1
|
Rao S, Goyal A, Johnson A, Sadashiva N, Kulanthaivelu K, Vazhayil V, Santosh V. MAPK pathway alterations in polymorphous low-grade neuroepithelial tumor of the young: diagnostic considerations. Brain Tumor Pathol 2024; 41:109-116. [PMID: 39154303 DOI: 10.1007/s10014-024-00487-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024]
Abstract
Polymorphous low-grade neuroepithelial tumor of the young (PLNTY) is a recently recognised tumor type with indolent behaviour with characteristic imaging and histomolecular features. We describe the clinical, imaging, histo-molecular features of 15 cases diagnosed as low-grade glioma suggestive of PLNTY, over a period of 3 years. Immunohistochemistry (IHC) and fluorescence in situ hybridisation were used to assess molecular alterations. The tumors were seen predominantly in children (range 5-65 years). Most of the patients presented with history of seizures. Imaging revealed cortical-subcortical well demarcated solid-cystic tumor with intratumoral calcification. Histopathology revealed a low-grade tumor with oligodendroglia-Iike cells admixed with astrocytic cells immunopositive for CD34. BRAF p.V600E mutations and FGFR2 breakapart were observed in six cases each, while three showed FGFR3 breakapart. FGFR2 breakapart positive PLNTY were seen in children exclusively. The majority of cases were seizure free post-surgery, except two patients who succumbed to the illness. PLNTY, needs to be considered as a prime differential diagnosis in a solid-cystic tumor in a young patient with history of seizures. Characteristic clinical features, radiology, histomorphology with an IHC panel of OLIG2, GFAP and CD34 correlates with one of the MAPK alterations in PLNTY (BRAF p.V600E, FGFR2/3 gene rearrangement). In a resource limited setting, this limited panel may be sufficient for a correlative diagnosis.
Collapse
MESH Headings
- Humans
- Neoplasms, Neuroepithelial/pathology
- Neoplasms, Neuroepithelial/genetics
- Neoplasms, Neuroepithelial/diagnosis
- Neoplasms, Neuroepithelial/diagnostic imaging
- Child
- Female
- Male
- Adolescent
- Child, Preschool
- Brain Neoplasms/pathology
- Brain Neoplasms/genetics
- Brain Neoplasms/diagnosis
- Brain Neoplasms/diagnostic imaging
- Adult
- Proto-Oncogene Proteins B-raf/genetics
- Middle Aged
- Mutation
- Young Adult
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- MAP Kinase Signaling System
- Receptor, Fibroblast Growth Factor, Type 3/genetics
- Aged
- In Situ Hybridization, Fluorescence
- Immunohistochemistry
- Antigens, CD34/analysis
- Diagnosis, Differential
- Glioma/pathology
- Glioma/diagnosis
- Glioma/genetics
- Glioma/diagnostic imaging
- Oligodendrocyte Transcription Factor 2/genetics
Collapse
Affiliation(s)
- Shilpa Rao
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Aditi Goyal
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Allen Johnson
- Department of Neuroimaging and Intervention Radiology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Nishanth Sadashiva
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Karthik Kulanthaivelu
- Department of Neuroimaging and Intervention Radiology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Vikas Vazhayil
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Vani Santosh
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, India.
| |
Collapse
|
2
|
Deng Z, Luo J, Ma J, Jin YN, Yu YV. Glutathione metabolism-related gene signature predicts prognosis and treatment response in low-grade glioma. Aging (Albany NY) 2024; 16:9518-9546. [PMID: 38819225 PMCID: PMC11210255 DOI: 10.18632/aging.205881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/22/2024] [Indexed: 06/01/2024]
Abstract
Cancer cells can induce molecular changes that reshape cellular metabolism, creating specific vulnerabilities for targeted therapeutic interventions. Given the importance of reactive oxygen species (ROS) in tumor development and drug resistance, and the abundance of reduced glutathione (GSH) as the primary cellular antioxidant, we examined an integrated panel of 56 glutathione metabolism-related genes (GMRGs) across diverse cancer types. This analysis revealed a remarkable association between GMRGs and low-grade glioma (LGG) survival. Unsupervised clustering and a GMRGs-based risk score (GS) categorized LGG patients into two groups, linking elevated glutathione metabolism to poorer prognosis and treatment outcomes. Our GS model outperformed established clinical prognostic factors, acting as an independent prognostic factor. GS also exhibited correlations with pro-tumor M2 macrophage infiltration, upregulated immunosuppressive genes, and diminished responses to various cancer therapies. Experimental validation in glioma cell lines confirmed the critical role of glutathione metabolism in glioma cell proliferation and chemoresistance. Our findings highlight the presence of a unique metabolic susceptibility in LGG and introduce a novel GS system as a highly effective tool for predicting the prognosis of LGG.
