1
|
Kirschbaum MUF, González-Moreno MA, Mudge PL. Observed and modelled carbon fluxes at a grazed site with CO 2 enrichment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 981:179552. [PMID: 40339314 DOI: 10.1016/j.scitotenv.2025.179552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 04/08/2025] [Accepted: 04/26/2025] [Indexed: 05/10/2025]
Abstract
New Zealand maintained a free-air CO2 enrichment (FACE) facility from 1997 to 2020, with CO2 concentration enriched by about 100 μmol mol-1. It was unique by including regular sheep grazing. Here, we compared observed pasture productivity and soil organic carbon (SOC) with simulations by the CenW and APSIM models. On average, the pasture was observed to produce about 8 tDM ha-1 yr-1 grazed-biomass with variations from 4 to 12 tDM ha-1 yr-1 between years with different weather patterns. Seasonally, it varied between 10 kgDM ha-1 d-1 in winter and 45 kgDM ha-1 d-1 in spring. Summer productivity was sometimes even higher when sufficient rainfall was received. Simulations by both models conformed well to the observations, with average Nash-Sutcliffe model efficiencies for annual productivity of 0.53 for CenW and 0.48 for APSIM, and a model efficiency of 0.89 for seasonal productivity. Observed biomass productivity increased by about 10 % under CO2 enrichment, with greater enhancement of 18 % simulated by the models, but the differences between observed and modelled enhancements were not statistically significant. There was large observed and modelled seasonal and interannual variability in the apparent enhancement without any consistent patterns. Both models showed slight increases in SOC under CO2 enrichment by 1-3 tC ha-1 over 23 years while our measurements to a depth of 25 cm showed no significant differences. We also conducted a scenario analysis of potential changes of growth and SOC under elevated CO2 with adjusted grazing frequencies to match feed availability. It showed greater pasture productivity under increasing CO2 that led to more frequent grazing and capture of a greater fraction of fixed carbon in grazing offtakes so that SOC remained nearly constant, or even decreased. These results, therefore, suggested that in grazed pasture systems, elevated CO2 could enhance agricultural productivity with minimal SOC impacts.
Collapse
Affiliation(s)
- Miko U F Kirschbaum
- Manaaki Whenua - Landcare Research, Private Bag 11052, Palmerston North 4442, New Zealand.
| | - Marcela A González-Moreno
- AgResearch, Grasslands Campus, Private Bag 11008, Palmerston North 4442, New Zealand; School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Paul L Mudge
- Manaaki Whenua - Landcare Research, Hamilton 3240, New Zealand
| |
Collapse
|
2
|
Tissink M, Radolinski J, Reinthaler D, Venier S, Pötsch EM, Schaumberger A, Bahn M. Individual Versus Combined Effects of Warming, Elevated CO 2 and Drought on Grassland Water Uptake and Fine Root Traits. PLANT, CELL & ENVIRONMENT 2025; 48:2083-2098. [PMID: 39552504 PMCID: PMC11788968 DOI: 10.1111/pce.15274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/19/2024]
Abstract
Increasing warming, atmospheric CO2 and drought are expected to change the water dynamics of terrestrial ecosystems. Yet, limited knowledge exists about how the interactive effects of these factors will affect grassland water uptake, and whether adaptations in fine root production and traits will alter water uptake capacity. In a managed C3 grassland, we tested the individual and combined effects of warming (+3°C), elevated CO2 (eCO2; +300 ppm) and drought on root water uptake (RWU) as well as on fine root production, trait adaptation, and fine root-to-shoot production ratios, and their relationships with RWU capacity. High temperatures, amplified by warming, exacerbated RWU reductions under drought, with negligible water-sparing effects from eCO2. Drought, both under current and future (warming, eCO2) climatic conditions, shifted RWU towards deeper soil layers. Overall, RWU capacity related positively to fine root production and specific root length (SRL), and negatively to mean root diameters. Warming effects on traits (reduced SRL, increased diameter) and the ratio of fine root-to-shoot production (increased) were offset by eCO2. We conclude that under warmer future conditions, irrespective of shifts in water sourcing, it is particularly hot droughts that will lead to increasingly severe restrictions of grassland water dynamics.
Collapse
Affiliation(s)
- Maud Tissink
- Department of EcologyUniversität InnsbruckInnsbruckAustria
| | - Jesse Radolinski
- Department of EcologyUniversität InnsbruckInnsbruckAustria
- Department of Environmental Science and TechnologyUniversity of MarylandCollege ParkMarylandUSA
| | | | - Sarah Venier
- Department of EcologyUniversität InnsbruckInnsbruckAustria
| | - Erich M. Pötsch
- Agricultural Research and Education Centre (AREC), Raumberg‐GumpensteinIrdningAustria
| | - Andreas Schaumberger
- Agricultural Research and Education Centre (AREC), Raumberg‐GumpensteinIrdningAustria
| | - Michael Bahn
- Department of EcologyUniversität InnsbruckInnsbruckAustria
| |
Collapse
|
3
|
Zhang W, Zhao L, Zhang T, Shi M, Lu D, Wang S, Zhang J, Jiang W, Wei M. 3,4-dimethylpyrazole phosphate (DMPP) may negate the expected stimulation of elevated atmospheric CO 2 and warming on fertilizer-N loss. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112386. [PMID: 39793710 DOI: 10.1016/j.plantsci.2025.112386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/27/2024] [Accepted: 01/06/2025] [Indexed: 01/13/2025]
Abstract
People have accepted the clear fact that elevated CO2 (eCO2) and climate warming are happening, but sustainable agricultural systems are still struggling to adapt. 3,4-dimethyl-1H-pyrazol phosphate (DMPP) is currently recognized as a highly effective strategy for reducing nitrogen (N) loss and related environmental impacts. There is still uncertainty, however, whether DMPP could contribute to building climate-resilient ecosystems in a future climate scenario with co-elevated CO2 and temperature. Thus, this study evaluated the responses of plant N derived from soil or fertilizer and strawberry growth to the tested climate conditions. Plants were supplied with or without DMPP, grown in controlled climate chambers under ambient CO2 and temperature (aCT; 400 ppm + 25℃), and co-elevated CO2 and temperature (eCT; 800 ppm + 27℃). The results showed that DMPP increased plant N accumulation by 9 % and 19 % under aCT and eCT conditions, respectively, compared to N treatment without DMPP. We also found a similar trend in total C content in the plants. Compared with aCT, DMPP demonstrated higher efficiency in improving N use efficiency (NUE, 51 % vs. 36 %) and reducing N loss (21 % vs. 29 %) under eCT, which could ensure higher N demand of plant, making fertilizer-N, rather than soil-N, a primary contributor to the N accumulation increment. Moreover, in terms of combating climate challenge, the combination with DMPP further strengthened the beneficial influence of eCT on the N accumulation and biomass in strawberry but reduced fertilizer-N loss. In summary, DMPP exhibits better performance under eCT, which may alleviate the potential adverse effects of co-elevated CO2 and temperature on ecosystem by reducing fertilizer-N loss and soil-N mineralization more efficiently, providing a promising approach to optimizing sustainable agricultural management under future climate change.
