1
|
Oulehle F, Tahovská K, Ač A, Kolář T, Rybníček M, Čermák P, Štěpánek P, Trnka M, Urban O, Hruška J. Changes in forest nitrogen cycling across deposition gradient revealed by δ 15N in tree rings. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119104. [PMID: 35301033 DOI: 10.1016/j.envpol.2022.119104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/24/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Tree rings provide valuable insight into past environmental changes. This study aimed to evaluate perturbations in tree ring width (TRW) and δ15N alongside soil acidity and nutrient availability gradients caused by the contrasting legacy of air pollution (nitrogen [N] and sulphur [S] deposition) and tree species (European beech, Silver fir and Norway spruce). We found consistent declines of tree ring δ15N, which were temporarily unrelated to the changes in the TRW. The rate of δ15N change in tree rings was related to the contemporary foliar carbon (C) to phosphorus (P) ratio. This observation suggested that the long-term accumulation of 15N depleted N in tree rings, likely mediated by retained N from deposition, was restricted primarily to stands with currently higher P availability. The shifts observed in tree-ring δ15N and TRW suggest that acidic air pollution rather than changes in stand productivity determined alteration of N and C cycles. Stable N isotopes in tree rings provided helpful information on the trajectory of the N cycle over the last century with direct consequences for a better understanding of future interactions among N, P and C cycles in terrestrial ecosystems.
Collapse
Affiliation(s)
- Filip Oulehle
- Czech Geological Survey, Klárov 3, 118 21, Prague, Czech Republic; Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, 603 00, Brno, Czech Republic.
| | - Karolina Tahovská
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Alexandr Ač
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, 603 00, Brno, Czech Republic
| | - Tomáš Kolář
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, 603 00, Brno, Czech Republic; Department of Wood Science and Technology, Faculty of Forestry and Wood Technology, Mendel University in Brno, 613 00, Brno, Czech Republic
| | - Michal Rybníček
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, 603 00, Brno, Czech Republic; Department of Wood Science and Technology, Faculty of Forestry and Wood Technology, Mendel University in Brno, 613 00, Brno, Czech Republic
| | - Petr Čermák
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, 613 00, Brno, Czech Republic
| | - Petr Štěpánek
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, 603 00, Brno, Czech Republic
| | - Miroslav Trnka
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, 603 00, Brno, Czech Republic
| | - Otmar Urban
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, 603 00, Brno, Czech Republic
| | - Jakub Hruška
- Czech Geological Survey, Klárov 3, 118 21, Prague, Czech Republic; Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, 603 00, Brno, Czech Republic
| |
Collapse
|
2
|
Age-Related Changes in Water and Nitrogen Utilization in Crop Trees and Understory Vegetation in a Hinoki Cypress Plantation Forest in Kochi City, Southern Japan. NITROGEN 2022. [DOI: 10.3390/nitrogen3020017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Age-related changes in water and nitrogen utilization of crop and understory vegetation in a hinoki cypress plantation forest were investigated from the age of 21 to 46 years in Kochi City, southern Japan. Nitrogen concentration in the leaf litter of hinoki cypress showed a decreasing trend with forest age. The leaf δ15N of hinoki cypress was related to a quadratic function and increased from the age of 21 to 26 years and then decreased to the age of 46 years. These results suggest that older hinoki cypress trees utilize soil nitrogen sources with lower δ15N values, and the competition for soil nitrogen with understory vegetation should be stronger. Carbon isotope discrimination (Δ13C) of hinoki cypress decreased from the age of 21 to 30 years and then increased to the age of 46 years. In contrast, the intrinsic water-use efficiency (iWUE) of hinoki cypress increased from the age of 21 to 36 years and then decreased to the age of 46 years. These findings suggest that hinoki cypress trees in the earlier time increased their iWUE by reducing stomatal opening. In the earlier time, the stomatal opening of understory vegetation increased due to higher soil water availability with decreasing stand density of crop trees. In the later time, the iWUE of hinoki cypress decreased due to lower photosynthetic capacity with nitrogen limitation. These results suggest that the increase in the iWUE of hinoki cypress in response to elevated atmospheric carbon dioxide levels should be smaller in the later time because of stronger competition with understory vegetation for soil nitrogen resources.
