1
|
Moghimi P, Hashemi-Gorji F, Jamshidi S, Tehrani Fateh S, Salehpour S, Sadeghi H, Norouzi Rostami F, Mirfakhraie R, Miryounesi M, Ghasemi MR. Broadening the Phenotype and Genotype Spectrum of Glycogen Storage Disease by Unraveling Novel Variants in an Iranian Patient Cohort. Biochem Genet 2025; 63:1752-1779. [PMID: 38619706 DOI: 10.1007/s10528-024-10787-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 03/15/2024] [Indexed: 04/16/2024]
Abstract
Glycogen storage diseases (GSDs) are a group of rare inherited metabolic disorders characterized by clinical, locus, and allele heterogeneity. This study aims to investigate the phenotype and genotype spectrum of GSDs in a cohort of 14 families from Iran using whole-exome sequencing (WES) and variant analysis. WES was performed on 14 patients clinically suspected of GSDs. Variant analysis was performed to identify genetic variants associated with GSDs. A total of 13 variants were identified, including six novel variants, and seven previously reported pathogenic variants in genes such as AGL, G6PC, GAA, PYGL, PYGM, GBE1, SLC37A4, and PHKA2. Most types of GSDs observed in the cohort were associated with hepatomegaly, which was the most common clinical presentation. This study provides valuable insights into the phenotype and genotype spectrum of GSDs in a cohort of Iranian patients. The identification of novel variants adds to the growing body of knowledge regarding the genetic landscape of GSDs and has implications for genetic counseling and future therapeutic interventions. The diverse nature of GSDs underscores the need for comprehensive genetic testing methods to improve diagnostic accuracy. Continued research in this field will enhance our understanding of GSDs, ultimately leading to improved management and outcomes for individuals affected by these rare metabolic disorders.
Collapse
Affiliation(s)
- Parinaz Moghimi
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- School of Medicine, Islamic Azad University, Tehran Medical sciences, Tehran, Iran
| | - Farzad Hashemi-Gorji
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sanaz Jamshidi
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Shadab Salehpour
- Department of Pediatrics, Clinical Research Development Unit, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Sadeghi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Reza Mirfakhraie
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Miryounesi
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad-Reza Ghasemi
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Proaño A, Sarrion-Perez G, Bagan L, Bagan J. Genome-Wide DNA Methylation Confirms Oral Squamous Cell Carcinomas in Proliferative Verrucous Leukoplakia as a Distinct Oral Cancer Subtype: A Case-Control Study. Cancers (Basel) 2025; 17:245. [PMID: 39858027 PMCID: PMC11763802 DOI: 10.3390/cancers17020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/30/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Oral cancers in patients with proliferative verrucous leukoplakia (PVL-OSCC) exhibit different clinical and prognostic outcomes from those seen in conventional oral squamous cell carcinomas (cOSSCs). The aim of the present study is to compare the genome-wide DNA methylation signatures in fresh frozen tissues between oral squamous cell carcinomas in patients with PVL and cOSCC using the Illumina Infinium MethylationEPIC BeadChip. METHODS This case-control study was carried out at the Stomatology and Maxillofacial Surgery Department of the General University Hospital of Valencia. For the epigenomic study, unsupervised exploratory bioinformatic analyses were performed using principal component and heatmap analysis. Supervised differential methylation analyses were conducted using a rank-based regression model and a penalized logistic regression model to identify potential prognostic biomarkers. RESULTS The unsupervised analyses of the global methylation profiles did not allow us to differentiate between the distinct oral cancer groups. However, the two supervised analyses confirmed the existence of two oral carcinoma phenotypes. We identified 21 differentially methylated CpGs corresponding to 14 genes. Among them, three CpGs had not been previously assigned to any known gene, and the remaining were associated with genes unrelated to oral cancer. The AGL, WRB, and ARL15 genes were identified as potential prognostic biomarkers. CONCLUSIONS This study emphasizes the significant role of epigenetic dysregulation in OSCC, particularly in cases preceded by PVL. We have provided data on differential methylation genes that could be involved in the molecular carcinogenesis of PVL-OSCC.
Collapse
Affiliation(s)
- Alex Proaño
- Medicina Bucal Unit, Stomatology Department, Valencia University, 46010 Valencia, Spain; (A.P.); (G.S.-P.); (L.B.)
| | - Gracia Sarrion-Perez
- Medicina Bucal Unit, Stomatology Department, Valencia University, 46010 Valencia, Spain; (A.P.); (G.S.-P.); (L.B.)
| | - Leticia Bagan
- Medicina Bucal Unit, Stomatology Department, Valencia University, 46010 Valencia, Spain; (A.P.); (G.S.-P.); (L.B.)
| | - Jose Bagan
- Medicina Bucal Unit, Stomatology Department, Valencia University, 46010 Valencia, Spain; (A.P.); (G.S.-P.); (L.B.)