Collapse
Affiliation(s)
- Wenjie Zhang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China.
| | - Lin Zhao
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China.
| | - Ting Zhang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China.
| | - Mengyun Shi
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China.
| | - Dianjun Lu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 21008, China.
| | - Shuai Wang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China.
| | - Jia Zhang
- Tongshan Test Station, Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province, Xuzhou 221121, China.
| | - Wei Jiang
- Tongshan Test Station, Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province, Xuzhou 221121, China.
| | - Meng Wei
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China.
| |
Collapse
|
4
|
Weng ZH, Kopittke PM, Schweizer S, Jin J, Armstrong R, Rose M, Zheng Y, Franks A, Tang C. Shining a Light on How Soil Organic Carbon Behaves at Fine Scales under Long-Term Elevated CO 2: An 8 Year Free-Air Carbon Dioxide Enrichment Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8724-8735. [PMID: 38717952 DOI: 10.1021/acs.est.3c10680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Building and protecting soil organic carbon (SOC) are critical to agricultural productivity, soil health, and climate change mitigation. We aim to understand how mechanisms at the organo-mineral interfaces influence SOC persistence in three contrasting soils (Luvisol, Vertisol, and Calcisol) under long-term free air CO2 enrichment conditions. A continuous wheat-field pea-canola rotation was maintained. For the first time, we provided evidence to a novel notion that persistent SOC is molecularly simple even under elevated CO2 conditions. We found that the elevated CO2 condition did not change the total SOC content or C forms compared with the soils under ambient CO2 as identified by synchrotron-based soft X-ray analyses. Furthermore, synchrotron-based infrared microspectroscopy confirmed a two-dimensional microscale distribution of similar and less diverse C forms in intact microaggregates under long-term elevated CO2 conditions. Strong correlations between the distribution of C forms and O-H groups of clays can explain the steady state of the total SOC content. However, the correlations between C forms and clay minerals were weakened in the coarse-textured Calcisol under long-term elevated CO2. Our findings suggested that we should emphasize identifying management practices that increase the physical protection of SOC instead of increasing complexity of C. Such information is valuable in developing more accurate C prediction models under elevated CO2 conditions and shift our thinking in developing management practices for maintaining and building SOC for better soil fertility and future environmental sustainability.
Collapse
Affiliation(s)
- Zhe H Weng
- Department of Animal, Plant & Soil Sciences, Centre for AgriBioscience, La Trobe University, Melbourne, Victoria 3086, Australia
- School of Agriculture and Food Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
- School of Agriculture, Food, and Wine, The University of Adelaide, Urrbrae, South Australia 5064, Australia
| | - Peter M Kopittke
- School of Agriculture and Food Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Steffen Schweizer
- School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Jian Jin
- Department of Animal, Plant & Soil Sciences, Centre for AgriBioscience, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Roger Armstrong
- Agriculture Victoria Research, Department of Energy, Environment and Climate Action, Horsham, Victoria 3401, Australia
| | - Michael Rose
- NSW Department of Primary Industries, Wollongbar Primary Industries Institute, Wollongbar, New South Wales 2477, Australia
| | - Yunyun Zheng
- Department of Animal, Plant & Soil Sciences, Centre for AgriBioscience, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Ashley Franks
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, Victoria 3086, Australia
- Centre for Future Landscapes, La Trobe University, Melbourne, Victoria 3086, Australia
- La Trobe Institute for Sustainable Agriculture and Food, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Caixian Tang
- Department of Animal, Plant & Soil Sciences, Centre for AgriBioscience, La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|
5
|
Guasconi D, Manzoni S, Hugelius G. Climate-dependent responses of root and shoot biomass to drought duration and intensity in grasslands-a meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166209. [PMID: 37572920 DOI: 10.1016/j.scitotenv.2023.166209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/14/2023]
Abstract
Understanding the effects of altered precipitation regimes on root biomass in grasslands is crucial for predicting grassland responses to climate change. Nonetheless, studies investigating the effects of drought on belowground vegetation have produced mixed results. In particular, root biomass under reduced precipitation may increase, decrease or show a delayed response compared to shoot biomass, highlighting a knowledge gap in the relationship between belowground net primary production and drought. To address this gap, we conducted a meta-analysis of nearly 100 field observations of grassland root and shoot biomass changes under experimental rainfall reduction to disentangle the main drivers behind grassland responses to drought. Using a response-ratio approach we tested the hypothesis that water scarcity would induce a decrease in total biomass, but an increase in belowground biomass allocation with increased drought length and intensity, and that climate (as defined by the aridity index of the study location) would be an additional predictor. As expected, meteorological drought decreased root and shoot biomass, but aboveground and belowground biomass exhibited contrasting responses to drought duration and intensity, and their interaction with climate. In particular, drought duration had negative effects on root biomass only in wet climates while more intense drought had negative effects on root biomass only in dry climates. Shoot biomass responded negatively to drought duration regardless of climate. These results show that long-term climate is an important modulator of belowground vegetation responses to drought, which might be a consequence of different drought tolerance and adaptation strategies. This variability in vegetation responses to drought suggests that physiological plasticity and community composition shifts may mediate how climate affects carbon allocation in grasslands, and thus ultimately carbon storage in soil.