Collapse
|
3
|
Kane W, Brown R, Bastow J. Monitoring the Return of Marine-Derived Nitrogen to Riparian Areas in Response to Dam Removal on the Elwha River, Washington. NORTHWEST SCIENCE 2020. [DOI: 10.3955/046.094.0203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wendal Kane
- Eastern Washington University, Department of Biology, 526 5th Street, Cheney, Washington 99004
| | - Rebecca Brown
- Eastern Washington University, Department of Biology, 526 5th Street, Cheney, Washington 99004
| | - Justin Bastow
- Eastern Washington University, Department of Biology, 526 5th Street, Cheney, Washington 99004
| |
Collapse
|
4
|
Burton JI, Perakis SS, Brooks JR, Puettmann KJ. Trait integration and functional differentiation among co-existing plant species. AMERICAN JOURNAL OF BOTANY 2020; 107:628-638. [PMID: 32236958 PMCID: PMC8108537 DOI: 10.1002/ajb2.1451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/16/2020] [Indexed: 05/17/2023]
Abstract
PREMISE Determining which traits characterize strategies of coexisting species is important to developing trait-based models of plant communities. First, global dimensions may not exist locally. Second, the degree to which traits and trait spectra constitute independent dimensions of functional variation at various scales continues to be refined. Finally, traits may be associated with existing categorical groupings. METHODS We assessed trait integration and differentiation across 57 forest understory plant species in Douglas-fir forests of western Oregon, United States. We combined measurements for a range of traits with literature-based estimates of seed mass and species groupings. We used network analysis and nonmetric multidimensional scaling ordination (NMS) to determine the degree of integration. RESULTS We observed a strong leaf economics spectrum (LES) integrated with stem but not root traits. However, stem traits and intrinsic water-use efficiency integrated LES and root traits. Network analyses indicated a modest grouping of a priori trait dimensions. NMS indicated that multivariate differences among species were related primarily to (1) rooting depth and plant height vs. specific root length, (2) the LES, and (3) leaf size vs. seed mass. These differences were related to species groupings associated with growth and life form, leaf lifespan and seed dispersal mechanisms. CONCLUSIONS The strategies of coexisting understory plant species could not be reduced to a single dimension. Yet, species can be characterized efficiently and effectively for trait-based studies of plant communities by measuring four common traits: plant height, specific leaf area, leaf size, and seed mass.
Collapse
Affiliation(s)
- Julia I. Burton
- State University of New York College of Environmental Sciences and Forestry, Department of Sustainable Resources Management, 320 Bray Hall, 1 Forestry Dr., Syracuse, NY 13210, USA
| | - Steven S. Perakis
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 3200 SW Jefferson Way, Corvallis, OR 97331, USA
| | - J. Renée Brooks
- U.S. Environmental Protection Agency, Western Ecology Division, 200 SW 35, Corvallis, OR 97331, USA
| | - Klaus J. Puettmann
- Oregon State University, Department of Forest Ecosystems and Society, 321 Richardson Hall, Corvallis, OR 97331, USA
| |
Collapse
|
5
|
Sabo RD, Elmore AJ, Nelson DM, Clark CM, Fisher T, Eshleman KN. Positive correlation between wood δ 15N and stream nitrate concentrations in two temperate deciduous forests. ENVIRONMENTAL RESEARCH COMMUNICATIONS 2020; 2:1-17. [PMID: 36313933 PMCID: PMC9610404 DOI: 10.1088/2515-7620/ab77f8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
A limitation to understanding drivers of long-term trends in terrestrial nitrogen (N) availability in forests and its subsequent influence on stream nitrate export is a general lack of integrated analyses using long-term data on terrestrial and aquatic N cycling at comparable spatial scales. Here we analyze relationships between stream nitrate concentrations and wood δ 15N records (n = 96 trees) across five neighboring headwater catchments in the Blue Ridge physiographic province and within a single catchment in the Appalachian Plateau physiographic province in the eastern United States. Climatic, acidic deposition, and forest disturbance datasets were developed to elucidate the influence of these factors on terrestrial N availability through time. We hypothesized that spatial and temporal variation of terrestrial N availability, for which tree-ring δ 15N records serve as a proxy, affects the variation of stream nitrate concentration across space and time. Across space at the Blue Ridge study sites, stream nitrate concentration increased linearly with increasing catchment mean wood δ 15N. Over time, stream nitrate concentrations decreased with decreasing wood δ 15N in five of the six catchments. Wood δ 15N showed a significant negative relationship with disturbance and acidic deposition. Disturbance likely exacerbated N limitation by inducing nitrate leaching and ultimately enhancing vegetative uptake. As observed elsewhere, lower rates of acidic deposition and subsequent deacidification of soils may increase terrestrial N availability. Despite the ephemeral modifications of terrestrial N availability by these two drivers and climate, long-term declines in terrestrial N availability were robust and have likely driven much of the declines in stream nitrate concentration throughout the central Appalachians.
