants in RASAL1 and ROS1, with a significant allele frequency increase in cases. Moreover, ROS1 achieved a significantly higher proportion of variants among cases in comparison to our internal control database of Italian subjects (p = 0.0401). Our findings indicate that germline variants in ROS1 and RASAL1 might confer susceptibility to BC.
Collapse
|
4
|
Willems AP, van Engelen BGM, Lefeber DJ. Genetic defects in the hexosamine and sialic acid biosynthesis pathway. Biochim Biophys Acta Gen Subj 2015; 1860:1640-54. [PMID: 26721333 DOI: 10.1016/j.bbagen.2015.12.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/18/2015] [Accepted: 12/19/2015] [Indexed: 01/10/2023]
Abstract
BACKGROUND Congenital disorders of glycosylation are caused by defects in the glycosylation of proteins and lipids. Classically, gene defects with multisystem disease have been identified in the ubiquitously expressed glycosyltransferases required for protein N-glycosylation. An increasing number of defects are being described in sugar supply pathways for protein glycosylation with tissue-restricted clinical symptoms. SCOPE OF REVIEW In this review, we address the hexosamine and sialic acid biosynthesis pathways in sugar metabolism. GFPT1, PGM3 and GNE are essential for synthesis of nucleotide sugars uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) and cytidine-5'-monophospho-N-acetylneuraminic acid (CMP-sialic acid) as precursors for various glycosylation pathways. Defects in these enzymes result in contrasting clinical phenotypes of congenital myasthenia, immunodeficiency or adult-onset myopathy, respectively. We therefore discuss the biochemical mechanisms of known genetic defects in the hexosamine and CMP-sialic acid synthesis pathway in relation to the clinical phenotypes. MAJOR CONCLUSIONS Both UDP-GlcNAc and CMP-sialic acid are important precursors for diverse protein glycosylation reactions and for conversion into other nucleotide-sugars. Defects in the synthesis of these nucleotide sugars might affect a wide range of protein glycosylation reactions. Involvement of multiple glycosylation pathways might contribute to disease phenotype, but the currently available biochemical information on sugar metabolism is insufficient to understand why defects in these pathways present with tissue-specific phenotypes. GENERAL SIGNIFICANCE Future research on the interplay between sugar metabolism and different glycosylation pathways in a tissue- and cell-specific manner will contribute to elucidation of disease mechanisms and will create new opportunities for therapeutic intervention. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.
Collapse
Affiliation(s)
- Anke P Willems
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Centre, Box 9101, 6500 HB Nijmegen, The Netherlands; Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboudumc Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Baziel G M van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Centre, Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Dirk J Lefeber
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Centre, Box 9101, 6500 HB Nijmegen, The Netherlands; Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboudumc Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.
| |
Collapse
|
5
|
Ji W, Sun W, Feng J, Song T, Zhang D, Ouyang P, Gu Z, Xie J. Characterization of a novel N-acetylneuraminic acid lyase favoring industrial N-acetylneuraminic acid synthesis. Sci Rep 2015; 5:9341. [PMID: 25799411 PMCID: PMC5380162 DOI: 10.1038/srep09341] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 02/26/2015] [Indexed: 01/22/2023] Open
Abstract
N-Acetylneuraminic acid lyase (NAL, E.C. number 4.1.3.3) is a Class I aldolase that catalyzes the reversible aldol cleavage of N-acetylneuraminic acid (Neu5Ac) from pyruvate and N-acetyl-D-mannosamine (ManNAc). Due to the equilibrium favoring Neu5Ac cleavage, the enzyme catalyzes the rate-limiting step of two biocatalytic reactions producing Neu5Ac in industry. We report the biochemical characterization of a novel NAL from a “GRAS” (General recognized as safe) strain C. glutamicum ATCC 13032 (CgNal). Compared to all previously reported NALs, CgNal exhibited the lowest kcat/Km value for Neu5Ac and highest kcat/Km values for ManNAc and pyruvate, which makes CgNal favor Neu5Ac synthesis the most. The recombinant CgNal reached the highest expression level (480 mg/L culture), and the highest reported yield of Neu5Ac was achieved (194 g/L, 0.63 M). All these unique properties make CgNal a promising biocatalyst for industrial Neu5Ac biosynthesis. Additionally, although showing the best Neu5Ac synthesis activity among the NAL family, CgNal is more related to dihydrodipicolinate synthase (DHDPS) by phylogenetic analysis. The activities of CgNal towards both NAL's and DHDPS' substrates are fairly high, which indicates CgNal a bi-functional enzyme. The sequence analysis suggests that CgNal might have adopted a unique set of residues for substrates recognition.