Collapse
Affiliation(s)
- Daniela Guasconi
- Department of Physical Geography, Stockholm University, Stockholm, Sweden; Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden.
| | - Stefano Manzoni
- Department of Physical Geography, Stockholm University, Stockholm, Sweden; Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| | - Gustaf Hugelius
- Department of Physical Geography, Stockholm University, Stockholm, Sweden; Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| |
Collapse
|
6
|
Fang C, Verbrigghe N, Sigurdsson BD, Ostonen I, Leblans NIW, Marañón-Jiménez S, Fuchslueger L, Sigurðsson P, Meeran K, Portillo-Estrada M, Verbruggen E, Richter A, Sardans J, Peñuelas J, Bahn M, Vicca S, Janssens IA. Decadal soil warming decreased vascular plant above and belowground production in a subarctic grassland by inducing nitrogen limitation. THE NEW PHYTOLOGIST 2023; 240:565-576. [PMID: 37545200 DOI: 10.1111/nph.19177] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 07/10/2023] [Indexed: 08/08/2023]
Abstract
Below and aboveground vegetation dynamics are crucial in understanding how climate warming may affect terrestrial ecosystem carbon cycling. In contrast to aboveground biomass, the response of belowground biomass to long-term warming has been poorly studied. Here, we characterized the impacts of decadal geothermal warming at two levels (on average +3.3°C and +7.9°C) on below and aboveground plant biomass stocks and production in a subarctic grassland. Soil warming did not change standing root biomass and even decreased fine root production and reduced aboveground biomass and production. Decadal soil warming also did not significantly alter the root-shoot ratio. The linear stepwise regression model suggested that following 10 yr of soil warming, temperature was no longer the direct driver of these responses, but losses of soil N were. Soil N losses, due to warming-induced decreases in organic matter and water retention capacity, were identified as key driver of the decreased above and belowground production. The reduction in fine root production was accompanied by thinner roots with increased specific root area. These results indicate that after a decade of soil warming, plant productivity in the studied subarctic grassland was affected by soil warming mainly by the reduction in soil N.
Collapse
Affiliation(s)
- Chao Fang
- Research Center for Global Changes and Ecosystem Carbon Sequestration & Mitigation, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
- PLECO (Plants and Ecosystems), Department of Biology, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610, Belgium
| | - Niel Verbrigghe
- Flanders Research Institute for Agriculture, Fisheries and Food, Caritasstraat 39, Melle, 9090, Belgium
| | | | - Ivika Ostonen
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, 51003, Estonia
| | - Niki I W Leblans
- Climate Impacts Research Centre, Umeå University, Umeå, 90333, Sweden
| | - Sara Marañón-Jiménez
- CREAF, Cerdanyola del Vallès, Barcelona, 08193, Catalonia, Spain
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Barcelona, 08193, Catalonia, Spain
- Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
| | - Lucia Fuchslueger
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Páll Sigurðsson
- Agricultural University of Iceland, Hvanneyri, Borgarnes, IS-311, Iceland
| | - Kathiravan Meeran
- Department of Ecology, University of Innsbruck, 6020, Innsbruck, Austria
| | - Miguel Portillo-Estrada
- PLECO (Plants and Ecosystems), Department of Biology, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610, Belgium
| | - Erik Verbruggen
- PLECO (Plants and Ecosystems), Department of Biology, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610, Belgium
| | - Andreas Richter
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Jordi Sardans
- CREAF, Cerdanyola del Vallès, Barcelona, 08193, Catalonia, Spain
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Barcelona, 08193, Catalonia, Spain
| | - Josep Peñuelas
- CREAF, Cerdanyola del Vallès, Barcelona, 08193, Catalonia, Spain
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Barcelona, 08193, Catalonia, Spain
| | - Michael Bahn
- Department of Ecology, University of Innsbruck, 6020, Innsbruck, Austria
| | - Sara Vicca
- PLECO (Plants and Ecosystems), Department of Biology, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610, Belgium
| | - Ivan A Janssens
- PLECO (Plants and Ecosystems), Department of Biology, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610, Belgium
| |
Collapse
|
7
|
Sammarco I, Münzbergová Z, Latzel V. Response of Fragaria vesca to projected change in temperature, water availability and concentration of CO 2 in the atmosphere. Sci Rep 2023; 13:10678. [PMID: 37393360 PMCID: PMC10314927 DOI: 10.1038/s41598-023-37901-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/29/2023] [Indexed: 07/03/2023] Open
Abstract
The high rate of climate change may soon expose plants to conditions beyond their adaptation limits. Clonal plants might be particularly affected due to limited genotypic diversity of their populations, potentially decreasing their adaptability. We therefore tested the ability of a widely distributed predominantly clonally reproducing herb (Fragaria vesca) to cope with periods of drought and flooding in climatic conditions predicted to occur at the end of the twenty-first century, i.e. on average 4 °C warmer and with twice the concentration of CO2 in the air (800 ppm) than the current state. We found that F. vesca can phenotypically adjust to future climatic conditions, although its drought resistance may be reduced. Increased temperature and CO2 levels in the air had a far greater effect on growth, phenology, reproduction, and gene expression than the temperature increase itself, and promoted resistance of F. vesca to repeated flooding periods. Higher temperature promoted clonal over sexual reproduction, and increased temperature and CO2 concentration in the air triggered change in expression of genes controlling the level of self-pollination. We conclude that F. vesca can acclimatise to predicted climate change, but the increased ratio of clonal to sexual reproduction and the alteration of genes involved in the self-(in)compatibility system may be associated with reduced genotypic diversity of its populations, which may negatively impact its ability to genetically adapt to novel climate in the long-term.
