1
|
Bappy MNI, Ahmed F, Lasker T, Sajib EH, Islam MS. Screening of Novel Drug Targets and Drug Design for Bordetella pertussis: A Subtractive Proteomics Approach. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100291. [PMID: 39497932 PMCID: PMC11533591 DOI: 10.1016/j.crmicr.2024.100291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024] Open
Abstract
Bordetella pertussis causes whooping cough in humans that spreads directly from individual to individual mainly by aerosolized respiratory droplets. Nowadays, it gained the attention of scientific community because it has already been reemerged as one of the major public health threats despite widespread vaccination efforts. Moreover, the growing antibiotic resistance has made it difficult to combat this pathogen with currently available antibiotics. Consequently, screening drug targets and discovering drugs against unique proteins of the pathogen could be a promising alternative. With this view, 3,359 proteins of B. pertussis were screened in silico to identify non-duplicate proteins crucial for survival of the bacteria, non-homologous to humans, involved in unique metabolic pathways of the pathogen, and conserved among various bacterial strains. Among these, Chemotaxis protein Mota, Chromosomal replication initiator protein DnaA, Short-chain fatty acids transporter, [protein-PII] uridylyltransferase, Type III secretion protein V, Potassium-transporting ATPase potassium-binding subunit, N-acetylmuramoyl-L-alanine amidase, and RNA polymerase sigma-54 factor fulfilled these criteria. These proteins were further analyzed for qualitative characteristics such as virulence properties and associations with antibiotic resistance, etc. In addition, plant metabolites were screened against these unique proteins utilizing molecular docking to discover putative drugs against them. Four metabolites exhibited superior binding affinity and favorable ADME (Adsorption, distribution, metabolism, and excretion) properties which can further be tested in vivo.
Collapse
Affiliation(s)
- Md. Nazmul Islam Bappy
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Foeaz Ahmed
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh
- Department of Molecular Biology and Genetic Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Tahera Lasker
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh
- Department of Molecular Biology and Genetic Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Emran Hossain Sajib
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Md. Shariful Islam
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh
- Department of Molecular Biology and Genetic Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| |
Collapse
|
2
|
Roszczenko-Jasińska P, Giełdoń A, Mazur D, Spodzieja M, Plichta M, Czaplewski C, Bal W, Jagusztyn-Krynicka EK, Bartosik D. Exploring the inhibitory potential of in silico-designed small peptides on Helicobacter pylori Hp0231 (DsbK), a periplasmic oxidoreductase involved in disulfide bond formation. Front Mol Biosci 2024; 10:1335704. [PMID: 38274095 PMCID: PMC10810133 DOI: 10.3389/fmolb.2023.1335704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/12/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction: Helicobacter pylori is a bacterium that colonizes the gastric epithelium, which affects millions of people worldwide. H. pylori infection can lead to various gastrointestinal diseases, including gastric adenocarcinoma and mucosa-associated lymphoid tissue lymphoma. Conventional antibiotic therapies face challenges due to increasing antibiotic resistance and patient non-compliance, necessitating the exploration of alternative treatment approaches. In this study, we focused on Hp0231 (DsbK), an essential component of the H. pylori Dsb (disulfide bond) oxidative pathway, and investigated peptide-based inhibition as a potential therapeutic strategy. Methods: Three inhibitory peptides designed by computational modeling were evaluated for their effectiveness using a time-resolved fluorescence assay. We also examined the binding affinity between Hp0231 and the peptides using microscale thermophoresis. Results and discussion: Our findings demonstrate that in silico-designed synthetic peptides can effectively inhibit Hp0231-mediated peptide oxidation. Targeting Hp0231 oxidase activity could attenuate H. pylori virulence without compromising bacterial viability. Therefore, peptide-based inhibitors of Hp0231 could be candidates for the development of new targeted strategy, which does not influence the composition of the natural human microbiome, but deprive the bacterium of its pathogenic properties.
Collapse
Affiliation(s)
- Paula Roszczenko-Jasińska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Artur Giełdoń
- Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Dominika Mazur
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | - Maciej Plichta
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | - Wojciech Bal
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | - Dariusz Bartosik
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
3
|
Khan MT, Mahmud A, Islam MM, Sumaia MSN, Rahim Z, Islam K, Iqbal A. Multi-epitope vaccine against drug-resistant strains of Mycobacterium tuberculosis: a proteome-wide subtraction and immunoinformatics approach. Genomics Inform 2023; 21:e42. [PMID: 37813638 PMCID: PMC10584640 DOI: 10.5808/gi.23021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 10/11/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, one of the most deadly infections in humans. The emergence of multidrug-resistant and extensively drug-resistant Mtb strains presents a global challenge. Mtb has shown resistance to many frontline antibiotics, including rifampicin, kanamycin, isoniazid, and capreomycin. The only licensed vaccine, Bacille Calmette-Guerin, does not efficiently protect against adult pulmonary tuberculosis. Therefore, it is urgently necessary to develop new vaccines to prevent infections caused by these strains. We used a subtractive proteomics approach on 23 virulent Mtb strains and identified a conserved membrane protein (MmpL4, NP_214964.1) as both a potential drug target and vaccine candidate. MmpL4 is a non-homologous essential protein in the host and is involved in the pathogen-specific pathway. Furthermore, MmpL4 shows no homology with anti-targets and has limited homology to human gut microflora, potentially reducing the likelihood of adverse effects and cross-reactivity if therapeutics specific to this protein are developed. Subsequently, we constructed a highly soluble, safe, antigenic, and stable multi-subunit vaccine from the MmpL4 protein using immunoinformatics. Molecular dynamics simulations revealed the stability of the vaccine-bound Toll-like receptor-4 complex on a nanosecond scale, and immune simulations indicated strong primary and secondary immune responses in the host. Therefore, our study identifies a new target that could expedite the design of effective therapeutics, and the designed vaccine should be validated. Future directions include an extensive molecular interaction analysis, in silico cloning, wet-lab experiments, and evaluation and comparison of the designed candidate as both a DNA vaccine and protein vaccine.
Collapse
Affiliation(s)
- Md Tahsin Khan
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Araf Mahmud
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Md. Muzahidul Islam
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Mst. Sayedatun Nessa Sumaia
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Zeaur Rahim
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Kamrul Islam
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Asif Iqbal
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
4
|
Kaur H, Modgil V, Chaudhary N, Mohan B, Taneja N. Computational Guided Drug Targets Identification against Extended-Spectrum Beta-Lactamase-Producing Multi-Drug Resistant Uropathogenic Escherichia coli. Biomedicines 2023; 11:2028. [PMID: 37509666 PMCID: PMC10377140 DOI: 10.3390/biomedicines11072028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Urinary tract infections (UTIs) are one of the most frequent bacterial infections in the world, both in the hospital and community settings. Uropathogenic Escherichia coli (UPEC) are the predominant etiological agents causing UTIs. Extended-spectrum beta-lactamase (ESBL) production is a prominent mechanism of resistance that hinders the antimicrobial treatment of UTIs caused by UPEC and poses a substantial danger to the arsenal of antibiotics now in use. As bacteria have several methods to counteract the effects of antibiotics, identifying new potential drug targets may help in the design of new antimicrobial agents, and in the control of the rising trend of antimicrobial resistance (AMR). The public availability of the entire genome sequences of humans and many disease-causing organisms has accelerated the hunt for viable therapeutic targets. Using a unique, hierarchical, in silico technique using computational tools, we discovered and described potential therapeutic drug targets against the ESBL-producing UPEC strain NA114. Three different sets of proteins (chokepoint, virulence, and resistance genes) were explored in phase 1. In phase 2, proteins shortlisted from phase 1 were analyzed for their essentiality, non-homology to the human genome, and gut flora. In phase 3, the further shortlisted putative drug targets were qualitatively characterized, including their subcellular location, broad-spectrum potential, and druggability evaluations. We found seven distinct targets for the pathogen that showed no similarity to the human proteome. Thus, possibilities for cross-reactivity between a target-specific antibacterial and human proteins were minimized. The subcellular locations of two targets, ECNA114_0085 and ECNA114_1060, were predicted as cytoplasmic and periplasmic, respectively. These proteins play an important role in bacterial peptidoglycan biosynthesis and inositol phosphate metabolism, and can be used in the design of drugs against these bacteria. Inhibition of these proteins will be helpful to combat infections caused by MDR UPEC.