Collapse
Affiliation(s)
- Robert D Sabo
- Oak Ridge Institute for Science and Education, United States Environmental Protection Agency, Office of Research and Development, National Center for Environmental Assessment, US EPA (8623-P),1200 Pennsylvania Ave NW; Washington, DC 20460, United States of America
| | - Andrew J Elmore
- University of Maryland Center for Environmental Science, Appalachian Laboratory, 301 Braddock Road, Frostburg, MD 21532, United States of America
| | - David M Nelson
- University of Maryland Center for Environmental Science, Appalachian Laboratory, 301 Braddock Road, Frostburg, MD 21532, United States of America
| | - Christopher M Clark
- United States Environmental Protection Agency, Office of Research and Development, National Center for Environmental Assessment, US EPA (8623-P),1200 Pennsylvania Ave NW; Washington, DC 20460, United States of America
| | - Thomas Fisher
- University of Maryland Center for Environmental Science, Appalachian Laboratory, 301 Braddock Road, Frostburg, MD 21532, United States of America
| | - Keith N Eshleman
- University of Maryland Center for Environmental Science, Appalachian Laboratory, 301 Braddock Road, Frostburg, MD 21532, United States of America
| |
Collapse
|
6
|
Staccone A, Liao W, Perakis S, Compton J, Clark C, Menge D. A spatially explicit, empirical estimate of tree-based biological nitrogen fixation in forests of the United States. GLOBAL BIOGEOCHEMICAL CYCLES 2020; 42:10.1029/2019GB006241. [PMID: 32665747 PMCID: PMC7359885 DOI: 10.1029/2019gb006241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 02/05/2020] [Indexed: 06/11/2023]
Abstract
Quantifying human impacts on the N cycle and investigating natural ecosystem N cycling depend on the magnitude of inputs from natural biological nitrogen fixation (BNF). Here, we present two bottom-up approaches to quantify tree-based symbiotic BNF based on forest inventory data across the coterminous US plus SE Alaska. For all major N-fixing tree genera, we quantify BNF inputs using (1) ecosystem N accretion rates (kg N ha-1 yr-1) scaled with spatial data on tree abundance and (2) percent of N derived from fixation (%Ndfa) scaled with tree N demand (from tree growth rates and stoichiometry). We estimate that trees fix 0.30-0.88 Tg N yr-1 across the study area (1.4-3.4 kg N ha-1 yr-1). Tree-based N fixation displays distinct spatial variation that is dominated by two genera, Robinia (64% of tree-associated BNF) and Alnus (24%). The third most important genus, Prosopis, accounted for 5%. Compared to published estimates of other N fluxes, tree-associated BNF accounted for 0.59 Tg N yr-1, similar to asymbiotic (0.37 Tg N yr-1) and understory symbiotic BNF (0.48 Tg N yr-1), while N deposition contributed 1.68 Tg N yr-1 and rock weathering 0.37 Tg N yr-1. Overall, our results reveal previously uncharacterized spatial patterns in tree BNF that can inform large-scale N assessments and serve as a model for improving tree-based BNF estimates worldwide. This updated, lower BNF estimate indicates a greater ratio of anthropogenic to natural N inputs, suggesting an even greater human impact on the N cycle.
Collapse
Affiliation(s)
- Anika Staccone
- Columbia University, Ecology, Evolution, and Environmental Biology Department
| | - Wenying Liao
- Princeton University, Department of Ecology and Evolutionary Biology
| | - Steven Perakis
- US Geological Survey Forest and Rangeland Ecosystem Science Center
| | - Jana Compton
- US EPA, Center for Public Health and Environmental Assessment
| | | | - Duncan Menge
- Columbia University, Ecology, Evolution, and Environmental Biology Department
| |
Collapse
|
7
|
Buma B, Thompson T. Long-term exposure to more frequent disturbances increases baseline carbon in some ecosystems: Mapping and quantifying the disturbance frequency-ecosystem C relationship. PLoS One 2019; 14:e0212526. [PMID: 30789951 PMCID: PMC6383921 DOI: 10.1371/journal.pone.0212526] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/04/2019] [Indexed: 11/25/2022] Open
Abstract
Disturbance regimes have a major influence on the baseline carbon that characterizes any particular ecosystem. Often regimes result in lower average regional baseline C (compared to those same systems if the disturbance processes were lessened/removed). However, in infrequently disturbed systems the role of disturbance as a “background” process that influences broad-scale, baseline C levels is often neglected. Long-term chronosequences suggest disturbances in these systems may serve to increase regional biomass C stocks by maintaining productivity. However, that inference has not been tested spatially. Here, the large forested system of southeast Alaska, USA, is utilized to 1) estimate baseline regional C stocks, 2) test the fundamental disturbance-ecosystem C relationship, 3) estimate the cumulative impact of disturbances on baseline C. Using 1491 ground points with carbon measurements and a novel way of mapping disturbance regimes, the relationship between total biomass C, disturbance exposure, and climate was analyzed statistically. A spatial model was created to determine regional C and compare different disturbance scenarios. In this infrequently disturbed ecosystem, higher disturbance exposure is correlated with higher biomass C, supporting the hypothesis that disturbances maintain productivity at broad scales. The region is estimated to potentially contain a baseline 1.21–1.52 Pg biomass C (when unmanaged). Removal of wind and landslides from the model resulted in lower net C stocks (-2 to -19% reduction), though the effect was heterogeneous on finer scales. There removal of landslides alone had a larger effect then landslide and wind combined removal. The relationship between higher disturbance exposure and higher biomass within the broad ecosystem (which, on average, has a very low disturbance frequency) suggest that disturbances can serve maintain higher levels of productivity in infrequently disturbed but very C dense ecosystems. Carbon research in other systems, especially those where disturbances are infrequent relative to successional processes, should consider the role of disturbances in maintaining baseline ecosystem productivity.