Collapse
Affiliation(s)
- Iris Sammarco
- Institute of Botany, Czech Academy of Sciences, Průhonice, Czechia.
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia.
| | - Zuzana Münzbergová
- Institute of Botany, Czech Academy of Sciences, Průhonice, Czechia
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
| | - Vít Latzel
- Institute of Botany, Czech Academy of Sciences, Průhonice, Czechia.
| |
Collapse
|
8
|
Zhang S, Xia Z, Wang Q, Fu Y, Zhang G, Lu H. Soil cooling can improve maize root-shoot growth and grain yield in warm climate. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 200:107762. [PMID: 37207493 DOI: 10.1016/j.plaphy.2023.107762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/21/2023]
Abstract
Global warming causes topsoil temperatures to increase, which potentially leads to maize yield loss. We explored the effects of soil warming/cooling on root-shoot growth and maize grain yields by performing pot experiments with a heat-sensitive maize hybrid (HS208) and a normal maize hybrid (SD609) in warm temperate climate in 2019 and 2020. Our results reveal, for the first time, differences in root characteristics, leaf photosynthetic physiology, and yield responses to soil warming and cooling between normal and heat-sensitive maize varieties under a warm temperate climate. Soil warming (+2 and 4 °C) inhibited whole root growth by decreasing root length, volume, and dry mass weight, which indirectly reduced leaf photosynthetic capacity and decreased grain yield/plant by 15.10-24.10% versus control plants exposed to ambient temperature. Soil cooling (-2 °C) promoted root growth and leaf photosynthesis, and significantly increased grain yield of HS208 by 12.61%, although no significant change was found with SD609. It can be seen that under unfavorable conditions of global warming, selection of excellent stress-resistant hybrids plays an important role in alleviating the soil heat stress of maize in warm temperate climate regions.
Collapse
Affiliation(s)
- Shibo Zhang
- College of Agronomy, Northwest A&F University, Yangling, 12100, China; Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, Yangling, 712100, China
| | - Zhenqing Xia
- College of Agronomy, Northwest A&F University, Yangling, 12100, China; Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, Yangling, 712100, China
| | - Qi Wang
- College of Agronomy, Northwest A&F University, Yangling, 12100, China; Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, Yangling, 712100, China
| | - Yafang Fu
- College of Agronomy, Northwest A&F University, Yangling, 12100, China; Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, Yangling, 712100, China
| | - Guixin Zhang
- College of Agronomy, Northwest A&F University, Yangling, 12100, China; Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, Yangling, 712100, China
| | - Haidong Lu
- College of Agronomy, Northwest A&F University, Yangling, 12100, China; Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture and Rural Affairs, Yangling, 712100, China.
| |
Collapse
|
9
|
Chandregowda MH, Tjoelker MG, Pendall E, Zhang H, Churchill AC, Power SA. Belowground carbon allocation, root trait plasticity, and productivity during drought and warming in a pasture grass. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2127-2145. [PMID: 36640126 PMCID: PMC10084810 DOI: 10.1093/jxb/erad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Sustaining grassland production in a changing climate requires an understanding of plant adaptation strategies, including trait plasticity under warmer and drier conditions. However, our knowledge to date disproportionately relies on aboveground responses, despite the importance of belowground traits in maintaining aboveground growth, especially in grazed systems. We subjected a perennial pasture grass, Festuca arundinacea, to year-round warming (+3 °C) and cool-season drought (60% rainfall reduction) in a factorial field experiment to test the hypotheses that: (i) drought and warming increase carbon allocation belowground and shift root traits towards greater resource acquisition and (ii) increased belowground carbon reserves support post-drought aboveground recovery. Drought and warming reduced plant production and biomass allocation belowground. Drought increased specific root length and reduced root diameter in warmed plots but increased root starch concentrations under ambient temperature. Higher diameter and soluble sugar concentrations of roots and starch storage in crowns explained aboveground production under climate extremes. However, the lack of association between post-drought aboveground biomass and belowground carbon and nitrogen reserves contrasted with our predictions. These findings demonstrate that root trait plasticity and belowground carbon reserves play a key role in aboveground production during climate stress, helping predict pasture responses and inform management decisions under future climates.
Collapse
Affiliation(s)
| | - Mark G Tjoelker
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Elise Pendall
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Haiyang Zhang
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Amber C Churchill
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
- Department of Ecology, Evolution and Behaviour, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Ave, St. Paul, MN 55108, USA
| | - Sally A Power
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| |
Collapse
|
10
|
Mechanism of [CO 2] Enrichment Alleviated Drought Stress in the Roots of Cucumber Seedlings Revealed via Proteomic and Biochemical Analysis. Int J Mol Sci 2022; 23:ijms232314911. [PMID: 36499239 PMCID: PMC9737773 DOI: 10.3390/ijms232314911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
Abstract
Cucumber is one of the most widely cultivated greenhouse vegetables, and its quality and yield are threatened by drought stress. Studies have shown that carbon dioxide concentration ([CO2]) enrichment can alleviate drought stress in cucumber seedlings; however the mechanism of this [CO2] enrichment effect on root drought stress is not clear. In this study, the effects of different drought stresses (simulated with 0, 5% and 10% PEG 6000, i.e., no, moderate, and severe drought stress) and [CO2] (400 μmol·mol-1 and 800 ± 40 μmol·mol-1) on the cucumber seedling root proteome were analyzed using the tandem mass tag (TMT) quantitative proteomics method. The results showed that after [CO2] enrichment, 346 differentially accumulating proteins (DAPs) were found only under moderate drought stress, 27 DAPs only under severe drought stress, and 34 DAPs under both moderate and severe drought stress. [CO2] enrichment promoted energy metabolism, amino acid metabolism, and secondary metabolism, induced the expression of proteins related to root cell wall and cytoskeleton metabolism, effectively maintained the balance of protein processing and degradation, and enhanced the cell wall regulation ability. However, the extent to which [CO2] enrichment alleviated drought stress in cucumber seedling roots was limited under severe drought stress, which may be due to excessive damage to the seedlings.