Collapse
Affiliation(s)
- Harpreet Kaur
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Vinay Modgil
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Naveen Chaudhary
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Balvinder Mohan
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Neelam Taneja
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| |
Collapse
|
5
|
Bappy MNI, Robin TB, Prome AA, Patil RB, Moin AT, Akter R, Laskar FS, Roy A, Akter H, Zinnah KMA. Subtractive proteomics analysis to uncover the potent drug targets for distinctive drug design of Candidaauris. Heliyon 2023; 9:e17026. [PMID: 37484251 PMCID: PMC10361121 DOI: 10.1016/j.heliyon.2023.e17026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 07/25/2023] Open
Abstract
Candida auris is a serious health concern of the current world that possesses a serious global health threat and is emerging at a high rate. Available antifungal drugs are failing to combat this pathogen as they are growing resistant to those drugs and some strains have already shown resistance to all three available antifungal drugs in the market. Hence, finding alternative therapies is essential for saving lives from this enemy. To make the development of new treatments easier, we conducted some in silico study of this pathogen to discover possible targets for drug design and also recommended some possible metabolites to test in vivo circumstances. The complete proteome of the representative strain was retrieved, and the duplicate, non-essential, human homologous, non-metabolic, and druggable proteins were then eliminated. As a result, out of a total of 5441 C. auris proteins, we were able to isolate three proteins (XP 028890156.1, XP 028891672.1, and XP 028891858.1) that are crucial for the pathogen's survival as well as host-non-homolog, metabolic, and unrelated proteins to the human microbiome. Their subcellular locations and interactions with a large number of proteins (10 proteins) further point to them being good candidates for therapeutic targets. Following in silico docking of 29 putative antifungals of plant origin against the three proteins we chose, Caledonixanthone E, Viniferin, Glaucine, and Jatrorrhizine were discovered to be the most effective means of inhibiting those proteins since they displayed higher binding affinities (ranging from -28.97 kcal/mol to -51.99 kcal/mol) than the control fluconazole (which ranged between -28.84 kcal/mol and -41.15 kcal/mol). According to the results of MD simulations and MM-PBSA calculations, Viniferin and Caledonixanthone E are the most effective ligands for the proteins XP 028890156.1, XP 028891672.1, and XP 028891858.1. Furthermore, they were predicted to be safe and also showed proper ADME properties.
Collapse
Affiliation(s)
- Md. Nazmul Islam Bappy
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet-3100, Bangladesh
- Department of Animal and Fish Biotechnology, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Tanjin Barketullah Robin
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Anindita Ash Prome
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Rajesh B. Patil
- Department of Pharmaceutical Chemistry, Sinhgad Technical Education Society's, Sinhgad College of Pharmacy, Off Sinhgad Road, Vadgaon (Bk), Pune 411041, Maharashtra, India
| | - Abu Tayab Moin
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Rupali Akter
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Fayeza Sadia Laskar
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Anindita Roy
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Hafsa Akter
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet-3100, Bangladesh
- Department of Biochemistry and Chemistry, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Kazi Md. Ali Zinnah
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet-3100, Bangladesh
- Department of Animal and Fish Biotechnology, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| |
Collapse
|
6
|
Robin TB, Rani NA, Ahmed N, Prome AA, Bappy MNI, Ahmed F. Identification of novel drug targets and screening potential drugs against Cryptococcus gattii: An in silico approach. INFORMATICS IN MEDICINE UNLOCKED 2023. [DOI: 10.1016/j.imu.2023.101222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023] Open
|
7
|
Kaur H, Singh V, Kalia M, Mohan B, Taneja N. Identification and functional annotation of hypothetical proteins of uropathogenic Escherichia coli strain CFT073 towards designing antimicrobial drug targets. J Biomol Struct Dyn 2022; 40:14084-14095. [PMID: 34751095 DOI: 10.1080/07391102.2021.2000499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Urinary tract infections are a serious health concern worldwide, especially in developing countries. Escherichia coli strain CFT073 is a highly virulent pathogenic bacterial strain. CFT073 proteome contains 4897 proteins, out of which 992 have been classified as hypothetical proteins. Identification and characterization of hypothetical proteins can aid in the selection of targets for drug design. In this study, we studied the hypothetical proteins from the UPEC strain CFT073 using various computational tools. By NCBI-CDD, 376 protein sequences showed conserved domains. Based on the functional motifs in their primary sequences, we classified these 376 hypothetical proteins into 7 functional categories. Further KEGG database was used to find the roles of these hypothetical proteins in several pathways. Protein interaction network analysis of hypothetical proteins identified 53 proteins as highly interacting metabolic proteins. Virulence factor analysis of the proteins identified 8 proteins as virulent. We conducted a non-homology search for the identified proteins of UPEC in the available human proteome. We observed that 35 proteins are non-homologous to humans and hence could be selected for drug designing targets. Qualitative characterization of the selected 35 non-homologous hypothetical proteins including essentiality analysis and evaluation of druggability by similarity search against drug bank database was performed. Out of these 35 proteins, three-dimensional structures of six proteins (NP_752562.1, NP_756345.1, NP_754893.1, NP_756600.2, NP_755264.1 and NP_752994.1) could be successfully modelled. These new annotations can help to better understand disease mechanisms at the molecular level, as well as provide new targets for drug development against the UPEC strain CFT073.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Harpreet Kaur
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Vikram Singh
- Center of Computational Biology and Bioinformatics, Central University of Himachal Pradesh, Dharamshala, India
| | - Manmohit Kalia
- Department of Biology, State University of New York, Binghamton, NY, USA
| | - Balvinder Mohan
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Neelam Taneja
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
8
|
Joshi M, Purohit M, Shah DP, Patel D, Depani P, Moryani P, Krishnakumar A. Pathogenomic in silico approach identifies NSP-A and Fe-IIISBP as possible drug targets in Neisseria Meningitidis MC58 and development of pharmacophores as novel therapeutic candidates. Mol Divers 2022:10.1007/s11030-022-10480-y. [PMID: 35879631 DOI: 10.1007/s11030-022-10480-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/07/2022] [Indexed: 11/26/2022]
Abstract
Meningitis creates a life-threatening clinical crisis. Moreover, the administered antibiotics result into multi-drug resistance, thereby necessitating development of alternative therapeutic strategies. This study aimed at identifying novel-drug targets in Neisseria meningitidis and therapeutic molecules which can be exploited for the treatment of meningitis. Novel targets were identified by applying a pathogenomic approach involving protein data-set mining, subtractive channel analysis and subsequent qualitative analysis comprising of in silico pharmacokinetics, molecular docking and pharmacophore generation. Pathogenomic studies revealed Neisserial Surface Protein A (NSP-A) and Iron-III-Substrate Binding Protein (Fe-IIISBP) as potential targets. Two pharmacophore models comprising of 2-(biaryl) carbapenems, efavirenz, praziquantel and pyrimethamine for NSP-A and 2-(biaryl) carbapenems, trimipramine and pyrimethamine for Fe-IIISBP, showed successful docking, followed drug-likeness criteria and generated pharmacophore model with a score of 8.08 and 8.818, respectively, which had further been docked to the target stably. Thus, our study identifies NSP-A and Fe-IIISBP as novel targets in Neisseria meningitidis for which 2-(biaryl) carbapenems, efavirenz, praziquantel, trimipramine and pyrimethamine may be employed for effective treatment of meningitis.
Collapse
Affiliation(s)
- Madhavi Joshi
- Institute of Science, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat, 382 481, India
| | - Maitree Purohit
- Institute of Science, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat, 382 481, India
| | - Dhriti P Shah
- Institute of Science, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat, 382 481, India
| | - Devanshi Patel
- Institute of Science, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat, 382 481, India
| | - Preksha Depani
- Institute of Science, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat, 382 481, India
| | - Premkumar Moryani
- Institute of Science, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat, 382 481, India
| | - Amee Krishnakumar
- Institute of Science, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat, 382 481, India.
| |
Collapse
|
9
|
Hafsa U, Chuwdhury GS, Hasan MK, Ahsan T, Moni MA. An in silico approach towards identification of novel drug targets in Klebsiella oxytoca. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.100998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
10
|
Tabassum R, Abbas G, Azam SS. Immunoinformatics based designing and simulation of multi-epitope vaccine against multi-drug resistant Stenotrophomonas maltophilia. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Rahman S, Das AK. Integrated Multi-omics, Virtual Screening and Molecular Docking Analysis of Methicillin-Resistant Staphylococcus aureus USA300 for the Identification of Potential Therapeutic Targets: An In-Silico Approach. Int J Pept Res Ther 2021; 27:2735-2755. [PMID: 34548853 PMCID: PMC8446483 DOI: 10.1007/s10989-021-10287-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2021] [Indexed: 11/28/2022]
Abstract
Staphylococcus aureus infection is a leading cause of mortality and morbidity in community, hospital and live-stock sectors, especially with the widespread emergence of methicillin-resistant S. aureus (MRSA) strains. To identify new drug molecules to treat MRSA patients, we have undertaken to search essential proteins that are indispensable for their survival but non-homologous to human host proteins. The current study utilizes a subtractive genome and proteome approach to screen the possible therapeutic targets against S. aureus USA300. Bacterial essential genes are obtained from the DEG database and are compared to avoid cross-reactivity with human host genes. In silico analysis shows 198 proteins that may be considered as therapeutic candidates. Depending on their sub-cellular localization, proteins are grouped as either vaccine or drug targets or both. Extracellular proteins such as cell division proteins (Q2FZ91, Q2FZ95), penicillin-binding proteins (Q2FZ94, Q2FYI0) of the bacterial cell wall, phosphoglucomutase (Q2FE11) and lipoteichoic acid synthase (Q2FIS2) are considered as vaccine targets, and their epitopes have been mapped. Altogether, 53 drug targets are identified, which have shown similarity with the drug targets available in the DrugBank database. Predicted drug targets belong to the common metabolic pathways of MRSA, such as fatty acid biosynthesis, folate biosynthesis, peptidoglycan biosynthesis, ribosome, etc. Protein-protein interaction analysis emphasizing peptidoglycan biosynthesis reveals the connection between penicillin-binding proteins, mur-family proteins and FemXAB proteins. In this study, staphylococcal FemA protein (P0A0A5) is subjected to structure-based virtual screening for the drug repurposing approach. There are 20 residues missing in the crystal structure of FemA, and 12 of these residues are located at the catalytic site. The missing residues are modelled, and stereochemistry is checked. FDA approved drugs available in the DrugBank database have been used in virtual screening with FemA in search of potential repurposed molecules. This approach provides us with 10 drugs that may be used in the treatment of methicillin-resistant staphylococcal mediated diseases. AutoDock 4.2 is used for in silico screening and shows a comparable inhibition constant (Ki) for all 10 FDA-approved drugs towards FemA. Most of these drugs are used in the treatment of various cancers, migraines and leukaemia. Protein-drug interaction analysis shows that the drugs mostly interact with hydrophobic residues of FemA. Moreover, Tyr328 and Lys383 contribute largely to hydrogen bondings during interactions. All interacting amino acids that bind to the drugs are part of the active site cavity of FemA. Supplementary Information The online version contains supplementary material available at 10.1007/s10989-021-10287-9.