- Precancer and Oral Cancer Research Group, Valencia University, 46010 Valencia, Spain
| |
Collapse
|
3
|
Ceyhan AB, Ozcan M, Kim W, Li X, Altay O, Zhang C, Mardinoglu A. Novel drug targets and molecular mechanisms for sarcopenia based on systems biology. Biomed Pharmacother 2024; 176:116920. [PMID: 38876054 DOI: 10.1016/j.biopha.2024.116920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/05/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024] Open
Abstract
Sarcopenia is a major public health concern among older adults, leading to disabilities, falls, fractures, and mortality. This study aimed to elucidate the pathophysiological mechanisms of sarcopenia and identify potential therapeutic targets using systems biology approaches. RNA-seq data from muscle biopsies of 24 sarcopenic and 29 healthy individuals from a previous cohort were analysed. Differential expression, gene set enrichment, gene co-expression network, and topology analyses were conducted to identify target genes implicated in sarcopenia pathogenesis, resulting in the selection of 6 hub genes (PDHX, AGL, SEMA6C, CASQ1, MYORG, and CCDC69). A drug repurposing approach was then employed to identify new pharmacological treatment options for sarcopenia (clofibric-acid, troglitazone, withaferin-a, palbociclib, MG-132, bortezomib). Finally, validation experiments in muscle cell line (C2C12) revealed MG-132 and troglitazone as promising candidates for sarcopenia treatment. Our approach, based on systems biology and drug repositioning, provides insight into the molecular mechanisms of sarcopenia and offers potential new treatment options using existing drugs.
Collapse
Affiliation(s)
- Atakan Burak Ceyhan
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Mehmet Ozcan
- Department of Medical Biochemistry, Faculty of Medicine, Zonguldak Bulent Ecevit University, Zonguldak, Turkiye
| | - Woonghee Kim
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm SE-17165, Sweden
| | - Xiangyu Li
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm SE-17165, Sweden
| | - Ozlem Altay
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm SE-17165, Sweden
| | - Cheng Zhang
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm SE-17165, Sweden
| | - Adil Mardinoglu
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK; Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm SE-17165, Sweden.
| |
Collapse
|
4
|
Evins A, Mayhew J, Cimms T, Whyte J, Vong K, Hribal E, Evans CJ, Grimm A. Glycogen storage disease type III: a mixed-methods study to assess the burden of disease. Ther Adv Endocrinol Metab 2024; 15:20420188231224233. [PMID: 38196773 PMCID: PMC10775738 DOI: 10.1177/20420188231224233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 12/12/2023] [Indexed: 01/11/2024] Open
Abstract
Background Glycogen storage disease type III (GSD III) is a rare inherited disorder that results from a glycogen debranching enzyme deficiency. Objectives The purpose of this research was to collect data on the signs, symptoms, and impacts of GSD III from the perspective of adult patients and caregivers of individuals with GSD III. Design Online survey and qualitative interviews. Methods Following institutional review board approval, adult patients and caregivers of children with GSD III were recruited through advocacy networks and clinical sites. If eligible, participants were consented, screened, and sent a survey and/or participated in a 60-min interview. The survey and interview included questions about family history, diagnosis, signs and symptoms, impacts, and management of GSD III. Conceptual models were developed following the analysis of results. Results In all, 29 adults and 46 caregivers completed the online survey and/or the interviews with 73 survey and 19 interview respondents. Adults and caregivers reported digestive, musculoskeletal, growth and physical appearance, and cardiac signs and symptoms. Liver conditions were reported by most respondents (83%). Adults and caregivers frequently reported impacts such as difficulty keeping up with peers (77%) and difficulty exercising/difficulty with physical activity (53%). Hypoglycemia was frequently reported in both adults and children, with more than half reporting hospitalizations due to hypoglycemia. Caregivers focused on hypoglycemia when reporting signs/symptoms that most interfere with their child's life and prevention of hypoglycemia as a desired outcome for an effective therapy. Adults most often reported muscle weakness as a top interfering symptom and the most important goal of a potential therapy. Impacts were also reported in activities of daily living, cognitive, emotional, work/school, and sleep domains. Conclusion Individuals with GSD III experience a broad spectrum of symptoms and disease impacts. There is an unmet need for therapies that improve metabolic control, reduce the burden of dietary management, reduce fatigue and liver problems, and improve muscle strength and function.
Collapse
Affiliation(s)
- Ayla Evins
- Ultragenyx Pharmaceutical Inc., 60 Leveroni Court, Novato, CA, 94949 USA
| | - Jill Mayhew
- Ultragenyx Pharmaceutical Inc., Novato, CA, USA
| | | | - Julie Whyte
- Endpoint Outcomes, A Lumanity Company, Boston, MA and Long Beach, CA, USA
| | - Kathy Vong
- Endpoint Outcomes, A Lumanity Company, Boston, MA and Long Beach, CA, USA
| | - Elizabeth Hribal
- Endpoint Outcomes, A Lumanity Company, Boston, MA and Long Beach, CA, USA
| | | | | |
Collapse
|
5
|
Triggiani D, Demurtas OC, Illiano E, Massa S, Pasquo A, Dionisi-Vici C, Marino C, Giuliano G, Franconi R. A Functional Human Glycogen Debranching Enzyme Encoded by a Synthetic Gene: Its Implications for Glycogen Storage Disease Type III Management. Protein Pept Lett 2024; 31:519-531. [PMID: 39021187 DOI: 10.2174/0109298665307430240628063339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Glycogen Storage Disease type III (GSD III) is a metabolic disorder resulting from a deficiency of the Glycogen Debranching Enzyme (GDE), a large monomeric protein (approximately 170 kDa) with cytoplasmic localization and two distinct enzymatic activities: 4-α-glucantransferase and amylo-α-1,6-glucosidase. Mutations in the Agl gene, with consequent deficiency in GDE, lead to the accumulation of abnormal/toxic glycogen with shorter chains (phosphorylase limit dextrin, PLD) in skeletal and/or heart muscle and/or in the liver. Currently, there is no targeted therapy, and available treatments are symptomatic, relying on specific diets. METHODS Enzyme Replacement Therapy (ERT) might represent a potential therapeutic strategy for GSD III. Moreover, the single-gene nature of GSD III, the subcellular localization of GDE, and the type of affected tissues represent ideal conditions for exploring gene therapy approaches. Toward this direction, we designed a synthetic, codon-optimized cDNA encoding the human GDE. RESULTS This gene yielded high amounts of soluble, enzymatically active protein in Escherichia coli. Moreover, when transfected in Human Embryonic Kidney cells (HEK-293), it successfully encoded a functional GDE. CONCLUSION These results suggest that our gene or protein might complement the missing function in GSD III patients, opening the door to further exploration of therapeutic approaches for this disease.