Collapse
Affiliation(s)
- Wenyan Ji
- 1] State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing, PR China [2] College of Life Science and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, PR China [3] National Engineering Technique Research Center for Biotechnology, Nanjing, PR China
| | - Wujin Sun
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, United States
| | - Jinmei Feng
- Department of Pathogenic Biology, School of Medicine, Jianghan University, Wuhan, China
| | - Tianshun Song
- College of Life Science and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, PR China
| | - Dalu Zhang
- International Cooperation Division, China National Center for Biotechnology Development, Beijing, PR China
| | - Pingkai Ouyang
- 1] State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing, PR China [2] College of Life Science and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, PR China [3] National Engineering Technique Research Center for Biotechnology, Nanjing, PR China
| | - Zhen Gu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, United States
| | - Jingjing Xie
- 1] State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing, PR China [2] College of Life Science and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, PR China [3] National Engineering Technique Research Center for Biotechnology, Nanjing, PR China
| |
Collapse
|
6
|
Webber EM, Kauffman TL, O'Connor E, Goddard KAB. Systematic review of the predictive effect of MSI status in colorectal cancer patients undergoing 5FU-based chemotherapy. BMC Cancer 2015; 15:156. [PMID: 25884995 PMCID: PMC4376504 DOI: 10.1186/s12885-015-1093-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 02/20/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND We systematically reviewed the evidence for the interaction of microsatellite instability status (MSI) and treatment with 5FU in colorectal cancer to determine how well MSI status predicts health outcomes in patients undergoing 5FU-based chemotherapy. METHODS We conducted a search of four electronic databases through June 2013. We considered studies that included both colorectal cancer patients treated with 5FU-based chemotherapy and untreated patients with survival outcomes presented by MSI status. RESULTS We identified 16 studies for qualitative analysis (9,212 patients) with 14 studies eligible for meta-analysis. The microsatellite stable (MSS) group showed an effect of 5FU treatment on disease-free survival (HR of 0.62 [95% CI: 0.54, 0.71]) and overall survival (HR of 0.65 [95% CI: 0.54, 0.79]), indicating that MSS patients who received 5FU treatment had longer survival than MSS patients who were untreated. The effect of 5FU treatment was not statistically significant for microsatellite high (MSI-H) patients for disease-free survival (HR of 0.84 [95% CI: 0.53, 1.32]) or overall survival (HR 0.66 [95% CI: 0.43, 1.03]). However, the summarized point estimates of the effects of 5FU treatment for the MSS and MSI-H groups were not different at a statistically significant level. CONCLUSIONS Our analyses indicate that treatment with 5FU-based chemotherapy improves disease-free and overall survival in CRC patients, but that there is no difference in the effect of treatment based on MSI status. Therefore, the use of MSI status to guide treatment decisions about the use of 5FU treatment for CRC has no significant benefits for patients.
Collapse
Affiliation(s)
- Elizabeth M Webber
- Center for Health Research - Kaiser Permanente Northwest, 3800 N Interstate Avenue, Portland, OR, 97227, USA.
| | - Tia L Kauffman
- Center for Health Research - Kaiser Permanente Northwest, 3800 N Interstate Avenue, Portland, OR, 97227, USA.
| | - Elizabeth O'Connor
- Center for Health Research - Kaiser Permanente Northwest, 3800 N Interstate Avenue, Portland, OR, 97227, USA. Elizabeth.O'
| | - Katrina A B Goddard
- Center for Health Research - Kaiser Permanente Northwest, 3800 N Interstate Avenue, Portland, OR, 97227, USA.