Collapse
Affiliation(s)
- Zaidong Deng
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Jing Luo
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Jing Ma
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Youngnam N. Jin
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Yanxun V. Yu
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Trippett T, Toledano H, Campbell Hewson Q, Verschuur A, Langevin AM, Aerts I, Howell L, Gallego S, Rossig C, Smith A, Patel D, Pereira LR, Cheeti S, Musib L, Hutchinson KE, Devlin C, Bernardi R, Geoerger B. Cobimetinib in Pediatric and Young Adult Patients with Relapsed or Refractory Solid Tumors (iMATRIX-cobi): A Multicenter, Phase I/II Study. Target Oncol 2022; 17:283-293. [PMID: 35715627 PMCID: PMC9217999 DOI: 10.1007/s11523-022-00888-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2022] [Indexed: 11/29/2022]
Abstract
Background The MAPK pathway is an emerging target across a number of adult and pediatric tumors. Targeting the downstream effector of MAPK, MEK1, is a proposed strategy to control the growth of MAPK-dependent tumors. Objective iMATRIX-cobi assessed the safety, pharmacokinetics, and anti-tumor activity of cobimetinib, a highly selective MEK inhibitor, in children and young adults with relapsed/refractory solid tumors. Patients and Methods This multicenter Phase I/II study enrolled patients aged 6 months to < 30 years with solid tumors with known/expected MAPK pathway involvement. Patients received cobimetinib tablet or suspension formulation on Days 1–21 of a 28-day cycle. Dose escalation followed a rolling 6 design. The primary endpoint was safety; secondary endpoints were pharmacokinetics and anti-tumor activity. Results Of 56 enrolled patients (median age 9 years [range 3–29]), 18 received cobimetinib tablets and 38 cobimetinib suspension. Most common diagnoses were low-grade glioma (LGG; n = 32, including n = 12 in the expansion cohort) and plexiform neurofibroma within neurofibromatosis type 1 (n = 12). Six patients (11 %) experienced dose-limiting toxicities (including five ocular toxicity events), which established a pediatric recommended Phase II dose (RP2D) of 0.8 mg/kg tablet and 1.0 mg/kg suspension. Most frequently reported treatment-related adverse events were gastrointestinal and skin disorders. Steady state mean exposure (Cmax, AUC0–24) of cobimetinib at the RP2D (1.0 mg/kg suspension) was ~ 50 % lower than in adults receiving the approved 60 mg/day dose. Overall response rate was 5.4 % (3/56; all partial responses in patients with LGG). Conclusions The safety profile of cobimetinib in pediatrics was similar to that reported in adults. Clinical activity was observed in LGG patients with known/suspected MAPK pathway activation. Cobimetinib combination regimens may be required to improve response rates in this pediatric population. Clinical Trial Registration ClinicalTrials.gov NCT02639546, registered December 24, 2015. Supplementary Information The online version contains supplementary material available at 10.1007/s11523-022-00888-9.
Collapse
Affiliation(s)
- Tanya Trippett
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Helen Toledano
- Department of Pediatric Hematology-Oncology, Schneider Children's Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Quentin Campbell Hewson
- Department of Paediatric and Adolescent Oncology, The Great North Children's Hospital, Newcastle Upon Tyne, UK
| | - Arnauld Verschuur
- Assistance Publique-Hopitaux de Marseille, Pediatric Oncology, Timone Children's Hospital, Marseille, France
| | | | - Isabelle Aerts
- Oncology Center SIREDO, Institut Curie, PSL Research University, Paris, France
| | - Lisa Howell
- Paediatric Oncology, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Soledad Gallego
- Paediatric Oncology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Claudia Rossig
- Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Amy Smith
- Haley Center for Children's Cancer and Blood Disorders, Orlando-Health Arnold Palmer Hospital for Children, Orlando, FL, USA
| | - Darshak Patel
- Product Development, Biometrics, Biostatistics, F. Hoffmann-La Roche Ltd, Mississauga, ON, Canada.,Parexel International Ltd, Ottawa, ON, Canada
| | | | - Sravanthi Cheeti
- Clinical Pharmacology, Genentech, Inc., South San Francisco, CA, USA
| | - Luna Musib
- Clinical Pharmacology, Genentech, Inc., South San Francisco, CA, USA.,Arrivent Biopharma, Newtown Square, PA, USA
| | | | - Clare Devlin
- Product Development Oncology, Roche Products Ltd, Welwyn, UK
| | - Ronald Bernardi
- Product Development Oncology, Genentech, Inc., South San Francisco, CA, USA
| | - Birgit Geoerger
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Center, Université Paris-Saclay, INSERM U1015, Villejuif, France
| |
Collapse
|
4
|
Sasame J, Ikegaya N, Kawazu M, Natsumeda M, Hayashi T, Isoda M, Satomi K, Tomiyama A, Oshima A, Honma H, Miyake Y, Takabayashi K, Nakamura T, Ueno T, Matsushita Y, Iwashita H, Kanemaru Y, Murata H, Ryo A, Terashima K, Yamanaka S, Fujii Y, Mano H, Komori T, Ichimura K, Cahill DP, Wakimoto H, Yamamoto T, Tateishi K. HSP90 inhibition overcomes resistance to molecular targeted therapy in BRAFV600E mutant high-grade glioma. Clin Cancer Res 2022; 28:2425-2439. [PMID: 35344043 DOI: 10.1158/1078-0432.ccr-21-3622] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/07/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE Molecular targeted therapy using BRAF and/or MEK inhibitors has been applied to BRAFV600E mutant high-grade gliomas (HGGs); however, the therapeutic effect is limited by the emergence of drug resistance. EXPERIMENTAL DESIGN We established multiple paired