Collapse
Affiliation(s)
- Shakilur Rahman
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302 India
| | - Amit Kumar Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302 India
| |
Collapse
|
12
|
Chakkyarath V, Shanmugam A, Natarajan J. Prioritization of potential drug targets and antigenic vaccine candidates against Klebsiella aerogenes using the computational subtractive proteome-driven approach. JOURNAL OF PROTEINS AND PROTEOMICS 2021; 12:201-211. [PMID: 34305354 PMCID: PMC8284688 DOI: 10.1007/s42485-021-00068-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/14/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023]
Abstract
Klebsiella aerogenes is a multidrug-resistant Gram-negative bacterium that causes nosocomial infections. The organism showed resistance to most of the conventional antibiotics available. Because of the high resistance of the species, the treatment of K. aerogenes is difficult. These species are resistant to third-generation cephalosporins due to the production of chromosomal beta-lactams with cephalosporin activity. The lack of better treatment and the development of therapeutic resistance in hospitals hinders better/new broad-spectrum-based treatment against this pathogen. This study identifies potential drug targets/vaccine candidates through a computational subtractive proteome-driven approach. This method is used to predict proteins that are not homologous to humans and human symbiotic intestinal flora. The resultant proteome of K. aerogenes was further searched for proteins, which are essential, virulent, and determinants of antibiotic/drug resistance. Subsequently, their druggability properties were also studied. The data set was reduced based on its presence in the pathogen-specific metabolic pathways. The subtractive proteome analysis predicted 13 proteins as potential drug targets for K. aerogenes. Furthermore, these target proteins were annotated based on their spectrum of activity, cellular localization, and antigenicity properties, which ensured that they are potent candidates for broad-spectrum antibiotic and vaccine design. The results open up new opportunities for designing and manufacturing powerful antigenic vaccines against K. aerogenes and the detection and release of new and active drugs against K. aerogenes without altering the gut microbiome. Supplementary Information The online version contains supplementary material available at 10.1007/s42485-021-00068-9.
Collapse
Affiliation(s)
- Vijina Chakkyarath
- grid.411677.20000 0000 8735 2850Data Mining and Text Mining Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, 641046 India
| | - Anusuya Shanmugam
- grid.444708.b0000 0004 1799 6895Department of Pharmaceutical Engineering, Vinayaka Mission’s Kirupananda Variyar Engineering College, Vinayaka Mission’s Research Foundation (Deemed to be University), Salem, Tamil Nadu 636308 India
| | - Jeyakumar Natarajan
- grid.411677.20000 0000 8735 2850Data Mining and Text Mining Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, 641046 India
| |
Collapse
|
13
|
Kaur H, Kalia M, Singh V, Modgil V, Mohan B, Taneja N. In silico identification and characterization of promising drug targets in highly virulent uropathogenic Escherichia coli strain CFT073 by protein-protein interaction network analysis. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
14
|
Kaur H, Kalia M, Taneja N. Identification of novel non-homologous drug targets against Acinetobacter baumannii using subtractive genomics and comparative metabolic pathway analysis. Microb Pathog 2020; 152:104608. [PMID: 33166618 DOI: 10.1016/j.micpath.2020.104608] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/08/2020] [Accepted: 11/02/2020] [Indexed: 11/19/2022]
Abstract
Lack of effective antibiotics and the development of multidrug resistance in clinical isolates of nosocomial pathogen Acinetobacter baumanni has necessitated the identification of novel drug targets. The study is divided into three phases, in phase I, four different sets of proteins were subjected to a chokepoint, plasmid, resistance genes, and virulence factors analysis. After phase 1 analysis we obtained two hundred twenty-two proteins which were analyzed further in the phase II for essentiality and homology. Fifty-eight proteins identified as target candidates were studied for qualitative characteristics. Among them, 32 were identified as cytoplasmic membrane, 17 as cytoplasmic, one as periplasmic, one as outer membrane, two as extracellular, and location of 5 was not known. Druggability analysis revealed that 18 proteins were druggable, and 40 were novel. Drug targets obtained in the present study can be utilized for the identification of novel antimicrobials for the treatment of infections caused by multidrug-resistant A. baumannii. Predicted drug targets can be evaluated for their binding affinity by molecular docking studies and thus accelerating the process of drug discovery.
Collapse
Affiliation(s)
- Harpreet Kaur
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Manmohit Kalia
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Neelam Taneja
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
15
|
Roszczenko-Jasińska P, Wojtyś MI, Jagusztyn-Krynicka EK. Helicobacter pylori treatment in the post-antibiotics era-searching for new drug targets. Appl Microbiol Biotechnol 2020; 104:9891-9905. [PMID: 33052519 PMCID: PMC7666284 DOI: 10.1007/s00253-020-10945-w] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/28/2020] [Accepted: 10/04/2020] [Indexed: 12/14/2022]
Abstract
Abstract Helicobacter pylori, a member of Epsilonproteobacteria, is a Gram-negative microaerophilic bacterium that colonizes gastric mucosa of about 50% of the human population. Although most infections caused by H. pylori are asymptomatic, the microorganism is strongly associated with serious diseases of the upper gastrointestinal tract such as chronic gastritis, peptic ulcer, duodenal ulcer, and gastric cancer, and it is classified as a group I carcinogen. The prevalence of H. pylori infections varies worldwide. The H. pylori genotype, host gene polymorphisms, and environmental factors determine the type of induced disease. Currently, the most common therapy to treat H. pylori is the first line clarithromycin–based triple therapy or a quadruple therapy replacing clarithromycin with new antibiotics. Despite the enormous recent effort to introduce new therapeutic regimens to combat this pathogen, treatment for H. pylori still fails in more than 20% of patients, mainly due to the increased prevalence of antibiotic resistant strains. In this review we present recent progress aimed at designing new anti-H. pylori strategies to combat this pathogen. Some novel therapeutic regimens will potentially be used as an extra constituent of antibiotic therapy, and others may replace current antibiotic treatments. Key points • Attempts to improve eradication rate of H. pylori infection. • Searching for new drug targets in anti-Helicobacter therapies.
Collapse
Affiliation(s)
- Paula Roszczenko-Jasińska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, Univeristy of Warsaw, Miecznikowa 1, 02-096, Warszawa, Poland
| | - Marta Ilona Wojtyś
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, Univeristy of Warsaw, Miecznikowa 1, 02-096, Warszawa, Poland.,Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, Univeristy of Warsaw, Pasteura 5, 02-093, Warszawa, Poland
| | - Elżbieta K Jagusztyn-Krynicka
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, Univeristy of Warsaw, Miecznikowa 1, 02-096, Warszawa, Poland.
| |
Collapse
|
16
|
Ibrahim KA, Helmy OM, Kashef MT, Elkhamissy TR, Ramadan MA. Identification of Potential Drug Targets in Helicobacter pylori Using In Silico Subtractive Proteomics Approaches and Their Possible Inhibition through Drug Repurposing. Pathogens 2020; 9:E747. [PMID: 32932580 PMCID: PMC7558524 DOI: 10.3390/pathogens9090747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 12/24/2022] Open
Abstract
The class 1 carcinogen, Helicobacter pylori, is one of the World Health Organization's high priority pathogens for antimicrobial development. We used three subtractive proteomics approaches using protein pools retrieved from: chokepoint reactions in the BIOCYC database, the Kyoto Encyclopedia of Genes and Genomes, and the database of essential genes (DEG), to find putative drug targets and their inhibition by drug repurposing. The subtractive channels included non-homology to human proteome, essentiality analysis, sub-cellular localization prediction, conservation, lack of similarity to gut flora, druggability, and broad-spectrum activity. The minimum inhibitory concentration (MIC) of three selected ligands was determined to confirm anti-helicobacter activity. Seventeen protein targets were retrieved. They are involved in motility, cell wall biosynthesis, processing of environmental and genetic information, and synthesis and metabolism of secondary metabolites, amino acids, vitamins, and cofactors. The DEG protein pool approach was superior, as it retrieved all drug targets identified by the other two approaches. Binding ligands (n = 42) were mostly small non-antibiotic compounds. Citric, dipicolinic, and pyrophosphoric acid inhibited H. pylori at an MIC of 1.5-2.5 mg/mL. In conclusion, we identified potential drug targets in H. pylori, and repurposed their binding ligands as possible anti-helicobacter agents, saving time and effort required for the development of new antimicrobial compounds.