| |
Collapse
|
7
|
Inhibition of NarL of Mycobacterium Tuberculosis: an in silico approach. Interdiscip Sci 2014; 6:292-9. [DOI: 10.1007/s12539-014-0179-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 12/27/2012] [Accepted: 03/22/2013] [Indexed: 10/24/2022]
|
8
|
Foley BL, Tessier MB, Woods RJ. Carbohydrate force fields. WILEY INTERDISCIPLINARY REVIEWS. COMPUTATIONAL MOLECULAR SCIENCE 2012; 2:652-697. [PMID: 25530813 PMCID: PMC4270206 DOI: 10.1002/wcms.89] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Carbohydrates present a special set of challenges to the generation of force fields. First, the tertiary structures of monosaccharides are complex merely by virtue of their exceptionally high number of chiral centers. In addition, their electronic characteristics lead to molecular geometries and electrostatic landscapes that can be challenging to predict and model. The monosaccharide units can also interconnect in many ways, resulting in a large number of possible oligosaccharides and polysaccharides, both linear and branched. These larger structures contain a number of rotatable bonds, meaning they potentially sample an enormous conformational space. This article briefly reviews the history of carbohydrate force fields, examining and comparing their challenges, forms, philosophies, and development strategies. Then it presents a survey of recent uses of these force fields, noting trends, strengths, deficiencies, and possible directions for future expansion.
Collapse
Affiliation(s)
- B. Lachele Foley
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Matthew B. Tessier
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Robert J. Woods
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
- School of Chemistry, National University of Ireland, Galway, Ireland
| |
Collapse
|
9
|
Dani KGS, Hatti KS, Ravikumar P, Kush A. Structural and functional analyses of a saturated acyl ACP thioesterase, type B from immature seed tissue of Jatropha curcas. PLANT BIOLOGY (STUTTGART, GERMANY) 2011; 13:453-461. [PMID: 21489096 DOI: 10.1111/j.1438-8677.2010.00410.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The distinguishing structural and functional domains of plant acyl-acyl carrier protein (ACP) thioesterases and their complex interaction with the ACP-linked fatty acid substrate complex have remained elusive. E. coli based heterologous expression and characterisation of many plant thioesterases reported so far have not been extended and linked to in silico modelling studies to explain the diversity in plant thioesterase substrate specificities. In this study, a thioesterase cDNA isolated from immature seed tissues of Jatropha curcas was found to be type B and specific to stearoyl acyl ACP when expressed in E. coli K27fadD88, a lipid utilisation mutant. Homology modelling and molecular docking of a selected region of the isolated JcFatB protein predicted that it had high affinity towards both stearate (18:0) and palmitate (16:0). Structural analysis of the sequence confirmed the presence of a transit peptide that is processed in multiple steps. The enzyme is localised in the chloroplasts and has an N-terminal inner chloroplast transmembrane domain characteristic of type B plant thioesterases. Docking of ligands with JcFatB and its comparison with a modelled Jatropha thioesterase type A provided further evidence for native substrate preferences of Jatropha thioesterases. This study provides essential clues to develop future methods for large-scale bacterial production of free fatty acids and for design of strategies to modulate the seed oil composition in this important non-edible, seed oil plant.
Collapse
|
10
|
Zhang JL, Zheng QC, Zhang HX. Theoretical improvement of the specific inhibitor of human carbonic anhydrase VII. Comput Biol Chem 2011; 35:50-6. [PMID: 21320803 DOI: 10.1016/j.compbiolchem.2011.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 01/12/2011] [Accepted: 01/13/2011] [Indexed: 10/18/2022]
Abstract
The selectivity of a known arylsulfonamides inhibitor for two isozymes II and VII of human carbonic anhydrases (hCAs) was studied by homology modeling, molecular docking and molecular dynamics methods. The results show that the selectivity of the inhibitor for two isozymes is due to the different side chain lengths between N67 of hCA II and Q64 of hCA VII. One more methene group in the side chain of Q64 of hCA VII makes it possible to form the hydrogen bond with the bromide atom of the known inhibitor. From the point of view, the modification to the known inhibitor was performed to obtain an inhibitor with higher selectivity. The complex conformations of the new designed inhibitor and two isozymes designate the formation of the hydrogen bond between the newly added group (hydroxypropyl group) and Q64 of hCA VII but N67 of hCA II. The results of the binding free energy from the MM/PBSA approach also prove the selectivity improvement of the new inhibitor in comparison with the known inhibitor. The work will help the design of the isozyme-specific inhibitors of hCA VII.
Collapse
Affiliation(s)
- Ji-Long Zhang
- State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, People's Republic of China
| | | | | |
Collapse
|
11
|
|