BRAFV600E mutant HGG patient-derived xenograft (PDX) models based on tissues collected prior to and at relapse after molecular targeted therapy. Using these models, we dissected treatment resistant mechanisms for molecular targeted therapy and explored therapeutic targets to overcome resistance in BRAFV600E HGG models in vitro and in vivo. RESULTS We found that, despite causing no major genetic and epigenetic changes, BRAF and/or MEK inhibitor treatment deregulated multiple negative feedback mechanisms, which led to the re-activation of the MAPK pathway through c-Raf and AKT signaling. This altered oncogenic signaling primarily mediated resistance to molecular targeted therapy in BRAFV600E mutant HGG. To overcome this resistance mechanism, we performed a high-throughput drug screening to identify therapeutic agents that potently induce additive cytotoxicity with BRAF and MEK inhibitors. We discovered that HSP90 inhibition combined with BRAF/MEK inhibition coordinately deactivated the MAPK and AKT/mTOR pathways, and subsequently induced apoptosis via dephosphorylation of GSK3β (Ser9) and inhibition of Bcl-2 family proteins. This mediated potent cytotoxicity in vitro and in vivo in refractory models with acquired resistance to molecular-targeted therapy. CONCLUSIONS The combination of an HSP90 inhibitor with BRAF or MEK inhibitors can overcome the limitations of the current therapeutic strategies for BRAFV600E mutant HGG.
Collapse
Affiliation(s)
- Jo Sasame
- Yokohama City University, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | - Toshihide Ueno
- National Cancer Center Research Institute, Tokyo, Tokyo, Japan
| | | | | | | | | | | | - Keita Terashima
- National Center For Child Health and Development, Tokyo, Japan
| | | | - Yukihiko Fujii
- Brain Research Institute, Niigata University, Niigata, Niigata, Japan
| | | | | | | | - Daniel P Cahill
- Massachusetts General Hospital / Harvard Medical School, Boston, MA, United States
| | - Hiroaki Wakimoto
- Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | | | | |
Collapse
|
5
|
Komori T. Grading of adult diffuse gliomas according to the 2021 WHO Classification of Tumors of the Central Nervous System. J Transl Med 2022; 102:126-133. [PMID: 34504304 DOI: 10.1038/s41374-021-00667-6] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 12/15/2022] Open
Abstract
The grading of gliomas based on histological features has been a subject of debate for several decades. A consensus has not yet been reached because of technical limitations and inter-observer variations. While the traditional grading system has failed to stratify the risk of IDH-mutant astrocytoma, canonical histological and proliferative markers may be applicable to the risk stratification of IDH-wild-type astrocytoma. Numerous studies have examined molecular markers in order to obtain more clinically relevant information that will improve the risk stratification of gliomas. The CDKN2A/B homozygous deletion for IDH-mutant astrocytoma and the following three criteria for IDH-wild-type astrocytoma: the concurrent gain of whole chromosome 7 and loss of whole chromosome 10, TERT promoter mutations, and EGFR amplification, were identified as independent molecular markers of the worst clinical outcomes. Therefore, the 2021 World Health Organization (WHO) Classification of Tumors of the Central Nervous System adopted these molecular markers into the revised grading criteria of IDH-mutant and -wild-type astrocytoma, respectively, as a grading system within tumor types. Of note, several recent studies have shown that some low-grade IDH-wild-type astrocytoma lacking both the molecular glioblastoma signature and genetic alterations typical of pediatric-type gliomas may demonstrate a relatively indolent clinical course, suggesting the existence of lower-grade adult IDH-wild-type astrocytoma. In terms of oligodendroglioma, IDH-mutant, and 1p/19q codeleted, consistent makers that predict poor outcomes have not yet been identified, and, thus, the current criteria have remained unchanged. Molecular testing to fulfill the revised WHO criteria is, however, not always available worldwide, and in that case, an integrated diagnosis combining all available complementary information is highly recommended. This review discusses controversial issues surrounding legacy grading systems and newly identified potential genetic markers of adult diffuse gliomas and provides perspectives on future grading systems.
Collapse
Affiliation(s)
- Takashi Komori
- Department of Laboratory Medicine and Pathology (Neuropathology), Tokyo Metropolitan Neurological Hospital, 2-6-1 Musashidai, Fuchu, Tokyo, 183-0042, Japan.
| |
Collapse
|
6
|
Cole BL. Neuropathology of Pediatric Brain Tumors: A Concise Review. Neurosurgery 2022; 90:7-15. [PMID: 34114043 DOI: 10.1093/neuros/nyab182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/31/2021] [Indexed: 01/07/2023] Open
Abstract
Pediatric brain tumors are an incredibly diverse group of neoplasms and neuropathological tumor classification is an essential part of patient care. Classification of pediatric brain tumors has changed considerably in recent years as molecular diagnostics have become incorporated with routine histopathology in the diagnostic process. This article will focus on the fundamental major histologic, immunohistochemical, and molecular features that neuropathologists use to make an integrated diagnosis of pediatric brain tumors. This concise review will focus on tumors that are integral to the central nervous system in pediatric patients including: embryonal tumors, low and high grade gliomas, glioneuronal tumors, ependymomas, and choroid plexus tumors.