Collapse
Affiliation(s)
- Brian Buma
- Department of Integrative Biology, University of Colorado, Denver, United States of America
- * E-mail:
| | - Thomas Thompson
- USDA Forest Service, Resource Monitoring and Assessment Program, PNW Research Station, Anchorage, AK, United States of America
| |
Collapse
|
8
|
Isotopic evidence for oligotrophication of terrestrial ecosystems. Nat Ecol Evol 2018; 2:1735-1744. [DOI: 10.1038/s41559-018-0694-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/12/2018] [Indexed: 11/09/2022]
|
9
|
Malone ET, Abbott BW, Klaar MJ, Kidd C, Sebilo M, Milner AM, Pinay G. Decline in Ecosystem δ13C and Mid-Successional Nitrogen Loss in a Two-Century Postglacial Chronosequence. Ecosystems 2018. [DOI: 10.1007/s10021-018-0245-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Buma B, Hennon PE, Harrington CA, Popkin JR, Krapek J, Lamb MS, Oakes LE, Saunders S, Zeglen S. Emerging climate-driven disturbance processes: widespread mortality associated with snow-to-rain transitions across 10° of latitude and half the range of a climate-threatened conifer. GLOBAL CHANGE BIOLOGY 2017; 23:2903-2914. [PMID: 27891717 DOI: 10.1111/gcb.13555] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 10/27/2016] [Accepted: 10/29/2016] [Indexed: 06/06/2023]
Abstract
Climate change is causing rapid changes to forest disturbance regimes worldwide. While the consequences of climate change for existing disturbance processes, like fires, are relatively well studied, emerging drivers of disturbance such as snow loss and subsequent mortality are much less documented. As the climate warms, a transition from winter snow to rain in high latitudes will cause significant changes in environmental conditions such as soil temperatures, historically buffered by snow cover. The Pacific coast of North America is an excellent test case, as mean winter temperatures are currently at the snow-rain threshold and have been warming for approximately 100 years post-Little Ice Age. Increased mortality in a widespread tree species in the region has been linked to warmer winters and snow loss. Here, we present the first high-resolution range map of this climate-sensitive species, Callitropsis nootkatensis (yellow-cedar), and document the magnitude and location of observed mortality across Canada and the United States. Snow cover loss related mortality spans approximately 10° latitude (half the native range of the species) and 7% of the overall species range and appears linked to this snow-rain transition across its range. Mortality is commonly >70% of basal area in affected areas, and more common where mean winter temperatures is at or above the snow-rain threshold (>0 °C mean winter temperature). Approximately 50% of areas with a currently suitable climate for the species (<-2 °C) are expected to warm beyond that threshold by the late 21st century. Regardless of climate change scenario, little of the range which is expected to remain suitable in the future (e.g., a climatic refugia) is in currently protected landscapes (<1-9%). These results are the first documentation of this type of emerging climate disturbance and highlight the difficulties of anticipating novel disturbance processes when planning for conservation and management.