Collapse
Affiliation(s)
- Kareem A. Ibrahim
- Department of Microbiology & Immunology, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt; (K.A.I.); (T.R.E.)
| | - Omneya M. Helmy
- Department of Microbiology & Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (M.T.K.); (M.A.R.)
| | - Mona T. Kashef
- Department of Microbiology & Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (M.T.K.); (M.A.R.)
| | - Tharwat R. Elkhamissy
- Department of Microbiology & Immunology, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt; (K.A.I.); (T.R.E.)
| | - Mohammed A. Ramadan
- Department of Microbiology & Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (M.T.K.); (M.A.R.)
| |
Collapse
|
17
|
Ali A, Ahmad S, Wadood A, Rehman AU, Zahid H, Qayash Khan M, Nawab J, Rahman ZU, Alouffi AS. Modeling Novel Putative Drugs and Vaccine Candidates against Tick-Borne Pathogens: A Subtractive Proteomics Approach. Vet Sci 2020; 7:E129. [PMID: 32906620 PMCID: PMC7557734 DOI: 10.3390/vetsci7030129] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
Ticks and tick-borne pathogens (TBPs) continuously causing substantial losses to the public and veterinary health sectors. The identification of putative drug targets and vaccine candidates is crucial to control TBPs. No information has been recorded on designing novel drug targets and vaccine candidates based on proteins. Subtractive proteomics is an in silico approach that utilizes extensive screening for the identification of novel drug targets or vaccine candidates based on the determination of potential target proteins available in a pathogen proteome that may be used effectively to control diseases caused by these infectious agents. The present study aimed to investigate novel drug targets and vaccine candidates by utilizing subtractive proteomics to scan the available proteomes of TBPs and predict essential and non-host homologous proteins required for the survival of these diseases causing agents. Subtractive proteome analysis revealed a list of fifteen essential, non-host homologous, and unique metabolic proteins in the complete proteome of selected pathogens. Among these therapeutic target proteins, three were excluded due to the presence in host gut metagenome, eleven were found to be highly potential drug targets, while only one was found as a potential vaccine candidate against TBPs. The present study may provide a foundation to design potential drug targets and vaccine candidates for the effective control of infections caused by TBPs.
Collapse
Affiliation(s)
- Abid Ali
- Department of Zoology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan; (A.A.); (S.A.); (H.Z.); (M.Q.K.)
| | - Shabir Ahmad
- Department of Zoology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan; (A.A.); (S.A.); (H.Z.); (M.Q.K.)
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan; (A.W.); (A.U.R.)
| | - Ashfaq U. Rehman
- Department of Biochemistry, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan; (A.W.); (A.U.R.)
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hafsa Zahid
- Department of Zoology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan; (A.A.); (S.A.); (H.Z.); (M.Q.K.)
| | - Muhammad Qayash Khan
- Department of Zoology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan; (A.A.); (S.A.); (H.Z.); (M.Q.K.)
| | - Javed Nawab
- Department of Environmental Sciences, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan;
| | - Zia Ur Rahman
- Department of Microbiology, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan;
| | | |
Collapse
|
18
|
Putative Drug Target Identification in Tinea Causing Pathogen Trichophyton rubrum Using Subtractive Proteomics Approach. Curr Microbiol 2020; 77:2953-2962. [DOI: 10.1007/s00284-020-02114-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 07/04/2020] [Indexed: 12/24/2022]
|
19
|
Sen T, Verma NK. Functional Annotation and Curation of Hypothetical Proteins Present in A Newly Emerged Serotype 1c of Shigella flexneri: Emphasis on Selecting Targets for Virulence and Vaccine Design Studies. Genes (Basel) 2020; 11:genes11030340. [PMID: 32210046 PMCID: PMC7141135 DOI: 10.3390/genes11030340] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 01/28/2023] Open
Abstract
Shigella flexneri is the principal cause of bacillary dysentery, contributing significantly to the global burden of diarrheal disease. The appearance and increase in the multi-drug resistance among Shigella strains, necessitates further genetic studies and development of improved/new drugs against the pathogen. The presence of an abundance of hypothetical proteins in the genome and how little is known about them, make them interesting genetic targets. The present study aims to carry out characterization of the hypothetical proteins present in the genome of a newly emerged serotype of S. flexneri (strain Y394), toward their novel regulatory functions using various bioinformatics databases/tools. Analysis of the genome sequence rendered 4170 proteins, out of which 721 proteins were annotated as hypothetical proteins (HPs) with no known function. The amino acid sequences of these HPs were evaluated using a combination of latest bioinformatics tools based on homology search against functionally identified proteins. Functional domains were considered as the basis to infer the biological functions of HPs in this case and the annotation helped in assigning various classes to the proteins such as signal transducers, lipoproteins, enzymes, membrane proteins, transporters, virulence, and binding proteins. This study contributes to a better understanding of growth, survival, and disease mechanism at molecular level and provides potential new targets for designing drugs against Shigella infection.
Collapse
|
20
|
Satyam R, Bhardwaj T, Jha NK, Jha SK, Nand P. Toward a chimeric vaccine against multiple isolates of Mycobacteroides - An integrative approach. Life Sci 2020; 250:117541. [PMID: 32169520 DOI: 10.1016/j.lfs.2020.117541] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/07/2020] [Accepted: 03/08/2020] [Indexed: 01/31/2023]
Abstract
AIM Nontuberculous mycobacterial (NTM) infection such as endophthalmitis, dacryocystitis, and canaliculitis are pervasive across the globe and are currently managed by antibiotics. However, the recent cases of Mycobacteroides developing drug resistance reported along with the improper practice of medicine intrigued us to explore its genomic and proteomic canvas at a global scale and develop a chimeric vaccine against Mycobacteroides. MAIN METHODS We carried out a vivid genomic study on five recently sequenced strains of Mycobacteroides and explored their Pan-core genome/proteome in three different phases. The promiscuous antigenic proteins were identified via a subtractive proteomics approach that qualified for virulence causation, resistance and essentiality factors for this notorious bacterium. An integrated pipeline was developed for the identification of B-Cell, MHC (Major histocompatibility complex) class I and II epitopes. KEY FINDINGS Phase I identified the shreds of evidence of reductive evolution and propensity of the Pan-genome of Mycobacteroides getting closed soon. Phase II and Phase III produced 8 vaccine constructs. Our final vaccine construct, V6 qualified for all tests such as absence for allergenicity, presence of antigenicity, etc. V6 contains β-defensin as an adjuvant, linkers, Lysosomal-associated membrane protein 1 (LAMP1) signal peptide, and PADRE (Pan HLA-DR epitopes) amino acid sequence. Besides, V6 also interacts with a maximum number of MHC molecules and the TLR4/MD2 (Toll-like receptor 4/Myeloid differentiation factor 2) complex confirmed by docking and molecular dynamics simulation studies. SIGNIFICANCE The knowledge harnessed from the current study can help improve the current treatment regimens or in an event of an outbreak and propel further related studies.
Collapse
Affiliation(s)
- Rohit Satyam
- Department of Biotechnology, Noida Institute of Engineering and Technology (NIET), Greater Noida, India
| | - Tulika Bhardwaj
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio Campus, Finland
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, India.