Collapse
Affiliation(s)
- Bonnie L Cole
- Department of Laboratories, Seattle Children's Hospital , Seattle , Washington , USA.,Department of Laboratory Medicine and Pathology, University of Washington School of Medicine , Seattle , Washington , USA
| |
Collapse
|
7
|
Dandapath I, Chakraborty R, Kaur K, Mahajan S, Singh J, Sharma MC, Sarkar C, Suri V. Molecular alterations of low-grade gliomas in young patients: Strategies and platforms for routine evaluation. Neurooncol Pract 2021; 8:652-661. [PMID: 34777834 PMCID: PMC8579091 DOI: 10.1093/nop/npab053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In recent years, it has been established that molecular biology of pediatric low-grade gliomas (PLGGs) is entirely distinct from adults. The majority of the circumscribed pediatric gliomas are driven by mitogen-activated protein kinase (MAPK) pathway, which has yielded important diagnostic, prognostic, and therapeutic biomarkers. Further, the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy (cIMPACT) Steering Committee in their fourth meeting, suggested including a panel of molecular markers for integrated diagnosis in "pediatric-type" diffuse gliomas. However, a designated set of platforms for the evaluation of these alterations has yet not been mentioned for easier implementation in routine molecular diagnostics. Herein, we have reviewed the relevance of analyzing these markers and discussed the strategies and platforms best apposite for clinical laboratories.
Collapse
Affiliation(s)
- Iman Dandapath
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | | | - Kavneet Kaur
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Swati Mahajan
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Jyotsna Singh
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Mehar C Sharma
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Chitra Sarkar
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Vaishali Suri
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
8
|
Targeted Therapies in Rare Brain Tumours. Int J Mol Sci 2021; 22:ijms22157949. [PMID: 34360713 PMCID: PMC8348084 DOI: 10.3390/ijms22157949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/14/2022] Open
Abstract
Rare central nervous system (CNS) tumours represent a unique challenge. Given the difficulty of conducting dedicated clinical trials, there is a lack of therapies for these tumours supported by high quality evidence, and knowledge regarding the impact of standard treatments (i.e., surgery, radiotherapy or chemotherapy) is commonly based on retrospective studies. Recently, new molecular techniques have led to the discovery of actionable molecular alterations. The aim of this article is to review recent progress in the molecular understanding of and therapeutic options for rare brain tumours, both in children and adults. We will discuss options such as targeting the mechanistic target of rapamycin (mTOR) pathway in subependymal giant cells astrocytomas (SEGAs) of tuberous sclerosis and BRAF V600E mutation in rare glial (pleomorphic xanthoastrocytomas) or glioneuronal (gangliogliomas) tumours, which are a model of how specific molecular treatments can also favourably impact neurological symptoms (such as seizures) and quality of life. Moreover, we will discuss initial experiences in targeting new molecular alterations in gliomas, such as isocitrate dehydrogenase (IDH) mutations and neurotrophic tyrosine receptor kinase (NTRK) fusions, and in medulloblastomas such as the sonic hedgehog (SHH) pathway.
Collapse
|
9
|
Komori T. The molecular framework of pediatric-type diffuse gliomas: shifting toward the revision of the WHO classification of tumors of the central nervous system. Brain Tumor Pathol 2021; 38:1-3. [PMID: 33398472 DOI: 10.1007/s10014-020-00392-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Takashi Komori
- Department of Laboratory Medicine and Pathology (Neuropathology), Tokyo Metropolitan Neurological Hospital, Tokyo, Japan.
| |
Collapse
|
10
|
Deland L, Keane S, Olsson Bontell T, Sjögren H, Fagman H, Øra I, De La Cuesta E, Tisell M, Nilsson JA, Ejeskär K, Sabel M, Abel F. Discovery of a rare GKAP1-NTRK2 fusion in a pediatric low-grade glioma, leading to targeted treatment with TRK-inhibitor larotrectinib. Cancer Biol Ther 2021; 22:184-195. [PMID: 33820494 PMCID: PMC8043191 DOI: 10.1080/15384047.2021.1899573] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Here we report a case of an 11-year-old girl with an inoperable tumor in the optic chiasm/hypothalamus, who experienced several tumor progressions despite three lines of chemotherapy treatment. Routine clinical examination classified the tumor as a BRAF-negative pilocytic astrocytoma. Copy-number variation profiling of fresh frozen tumor material identified two duplications in 9q21.32–33 leading to breakpoints within the GKAP1 and NTRK2 genes. RT-PCR Sanger sequencing revealed a GKAP1-NTRK2 exon 10–16 in-frame fusion, generating a putative fusion protein of 658 amino acids with a retained tyrosine kinase (TK) domain. Functional analysis by transient transfection of HEK293 cells showed the GKAP1-NTRK2 fusion protein to be activated through phosphorylation of the TK domain (Tyr705). Subsequently, downstream mediators of the MAPK- and PI3K-signaling pathways were upregulated in GKAP1-NTRK2 cells compared to NTRK2 wild-type; phosphorylated (p)ERK (3.6-fold), pAKT (1.8- fold), and pS6 ribosomal protein (1.4-fold). Following these findings, the patient was enrolled in a clinical trial and treated with the specific TRK-inhibitor larotrectinib, resulting in the arrest of tumor growth. The patient’s condition is currently stable and the quality of life has improved significantly. Our findings highlight the value of comprehensive clinical molecular screening of BRAF-negative pediatric low-grade gliomas, to reveal rare fusions serving as targets for precision therapy.