Collapse
Affiliation(s)
- Doriana Triggiani
- Department of Sustainability, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, Via Anguillarese 301, 00123, Rome, Italy
- AIG, Associazione Italiana Glicogenosi, ONLUS, Via Roma, 2/G 20090 Assago, Milan, Italy
| | - Olivia C Demurtas
- Department of Sustainability, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, Via Anguillarese 301, 00123, Rome, Italy
| | - Elena Illiano
- Department of Sustainability, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, Via Anguillarese 301, 00123, Rome, Italy
| | - Silvia Massa
- Department of Sustainability, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, Via Anguillarese 301, 00123, Rome, Italy
| | - Alessandra Pasquo
- Department of FSNTECFIS-DIM ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Frascati Research Center, Via Enrico Fermi 45, 00044, Frascati RM, Italy
| | - Carlo Dionisi-Vici
- Division of Metabolic Diseases and Hepatology, Ospedale Pediatrico Bambino Gesù IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Carmela Marino
- Department of Sustainability, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, Via Anguillarese 301, 00123, Rome, Italy
| | - Giovanni Giuliano
- Department of Sustainability, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, Via Anguillarese 301, 00123, Rome, Italy
| | - Rosella Franconi
- Department of Sustainability, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, Via Anguillarese 301, 00123, Rome, Italy
| |
Collapse
|
6
|
Córdoba KM, Jericó D, Sampedro A, Jiang L, Iraburu MJ, Martini PGV, Berraondo P, Avila MA, Fontanellas A. Messenger RNA as a personalized therapy: The moment of truth for rare metabolic diseases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 372:55-96. [PMID: 36064267 DOI: 10.1016/bs.ircmb.2022.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Inborn errors of metabolism (IEM) encompass a group of monogenic diseases affecting both pediatric and adult populations and currently lack effective treatments. Some IEM such as familial hypercholesterolemia or X-linked protoporphyria are caused by gain of function mutations, while others are characterized by an impaired protein function, causing a metabolic pathway blockage. Pathophysiology classification includes intoxication, storage and energy-related metabolic disorders. Factors specific to each disease trigger acute metabolic decompensations. IEM require prompt and effective care, since therapeutic delay has been associated with the development of fatal events including severe metabolic acidosis, hyperammonemia, cerebral edema, and death. Rapid expression of therapeutic proteins can be achieved hours after the administration of messenger RNAs (mRNA), representing an etiological solution for acute decompensations. mRNA-based therapy relies on modified RNAs with enhanced stability and translatability into therapeutic proteins. The proteins produced in the ribosomes can be targeted to specific intracellular compartments, the cell membrane, or be secreted. Non-immunogenic lipid nanoparticle formulations have been optimized to prevent RNA degradation and to allow safe repetitive administrations depending on the disease physiopathology and clinical status of the patients, thus, mRNA could be also an effective chronic treatment for IEM. Given that the liver plays a key role in most of metabolic pathways or can be used as bioreactor for excretable proteins, this review focuses on the preclinical and clinical evidence that supports the implementation of mRNA technology as a promising personalized strategy for liver metabolic disorders such as acute intermittent porphyria, ornithine transcarbamylase deficiency or glycogen storage disease.
Collapse
Affiliation(s)
- Karol M Córdoba
- Hepatology Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Daniel Jericó
- Hepatology Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Ana Sampedro
- Hepatology Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Lei Jiang
- Moderna Inc, Cambridge, MA, United States
| | - María J Iraburu
- Department of Biochemistry and Genetics. School of Sciences, University of Navarra, Pamplona, Spain
| | | | - Pedro Berraondo
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Program of Immunology and Immunotherapy, CIMA-University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Matías A Avila
- Hepatology Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Fontanellas
- Hepatology Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
7
|
Wang J, Yu Y, Cai C, Zhi X, Zhang Y, Zhao Y, Shu J. The biallelic novel pathogenic variants in AGL gene in a chinese patient with glycogen storage disease type III. BMC Pediatr 2022; 22:284. [PMID: 35578201 PMCID: PMC9109368 DOI: 10.1186/s12887-022-03252-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 03/27/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glycogen storage disease type III (GSD III) is a rare autosomal recessive glycogenolysis disorder due to AGL gene variants, characterized by hepatomegaly, fasting hypoglycemia, hyperlipidemia, elevated hepatic transaminases, growth retardation, progressive myopathy, and cardiomyopathy. However, it is not easy to make a definite diagnosis in early stage of disease only based on the clinical phenotype and imageology due to its clinical heterogeneity. CASE PRESENTATION We report a two-year-old girl with GSD III from a nonconsanguineous Chinese family, who presented with hepatomegaly, fasting hypoglycemia, hyperlipidemia, elevated levels of transaminases. Accordingly, Sanger sequencing, whole‑exome sequencing of family trios, and qRT-PCR was performed, which revealed that the patient carried the compound heterogeneous variants, a novel frameshift mutation c.597delG (p. Q199Hfs*2) and a novel large gene fragment deletion of the entire exon 13 in AGL gene. The deletion of AGL was inherited from the proband's father and the c.597delG variant was from the mother. CONCLUSIONS In this study, we identified two novel variants c.597delG (p. Q199Hfs*2) and deletion of the entire exon 13 in AGL in a Chinese GSD III patient. We extend the mutation spectrum of AGL. We suggest that high-throughput sequencing technology can detect and screen pathogenic variant, which is a scientific basis about genetic counseling and clinical diagnosis.