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, India
| | - Parma Nand
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, India
| |
Collapse
|
21
|
Lipopolysaccharide Stimulates the Growth of Bacteria That Contribute to Ruminal Acidosis. Appl Environ Microbiol 2020; 86:AEM.02193-19. [PMID: 31811042 DOI: 10.1128/aem.02193-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/27/2019] [Indexed: 12/17/2022] Open
Abstract
Lipopolysaccharide (LPS) has been reported to contribute to a ruminal acidosis of cattle by affecting ruminal bacteria. The goal of this study was to determine how LPS affects the growth of pure cultures of ruminal bacteria, including those that contribute to ruminal acidosis. We found that dosing LPS (200,000 EU) increased the maximum specific growth rates of four ruminal bacterial species (Streptococcus bovis JB1, Succinivibrio dextrinosolvens 24, Lactobacillus ruminis RF1, and Selenomonas ruminantium HD4). Interestingly, all the species ferment sugars and produce lactate, contributing to acidosis. Species that consume lactate or ferment fiber were not affected by LPS. We found that S. bovis JB1 failed to grow in LPS as the carbon source in the media; growth of S. bovis JB1 was increased by LPS when glucose was present. Growth of Megasphaera elsdenii T81, which consumes lactate, was not different between the detoxified (lipid A delipidated) and regular LPS. However, the maximum specific growth rate of S. bovis JB1 was greater in regular LPS than detoxified LPS. Mixed bacteria from a dual-flow continuous culture system were collected to determine changes of metabolic capabilities of bacteria by LPS, and genes associated with LPS biosynthesis were increased by LPS. In summary, LPS was not toxic to bacteria, and lipid A of LPS stimulated the growth of lactate-producing bacteria. Our results indicate that LPS not only is increased during acidosis but also may contribute to ruminal acidosis development by increasing the growth of lactic acid-producing bacteria.IMPORTANCE Gram-negative bacteria contain lipopolysaccharide (LPS) coating their thin peptidoglycan cell wall. The presence of LPS has been suggested to be associated with a metabolic disorder of cattle-ruminal acidosis-through affecting ruminal bacteria. Ruminal acidosis could reduce feed intake and milk production and increase the incidence of diarrhea, milk fat depression, liver abscesses, and laminitis. However, how LPS affects bacteria associated with ruminal acidosis has not been studied. In this study, we investigated how LPS affects the growth of ruminal bacteria by pure cultures, including those that contribute to acidosis, and the functional genes of ruminal bacteria. Thus, this work serves to further our understanding of the roles of LPS in the pathogenesis of ruminal acidosis, as well as providing information that may be useful for the prevention of ruminal acidosis and reducetion of economic losses for farmers.
Collapse
|
22
|
Sohrabi SM, Mohammadi M, Tabatabaiepour SN, Tabatabaiepour SZ, Hosseini-Nave H, Soltani MF, Alizadeh H, Hadizadeh M. A SystematicIn SilicoAnalysis of theLegionellaceaeFamily for Identification of Novel Drug Target Candidates. Microb Drug Resist 2019; 25:157-166. [DOI: 10.1089/mdr.2017.0328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Mohsen Mohammadi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | | | | - Hossein Hosseini-Nave
- Department of Microbiology and Virology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Fazel Soltani
- Molecular Genetics and Genetic Engineering, Department of Crop Production and Plant Breeding, School of Agriculture, Razi University, Kermanshah, Iran
| | - Hosniyeh Alizadeh
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Morteza Hadizadeh
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
23
|
Sudha R, Katiyar A, Katiyar P, Singh H, Prasad P. Identification of potential drug targets and vaccine candidates in Clostridium botulinum using subtractive genomics approach. Bioinformation 2019; 15:18-25. [PMID: 31359994 PMCID: PMC6651033 DOI: 10.6026/97320630015018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 01/09/2019] [Indexed: 02/06/2023] Open
Abstract
A subtractive genomic approach has been utilized for the identification of potential drug targets and vaccine candidates in Clostridium botulinum, the causative agent of flaccid paralysis in humans. The emergence of drug-resistant pathogenic strains has become a significant global public health threat. Treatment with antitoxin can target the neurotoxin at the extracellular level, however, can't converse the paralysis caused by botulism. Therefore, identification of drug targets and vaccine candidates in C. botulinum would be crucial to overcome drug resistance to existing antibiotic therapy. A total of 1729 crucial proteins, including chokepoint, virulence, plasmid and resistance proteins were mined and used for subtractive channel of analysis. This analysis disclosed 15 potential targets, which were non-similar to human, gut micro flora, and anti-targets in the host. The cellular localization of 6 targets was observed in the cytoplasm and might be used as a drug target, whereas 9 targets were localized in extracellular and membrane bound proteins and can be used as vaccine candidates. Furthermore, 4 targets were observed to be homologous to more than 75 pathogens and hence are considered as broad-spectrum antibiotic targets. The identified drug and vaccine targets in this study would be useful in the design and discovery of novel therapeutic compounds against botulism.
Collapse
Affiliation(s)
- Rati Sudha
- P.G.Department of Zoology,ANS College,Magadh University,Patna (Barh)-803213,India
| | - Amit Katiyar
- ICMR-AIIMS Computational GenomicsCentre,Division of I.S.R.M.,Indian Council of Medical Research,Ansari Nagar,New Delhi-110029,India
| | - Poonam Katiyar
- NCC-Pharmacovigilance Program of India (PvPI),Indian Pharmacopoeia Commission (IPC),Raj Nagar,Ghaziabad-201002,India
| | - Harpreet Singh
- ICMR-AIIMS Computational GenomicsCentre,Division of I.S.R.M.,Indian Council of Medical Research,Ansari Nagar,New Delhi-110029,India
| | - Purushottam Prasad
- P.G.Department of Zoology,ANS College,Magadh University,Patna (Barh)-803213,India
| |
Collapse
|
24
|
Meshram RJ, Goundge MB, Kolte BS, Gacche RN. An in silico approach in identification of drug targets in Leishmania: A subtractive genomic and metabolic simulation analysis. Parasitol Int 2018; 69:59-70. [PMID: 30503238 DOI: 10.1016/j.parint.2018.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/17/2018] [Accepted: 11/28/2018] [Indexed: 12/26/2022]
Abstract
Leishmaniasis is one of the major health issue in developing countries. The current therapeutic regimen for this disease is less effective with lot of adverse effects thereby warranting an urgent need to develop not only new and selective drug candidates but also identification of effective drug targets. Here we present subtractive genomics procedure for identification of putative drug targets in Leishmania. Comprehensive druggability analysis has been carried out in the current work for identified metabolic pathways and drug targets. We also demonstrate effective metabolic simulation methodology to pinpoint putative drug targets in threonine biosynthesis pathway. Metabolic simulation data from the current study indicate that decreasing flux through homoserine kinase reaction can be considered as a good therapeutic opportunity. The data from current study is expected to show new avenue for designing experimental strategies in search of anti-leishmanial agents.
Collapse
Affiliation(s)
- Rohan J Meshram
- Bioinformatics Centre, Savitribai Phule Pune University, Pune 411007, India.
| | - Mayuri B Goundge
- Bioinformatics Centre, Savitribai Phule Pune University, Pune 411007, India
| | - Baban S Kolte
- Bioinformatics Centre, Savitribai Phule Pune University, Pune 411007, India; Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, India
| | - Rajesh N Gacche
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, India
| |
Collapse
|
25
|
Sharma D, Sharma A, Verma SK, Singh B. Targeting metabolic pathways proteins of Orientia tsutsugamushi using combined hierarchical approach to combat scrub typhus. J Mol Recognit 2018; 32:e2766. [DOI: 10.1002/jmr.2766] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 09/04/2018] [Accepted: 09/15/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Dixit Sharma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences; Central University of Himachal Pradesh; Shahpur, District-Kangra Himachal Pradesh India
| | - Ankita Sharma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences; Central University of Himachal Pradesh; Shahpur, District-Kangra Himachal Pradesh India
| | - Shailender Kumar Verma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences; Central University of Himachal Pradesh; Shahpur, District-Kangra Himachal Pradesh India
| | - Birbal Singh
- ICAR-Indian Veterinary Research Institute, Regional Station; Palampur Himachal Pradesh India
| |
Collapse
|
26
|
Pasala C, Chilamakuri CSR, Katari SK, Nalamolu RM, Bitla AR, Umamaheswari A. An in silico study: Novel targets for potential drug and vaccine design against drug resistant H. pylori. Microb Pathog 2018; 122:156-161. [DOI: 10.1016/j.micpath.2018.05.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 05/19/2018] [Accepted: 05/22/2018] [Indexed: 02/08/2023]
|
27
|
Khalid Z, Ahmad S, Raza S, Azam SS. Subtractive proteomics revealed plausible drug candidates in the proteome of multi-drug resistant Corynebacterium diphtheriae. Meta Gene 2018; 17:34-42. [DOI: 10.1016/j.mgene.2018.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
28
|
Hadizadeh M, Tabatabaiepour SN, Tabatabaiepour SZ, Hosseini Nave H, Mohammadi M, Sohrabi SM. Genome-Wide Identification of Potential Drug Target in Enterobacteriaceae Family: A Homology-Based Method. Microb Drug Resist 2018; 24:8-17. [DOI: 10.1089/mdr.2016.0259] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Morteza Hadizadeh
- Department of Agriculture, Payame Noor University (PNU), Tehran, Iran
| | | | | | - Hossein Hosseini Nave
- Department of Microbiology and Virology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohsen Mohammadi
- Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | |
Collapse
|
29
|
Nammi D, Yarla NS, Chubarev VN, Tarasov VV, Barreto GE, Pasupulati AMC, Aliev G, Neelapu NRR. A Systematic In-silico Analysis of Helicobacter pylori Pathogenic Islands for Identification of Novel Drug Target Candidates. Curr Genomics 2017; 18:450-465. [PMID: 29081700 PMCID: PMC5635650 DOI: 10.2174/1389202918666170705160615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Helicobacter pylori is associated with inflammation of different areas, such as the duodenum and stomach, causing gastritis and gastric ulcers leading to lymphoma and cancer. Pathogenic islands are a type of clustered mobile elements ranging from 10-200 Kb contributing to the virulence of the respective pathogen coding for one or more virulence factors. Virulence factors are molecules expressed and secreted by pathogen and are responsible for causing disease in the host. Bacterial genes/virulence factors of the pathogenic islands represent a promising source for identifying novel drug targets. OBJECTIVE The study aimed at identifying novel drug targets from pathogenic islands in H. pylori. MATERIAL & METHODS The genome of 23 H. pylori strains were screened for pathogenic islands and bacterial genes/virulence factors to identify drug targets. Protein-protein interactions of drug targets were predicted for identifying interacting partners. Further, host-pathogen interactions of interacting partners were predicted to identify important molecules which are closely associated with gastric cancer. RESULTS Screening the genome of 23 H. pylori strains revealed 642 bacterial genes/virulence factors in 31 pathogenic islands. Further analysis identified 101 genes which were non-homologous to human and essential for the survival of the pathogen, among them 31 are potential drug targets. Protein-protein interactions for 31 drug targets predicted 609 interacting partners. Predicted interacting partners were further subjected to host-pathogen interactions leading to identification of important molecules like TNF receptor associated factor 6, (TRAF6) and MAPKKK7 which are closely associated with gastric cancer. CONCLUSION These provocative studies enabled us to identify important molecules in H. pylori and their counter interacting molecules in the host leading to gastric cancer and also a pool of novel drug targets for therapeutic intervention of gastric cancer.