Collapse
Affiliation(s)
- Lily Deland
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Simon Keane
- Translational Medicine, School of Health Sciences, University of Skövde, Skövde, Sweden
| | - Thomas Olsson Bontell
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Helene Sjögren
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Henrik Fagman
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ingrid Øra
- Department of Clinical Sciences, Lund University Hospital, Lund, Sweden.,HOPE/ITCC Phase I/II Trial Unit, Pediatric Oncology, Karolinska Hospital, Stockholm, Sweden
| | - Esther De La Cuesta
- Pharmaceuticals, Global Medical Affairs - Oncology, Bayer U.S., Whippany, USA
| | - Magnus Tisell
- Department of Clinical Neuroscience and Rehabilitation, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jonas A Nilsson
- Sahlgrenska Cancer Center, Department of Laboratory Medicine Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Katarina Ejeskär
- Translational Medicine, School of Health Sciences, University of Skövde, Skövde, Sweden
| | - Magnus Sabel
- Childhood Cancer Centre, Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Frida Abel
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
11
|
Peeters SM, Muftuoglu Y, Na B, Daniels DJ, Wang AC. Pediatric Gliomas: Molecular Landscape and Emerging Targets. Neurosurg Clin N Am 2021; 32:181-190. [PMID: 33781501 DOI: 10.1016/j.nec.2020.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Next-generation sequencing of pediatric gliomas has revealed the importance of molecular genetic characterization in understanding the biology underlying these tumors and a breadth of potential therapeutic targets. Promising targeted therapies include mTOR inhibitors for subependymal giant cell astrocytomas in tuberous sclerosis, BRAF and MEK inhibitors mainly for low-grade gliomas, and MEK inhibitors for NF1-deficient BRAF:KIAA fusion tumors. Challenges in developing targeted molecular therapies include significant intratumoral and intertumoral heterogeneity, highly varied mechanisms of treatment resistance and immune escape, adequacy of tumor penetrance, and sensitivity of brain to treatment-related toxicities.
Collapse
Affiliation(s)
- Sophie M Peeters
- Department of Neurosurgery, University of California Los Angeles, 300 Stein Plaza, Suite #520, Los Angeles, CA 90095, USA
| | - Yagmur Muftuoglu
- Department of Neurosurgery, University of California Los Angeles, 300 Stein Plaza, Suite #520, Los Angeles, CA 90095, USA
| | - Brian Na
- Department of Pediatrics, Division of Hematology/Oncology, University of California Los Angeles, 200 UCLA Medical Plaza, Suite 265, Los Angeles, CA 90095, USA
| | - David J Daniels
- Department of Neurosurgery, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA
| | - Anthony C Wang
- Department of Neurosurgery, University of California Los Angeles, 300 Stein Plaza, Suite #520, Los Angeles, CA 90095, USA.