Collapse
Affiliation(s)
- Jing Wang
- Department of Gastroenterology, Tianjin Children's Hospital, 300134, Tianjin, China.,Tianjin Children's Hospital (Children's Hospital of Tianjin University), 300134, Tianjin, China
| | - Yuping Yu
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), 300134, Tianjin, China.,Graduate College of Tianjin Medical University, 300070, Tianjin, China
| | - Chunquan Cai
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), 300134, Tianjin, China.,Tianjin Pediatric Research Institute, 300134, Tianjin, China.,Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, 300134, Tianjin, China
| | - Xiufang Zhi
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), 300134, Tianjin, China.,Graduate College of Tianjin Medical University, 300070, Tianjin, China
| | - Ying Zhang
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), 300134, Tianjin, China.,Graduate College of Tianjin Medical University, 300070, Tianjin, China
| | - Yu Zhao
- Department of Gastroenterology, Tianjin Children's Hospital, 300134, Tianjin, China.,Tianjin Children's Hospital (Children's Hospital of Tianjin University), 300134, Tianjin, China
| | - Jianbo Shu
- Tianjin Children's Hospital (Children's Hospital of Tianjin University), 300134, Tianjin, China. .,Tianjin Pediatric Research Institute, 300134, Tianjin, China. .,Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, 300134, Tianjin, China. .,Tianjin Pediatric Research Institute, Tianjin Children's Hospital, No. 238 Longyan Road, Beichen District, 300134, Tianjin, China.
| |
Collapse
|
8
|
Wang H, Huo L, Wang Y, Sun W, Gu W. Usher syndrome type 2A complicated with glycogen storage disease type 3 due to paternal uniparental isodisomy of chromosome 1 in a sporadic patient. Mol Genet Genomic Med 2021; 9:e1779. [PMID: 34405590 PMCID: PMC8580083 DOI: 10.1002/mgg3.1779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 05/01/2021] [Accepted: 07/08/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The condition of uniparental disomy (UPD) occurs when an individual inherits two copies of a chromosome, or part of a chromosome, from one parent. Most cases of uniparental heterodisomy (UPhD) do not cause diseases, whereas cases of uniparental isodisomy (UPiD), while rare, may be pathogenic. Theoretically, UPiD may cause rare genetic diseases in a homozygous recessive manner. METHODS A 4-year-old girl presented with congenital hearing loss, developmental delay, hepatomegaly, and other clinical features. She and her parents were genetically tested using trio whole exome sequencing (Trio-WES) and copy number variation sequencing (CNV-seq). In addition, we built a structural model to further examine the pathogenicity of the UPiD variants. RESULTS Trio-WES identified a paternal UPiD in chromosome 1, and two homozygous pathogenic variants AGL c.4284T>G/p.Tyr1428* and USH2A c.6528T>A/p.Tyr2176* in the UPiD region. We further analyzed the pathogenicity of these two variations. The patient was diagnosed with Usher syndrome type 2A (USH2A) and glycogen storage disease type III (GSD3). CONCLUSIONS Our study reports a rare case of a patient carrying two pathogenic variants of different genes caused by paternal UPiD, supporting the potential application of Trio-WES in detecting and facilitating the diagnosis of UPD.
Collapse
Affiliation(s)
- Hua Wang
- Department of Pediatric Neurology, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Liang Huo
- Department of Pediatric Neurology, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Yajian Wang
- Chigene (Beijing) Translational Medical Research Center Co., Ltd., Beijing, P.R. China
| | - Weiwei Sun
- Chigene (Beijing) Translational Medical Research Center Co., Ltd., Beijing, P.R. China
| | - Weiyue Gu
- Chigene (Beijing) Translational Medical Research Center Co., Ltd., Beijing, P.R. China
| |
Collapse
|
9
|
Sadeh M, Yosovich K, Dabby R. Glycogen Debrancher Enzyme Deficiency Myopathy. J Clin Neuromuscul Dis 2021; 22:224-227. [PMID: 34019008 DOI: 10.1097/cnd.0000000000000339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT Glycogen storage disease type III is a rare inherited disease caused by decreased activity of glycogen debranching enzyme. It affects primarily the liver, cardiac muscle, and skeletal muscle. Pure involvement of the skeletal muscle with adult onset is extremely rare. We report on a patient with myopathy due to glycogen storage disease III, and describe the clinical features, and pathologic and genetic findings.