Collapse
|
11
|
Perkowski EA, Waring EF, Smith NG. Root mass carbon costs to acquire nitrogen are determined by nitrogen and light availability in two species with different nitrogen acquisition strategies. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5766-5776. [PMID: 34114621 DOI: 10.1093/jxb/erab253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/10/2021] [Indexed: 05/22/2023]
Abstract
Plant nitrogen acquisition requires carbon to be allocated belowground to build roots and sustain microbial associations. This carbon cost to acquire nitrogen varies by nitrogen acquisition strategy; however, the degree to which these costs vary due to nitrogen availability or demand has not been well tested under controlled conditions. We grew a species capable of forming associations with nitrogen-fixing bacteria (Glycine max) and a species not capable of forming such associations (Gossypium hirsutum) under four soil nitrogen levels to manipulate nitrogen availability and four light levels to manipulate nitrogen demand in a full-factorial greenhouse experiment. We quantified carbon costs to acquire nitrogen as the ratio of total root carbon to whole-plant nitrogen within each treatment combination. In both species, light availability increased carbon costs due to a larger increase in root carbon than whole-plant nitrogen, while nitrogen fertilization generally decreased carbon costs due to a larger increase in whole-plant nitrogen than root carbon. Nodulation data indicated that G. max shifted relative carbon allocation from nitrogen fixation to direct uptake with increased nitrogen fertilization. These findings suggest that carbon costs to acquire nitrogen are modified by changes in light and nitrogen availability in species with and without associations with nitrogen-fixing bacteria.
Collapse
Affiliation(s)
- Evan A Perkowski
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Elizabeth F Waring
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
- Department of Natural Sciences, Northeastern State University, Tahlequah, OK, USA
| | - Nicholas G Smith
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
12
|
Wang J, Defrenne C, McCormack ML, Yang L, Tian D, Luo Y, Hou E, Yan T, Li Z, Bu W, Chen Y, Niu S. Fine-root functional trait responses to experimental warming: a global meta-analysis. THE NEW PHYTOLOGIST 2021; 230:1856-1867. [PMID: 33586131 DOI: 10.1111/nph.17279] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 02/03/2021] [Indexed: 05/12/2023]
Abstract
Whether and how warming alters functional traits of absorptive plant roots remains to be answered across the globe. Tackling this question is crucial to better understanding terrestrial responses to climate change as fine-root traits drive many ecosystem processes. We carried out a detailed synthesis of fine-root trait responses to experimental warming by performing a meta-analysis of 964 paired observations from 177 publications. Warming increased fine-root biomass, production, respiration and nitrogen concentration as well as decreased root carbon : nitrogen ratio and nonstructural carbohydrates. Warming effects on fine-root biomass decreased with greater warming magnitude, especially in short-term experiments. Furthermore, the positive effect of warming on fine-root biomass was strongest in deeper soil horizons and in colder and drier regions. Total fine-root length, morphology, mortality, life span and turnover were unresponsive to warming. Our results highlight the significant changes in fine-root traits in response to warming as well as the importance of warming magnitude and duration in understanding fine-root responses. These changes have strong implications for global soil carbon stocks in a warmer world associated with increased root-derived carbon inputs into deeper soil horizons and increases in fine-root respiration.
Collapse
Affiliation(s)
- Jinsong Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Biological Sciences, Center for Ecosystem Sciences and Society, Northern Arizona University, Flagstaff, AZ, 86001, USA
| | - Camille Defrenne
- Climate Change Science Institute and Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - M Luke McCormack
- Center for Tree Science, The Morton Arboretum, 4100 Illinois Rt. 53, Lisle, IL, 60532, USA
| | - Lu Yang
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China
| | - Dashuan Tian
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yiqi Luo
- Department of Biological Sciences, Center for Ecosystem Sciences and Society, Northern Arizona University, Flagstaff, AZ, 86001, USA
| | - Enqing Hou
- Department of Biological Sciences, Center for Ecosystem Sciences and Society, Northern Arizona University, Flagstaff, AZ, 86001, USA
| | - Tao Yan
- State Key Laboratory of Grassland and Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Zhaolei Li
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China
| | - Wensheng Bu
- College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Ye Chen
- Department of Mathematics and Statistics, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Shuli Niu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
13
|
Yan C, Yuan Z, Liu Z, Zhang J, Liu K, Shi X, Lock TR, Kallenbach RL. Aridity stimulates responses of root production and turnover to warming but suppresses the responses to nitrogen addition in temperate grasslands of northern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:142018. [PMID: 33207484 DOI: 10.1016/j.scitotenv.2020.142018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/17/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Global warming and nitrogen (N) deposition are known to affect root dynamics in grasslands. However, previous studies were based only on a single ecosystem type, so it is unclear how warming and N addition affect root traits (root biomass, root-shoot ratio, root production and turnover) along the aridity gradient. In this study, we conducted an experiment to determine the effects of warming and N addition on root traits in desert, typical, and meadow grasslands in northern China, where the aridity gradually decreases from west to east across the region. Warming increased root-shoot ratio in dry year due to decline in soil water, but had a downward trend in root production and turnover in all three grasslands. N addition decreased root-shoot ratio in humid year due to increase in soil N, whereas did not significantly affect root production in any grasslands and increased root turnover in desert and meadow grasslands rather than typical grassland. Warming combined with N addition had negatively additive effects on root turnover in typical and meadow grasslands rather than desert grassland. N addition-induced changes in root biomass and root-shoot ratio were negatively affected by aridity in dry year. Aridity positively affected responses of root production and turnover to warming but negatively affected those responses to N addition. However, root-shoot ratio, root production and turnover under warming combined with N addition were not affected by aridity. Our results suggest that warming suppresses root carbon (C) input but N addition may exacerbate it in temperate grasslands, and warming combined with N addition suppresses it only in wet grasslands. Aridity promotes root C input under warming but suppresses it under N addition. However, aridity may little affect soil C and nutrient dynamics under global warming combined with N deposition in temperate grasslands in the future.
