2
|
Leifsson C, Buras A, Klesse S, Baittinger C, Bat-Enerel B, Battipaglia G, Biondi F, Stajić B, Budeanu M, Čada V, Cavin L, Claessens H, Čufar K, de Luis M, Dorado-Liñán I, Dulamsuren C, Garamszegi B, Grabner M, Hacket-Pain A, Hansen JK, Hartl C, Huang W, Janda P, Jump AS, Kazimirović M, Knutzen F, Kreyling J, Land A, Latte N, Lebourgeois F, Leuschner C, Longares LA, Martinez Del Castillo E, Menzel A, Motta R, Muffler-Weigel L, Nola P, Panayatov M, Petritan AM, Petritan IC, Popa I, Roibu CC, Rubio-Cuadrado Á, Rydval M, Scharnweber T, Camarero JJ, Svoboda M, Toromani E, Trotsiuk V, van der Maaten-Theunissen M, van der Maaten E, Weigel R, Wilmking M, Zlatanov T, Rammig A, Zang CS. Identifying drivers of non-stationary climate-growth relationships of European beech. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173321. [PMID: 38782287 DOI: 10.1016/j.scitotenv.2024.173321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
The future performance of the widely abundant European beech (Fagus sylvatica L.) across its ecological amplitude is uncertain. Although beech is considered drought-sensitive and thus negatively affected by drought events, scientific evidence indicating increasing drought vulnerability under climate change on a cross-regional scale remains elusive. While evaluating changes in climate sensitivity of secondary growth offers a promising avenue, studies from productive, closed-canopy forests suffer from knowledge gaps, especially regarding the natural variability of climate sensitivity and how it relates to radial growth as an indicator of tree vitality. Since beech is sensitive to drought, we in this study use a drought index as a climate variable to account for the combined effects of temperature and water availability and explore how the drought sensitivity of secondary growth varies temporally in dependence on growth variability, growth trends, and climatic water availability across the species' ecological amplitude. Our results show that drought sensitivity is highly variable and non-stationary, though consistently higher at dry sites compared to moist sites. Increasing drought sensitivity can largely be explained by increasing climatic aridity, especially as it is exacerbated by climate change and trees' rank progression within forest communities, as (co-)dominant trees are more sensitive to extra-canopy climatic conditions than trees embedded in understories. However, during the driest periods of the 20th century, growth showed clear signs of being decoupled from climate. This may indicate fundamental changes in system behavior and be early-warning signals of decreasing drought tolerance. The multiple significant interaction terms in our model elucidate the complexity of European beech's drought sensitivity, which needs to be taken into consideration when assessing this species' response to climate change.
Collapse
Affiliation(s)
- Christopher Leifsson
- Technical University of Munich, TUM School of Life Sciences, Land Surface-Atmosphere Interactions, Hans-Carl-v.-Carlowitz-Platz 2, 85354 Freising, Germany.