Collapse
Affiliation(s)
- Deepthi Nammi
- Department of Biochemistry and Bioinformatics, GITAM Institute of Science, GITAM University, Rushikonda, Visakhapatnam – 534005 (AP), India
| | - Nagendra S. Yarla
- Department of Biochemistry and Bioinformatics, GITAM Institute of Science, GITAM University, Rushikonda, Visakhapatnam – 534005 (AP), India
| | - Vladimir N. Chubarev
- Institute of Pharmacy and Translational Medicine, Sechenov First Moscow State Medical University, 19991Moscow, Russia
| | - Vadim V. Tarasov
- Institute of Pharmacy and Translational Medicine, Sechenov First Moscow State Medical University, 19991Moscow, Russia
| | - George E. Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriama, BogotáD.C., Colombia
| | - Amita Martin Corolina Pasupulati
- Department of Biochemistry and Bioinformatics, GITAM Institute of Science, GITAM University, Rushikonda, Visakhapatnam – 534005 (AP), India
| | - Gjumrakch Aliev
- Institute of Pharmacy and Translational Medicine, Sechenov First Moscow State Medical University, 19991Moscow, Russia
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, 142432, Russia
| | - Nageswara Rao Reddy Neelapu
- Department of Biochemistry and Bioinformatics, GITAM Institute of Science, GITAM University, Rushikonda, Visakhapatnam – 534005 (AP), India
| |
Collapse
|
30
|
Singh G, Singh V. Functional elucidation of hypothetical proteins for their indispensable roles toward drug designing targets from Helicobacter pylori strain HPAG1. J Biomol Struct Dyn 2017; 36:906-918. [DOI: 10.1080/07391102.2017.1302361] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Gagandeep Singh
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, TAB, Shahpur 176206, India
| | - Vikram Singh
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, TAB, Shahpur 176206, India
| |
Collapse
|
31
|
Hossain MU, Khan MA, Hashem A, Islam MM, Morshed MN, Keya CA, Salimullah M. Finding Potential Therapeutic Targets against Shigella flexneri through Proteome Exploration. Front Microbiol 2016; 7:1817. [PMID: 27920755 PMCID: PMC5118456 DOI: 10.3389/fmicb.2016.01817] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/28/2016] [Indexed: 11/13/2022] Open
Abstract
Background:Shigella flexneri is a gram negative bacteria that causes the infectious disease “shigellosis.” S. flexneri is responsible for developing diarrhea, fever, and stomach cramps in human. Antibiotics are mostly given to patients infected with shigella. Resistance to antibiotics can hinder its treatment significantly. Upon identification of essential therapeutic targets, vaccine and drug could be effective therapy for the treatment of shigellosis. Methods: The study was designed for the identification and qualitative characterization for potential drug targets from S. flexneri by using the subtractive proteome analysis. A set of computational tools were used to identify essential proteins those are required for the survival of S. flexneri. Total proteome (13,503 proteins) of S. flexneri was retrieved from NCBI and further analyzed by subtractive channel analysis. After identification of the metabolic proteins we have also performed its qualitative characterization to pave the way for the identification of promising drug targets. Results: Subtractive analysis revealed that a list of 53 targets of S. flexneri were human non-homologous essential metabolic proteins that might be used for potential drug targets. We have also found that 11 drug targets are involved in unique pathway. Most of these proteins are cytoplasmic, can be used as broad spectrum drug targets, can interact with other proteins and show the druggable properties. The functionality and drug binding site analysis suggest a promising effective way to design the new drugs against S. flexneri. Conclusion: Among the 53 therapeutic targets identified through this study, 13 were found highly potential as drug targets based on their physicochemical properties whilst only one was found as vaccine target against S. flexneri. The outcome might also be used as module as well as circuit design in systems biology.
Collapse
Affiliation(s)
- Mohammad Uzzal Hossain
- Department of Biotechnology and Genetic Engineering, Life Science Faculty, Mawlana Bhashani Science and Technology University Tangail, Bangladesh
| | - Md Arif Khan
- Department of Science and Humanities, Military Institute of Science and Technology, Mirpur Cantonment Dhaka, Bangladesh
| | - Abu Hashem
- Microbial Biotechnology Division, National Institute of Biotechnology Savar, Bangladesh
| | - Md Monirul Islam
- Department of Biotechnology and Genetic Engineering, Life Science Faculty, Mawlana Bhashani Science and Technology University Tangail, Bangladesh
| | - Mohammad Neaz Morshed
- Department of Science and Humanities, Military Institute of Science and Technology, Mirpur Cantonment Dhaka, Bangladesh
| | - Chaman Ara Keya
- Department of Biochemistry and Microbiology, North South University Bashundhara, Dhaka, Bangladesh
| | - Md Salimullah
- Molecular Biotechnology Division, National Institute of Biotechnology Savar, Bangladesh
| |
Collapse
|
32
|
Mahamad Maifiah MH, Cheah SE, Johnson MD, Han ML, Boyce JD, Thamlikitkul V, Forrest A, Kaye KS, Hertzog P, Purcell AW, Song J, Velkov T, Creek DJ, Li J. Global metabolic analyses identify key differences in metabolite levels between polymyxin-susceptible and polymyxin-resistant Acinetobacter baumannii. Sci Rep 2016; 6:22287. [PMID: 26924392 PMCID: PMC4770286 DOI: 10.1038/srep22287] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 02/11/2016] [Indexed: 02/07/2023] Open
Abstract
Multidrug-resistant Acinetobacter baumannii presents a global medical crisis and polymyxins are used as the last-line therapy. This study aimed to identify metabolic differences between polymyxin-susceptible and polymyxin-resistant A. baumannii using untargeted metabolomics. The metabolome of each A. baumannii strain was measured using liquid chromatography-mass spectrometry. Multivariate and univariate statistics and pathway analyses were employed to elucidate metabolic differences between the polymyxin-susceptible and -resistant A. baumannii strains. Significant differences were identified between the metabolic profiles of the polymyxin-susceptible and -resistant A. baumannii strains. The lipopolysaccharide (LPS) deficient, polymyxin-resistant 19606R showed perturbation in specific amino acid and carbohydrate metabolites, particularly pentose phosphate pathway (PPP) and tricarboxylic acid (TCA) cycle intermediates. Levels of nucleotides were lower in the LPS-deficient 19606R. Furthermore, 19606R exhibited a shift in its glycerophospholipid profile towards increased abundance of short-chain lipids compared to the parent polymyxin-susceptible ATCC 19606. In contrast, in a pair of clinical isolates 03-149.1 (polymyxin-susceptible) and 03-149.2 (polymyxin-resistant, due to modification of lipid A), minor metabolic differences were identified. Notably, peptidoglycan biosynthesis metabolites were significantly depleted in both of the aforementioned polymyxin-resistant strains. This is the first comparative untargeted metabolomics study to show substantial differences in the metabolic profiles of the polymyxin-susceptible and -resistant A. baumannii.