Collapse
Affiliation(s)
- Menachem Sadeh
- Department of Neurology, Wolfson Medical Center Holon, Affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; and
| | - Keren Yosovich
- Molecular Genetic Laboratory, Edith Wolfson Medical Center, Holon, Israel
| | - Ron Dabby
- Department of Neurology, Wolfson Medical Center Holon, Affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; and
| |
Collapse
|
10
|
New approach to prepare fluorogenic branched dextrins for assaying glycogen debranching enzyme. Glycoconj J 2020; 37:667-679. [PMID: 33201379 DOI: 10.1007/s10719-020-09955-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/03/2020] [Accepted: 10/15/2020] [Indexed: 10/23/2022]
Abstract
Glycogen debranching enzyme (GDE), together with glycogen phosphorylase (GP), is responsible for the complete degradation of glycogen. GDE has distinct catalytic sites for 4-α-glucanotransferase and amylo-α-1,6-glucosidase. For the GDE sensitive assay, we previously developed the GP limit fluorogenic branched dextrin Glcα1-4Glcα1-4Glcα1-4Glcα1-4(Glcα1-4Glcα1-4Glcα1-4Glcα1-6)Glcα1-4Glcα1-4Glcα1-4GlcPA (B4/84, where Glc = D-glucose and GlcPA = 1-deoxy-1-[(2-pyridyl)amino]-D-glucitol). However, B4/84 is not widely available because of difficulties in its chemical synthesis and positional-isomer separation (0.33% yield by α-1,6-coupling of maltotetraose with Glc7-GlcPA). In this study, we attempted to develop an efficient method for the preparation of Glcα1-4Glcα1-4Glcα1-4Glcα1-4(Glcα1-4Glcα1-4Glcα1-4Glcα1-6)Glcα1-4Glcα1-4GlcPA (B3/74), which was designed to have the minimum essential dextrin structure for GDE. First, Glcα1-6Glcα1-4Glcα1-4GlcPA (B3/31) was prepared from commercially available Glcα1-6Glcα1-4Glcα1-4Glc. Using α-cyclodextrin as a donor substrate, cyclodextrin glucanotransferase elongated both the main and side branches on B3/31, while all the glycosidic bonds in B3/31 were left intact. After exhaustive digestion with GP, B3/74 was obtained from B3/31 with 16% yield, a value that is 48-fold greater than that previously reported for B4/84. GDE 4-α-glucanotransferase exhibited high activity toward both B3/74 and B4/84. In addition, we studied the efficient conversion of B3/74 into Glcα1-4Glcα1-4Glcα1-4Glcα1-4(Glcα1-6)Glcα1-4Glcα1-4GlcPA (B3/71), which has the best dextrin structure for the GDE amylo-α-1,6-glucosidase.
Collapse
|
11
|
Lim JA, Choi SJ, Gao F, Kishnani PS, Sun B. A Novel Gene Therapy Approach for GSD III Using an AAV Vector Encoding a Bacterial Glycogen Debranching Enzyme. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 18:240-249. [PMID: 32637453 PMCID: PMC7327847 DOI: 10.1016/j.omtm.2020.05.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/27/2020] [Indexed: 12/25/2022]
Abstract
Glycogen storage disease type III (GSD III) is an inherited disorder caused by a deficiency of glycogen debranching enzyme (GDE), which results in the accumulation of abnormal glycogen (limit dextrin) in the cytoplasm of liver, heart, and skeletal muscle cells. Currently, there is no curative treatment for this disease. Gene therapy with adeno-associated virus (AAV) provides an optimal treatment approach for monogenic diseases like GSD III. However, the 4.6 kb human GDE cDNA is too large to be packaged into a single AAV vector due to its small carrying capacity. To overcome this limitation, we tested a new gene therapy approach in GSD IIIa mice using an AAV vector ubiquitously expressing a smaller bacterial GDE, Pullulanase, whose cDNA is 2.2 kb. Intravenous injection of the AAV vector (AAV9-CB-Pull) into 2-week-old GSD IIIa mice blocked glycogen accumulation in both cardiac and skeletal muscles, but not in the liver, accompanied by the improvement of muscle functions. Subsequent treatment with a liver-restricted AAV vector (AAV8-LSP-Pull) reduced liver glycogen content by 75% and reversed hepatic fibrosis while maintaining the effect of AAV9-CB-Pull treatment on heart and skeletal muscle. Our results suggest that AAV-mediated gene therapy with Pullulanase is a possible treatment for GSD III.
Collapse
Affiliation(s)
- Jeong-A Lim
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Su Jin Choi
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Fengqin Gao
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Priya S Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Baodong Sun
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
12
|
Perveen S, Gupta N, Kumar M, Kaur P, Chowdhury MR, Kabra M. Spectrum of amyloglucosidase mutations in Asian Indian patients with Glycogen storage disease type III. Am J Med Genet A 2020; 182:1190-1200. [PMID: 32222031 DOI: 10.1002/ajmg.a.61547] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/07/2020] [Accepted: 02/14/2020] [Indexed: 11/11/2022]
Abstract
Glycogen storage disease type III (GSD III) is a rare autosomal recessive inborn error of glycogen degradation pathway due to deficiency or reduced activity of glycogen debranching enzyme (GDE) that results in accumulation of abnormal glycogen in the liver, muscle, and heart. The cardinal hallmarks are hepatomegaly, fasting hypoglycemia, seizures, growth retardation, progressive skeletal myopathy, and cardiomyopathy in few. To date, 258 mutations in amyloglucosidase (AGL) gene have been identified worldwide. However, the mutation spectrum in the Asian Indian region is yet to be well characterized. We investigated 24 patients of Asian origin from 21 unrelated families with a provisional diagnosis of GSD III based on clinical and biochemical criteria. Molecular diagnosis was assessed by bidirectional sequencing and the impact of novel missense variants on the tertiary (three-dimensional) structure of GDE was evaluated by molecular modeling approach. Eighteen different pathogenic variants were identified, out of which 78% were novel. Novel variants included five nonsense, three small duplications and two small deletions, a splice site variant, and three missense variants. Variations in Exons 4, 14, 19, 24, 27, and 33 accounted for 61% of the total pathogenic variants identified and Allele p.Gly798Alafs*3 showed a high allele frequency of 11%. Molecular modeling study of novel pathogenic missense variants indicated the probable underlying molecular mechanism of adverse impact of variations on the structure and catalytic function of human GDE. Our study is the first large study on GSD III from the Asian subcontinent, which further expands the mutation spectrum of AGL.