| | - Allan Buras
- Technical University of Munich, TUM School of Life Sciences, Land Surface-Atmosphere Interactions, Hans-Carl-v.-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Stefan Klesse
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
| | - Claudia Baittinger
- The National Museum of Denmark, Environmental Archaeology and Materials Science, I.C. Modewegs Vej 11, DK - 2800 Kgs. Lyngby, Denmark
| | - Banzragch Bat-Enerel
- Plant Ecology, University of Goettingen, 37073 Goettingen, Germany; Applied Vegetation Ecology, Faculty of Environment and Natural Resources, University of Freiburg, 79106 Freiburg, Germany
| | | | - Franco Biondi
- DendroLab, Dept. of Natural Resources and Environmental Science, University of Nevada, Reno, NV 89557, USA
| | - Branko Stajić
- University of Belgrade, Faculty of Forestry, Belgrade, Serbia
| | - Marius Budeanu
- National Institute for Research and Development in Forestry Marin Dracea, 13 Closca street, Brasov, Romania
| | - Vojtěch Čada
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamycka 129, Praha 6, Suchdol 16521, Czech Republic
| | - Liam Cavin
- Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | - Hugues Claessens
- Forest is Life, ULiège, Passage des Déportés 2, B-5030 Gembloux, Belgium
| | - Katarina Čufar
- University of Ljubljana, Biotechnical Faculty, Department of Wood Science and Technology, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Martin de Luis
- Dpto. de Geografía y Ordenación del Territorio, IUCA, Universidad de Zaragoza, C/ Pedro Cerbuna s/n, 50009 Zaragoza. Spain
| | - Isabel Dorado-Liñán
- Departamento de Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Choimaa Dulamsuren
- Applied Vegetation Ecology, Faculty of Environment and Natural Resources, University of Freiburg, 79106 Freiburg, Germany
| | - Balázs Garamszegi
- Institute of Forest Ecology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Michael Grabner
- University of Natural Resources and Life Sciences, Vienna, Austria
| | - Andrew Hacket-Pain
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jon Kehlet Hansen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Claudia Hartl
- Nature Rings - Environmental Research & Education, 55118 Mainz, Germany
| | - Weiwei Huang
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark; Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| | - Pavel Janda
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamycka 129, Praha 6, Suchdol 16521, Czech Republic
| | - Alistair S Jump
- Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | | | - Florian Knutzen
- Climate Service Center Germany (GERICS), Helmholtz-Zentrum Hereon, Fischertwiete 1, 20095 Hamburg, Germany
| | - Jürgen Kreyling
- University of Greifswald, Experimental Plant Ecology, Soldmannstraße 15, 17498 Greifswald, Germany
| | - Alexander Land
- University of Hohenheim, Institute of Biology (190a), Garbenstraße 30, 70599 Stuttgart, Germany
| | - Nicolas Latte
- Forest is Life, ULiège, Passage des Déportés 2, B-5030 Gembloux, Belgium
| | | | | | - Luis A Longares
- Dpto. de Geografía y Ordenación del Territorio, IUCA, Universidad de Zaragoza, C/ Pedro Cerbuna s/n, 50009 Zaragoza. Spain
| | | | - Annette Menzel
- Technical University of Munich, TUM School of Life Sciences, Ecoclimatology, Hans-Carl-v.-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Renzo Motta
- Department of Agricoltural Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy
| | - Lena Muffler-Weigel
- Ecological-Botanical Garden, University of Bayreuth, 95447 Bayreuth, Germany
| | - Paola Nola
- Department of Earth and Environmental Sciences, University of Pavia, Via S. Epifanio 14, I-27100 Pavia, Italy
| | - Momchil Panayatov
- University of Forestry, Dendrology Department, Forest Faculty, Sofia, Bulgaria
| | - Any Mary Petritan
- National Institute for Research and Development in Forestry Marin Dracea, 13 Closca street, Brasov, Romania
| | - Ion Catalin Petritan
- Faculty of Silviculture and Forest Engineering, Department of Forest Engineering, Forest Management Planning and Terrestrial Measurements, Transilvania University of Braşov, Braşov, Romania
| | - Ionel Popa
- National Institute for Research and Development in Forestry Marin Dracea, 13 Closca street, Brasov, Romania; Center for Mountain Economy (CE-MONT), Vatra Dornei, Romania
| | - Cǎtǎlin-Constantin Roibu
- Forest Biometrics Laboratory, Faculty of Forestry, "Stefan cel Mare" University of Suceava, Universitatii street, no. 13, Suceava RO720229, Romania