Collapse
Affiliation(s)
- Brian Buma
- Department of Natural Sciences, University of Alaska Southeast, 11120 Glacier Highway, Juneau, AK, 99801, USA
| | - Paul E Hennon
- USDA Forest Service, PNW Research Station, 11175 Auke Lake Way, Juneau, AK, 99801, USA
| | | | - Jamie R Popkin
- Little Earth GIS Consulting Inc., PO Box 354, Lantzville, BC, V0R 2H0, Canada
| | - John Krapek
- School of Natural Resources and Extension, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA
| | - Melinda S Lamb
- USDA Forest Service, Alaska Region, Juneau, AK, 99801, USA
| | | | - Sari Saunders
- Coast Area Research, BC Ministry of Forests, Lands, and Natural Resource Operations, Nanaimo, BC, V9T 6E9, Canada
| | - Stefan Zeglen
- West Coast Region, British Columbia Ministry of Forests, Lands and Natural Resource Operations, Nanaimo, BC, V9T 6E9, Canada
| |
Collapse
|
11
|
Burton JI, Perakis SS, McKenzie SC, Lawrence CE, Puettmann KJ. Intraspecific variability and reaction norms of forest understorey plant species traits. Funct Ecol 2017. [DOI: 10.1111/1365-2435.12898] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Julia I. Burton
- Department of Wildland Resources Utah State University Logan UT USA
| | - Steven S. Perakis
- U.S. Geological Survey Forest and Rangeland Ecosystem Science Center Corvallis OR USA
| | - Sean C. McKenzie
- Department of Land Resources and Environmental Sciences Montana State University Bozeman MT USA
| | | | - Klaus J. Puettmann
- Department of Forest Ecosystems and Society Oregon State University Corvallis OR USA
| |
Collapse
|
12
|
Hynicka JD, Pett-Ridge JC, Perakis SS. Nitrogen enrichment regulates calcium sources in forests. GLOBAL CHANGE BIOLOGY 2016; 22:4067-4079. [PMID: 27135298 DOI: 10.1111/gcb.13335] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/15/2016] [Accepted: 04/20/2016] [Indexed: 06/05/2023]
Abstract
Nitrogen (N) is a key nutrient that shapes cycles of other essential elements in forests, including calcium (Ca). When N availability exceeds ecosystem demands, excess N can stimulate Ca leaching and deplete Ca from soils. Over the long term, these processes may alter the proportion of available Ca that is derived from atmospheric deposition vs. bedrock weathering, which has fundamental consequences for ecosystem properties and nutrient supply. We evaluated how landscape variation in soil N, reflecting long-term legacies of biological N fixation, influenced plant and soil Ca availability and ecosystem Ca sources across 22 temperate forests in Oregon. We also examined interactions between soil N and bedrock Ca using soil N gradients on contrasting basaltic vs. sedimentary bedrock that differed 17-fold in underlying Ca content. We found that low-N forests on Ca-rich basaltic bedrock relied strongly on Ca from weathering, but that soil N enrichment depleted readily weatherable mineral Ca and shifted forest reliance toward atmospheric Ca. Forests on Ca-poor sedimentary bedrock relied more consistently on atmospheric Ca across all levels of soil N enrichment. The broad importance of atmospheric Ca was unexpected given active regional uplift and erosion that are thought to rejuvenate weathering supply of soil minerals. Despite different Ca sources to forests on basaltic vs. sedimentary bedrock, we observed consistent declines in plant and soil Ca availability with increasing N, regardless of the Ca content of underlying bedrock. Thus, traditional measures of Ca availability in foliage and soil exchangeable pools may poorly reflect long-term Ca sources that sustain soil fertility. We conclude that long-term soil N enrichment can deplete available Ca and cause forests to rely increasingly on Ca from atmospheric deposition, which may limit ecosystem Ca supply in an increasingly N-rich world.
Collapse
Affiliation(s)
- Justin D Hynicka
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 97331, USA
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Julie C Pett-Ridge
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Steven S Perakis
- Forest and Rangeland Ecosystem Science Center, U.S. Geological Survey, Corvallis, OR, 97331, USA
| |
Collapse
|
13
|
Riparian Soil Development Linked to Forest Succession Above and Below Dams Along the Elwha River, Washington, USA. Ecosystems 2016. [DOI: 10.1007/s10021-016-0080-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Webster JR, Knoepp JD, Swank WT, Miniat CF. Evidence for a Regime Shift in Nitrogen Export from a Forested Watershed. Ecosystems 2016. [DOI: 10.1007/s10021-016-9974-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Mnich ME, Houlton BZ. Evidence for a uniformly small isotope effect of nitrogen leaching loss: results from disturbed ecosystems in seasonally dry climates. Oecologia 2015; 181:323-33. [DOI: 10.1007/s00442-015-3433-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 08/17/2015] [Indexed: 11/24/2022]
|