Collapse
Affiliation(s)
- Shama Perveen
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Neerja Gupta
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Manoj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Madhumita R Chowdhury
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Madhulika Kabra
- Division of Genetics, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
13
|
Rodriguez-Hernandez M, Triggiani D, Ivison F, Demurtas OC, Illiano E, Marino C, Franconi R, Massa S. Expression of a Functional Recombinant Human Glycogen Debranching Enzyme (hGDE) in N. benthamiana Plants and in Hairy Root Cultures. Protein Pept Lett 2020; 27:145-157. [PMID: 31622193 DOI: 10.2174/0929866526666191014154047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/14/2019] [Accepted: 08/02/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Glycogen storage disease type III (GSDIII, Cori/Forbes disease) is a metabolic disorder due to the deficiency of the Glycogen Debranching Enzyme (GDE), a large monomeric protein (about 176 kDa) with two distinct enzymatic activities: 4-α-glucantransferase and amylo-α-1,6-glucosidase. Several mutations along the amylo-alpha-1,6-glucosidase,4-alphaglucanotransferase (Agl) gene are associated with loss of enzymatic activity. The unique treatment for GSDIII, at the moment, is based on diet. The potential of plants to manufacture exogenous engineered compounds for pharmaceutical purposes, from small to complex protein molecules such as vaccines, antibodies and other therapeutic/prophylactic entities, was shown by modern biotechnology through "Plant Molecular Farming". OBJECTIVE AND METHODS In an attempt to develop novel protein-based therapeutics for GSDIII, the Agl gene, encoding for the human GDE (hGDE) was engineered for expression as a histidinetagged GDE protein both in Nicotiana benthamiana plants by a transient expression approach, and in axenic hairy root in vitro cultures (HR) from Lycopersicum esculentum and Beta vulgaris. RESULTS In both plant-based expression formats, the hGDE protein accumulated in the soluble fraction of extracts. The plant-derived protein was purified by affinity chromatography in native conditions showing glycogen debranching activity. CONCLUSION These investigations will be useful for the design of a new generation of biopharmaceuticals based on recombinant GDE protein that might represent, in the future, a possible therapeutic option for GSDIII.
Collapse
Affiliation(s)
- Meilyn Rodriguez-Hernandez
- Center for Genetic Engineering and Biotechnology (CIGB), Direction of Agricultural Biotechnology, Havana,Cuba
| | - Doriana Triggiani
- Italian Glycogen Storage Disease Association (AIG) NPO, Assago, Milan, Italy
- Department of Sustainability (SSPT), Biomedical Technologies Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development ENEA, Rome,Italy
| | - Fiona Ivison
- Department of Biochemistry, Manchester University NHS Foundation Trust, Manchester,United Kingdom
| | - Olivia C Demurtas
- Department of Sustainability (SSPT), Biotechnology Laboratory, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome,Italy
| | - Elena Illiano
- Department of Sustainability (SSPT), Biomedical Technologies Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development ENEA, Rome,Italy
| | - Carmela Marino
- Department of Sustainability (SSPT), Biomedical Technologies Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development ENEA, Rome,Italy
| | - Rosella Franconi
- Department of Sustainability (SSPT), Biomedical Technologies Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development ENEA, Rome,Italy
| | - Silvia Massa
- Department of Sustainability (SSPT), Biotechnology Laboratory, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome,Italy
| |
Collapse
|
14
|
Hannibal L, Theimer J, Wingert V, Klotz K, Bierschenk I, Nitschke R, Spiekerkoetter U, Grünert SC. Metabolic Profiling in Human Fibroblasts Enables Subtype Clustering in Glycogen Storage Disease. Front Endocrinol (Lausanne) 2020; 11:579981. [PMID: 33329388 PMCID: PMC7719825 DOI: 10.3389/fendo.2020.579981] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/21/2020] [Indexed: 12/15/2022] Open
Abstract
Glycogen storage disease subtypes I and III (GSD I and GSD III) are monogenic inherited disorders of metabolism that disrupt glycogen metabolism. Unavailability of glucose in GSD I and induction of gluconeogenesis in GSD III modify energy sources and possibly, mitochondrial function. Abnormal mitochondrial structure and function were described in mice with GSD Ia, yet significantly less research is available in human cells and ketotic forms of the disease. We hypothesized that impaired glycogen storage results in distinct metabolic phenotypes in the extra- and intracellular compartments that may contribute to pathogenesis. Herein, we examined mitochondrial organization in live cells by spinning-disk confocal microscopy and profiled extra- and intracellular metabolites by targeted LC-MS/MS in cultured fibroblasts from healthy controls and from patients with GSD Ia, GSD Ib, and GSD III. Results from live imaging revealed that mitochondrial content and network morphology of GSD cells are comparable to that of healthy controls. Likewise, healthy controls and GSD cells exhibited comparable basal oxygen consumption rates. Targeted metabolomics followed by principal component analysis (PCA) and hierarchical clustering (HC) uncovered metabolically distinct poises of healthy controls and GSD subtypes. Assessment of individual metabolites recapitulated dysfunctional energy production (glycolysis, Krebs cycle, succinate), reduced creatinine export in GSD Ia and GSD III, and reduced antioxidant defense of the cysteine and glutathione systems. Our study serves as proof-of-concept that extra- and intracellular metabolite profiles distinguish glycogen storage disease subtypes from healthy controls. We posit that metabolite profiles provide hints to disease mechanisms as well as to nutritional and pharmacological elements that may optimize current treatment strategies.