| | - Álvaro Rubio-Cuadrado
- Departamento de Sistemas y Recursos Naturales, Escuela Técnica Superior de Ingeniería de Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid. Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Miloš Rydval
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamycka 129, Praha 6, Suchdol 16521, Czech Republic
| | - Tobias Scharnweber
- Institute for Botany and Landscape Ecology, University Greifswald, 17487 Greifswald, Germany
| | - J Julio Camarero
- Instituto Pirenaico de Ecología (IPE), CSIC, Avda. Montañana 1005, 50080 Zaragoza, Spain
| | - Miroslav Svoboda
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamycka 129, Praha 6, Suchdol 16521, Czech Republic
| | - Elvin Toromani
- Department of Forestry, Agricultural University Tirana, Tirana, Albania
| | - Volodymyr Trotsiuk
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
| | | | - Ernst van der Maaten
- Chair of Forest Growth and Woody Biomass Production, TU Dresden, Dresden, Germany
| | - Robert Weigel
- Ecological-Botanical Garden, University of Bayreuth, 95447 Bayreuth, Germany
| | - Martin Wilmking
- Institute for Botany and Landscape Ecology, University Greifswald, 17487 Greifswald, Germany
| | - Tzvetan Zlatanov
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Street, 1113 Sofia, Bulgaria
| | - Anja Rammig
- Technical University of Munich, TUM School of Life Sciences, Land Surface-Atmosphere Interactions, Hans-Carl-v.-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Christian S Zang
- Weihenstephan-Triesdorf University of Applied Sciences, Department of Forestry, Hans-Carl-v.-Carlowitz-Platz 3, 85354 Freising, Germany
| |
Collapse
|
3
|
Bose AK, Doležal J, Scherrer D, Altman J, Ziche D, Martínez-Sancho E, Bigler C, Bolte A, Colangelo M, Dorado-Liñán I, Drobyshev I, Etzold S, Fonti P, Gessler A, Kolář T, Koňasová E, Korznikov KA, Lebourgeois F, Lucas-Borja ME, Menzel A, Neuwirth B, Nicolas M, Omelko AM, Pederson N, Petritan AM, Rigling A, Rybníček M, Scharnweber T, Schröder J, Silla F, Sochová I, Sohar K, Ukhvatkina ON, Vozmishcheva AS, Zweifel R, Camarero JJ. Revealing legacy effects of extreme droughts on tree growth of oaks across the Northern Hemisphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172049. [PMID: 38552974 DOI: 10.1016/j.scitotenv.2024.172049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/13/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
Forests are undergoing increasing risks of drought-induced tree mortality. Species replacement patterns following mortality may have a significant impact on the global carbon cycle. Among major hardwoods, deciduous oaks (Quercus spp.) are increasingly reported as replacing dying conifers across the Northern Hemisphere. Yet, our knowledge on the growth responses of these oaks to drought is incomplete, especially regarding post-drought legacy effects. The objectives of this study were to determine the occurrence, duration, and magnitude of legacy effects of extreme droughts and how that vary across species, sites, and drought characteristics. The legacy effects were quantified by the deviation of observed from expected radial growth indices in the period 1940-2016. We used stand-level chronologies from 458 sites and 21 oak species primarily from Europe, north-eastern America, and eastern Asia. We found that legacy effects of droughts could last from 1 to 5 years after the drought and were more prolonged in dry sites. Negative legacy effects (i.e., lower growth than expected) were more prevalent after repetitive droughts in dry sites. The effect of repetitive drought was stronger in Mediterranean oaks especially in Quercus faginea. Species-specific analyses revealed that Q. petraea and Q. macrocarpa from dry sites were more negatively affected by the droughts while growth of several oak species from mesic sites increased during post-drought years. Sites showing positive correlations to winter temperature showed little to no growth depression after drought, whereas sites with a positive correlation to previous summer water balance showed decreased growth. This may indicate that although winter warming favors tree growth during droughts, previous-year summer precipitation may predispose oak trees to current-year extreme droughts. Our results revealed a massive role of repetitive droughts in determining legacy effects and highlighted how growth sensitivity to climate, drought seasonality and species-specific traits drive the legacy effects in deciduous oak species.