| |
Collapse
|
12
|
Tan JY, Wijesinghe IVS, Alfarizal Kamarudin MN, Parhar I. Paediatric Gliomas: BRAF and Histone H3 as Biomarkers, Therapy and Perspective of Liquid Biopsies. Cancers (Basel) 2021; 13:cancers13040607. [PMID: 33557011 PMCID: PMC7913734 DOI: 10.3390/cancers13040607] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Gliomas are major causes of worldwide cancer-associated deaths in children. Generally, paediatric gliomas can be classified into low-grade and high-grade gliomas. They differ significantly from adult gliomas in terms of prevalence, molecular alterations, molecular mechanisms and predominant histological types. The aims of this review article are: (i) to discuss the current updates of biomarkers in paediatric low-grade and high-grade gliomas including their diagnostic and prognostic values, and (ii) to discuss potential targeted therapies in treating paediatric low-grade and high-grade gliomas. Our findings revealed that liquid biopsy is less invasive than tissue biopsy in obtaining the samples for biomarker detections in children. In addition, future clinical trials should consider blood-brain barrier (BBB) penetration of therapeutic drugs in paediatric population. Abstract Paediatric gliomas categorised as low- or high-grade vary markedly from their adult counterparts, and denoted as the second most prevalent childhood cancers after leukaemia. As compared to adult gliomas, the studies of diagnostic and prognostic biomarkers, as well as the development of therapy in paediatric gliomas, are still in their infancy. A body of evidence demonstrates that B-Raf Proto-Oncogene or V-Raf Murine Sarcoma Viral Oncogene Homolog B (BRAF) and histone H3 mutations are valuable biomarkers for paediatric low-grade gliomas (pLGGs) and high-grade gliomas (pHGGs). Various diagnostic methods involving fluorescence in situ hybridisation, whole-genomic sequencing, PCR, next-generation sequencing and NanoString are currently used for detecting BRAF and histone H3 mutations. Additionally, liquid biopsies are gaining popularity as an alternative to tumour materials in detecting these biomarkers, but still, they cannot fully replace solid biopsies due to several limitations. Although histone H3 mutations are reliable prognosis biomarkers in pHGGs, children with these mutations have a dismal prognosis. Conversely, the role of BRAF alterations as prognostic biomarkers in pLGGs is still in doubt due to contradictory findings. The BRAF V600E mutation is seen in the majority of pLGGs (as seen in pleomorphic xanthoastrocytoma and gangliomas). By contrast, the H3K27M mutation is found in the majority of paediatric diffuse intrinsic pontine glioma and other midline gliomas in pHGGs. pLGG patients with a BRAF V600E mutation often have a lower progression-free survival rate in comparison to wild-type pLGGs when treated with conventional therapies. BRAF inhibitors (Dabrafenib and Vemurafenib), however, show higher overall survival and tumour response in BRAF V600E mutated pLGGs than conventional therapies in some studies. To date, targeted therapy and precision medicine are promising avenues for paediatric gliomas with BRAF V600E and diffuse intrinsic pontine glioma with the H3K27M mutations. Given these shortcomings in the current treatments of paediatric gliomas, there is a dire need for novel therapies that yield a better therapeutic response. The present review discusses the diagnostic tools and the perspective of liquid biopsies in the detection of BRAF V600E and H3K27M mutations. An in-depth understanding of these biomarkers and the therapeutics associated with the respective challenges will bridge the gap between paediatric glioma patients and the development of effective therapies.
Collapse
Affiliation(s)
| | | | | | - Ishwar Parhar
- Correspondence: ; Tel.: +603-5514-6304; Fax: +603-5515-6341
| |
Collapse
|
13
|
Ney GM, McKay L, Koschmann C, Mody R, Li Q. The Emerging Role of Ras Pathway Signaling in Pediatric Cancer. Cancer Res 2020; 80:5155-5163. [PMID: 32907837 PMCID: PMC10081825 DOI: 10.1158/0008-5472.can-20-0916] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/04/2020] [Accepted: 09/02/2020] [Indexed: 11/16/2022]
Abstract
As genomic sequencing has become more widely available, the high prevalence of Ras pathway mutations in pediatric diseases has begun to emerge. Germline Ras-activating mutations have been known to contribute to cancer predisposition in a group of disorders known as the RASopathies, and now large pediatric sequencing studies have identified frequent somatic Ras pathway alterations across a diverse group of pediatric malignancies. These include glial brain tumors, relapsed high-risk neuroblastoma, embryonal rhabdomyosarcoma, acute myeloid leukemia, and relapsed acute lymphoblastic leukemia, and their prognostic impact is becoming increasingly better understood. Clinically, there has been success in targeting the Ras pathway in pediatric diseases, including the use of MEK inhibitors in plexiform neurofibromas associated with neurofibromatosis type 1 and the use of Ras pathway inhibitors in low-grade gliomas. Given the importance of this pathway in pediatric cancer, it is imperative that future studies strive to better understand the functional significance of these mutations, including their role in tumor growth and treatment resistance and how they can be better targeted to improve outcomes.
Collapse
Affiliation(s)
- Gina M Ney
- Department of Pediatrics, University of Michigan, Ann Arbor, MI.
| | - Laura McKay
- Department of Pediatrics, University of Michigan, Ann Arbor, MI
| | - Carl Koschmann
- Department of Pediatrics, University of Michigan, Ann Arbor, MI
| | - Rajen Mody
- Department of Pediatrics, University of Michigan, Ann Arbor, MI
| | - Qing Li
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI.
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
14
|
Srinivasa K, Cross KA, Dahiya S. BRAF Alteration in Central and Peripheral Nervous System Tumors. Front Oncol 2020; 10:574974. [PMID: 33042847 PMCID: PMC7523461 DOI: 10.3389/fonc.2020.574974] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022] Open
Abstract
BRAF (alternately referred to as v-raf murine sarcoma viral oncogene homolog B1) is a proto-oncogene involved in the mitogen-activated protein kinase (MAPK) pathway. BRAF alterations are most commonly missense mutations or aberrant fusions. These mutations are observed in numerous primary central nervous system tumors as well as metastases. This review discusses the prevalence of BRAF alteration within select notable CNS tumors, and their prognostic associations. Included are some novel entities such as diffuse leptomeningeal glioneuronal tumor (DLGNT), polymorphous low grade neuroepithelial tumor of the young (PLNTY), and multinodular and vacuolating neuronal tumor (MVNT). Knowledge of this gene’s integrity in CNS and PNS tumors can have profound diagnostic and therapeutic implications. Also reviewed are the current state of targeted therapy against aberrant BRAF as it pertains mostly to the CNS and to a lesser extent in PNS, and certain diagnostic aspects.