Collapse
Affiliation(s)
- Luciana Hannibal
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center—University of Freiburg, Freiburg, Germany
- *Correspondence: Luciana Hannibal, ; Sarah C. Grünert,
| | - Jule Theimer
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center—University of Freiburg, Freiburg, Germany
| | - Victoria Wingert
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center—University of Freiburg, Freiburg, Germany
| | - Katharina Klotz
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center—University of Freiburg, Freiburg, Germany
| | - Iris Bierschenk
- Life Imaging Center, Center for Integrated Signalling Analysis, Albert-Ludwigs-University, Freiburg, Germany
| | - Roland Nitschke
- Life Imaging Center, Center for Integrated Signalling Analysis, Albert-Ludwigs-University, Freiburg, Germany
- BIOSS Centre for Biological Signaling Studies, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Ute Spiekerkoetter
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center—University of Freiburg, Freiburg, Germany
| | - Sarah C. Grünert
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center—University of Freiburg, Freiburg, Germany
- *Correspondence: Luciana Hannibal, ; Sarah C. Grünert,
| |
Collapse
|
15
|
Halaby CA, Young SP, Austin S, Stefanescu E, Bali D, Clinton LK, Smith B, Pendyal S, Upadia J, Schooler GR, Mavis AM, Kishnani PS. Liver fibrosis during clinical ascertainment of glycogen storage disease type III: a need for improved and systematic monitoring. Genet Med 2019; 21:2686-2694. [PMID: 31263214 DOI: 10.1038/s41436-019-0561-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 05/21/2019] [Indexed: 02/07/2023] Open
Abstract
PURPOSE In glycogen storage disease type III (GSD III), liver aminotransferases tend to normalize with age giving an impression that hepatic manifestations improve with age. However, despite dietary treatment, long-term liver complications emerge. We present a GSD III liver natural history study in children to better understand changes in hepatic parameters with age. METHODS We reviewed clinical, biochemical, histological, and radiological data in pediatric patients with GSD III, and performed a literature review of GSD III hepatic findings. RESULTS Twenty-six patients (median age 12.5 years, range 2-22) with GSD IIIa (n = 23) and IIIb (n = 3) were enrolled in the study. Six of seven pediatric patients showed severe fibrosis on liver biopsy (median [range] age: 1.25 [0.75-7] years). Markers of liver injury (aminotransferases), dysfunction (cholesterol, triglycerides), and glycogen storage (glucose tetrasaccharide, Glc4) were elevated at an early age, and decreased significantly thereafter (p < 0.001). Creatine phosphokinase was also elevated with no significant correlation with age (p = 0.4). CONCLUSION Liver fibrosis can occur at an early age, and may explain the decrease in aminotransferases and Glc4 with age. Our data outlines the need for systematic follow-up and specific biochemical and radiological tools to monitor the silent course of the liver disease process.
Collapse
Affiliation(s)
- Carine A Halaby
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Sarah P Young
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Stephanie Austin
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Ela Stefanescu
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Deeksha Bali
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Lani K Clinton
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Brian Smith
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Surekha Pendyal
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Jariya Upadia
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Gary R Schooler
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Alisha M Mavis
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Priya S Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
16
|
Abstract
Most of the glycogen metabolism disorders that affect skeletal muscle involve enzymes in glycogenolysis (myophosphorylase (PYGM), glycogen debranching enzyme (AGL), phosphorylase b kinase (PHKB)) and glycolysis (phosphofructokinase (PFK), phosphoglycerate mutase (PGAM2), aldolase A (ALDOA), β-enolase (ENO3)); however, 3 involve glycogen synthesis (glycogenin-1 (GYG1), glycogen synthase (GSE), and branching enzyme (GBE1)). Many present with exercise-induced cramps and rhabdomyolysis with higher-intensity exercise (i.e., PYGM, PFK, PGAM2), yet others present with muscle atrophy and weakness (GYG1, AGL, GBE1). A failure of serum lactate to rise with exercise with an exaggerated ammonia response is a common, but not invariant, finding. The serum creatine kinase (CK) is often elevated in the myopathic forms and in PYGM deficiency, but can be normal and increase only with rhabdomyolysis (PGAM2, PFK, ENO3). Therapy for glycogen storage diseases that result in exercise-induced symptoms includes lifestyle adaptation and carefully titrated exercise. Immediate pre-exercise carbohydrate improves symptoms in the glycogenolytic defects (i.e., PYGM), but can exacerbate symptoms in glycolytic defects (i.e., PFK). Creatine monohydrate in low dose may provide a mild benefit in PYGM mutations.