Collapse
Affiliation(s)
- Chuang Yan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyou Yuan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Zunchi Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingjing Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kai Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinrong Shi
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - T Ryan Lock
- Division of Plant Sciences, College of Agriculture, Food, and Natural Resources, University of Missouri, 108 Waters Hall, Columbia, MO 65211, USA
| | - Robert L Kallenbach
- Division of Plant Sciences, College of Agriculture, Food, and Natural Resources, University of Missouri, 108 Waters Hall, Columbia, MO 65211, USA
| |
Collapse
|
14
|
Carroll CJW, Slette IJ, Griffin-Nolan RJ, Baur LE, Hoffman AM, Denton EM, Gray JE, Post AK, Johnston MK, Yu Q, Collins SL, Luo Y, Smith MD, Knapp AK. Is a drought a drought in grasslands? Productivity responses to different types of drought. Oecologia 2021; 197:1017-1026. [PMID: 33416961 DOI: 10.1007/s00442-020-04793-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/20/2020] [Indexed: 10/22/2022]
Abstract
Drought, defined as a marked deficiency of precipitation relative to normal, occurs as periods of below-average precipitation or complete failure of precipitation inputs, and can be limited to a single season or prolonged over multiple years. Grasslands are typically quite sensitive to drought, but there can be substantial variability in the magnitude of loss of ecosystem function. We hypothesized that differences in how drought occurs may contribute to this variability. In four native Great Plains grasslands (three C4- and one C3-dominated) spanning a ~ 500-mm precipitation gradient, we imposed drought for four consecutive years by (1) reducing each rainfall event by 66% during the growing season (chronic drought) or (2) completely excluding rainfall during a shorter portion of the growing season (intense drought). The drought treatments were similar in magnitude but differed in the following characteristics: event number, event size and length of dry periods. We observed consistent drought-induced reductions (28-37%) in aboveground net primary production (ANPP) only in the C4-dominated grasslands. In general, intense drought reduced ANPP more than chronic drought, with little evidence that drought duration altered this pattern. Conversely, belowground net primary production (BNPP) was reduced by drought in all grasslands (32-64%), with BNPP reductions greater in intense vs. chronic drought treatments in the most mesic grassland. We conclude that grassland productivity responses to drought did not strongly differ between these two types of drought, but when differences existed, intense drought consistently reduced function more than chronic drought.
Collapse
Affiliation(s)
- Charles J W Carroll
- Graduate Degree Program in Ecology and Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Ingrid J Slette
- Graduate Degree Program in Ecology and Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | | | - Lauren E Baur
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Ava M Hoffman
- Earth & Planetary Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Elsie M Denton
- United States Department of Agriculture, Agricultural Research Service, Eastern Oregon Agricultural Research Center, Burns, OR, 97720, USA
| | - Jesse E Gray
- Graduate Degree Program in Ecology and Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Alison K Post
- Graduate Degree Program in Ecology and Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Melissa K Johnston
- United States Department of Agriculture, Agricultural Research Service, Central Plains Experimental Range, Fort Collins, CO, 80526, USA
| | - Qiang Yu
- National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Scott L Collins
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Yiqi Luo
- Center for Ecosystem Science and Society, Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Melinda D Smith
- Graduate Degree Program in Ecology and Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Alan K Knapp
- Graduate Degree Program in Ecology and Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
15
|
Ma Z, Chang SX, Bork EW, Steinaker DF, Wilson SD, White SR, Cahill JF. Climate change and defoliation interact to affect root length across northern temperate grasslands. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zilong Ma
- Department of Renewable Resources University of Alberta Edmonton AB Canada
| | - Scott X. Chang
- Department of Renewable Resources University of Alberta Edmonton AB Canada
| | - Edward W. Bork
- Department of Agricultural, Food, and Nutritional Science University of Alberta Edmonton AB Canada
| | | | | | - Shannon R. White
- Department of Biological Sciences University of Alberta Edmonton AB Canada
| | - James F. Cahill
- Department of Biological Sciences University of Alberta Edmonton AB Canada
| |
Collapse
|
16
|
Apgaua DMG, Tng DYP, Forbes SJ, Ishida YF, Vogado NO, Cernusak LA, Laurance SGW. Elevated temperature and CO2 cause differential growth stimulation and drought survival responses in eucalypt species from contrasting habitats. TREE PHYSIOLOGY 2019; 39:1806-1820. [PMID: 31768554 DOI: 10.1093/treephys/tpz095] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/08/2019] [Accepted: 08/15/2019] [Indexed: 06/10/2023]
Abstract
Climate change scenarios predict increasing atmospheric CO2 concentrations ([CO2]), temperatures and droughts in tropical regions. Individually, the effects of these climate factors on plants are well established, whereas experiments on the interactive effects of a combination of factors are rare. Moreover, how these environmental factors will affect tree species along a wet to dry gradient (e.g., along tropical forest-savanna transitions) remains to be investigated. We hypothesized that under the simulated environmental conditions, plant growth, physiological performance and survivorship would vary in a manner consistent with the species' positions of origin along this gradient. In a glasshouse experiment, we raised seedlings of three Eucalyptus species, each occurring naturally in a wet forest, savanna and forest-savanna ecotone, respectively. We evaluated the effect of drought, elevated temperature (4 °C above ambient glasshouse temperature of 22 °C) and elevated temperature in combination with elevated [CO2] (400 ppm [CO2] above ambient of 400 ppm), on seedling growth, survivorship and physiological responses (photosynthesis, stomatal conductance and water-use efficiency). Elevated temperature under ambient [CO2] had little effect on growth, biomass and plant performance of well-watered seedlings, but hastened mortality in drought-affected seedlings, affecting the forest and ecotone more strongly than the savanna species. In contrast, elevated [CO2] in combination with elevated temperatures delayed the appearance of drought stress symptoms and enhanced survivorship in drought-affected seedlings, with the savanna species surviving the longest, followed by the ecotone and forest species. Elevated [CO2] in combination with elevated temperatures also enhanced growth and biomass and photosynthesis in well-watered seedlings of all species, but modified shoot:root biomass partitioning and stomatal conductance differentially across species. Our study highlights the need for a better understand of the interactive effects of elevated [CO2], temperature and drought on plants and the potential to upscale these insights for understanding biome changes.