Collapse
Affiliation(s)
- Komal Srinivasa
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Kevin A Cross
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Sonika Dahiya
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
15
|
Tateishi K, Ikegaya N, Udaka N, Sasame J, Hayashi T, Miyake Y, Okabe T, Minamimoto R, Murata H, Utsunomiya D, Yamanaka S, Yamamoto T. BRAF V600E mutation mediates FDG-methionine uptake mismatch in polymorphous low-grade neuroepithelial tumor of the young. Acta Neuropathol Commun 2020. [PMID: 32811569 DOI: 10.1186/s40478-020-01023-3.pmid:32811569;pmcid:pmc7436956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
We present a case of a 14-year old boy with tumor-associated refractory epilepsy. Positron emission tomography imaging demonstrated a region with heterogeneous high 11C-methionine uptake and a region with homogenous low 18F-fluorodeoxyglucose uptake within the tumor. Histopathological and genomic analyses confirmed the tumor as BRAF V600E-mutated polymorphous low-grade neuroepithelial tumor of the young (PLNTY). Within the high-methionine-uptake region, we observed increased protein levels of L-type amino acid transporter 1 (LAT1), a major transporter of methionine; c-Myc; and constituents of the mitogen-activated protein kinase (MAPK) pathway. We also found that LAT1 expression was linked to the BRAF V600E mutation and subsequent activation of MAPK signaling and c-Myc. Pharmacological and genetic inhibition of the MAPK pathway suppressed c-Myc and LAT1 expression in BRAF V600E-mutated PLNTY and glioblastoma cells. The BRAF inhibitor dabrafenib moderately suppressed cell viability in PLNTY. Collectively, our results indicate that BRAF V600E mutation-activated MAPK signaling and downstream c-Myc induces specific metabolic alterations in PLNTY, and may represent an attractive target in the treatment of the disease.
Collapse
Affiliation(s)
- Kensuke Tateishi
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, 2360004, Japan.
| | - Naoki Ikegaya
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, 2360004, Japan
| | - Naoko Udaka
- Department of Pathology, Yokohama City University Hospital, Yokohama, Japan
| | - Jo Sasame
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, 2360004, Japan
| | - Takahiro Hayashi
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, 2360004, Japan
| | - Yohei Miyake
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, 2360004, Japan
| | - Tetsuhiko Okabe
- Department of Radiology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Ryogo Minamimoto
- Departmento of Radiology, Division of Nuclear Medicine, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hidetoshi Murata
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, 2360004, Japan
| | - Daisuke Utsunomiya
- Department of Radiology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Shoji Yamanaka
- Department of Pathology, Yokohama City University Hospital, Yokohama, Japan
| | - Tetsuya Yamamoto
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, 2360004, Japan
| |
Collapse
|
16
|
Tateishi K, Ikegaya N, Udaka N, Sasame J, Hayashi T, Miyake Y, Okabe T, Minamimoto R, Murata H, Utsunomiya D, Yamanaka S, Yamamoto T. BRAF V600E mutation mediates FDG-methionine uptake mismatch in polymorphous low-grade neuroepithelial tumor of the young. Acta Neuropathol Commun 2020; 8:139. [PMID: 32811569 PMCID: PMC7436956 DOI: 10.1186/s40478-020-01023-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023] Open
Abstract
We present a case of a 14-year old boy with tumor-associated refractory epilepsy. Positron emission tomography imaging demonstrated a region with heterogeneous high 11C-methionine uptake and a region with homogenous low 18F-fluorodeoxyglucose uptake within the tumor. Histopathological and genomic analyses confirmed the tumor as BRAF V600E-mutated polymorphous low-grade neuroepithelial tumor of the young (PLNTY). Within the high-methionine-uptake region, we observed increased protein levels of L-type amino acid transporter 1 (LAT1), a major transporter of methionine; c-Myc; and constituents of the mitogen-activated protein kinase (MAPK) pathway. We also found that LAT1 expression was linked to the BRAF V600E mutation and subsequent activation of MAPK signaling and c-Myc. Pharmacological and genetic inhibition of the MAPK pathway suppressed c-Myc and LAT1 expression in BRAF V600E-mutated PLNTY and glioblastoma cells. The BRAF inhibitor dabrafenib moderately suppressed cell viability in PLNTY. Collectively, our results indicate that BRAF V600E mutation-activated MAPK signaling and downstream c-Myc induces specific metabolic alterations in PLNTY, and may represent an attractive target in the treatment of the disease.