Collapse
Affiliation(s)
- Arun K Bose
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland; Forestry and Wood Technology Discipline, Khulna University, Khulna, Bangladesh.
| | - Jiri Doležal
- Institute of Botany, The Czech Academy of Sciences, Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Daniel Scherrer
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - Jan Altman
- Institute of Botany, The Czech Academy of Sciences, Třeboň, Czech Republic; Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, 165 21, Prague 6, Czech Republic
| | - Daniel Ziche
- Faculty of Forest and Environment, Eberswalde University for Sustainable Development, 16225 Eberswalde, Germany
| | - Elisabet Martínez-Sancho
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland; Department of Biological Evolution, Ecology and Environmental Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Christof Bigler
- ETH Zurich, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems (ITES), Universitätstrasse, 22, 8092 Zurich, Switzerland
| | - Andreas Bolte
- Thünen Institute of Forest Ecosystems, Alfred-Moeller-Str. 1, Haus 41/42, 16225 Eberswalde, Germany
| | - Michele Colangelo
- Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, Apdo. 202, Zaragoza E-50192, Spain; Scuola di Scienze Agrarie, Forestali, Alimentari, e Ambientali, Università della Basilicata, Potenza, Italy
| | - Isabel Dorado-Liñán
- Departamento de Sistemas y Recursos Naturales, E.T.S.I. Montes Forestal y del Medio Natural, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Igor Drobyshev
- Southern Swedish Research Center, Swedish University of Agricultural Sciences, Alnarp, Sweden; Institut de recherche sur les forêts, Université du Québec en Abitibi-Témiscamingue, Québec, Canada
| | - Sophia Etzold
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - Patrick Fonti
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - Arthur Gessler
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland; ETH Zurich, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems (ITES), Universitätstrasse, 22, 8092 Zurich, Switzerland
| | - Tomáš Kolář
- Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic; Department of Wood Science and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Eva Koňasová
- Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic; Department of Wood Science and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | | | | | - Manuel Esteban Lucas-Borja
- Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla La Mancha, Albacete, Spain
| | - Annette Menzel
- Technische Universität München, TUM School of Life Sciences, Freising, Germany; Technische Universität München, Institute for Advanced Study, Garching, Germany
| | | | - Manuel Nicolas
- Departement Recherche et Développement, ONF, Office National des Fôrets, Batiment B, Boulevard de Constance, Fontainebleau F 77300, France
| | - Alexander Mikhaylovich Omelko
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Neil Pederson
- Harvard Forest, 324 N.Main St, Petersham, MA 01366, USA
| | - Any Mary Petritan
- National Institute for Research and Development in Forestry "Marin Dracea", Eroilor 128, 077190 Voluntari, Romania
| | - Andreas Rigling
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland; ETH Zurich, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems (ITES), Universitätstrasse, 22, 8092 Zurich, Switzerland
| | - Michal Rybníček
- Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic; Department of Wood Science and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Tobias Scharnweber
- DendroGreif, Institute of Botany and Landscape Ecology, University of Greifswald, Soldmannstr.15, 17487 Greifswald, Germany
| | - Jens Schröder
- Faculty of Forest and Environment, Eberswalde University for Sustainable Development, 16225 Eberswalde, Germany
| | - Fernando Silla
- Departamento Biología Animal, Parasitología, Ecología, Edafología y Química Agrícola, University Salamanca, 37007 Salamanca, Spain
| | - Irena Sochová
- Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic; Department of Wood Science and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Kristina Sohar
- Department of Geography, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, Tartu, Estonia
| | - Olga Nikolaevna Ukhvatkina
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Anna Stepanovna Vozmishcheva
- Botanical Garden-Institute of the Far Eastern Branch of the Russian Academy of Sciences, Russia; Siberian Federal University, Krasnoyarsk, Russia
| | - Roman Zweifel
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - J Julio Camarero
- Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Montañana 1005, Apdo. 202, Zaragoza E-50192, Spain
| |
Collapse
|