Collapse
Affiliation(s)
- Deborah M G Apgaua
- Centre for Tropical Environmental and Sustainability Sciences, College of Science and Engineering, James Cook University, 14-88 McGregor Rd, Smithfield, Queensland 4878, Australia
| | - David Y P Tng
- Centre for Tropical Environmental and Sustainability Sciences, College of Science and Engineering, James Cook University, 14-88 McGregor Rd, Smithfield, Queensland 4878, Australia
- Centre for Rainforest Studies at the School for Field Studies, Yungaburra, Queensland 4872, Australia
- Instituto de Biologia, Universidade Federal da Bahia, R. Barão Jeremoabo, Ondina, Salvador, Bahia 40170-115, Brazil
| | - Samantha J Forbes
- Centre for Tropical Environmental and Sustainability Sciences, College of Science and Engineering, James Cook University, 14-88 McGregor Rd, Smithfield, Queensland 4878, Australia
| | - Yoko F Ishida
- Centre for Tropical Environmental and Sustainability Sciences, College of Science and Engineering, James Cook University, 14-88 McGregor Rd, Smithfield, Queensland 4878, Australia
| | - Nara O Vogado
- Centre for Tropical Environmental and Sustainability Sciences, College of Science and Engineering, James Cook University, 14-88 McGregor Rd, Smithfield, Queensland 4878, Australia
| | - Lucas A Cernusak
- Centre for Tropical Environmental and Sustainability Sciences, College of Science and Engineering, James Cook University, 14-88 McGregor Rd, Smithfield, Queensland 4878, Australia
| | - Susan G W Laurance
- Centre for Tropical Environmental and Sustainability Sciences, College of Science and Engineering, James Cook University, 14-88 McGregor Rd, Smithfield, Queensland 4878, Australia
| |
Collapse
|
17
|
Jia J, Cao Z, Liu C, Zhang Z, Lin L, Wang Y, Haghipour N, Wacker L, Bao H, Dittmar T, Simpson MJ, Yang H, Crowther TW, Eglinton TI, He JS, Feng X. Climate warming alters subsoil but not topsoil carbon dynamics in alpine grassland. GLOBAL CHANGE BIOLOGY 2019; 25:4383-4393. [PMID: 31479577 DOI: 10.1111/gcb.14823] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/15/2019] [Indexed: 06/10/2023]
Abstract
Subsoil contains more than half of soil organic carbon (SOC) globally and is conventionally assumed to be relatively unresponsive to warming compared to the topsoil. Here, we show substantial changes in carbon allocation and dynamics of the subsoil but not topsoil in the Qinghai-Tibetan alpine grasslands over 5 years of warming. Specifically, warming enhanced the accumulation of newly synthesized (14 C-enriched) carbon in the subsoil slow-cycling pool (silt-clay fraction) but promoted the decomposition of plant-derived lignin in the fast-cycling pool (macroaggregates). These changes mirrored an accumulation of lipids and sugars at the expense of lignin in the warmed bulk subsoil, likely associated with shortened soil freezing period and a deepening root system. As warming is accompanied by deepening roots in a wide range of ecosystems, root-driven accrual of slow-cycling pool may represent an important and overlooked mechanism for a potential long-term carbon sink at depth. Moreover, given the contrasting sensitivity of SOC dynamics at varied depths, warming studies focusing only on surface soils may vastly misrepresent shifts in ecosystem carbon storage under climate change.
Collapse
Affiliation(s)
- Juan Jia
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Zhenjiao Cao
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Chengzhu Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Zhenhua Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Li Lin
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yiyun Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | | | - Lukas Wacker
- Laboratory of Ion Beam Physics, Department of Physics, ETH Zürich, Zurich, Switzerland
| | - Hongyan Bao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Thorston Dittmar
- Research Group for Marine Geochemistry, Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Myrna J Simpson
- Environmental NMR Centre, Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Huan Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | | | | | - Jin-Sheng He
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, China
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiaojuan Feng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Asynchronous nitrogen supply and demand produce nonlinear plant allocation responses to warming and elevated CO 2. Proc Natl Acad Sci U S A 2019; 116:21623-21628. [PMID: 31591204 DOI: 10.1073/pnas.1904990116] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Terrestrial ecosystem responses to climate change are mediated by complex plant-soil feedbacks that are poorly understood, but often driven by the balance of nutrient supply and demand. We actively increased aboveground plant-surface temperature, belowground soil temperature, and atmospheric CO2 in a brackish marsh and found nonlinear and nonadditive feedbacks in plant responses. Changes in root-to-shoot allocation by sedges were nonlinear, with peak belowground allocation occurring at +1.7 °C in both years. Above 1.7 °C, allocation to root versus shoot production decreased with increasing warming such that there were no differences in root biomass between ambient and +5.1 °C plots in either year. Elevated CO2 altered this response when crossed with +5.1 °C, increasing root-to-shoot allocation due to increased plant nitrogen demand and, consequently, root production. We suggest these nonlinear responses to warming are caused by asynchrony between the thresholds that trigger increased plant nitrogen (N) demand versus increased N mineralization rates. The resulting shifts in biomass allocation between roots and shoots have important consequences for forecasting terrestrial ecosystem responses to climate change and understanding global trends.