Collapse
|
17
|
Yang Y, Liu X, Cheng L, Li L, Wei Z, Wang Z, Han G, Wan X, Wang Z, Zhang J, Chen C. Tumor Suppressor microRNA-138 Suppresses Low-Grade Glioma Development and Metastasis via Regulating IGF2BP2. Onco Targets Ther 2020; 13:2247-2260. [PMID: 32214825 PMCID: PMC7082711 DOI: 10.2147/ott.s232795] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 02/25/2020] [Indexed: 12/25/2022] Open
Abstract
Background Low-grade gliomas (LGG), approximately constitute one-third of all types of gliomas, are prone to relapse and metastasis. MicroRNA-138 (miR-138) is reported to be dysregulated in diverse human tumors and mainly function as a tumor suppressor. In this study, we analyzed the expression profile and function of miR-138 in LGG. Methods Quantitative PCR (qPCR) and public database bioinformatics analysis were performed to determine the miR-138 levels in LGG. MiR-138 overexpression in LGG cells was achieved by miR-138 mimics transfection. Cell proliferation was assessed by CCK8, EdU and colony formation assays. Cell invasion and migration were analyzed by transwell and wound-healing assays. Xenograft model was employed to study the role of miR-138 in LGG growth in vivo. The target of miR-138 was validated by multiple methods, such as luciferase reporter assay, RT-qPCR and Western blot. Bioinformatics analysis was conducted to explore the molecular mechanisms by which miR-138 contributed to LGG progression. Results miR-138 was significantly downregulated in LGG tumor tissues and low expression of miR-138 was significantly associated with poor prognosis as well as relapse and metastasis in LGG patients. Functional analysis indicated that ectopic miR-138 expression suppressed LGG cell growth and invasive phenotype in vitro, and inhibited tumor development in vivo. Moreover, miR-138 directly targeted and repressed insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2) by targeting the 3ʹ-UTR of IGF2BP2, inhibiting epithelial to mesenchymal transition (EMT) to attenuate LGG aggressiveness. In addition, we found that elevated IGF2BP2 expression correlates with poor survival of LGG patients. Conclusion miR-138 may function as a tumor inhibitor by directly inhibiting IGF2BP2 and suppressing EMT in the progression of LGG.
Collapse
Affiliation(s)
- Yang Yang
- Henan Key Laboratory for Medical Imaging of Neurological Diseases, People's Hospital of Zhengzhou University, Zhengzhou 450003, People's Republic of China.,Department of Neurosurgery, Zhumadian Central Hospital, Zhumadian 463000, People's Republic of China
| | - Xinyu Liu
- School of Intelligent Manufacturing, The Huanghuai University, Zhumadian 463000, People's Republic of China
| | - Lulu Cheng
- Department of Neurosurgery, Zhumadian Central Hospital, Zhumadian 463000, People's Republic of China
| | - Li Li
- Department of Neurosurgery, Zhumadian Central Hospital, Zhumadian 463000, People's Republic of China
| | - Zhenyu Wei
- Department of Neurosurgery, Second Affiliated Hospital of Xinxiang Medical College, Xinxiang 453000, People's Republic of China
| | - Zong Wang
- Department of Neurosurgery, Zhumadian Central Hospital, Zhumadian 463000, People's Republic of China
| | - Gang Han
- Department of Neurosurgery, Zhumadian Central Hospital, Zhumadian 463000, People's Republic of China
| | - Xuefeng Wan
- Department of Neurosurgery, Zhumadian Central Hospital, Zhumadian 463000, People's Republic of China
| | - Zaizhong Wang
- Department of Neurosurgery, Zhumadian Central Hospital, Zhumadian 463000, People's Republic of China
| | - Jianhua Zhang
- Medical Engineering Technology and Data Mining Institute of Zhengzhou University, Zhengzhou 450000, People's Republic of China
| | - Chuanliang Chen
- Henan Key Laboratory for Medical Imaging of Neurological Diseases, People's Hospital of Zhengzhou University, Zhengzhou 450003, People's Republic of China
| |
Collapse
|
18
|
Cells with ganglionic differentiation frequently stain for VE1 antibody: a potential pitfall. Brain Tumor Pathol 2019; 37:14-21. [PMID: 31820133 DOI: 10.1007/s10014-019-00356-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 11/27/2019] [Indexed: 10/25/2022]
Abstract
Mitogen-activated protein kinase (MAPK) pathway plays a major role in pediatric low-grade gliomas (pLGGs). Immunohistochemistry with mutant-specific antibody, VE1, has appeared to be the most affordable and rapidly deployable method to identify tumors with aberrant MAPK signaling pathway, by highlighting tumor with BRAFV600E mutation. Nonetheless, positive staining cases but not associated with BRAFV600E mutation are also seen. We analyzed 62 pLGGs for the two commonest genetic aberrations in MAPK pathway: KIAA1549-BRAF fusion, using reverse-transcriptase polymerase chain reaction, and BRAFV600E mutation, using VE1 antibody and Sanger sequencing. We recorded a specificity and accuracy rate of 68.75% and 75%, respectively, for VE1, when strong cytoplasmic staining is observed. Interestingly, we observed that cells with ganglionic features frequently bind VE1 but not associated with BRAFV600E mutation. Such observation was also confirmed in four cases of differentiating neuroblastoma. This false positive staining may serve as an important confounder in the interpretation of VE1 immunoreactivity with major therapeutic implication. It is important to confirm the presence of BRAFV600E mutation by DNA-based method, especially in tumor entities not known to, or rarely harbor such mutations.
Collapse
|