Collapse
Affiliation(s)
- Mohd Hafidz Mahamad Maifiah
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Soon-Ee Cheah
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Matthew D. Johnson
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Mei-Ling Han
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - John D. Boyce
- Department of Microbiology, Faculty of Medicine, Nursing & Health Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Visanu Thamlikitkul
- Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Alan Forrest
- UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7569, USA
| | - Keith S. Kaye
- Detroit Medical Centre and Wayne State University, University Health Centre, Detroit, MI, 48201, USA
| | - Paul Hertzog
- Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia
- Faculty of Medicine, Nursing & Health Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Anthony W. Purcell
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Nursing & Health Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Jiangning Song
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Nursing & Health Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Tony Velkov
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Darren J. Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Jian Li
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| |
Collapse
|
33
|
Sharma OP, Kumar MS. Essential proteins and possible therapeutic targets of Wolbachia endosymbiont and development of FiloBase--a comprehensive drug target database for Lymphatic filariasis. Sci Rep 2016; 6:19842. [PMID: 26806463 PMCID: PMC4726333 DOI: 10.1038/srep19842] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 10/27/2015] [Indexed: 11/26/2022] Open
Abstract
Lymphatic filariasis (Lf) is one of the oldest and most debilitating tropical diseases. Millions of people are suffering from this prevalent disease. It is estimated to infect over 120 million people in at least 80 nations of the world through the tropical and subtropical regions. More than one billion people are in danger of getting affected with this life-threatening disease. Several studies were suggested its emerging limitations and resistance towards the available drugs and therapeutic targets for Lf. Therefore, better medicine and drug targets are in demand. We took an initiative to identify the essential proteins of Wolbachia endosymbiont of Brugia malayi, which are indispensable for their survival and non-homologous to human host proteins. In this current study, we have used proteome subtractive approach to screen the possible therapeutic targets for wBm. In addition, numerous literatures were mined in the hunt for potential drug targets, drugs, epitopes, crystal structures, and expressed sequence tag (EST) sequences for filarial causing nematodes. Data obtained from our study were presented in a user friendly database named FiloBase. We hope that information stored in this database may be used for further research and drug development process against filariasis. URL: http://filobase.bicpu.edu.in.
Collapse
Affiliation(s)
- Om Prakash Sharma
- Centre for Bioinformatics, School of Life Science, Pondicherry University, Pondicherry-605014, India
| | - Muthuvel Suresh Kumar
- Centre for Bioinformatics, School of Life Science, Pondicherry University, Pondicherry-605014, India
| |
Collapse
|
34
|
Cho S, Im H, Lee KY, Chen J, Kang HJ, Yoon HJ, Min KH, Lee KR, Park HJ, Lee BJ. Identification of novel scaffolds for potential anti-Helicobacter pylori agents based on the crystal structure of H. pylori 3-deoxy-d-manno-octulosonate 8-phosphate synthase (HpKDO8PS). Eur J Med Chem 2015; 108:188-202. [PMID: 26649906 DOI: 10.1016/j.ejmech.2015.11.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/17/2015] [Accepted: 11/21/2015] [Indexed: 01/27/2023]
Abstract
The crystal structure of 3-deoxy-d-manno-octulosonate-8-phosphate synthase (KDO8PS) from Helicobacter pylori (HpKDO8PS) was determined alone and within various complexes, revealing an extra helix (HE) that is absent in the structures of KDO8PS from other organisms. In contrast to the metal coordination of the KDO8PS enzyme from Aquifex aeolicus, HpKDO8PS is specifically coordinated with Cd(2+) or Zn(2+) ions, and isothermal titration calorimetry (ITC) and differential scanning fluorimetry (DSF) revealed that Cd(2+) thermally stabilizes the protein structure more efficiently than Zn(2+). In the substrate-bound structure, water molecules play a key role in fixing residues in the proper configuration to achieve a compact structure. Using the structures of HpKDO8PS and API [arabinose 5-phosphate (A5P) and phosphoenolpyruvate (PEP) bisubstrate inhibitor], we generated 21 compounds showing potential HpKDO8PS-binding properties via in silico virtual screening. The capacity of three, avicularin, hyperin, and MC181, to bind to HpKDO8PS was confirmed through saturation transfer difference (STD) experiments, and we identified their specific ligand binding modes by combining competition experiments and docking simulation analysis. Hyperin was confirmed to bind to the A5P binding site, primarily via hydrophilic interaction, whereas MC181 bound to both the PEP and A5P binding sites through hydrophilic and hydrophobic interactions. These results were consistent with the epitope mapping by STD. Our results are expected to provide clues for the development of HpKDO8PS inhibitors.
Collapse
Affiliation(s)
- Sujin Cho
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Hookang Im
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Ki-Young Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Jie Chen
- School of Pharmacy, Sungkyunkwan University, Gyeonggi-do 440-746, Republic of Korea
| | - Hae Ju Kang
- College of Pharmacy, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Hye-Jin Yoon
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Kyung Hoon Min
- College of Pharmacy, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Kang Ro Lee
- School of Pharmacy, Sungkyunkwan University, Gyeonggi-do 440-746, Republic of Korea
| | - Hyun-Ju Park
- School of Pharmacy, Sungkyunkwan University, Gyeonggi-do 440-746, Republic of Korea
| | - Bong-Jin Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|
35
|
Li W, Fan X, Long Q, Xie L, Xie J. Mycobacterium tuberculosis effectors involved in host-pathogen interaction revealed by a multiple scales integrative pipeline. INFECTION GENETICS AND EVOLUTION 2015; 32:1-11. [PMID: 25709069 DOI: 10.1016/j.meegid.2015.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 02/02/2015] [Accepted: 02/14/2015] [Indexed: 01/04/2023]
Abstract
BACKGROUND Mycobacterium tuberculosis (Mtb) has evolved multiple strategies to counter host immunity. Proteins are one important player in the host-pathogen interaction. A comprehensive list of such proteins will benefit our understanding of pathogenesis of Mtb. METHODS A genome-scale dataset was created from different sources of published data: global gene expression studies in disease models; genome-wide insertional mutagenesis defining gene essentiality under different conditions; genes lost in clinical isolates; subcellular localization analysis and non-homology analysis. Using data mining and meta-analysis, expressed proteins critical for intracellular survival of Mtb are first identified, followed by subcellular localization analysis, finally filtering a series of subtractive channel of analysis to find out promising drug target candidates. RESULTS The analysis found 54 potential candidates essential for the intracellular survival of the pathogen and non-homologous to host or gut flora, and might be promising drug targets. CONCLUSION Based on our meta-analysis and bioinformatics analysis, 54 hits were found from Mtb around 4000 open reading frames. These hits can be good candidates for further experimental investigation.
Collapse
Affiliation(s)
- Wu Li
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xiangyu Fan
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China; School of Biological Science and Technology, University of Jinan, Shandong 250022, China
| | - Quanxin Long
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China; The Second Affiliated Hospital and the Key Laboratory of Molecular Biology of Infectious Diseases of the Ministry of Education, Chongqing Medical University, 1 Medical Road, Yuzhong District, Chongqing 400016, China
| | - Longxiang Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
36
|
Stincone A, Prigione A, Cramer T, Wamelink MMC, Campbell K, Cheung E, Olin-Sandoval V, Grüning NM, Krüger A, Tauqeer Alam M, Keller MA, Breitenbach M, Brindle KM, Rabinowitz JD, Ralser M. The return of metabolism: biochemistry and physiology of the pentose phosphate pathway. Biol Rev Camb Philos Soc 2014; 90:927-63. [PMID: 25243985 PMCID: PMC4470864 DOI: 10.1111/brv.12140] [Citation(s) in RCA: 921] [Impact Index Per Article: 83.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 07/07/2014] [Accepted: 07/16/2014] [Indexed: 12/13/2022]
Abstract
The pentose phosphate pathway (PPP) is a fundamental component of cellular metabolism. The PPP is important to maintain carbon homoeostasis, to provide precursors for nucleotide and amino acid biosynthesis, to provide reducing molecules for anabolism, and to defeat oxidative stress. The PPP shares reactions with the Entner–Doudoroff pathway and Calvin cycle and divides into an oxidative and non-oxidative branch. The oxidative branch is highly active in most eukaryotes and converts glucose 6-phosphate into carbon dioxide, ribulose 5-phosphate and NADPH. The latter function is critical to maintain redox balance under stress situations, when cells proliferate rapidly, in ageing, and for the ‘Warburg effect’ of cancer cells. The non-oxidative branch instead is virtually ubiquitous, and metabolizes the glycolytic intermediates fructose 6-phosphate and glyceraldehyde 3-phosphate as well as sedoheptulose sugars, yielding ribose 5-phosphate for the synthesis of nucleic acids and sugar phosphate precursors for the synthesis of amino acids. Whereas the oxidative PPP is considered unidirectional, the non-oxidative branch can supply glycolysis with intermediates derived from ribose 5-phosphate and vice versa, depending on the biochemical demand. These functions require dynamic regulation of the PPP pathway that is achieved through hierarchical interactions between transcriptome, proteome and metabolome. Consequently, the biochemistry and regulation of this pathway, while still unresolved in many cases, are archetypal for the dynamics of the metabolic network of the cell. In this comprehensive article we review seminal work that led to the discovery and description of the pathway that date back now for 80 years, and address recent results about genetic and metabolic mechanisms that regulate its activity. These biochemical principles are discussed in the context of PPP deficiencies causing metabolic disease and the role of this pathway in biotechnology, bacterial and parasite infections, neurons, stem cell potency and cancer metabolism.