Collapse
|
19
|
Dietzen CA, Larsen KS, Ambus PL, Michelsen A, Arndal MF, Beier C, Reinsch S, Schmidt IK. Accumulation of soil carbon under elevated CO 2 unaffected by warming and drought. GLOBAL CHANGE BIOLOGY 2019; 25:2970-2977. [PMID: 31095816 DOI: 10.1111/gcb.14699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/22/2019] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
Elevated atmospheric CO2 concentration and climate change may substantially alter soil carbon (C) dynamics, which in turn may impact future climate through feedback cycles. However, only very few field experiments worldwide have combined elevated CO2 (eCO2 ) with both warming and changes in precipitation in order to study the potential combined effects of changes in these fundamental drivers of C cycling in ecosystems. We exposed a temperate heath/grassland to eCO2 , warming, and drought, in all combinations for 8 years. At the end of the study, soil C stocks were on average 0.927 kg C/m2 higher across all treatment combinations with eCO2 compared to ambient CO2 treatments (equal to an increase of 0.120 ± 0.043 kg C m-2 year-1 ), and showed no sign of slowed accumulation over time. However, if observed pretreatment differences in soil C are taken into account, the annual rate of increase caused by eCO2 may be as high as 0.177 ± 0.070 kg C m-2 year-1 . Furthermore, the response to eCO2 was not affected by simultaneous exposure to warming and drought. The robust increase in soil C under eCO2 observed here, even when combined with other climate change factors, suggests that there is continued and strong potential for enhanced soil carbon sequestration in some ecosystems to mitigate increasing atmospheric CO2 concentrations under future climate conditions. The feedback between land C and climate remains one of the largest sources of uncertainty in future climate projections, yet experimental data under simulated future climate, and especially including combined changes, are still scarce. Globally coordinated and distributed experiments with long-term measurements of changes in soil C in response to the three major climate change-related global changes, eCO2 , warming, and changes in precipitation patterns, are, therefore, urgently needed.
Collapse
Affiliation(s)
- Christiana A Dietzen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C, Denmark
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington
| | - Klaus Steenberg Larsen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C, Denmark
| | - Per L Ambus
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen K, Denmark
| | - Anders Michelsen
- Department of Biology, University of Copenhagen, Copenhagen Ø, Denmark
| | - Marie Frost Arndal
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C, Denmark
| | - Claus Beier
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C, Denmark
| | - Sabine Reinsch
- Centre for Ecology & Hydrology, Environment Centre Wales, Bangor, UK
| | - Inger Kappel Schmidt
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
20
|
D’Imperio L, Arndal MF, Nielsen CS, Elberling B, Schmidt IK. Fast Responses of Root Dynamics to Increased Snow Deposition and Summer Air Temperature in an Arctic Wetland. FRONTIERS IN PLANT SCIENCE 2018; 9:1258. [PMID: 30214452 PMCID: PMC6125414 DOI: 10.3389/fpls.2018.01258] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/09/2018] [Indexed: 06/08/2023]
Abstract
In wet tundra ecosystems, covering vast areas of the Arctic, the belowground plant biomass exceeds the aboveground, making root dynamics a crucial component of the nutrient cycling and the carbon (C) budget of the Arctic. In response to the projected climatic scenarios for the Arctic, namely increased temperature and changes in precipitation patterns, root dynamics may be altered leading to significant changes in the net ecosystem C budget. Here, we quantify the single and combined effects of 1 year of increased winter snow deposition by snow fences and summer warming by open-top chambers (OTCs) on root dynamics in a wetland at Disko Island (West Greenland). Based on ingrowth bags, snow accumulation decreased root productivity by 42% in the 0-15 cm soil depth compared to ambient conditions. Over the growing season 2014, minirhizotron observations showed that root growth continued until mid-September in all treatments, and it peaked between the end of July and mid-August. During the season, plots exposed to experimental warming showed a significant increase in root number during September (between 39 and 53%) and a 39% increase in root length by the beginning of September. In addition, a significant reduction of root diameter (14%) was observed in plots with increased snow accumulation. Along the soil profile (0-40 cm) summer warming by OTCs significantly increased the total root length (54%), root number (41%) and the root growth in the 20-30 cm soil depth (71%). These results indicate a fast response of this ecosystem to changes in air temperature and precipitation. Hence, on a short-term, summer warming may lead to increased root depth and belowground C allocation, whereas increased winter snow precipitation may reduce root production or favor specific plant species by means of reduced growing season length or increased nutrient cycling. Knowledge on belowground root dynamics is therefore critical to improve the estimation of the C balance of the Arctic.
Collapse
Affiliation(s)
- Ludovica D’Imperio
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
- Section for Forest, Nature and Biomass, Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, Denmark
| | - Marie F. Arndal
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
- Section for Forest, Nature and Biomass, Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, Denmark
| | - Cecilie S. Nielsen
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Bo Elberling
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Inger K. Schmidt
- Section for Forest, Nature and Biomass, Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
21
|
Damgaard C, Holmstrup M, Schmidt IK, Beier C, Larsen KS. On the problems of using linear models in ecological manipulation experiments: lessons learned from a climate experiment. Ecosphere 2018. [DOI: 10.1002/ecs2.2322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Christian Damgaard
- Department of Bioscience; Aarhus University; Vejlsøvej 25 8600 Silkeborg Denmark
| | - Martin Holmstrup
- Department of Bioscience; Aarhus University; Vejlsøvej 25 8600 Silkeborg Denmark
| | - Inger Kappel Schmidt
- Department of Geosciences and Natural Resource Management; University of Copenhagen; Rolighedsvej 23 1958 Frederiksberg C Denmark
| | - Claus Beier
- Department of Geosciences and Natural Resource Management; University of Copenhagen; Rolighedsvej 23 1958 Frederiksberg C Denmark
| | - Klaus Steenberg Larsen
- Department of Geosciences and Natural Resource Management; University of Copenhagen; Rolighedsvej 23 1958 Frederiksberg C Denmark
| |
Collapse
|