Collapse
Affiliation(s)
- Anna Stincone
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Alessandro Prigione
- Max Delbrueck Centre for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Thorsten Cramer
- Department of Gastroenterology and Hepatology, Molekulares Krebsforschungszentrum (MKFZ), Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Mirjam M C Wamelink
- Metabolic Unit, Department of Clinical Chemistry, VU University Medical Centre Amsterdam, De Boelelaaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Kate Campbell
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Eric Cheung
- Cancer Research UK, Beatson Institute, Switchback Road, Glasgow G61 1BD, U.K
| | - Viridiana Olin-Sandoval
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Nana-Maria Grüning
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Antje Krüger
- Max Planck Institute for Molecular Genetics, Ihnestr 73, 14195 Berlin, Germany
| | - Mohammad Tauqeer Alam
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Markus A Keller
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Michael Breitenbach
- Department of Cell Biology, University of Salzburg, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria
| | - Kevin M Brindle
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cancer Research UK Cambridge Research Institute (CRI), Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge CB2 0RE, U.K
| | - Joshua D Rabinowitz
- Department of Chemistry, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, 08544 NJ, U.S.A
| | - Markus Ralser
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.,Division of Physiology and Metabolism, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7, U.K
| |
Collapse
|
37
|
Azam SS, Shamim A. An insight into the exploration of druggable genome of Streptococcus gordonii for the identification of novel therapeutic candidates. Genomics 2014; 104:203-14. [DOI: 10.1016/j.ygeno.2014.07.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 07/02/2014] [Accepted: 07/17/2014] [Indexed: 01/17/2023]
|
38
|
Müller SA, Findeiß S, Pernitzsch SR, Wissenbach DK, Stadler PF, Hofacker IL, von Bergen M, Kalkhof S. Identification of new protein coding sequences and signal peptidase cleavage sites of Helicobacter pylori strain 26695 by proteogenomics. J Proteomics 2013; 86:27-42. [PMID: 23665149 DOI: 10.1016/j.jprot.2013.04.036] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 03/29/2013] [Accepted: 04/26/2013] [Indexed: 12/16/2022]
Abstract
UNLABELLED Correct annotation of protein coding genes is the basis of conventional data analysis in proteomic studies. Nevertheless, most protein sequence databases almost exclusively rely on gene finding software and inevitably also miss protein annotations or possess errors. Proteogenomics tries to overcome these issues by matching MS data directly against a genome sequence database. Here we report an in-depth proteogenomics study of Helicobacter pylori strain 26695. MS data was searched against a combined database of the NCBI annotations and a six-frame translation of the genome. Database searches with Mascot and X! Tandem revealed 1115 proteins identified by at least two peptides with a peptide false discovery rate below 1%. This represents 71% of the predicted proteome. So far this is the most extensive proteome study of Helicobacter pylori. Our proteogenomic approach unambiguously identified four previously missed annotations and furthermore allowed us to correct sequences of six annotated proteins. Since secreted proteins are often involved in pathogenic processes we further investigated signal peptidase cleavage sites. By applying a database search that accommodates the identification of semi-specific cleaved peptides, 63 previously unknown signal peptides were detected. The motif LXA showed to be the predominant recognition sequence for signal peptidases. BIOLOGICAL SIGNIFICANCE The results of MS-based proteomic studies highly rely on correct annotation of protein coding genes which is the basis of conventional data analysis. However, the annotation of protein coding sequences in genomic data is usually based on gene finding software. These tools are limited in their prediction accuracy such as the problematic determination of exact gene boundaries. Thus, protein databases own partly erroneous or incomplete sequences. Additionally, some protein sequences might also be missing in the databases. Proteogenomics, a combination of proteomic and genomic data analyses, is well suited to detect previously not annotated proteins and to correct erroneous sequences. For this purpose, the existing database of the investigated species is typically supplemented with a six-frame translation of the genome. Here, we studied the proteome of the major human pathogen Helicobacter pylori that is responsible for many gastric diseases such as duodenal ulcers and gastric cancer. Our in-depth proteomic study highly reliably identified 1115 proteins (FDR<0.01%) by at least two peptides (FDR<1%) which represent 71% of the predicted proteome deposited at NCBI. The proteogenomic data analysis of our data set resulted in the unambiguous identification of four previously missed annotations, the correction of six annotated proteins as well as the detection of 63 previously unknown signal peptides. We have annotated proteins of particular biological interest like the ferrous iron transport protein A, the coiled-coil-rich protein HP0058 and the lipopolysaccharide biosynthesis protein HP0619. For instance, the protein HP0619 could be a drug target for the inhibition of the LPS synthesis pathway. Furthermore it has been proven that the motif "LXA" is the predominant recognition sequence for the signal peptidase I of H. pylori. Signal peptidases are essential enzymes for the viability of bacterial cells and are involved in pathogenesis. Therefore signal peptidases could be novel targets for antibiotics. The inclusion of the corrected and new annotated proteins as well as the information of signal peptide cleavage sites will help in the study of biological pathways involved in pathogenesis or drug response of H. pylori.
Collapse
Affiliation(s)
- Stephan A Müller
- Department of Proteomics, UFZ, Helmholtz-Centre for Environmental Research Leipzig, 04318 Leipzig, Germany
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Identification and characterization of potential therapeutic candidates in emerging human pathogen Mycobacterium abscessus: a novel hierarchical in silico approach. PLoS One 2013; 8:e59126. [PMID: 23527108 PMCID: PMC3602546 DOI: 10.1371/journal.pone.0059126] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 02/11/2013] [Indexed: 11/24/2022] Open
Abstract
Mycobacterium abscessus, a non-tuberculous rapidly growing mycobacterium, is recognized as an emerging human pathogen causing a variety of infections ranging from skin and soft tissue infections to severe pulmonary infections. Lack of an optimal treatment regimen and emergence of multi-drug resistance in clinical isolates necessitate the development of better/new drugs against this pathogen. The present study aims at identification and qualitative characterization of promising drug targets in M. abscessus using a novel hierarchical in silico approach, encompassing three phases of analyses. In phase I, five sets of proteins were mined through chokepoint, plasmid, pathway, virulence factors, and resistance genes and protein network analysis. These were filtered in phase II, in order to find out promising drug target candidates through subtractive channel of analysis. The analysis resulted in 40 therapeutic candidates which are likely to be essential for the survival of the pathogen and non-homologous to host, human anti-targets, and gut flora. Many of the identified targets were found to be involved in different metabolisms (viz., amino acid, energy, carbohydrate, fatty acid, and nucleotide), xenobiotics degradation, and bacterial pathogenicity. Finally, in phase III, the candidate targets were qualitatively characterized through cellular localization, broad spectrum, interactome, functionality, and druggability analysis. The study explained their subcellular location identifying drug/vaccine targets, possibility of being broad spectrum target candidate, functional association with metabolically interacting proteins, cellular function (if hypothetical), and finally, druggable property. Outcome of the present study could facilitate the identification of novel antibacterial agents for better treatment of M. abscesses infections.
Collapse
|
40
|
Jadhav A, Ezhilarasan V, Prakash Sharma O, Pan A. Clostridium-DT(DB): a comprehensive database for potential drug targets of Clostridium difficile. Comput Biol Med 2013; 43:362-7. [PMID: 23415847 DOI: 10.1016/j.compbiomed.2013.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 01/15/2013] [Accepted: 01/20/2013] [Indexed: 01/05/2023]
Abstract
Clostridium difficile is considered to be one of the most important causes of health care-associated infections currently. The prevalence and severity of C. difficile infection have increased significantly worldwide in the past decade which has led to the increased research interest. Here, using comparative genomics strategy coupled with bioinformatics tools we have identified potential drug targets in C. difficile and determined their three-dimensional structures in order to develop a database, named Clostridium-DT(DB). Currently, the database comprises the potential drug targets with their structural information from three strains of C. difficile, namely hypervirulent PCR-ribotype 027 strain R20291, PCR-ribotype 012 strain 630, and PCR-ribotype 027 strain CD196.
Collapse
Affiliation(s)
- Ankush Jadhav
- Center for Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry-605014, India.
| | | | | | | |
Collapse
|
41
|
In silico identification of potential drug targets in Clostridium difficile R20291: modeling and virtual screening analysis of a candidate enzyme MurG. Med Chem Res 2012. [DOI: 10.1007/s00044-012-0262-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
42
|
Morya VK, Dewaker V, Kim EK. In Silico Study and Validation of Phosphotransacetylase (PTA) as a Putative Drug Target for Staphylococcus aureus by Homology-Based Modelling and Virtual Screening. Appl Biochem Biotechnol 2012; 168:1792-805. [DOI: 10.1007/s12010-012-9897-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 09/04/2012] [Indexed: 02/05/2023]
|