Collapse
Affiliation(s)
- Mark A Tarnopolsky
- Division of Neuromuscular & Neurometabolic Disorders, Departments of Pediatrics and Medicine, McMaster University, Hamilton Health Sciences Centre, Rm 2H26, Hamilton, ON, L8S 4L8, Canada.
| |
Collapse
|
17
|
Zhang Y, Xu M, Chen X, Yan A, Zhang G, Liu Z, Qiu W. Genetic analysis and clinical assessment of four patients with Glycogen Storage Disease Type IIIa in China. BMC MEDICAL GENETICS 2018; 19:54. [PMID: 29614965 PMCID: PMC5883582 DOI: 10.1186/s12881-018-0560-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 03/19/2018] [Indexed: 11/17/2022]
Abstract
Background Glycogen Storage Disease Type III (GSD III) is a rare autosomal recessive metabolic disorder caused by AGL gene mutation. There is significant heterogeneity between the clinical manifestations and the gene mutation of AGL among different ethnic groups. However, GSD III is rarely reported in Chinese population. Case presentation In this study, we aimed to study the genetic and clinical characteristics of four patients with GSD IIIa from China, especially the neurological manifestations. Meanwhile, we conducted a literature review of GSD IIIa cases reported in Chinese population to investigate the relationship between genotype and phenotype. Conclusions Three different AGL gene mutations were identified in our patients: c.206dupA, c.1735 + 1G > T and c.2590 C>T. Moreover, progressive myopathy accompanied by elevated creatine kinase level was the main manifestation of our patients in adolescents. Our results showed that AGL c.206dupA was a novel mutation and caused severe clinical manifestations. AGL c.1735 + 1G > T might be a recurrent mutation in the Chinese population. Genetic analysis of AGL gene mutation combined with muscle magnetic resonance imaging (MRI) might provide greater benefit to the patient in diagnosing GSD IIIa, rather than an invasive diagnostic procedure of biopsy. Electronic supplementary material The online version of this article (10.1186/s12881-018-0560-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kong jiang Road, Shanghai, 200092, People's Republic of China
| | - Mingming Xu
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kong jiang Road, Shanghai, 200092, People's Republic of China
| | - Xiaoxia Chen
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kong jiang Road, Shanghai, 200092, People's Republic of China
| | - Aijuan Yan
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kong jiang Road, Shanghai, 200092, People's Republic of China
| | - Guoyong Zhang
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kong jiang Road, Shanghai, 200092, People's Republic of China
| | - Zhenguo Liu
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kong jiang Road, Shanghai, 200092, People's Republic of China.
| | - Wenjuan Qiu
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
18
|
Anushiravani A, Faghihi MA, Dastsooz H, Lankarani KB. Glycogen storage disease IIIa: A private homozygous splice site mutation in AGL gene. GENE REPORTS 2017; 9:61-64. [DOI: 10.1016/j.genrep.2017.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
19
|
Godfrey R, Quinlivan R. Skeletal muscle disorders of glycogenolysis and glycolysis. Nat Rev Neurol 2016; 12:393-402. [DOI: 10.1038/nrneurol.2016.75] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
20
|
Melis D, Rossi A, Pivonello R, Del Puente A, Pivonello C, Cangemi G, Negri M, Colao A, Andria G, Parenti G. Reduced bone mineral density in glycogen storage disease type III: evidence for a possible connection between metabolic imbalance and bone homeostasis. Bone 2016; 86:79-85. [PMID: 26924264 DOI: 10.1016/j.bone.2016.02.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 01/19/2016] [Accepted: 02/22/2016] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Glycogen storage disease type III (GSDIII) is an inborn error of carbohydrate metabolism caused by deficient activity of glycogen debranching enzyme (GDE). It is characterized by liver, cardiac muscle and skeletal muscle involvement. The presence of systemic complications such as growth retardation, ovarian polycystosis, diabetes mellitus and osteopenia/osteoporosis has been reported. The pathogenesis of osteopenia/osteoporosis is still unclear. OBJECTIVES The aim of the current study was to evaluate the bone mineral density (BMD) in GSDIII patients and the role of metabolic and endocrine factors and physical activity on bone status. METHODS Nine GSDIII patients were enrolled (age 2-20years) and compared to eighteen age and sex matched controls. BMD was evaluated by Dual-emission-X-ray absorptiometry (DXA) and Quantitative ultrasound (QUS). Clinical and biochemical parameters of endocrine system function and bone metabolism were analyzed. Serum levels of the metabolic control markers were evaluated. Physical activity was evaluated by administering the International Physical Activity Questionnaire (IPAQ). RESULTS GSDIII patients showed reduced BMD detected at both DXA and QUS, decreased serum levels of IGF-1, free IGF-1, insulin, calcitonin, osteocalcin (OC) and increased serum levels of C-terminal cross-linking telopeptide of type I collagen (CTX). IGF-1 serum levels inversely correlated with AST and ALT serum levels. DXA Z-score inversely correlated with cholesterol and triglycerides serum levels and directly correlated with IGF-1/IGFBP3 molar ratio. No difference in physical activity was observed between GSDIII patients and controls. DISCUSSION Our data confirm the presence of reduced BMD in GSDIII. On the basis of the results, we hypothesized that metabolic imbalance could be the key factor leading to osteopenia, acting through different mechanisms: chronic hyperlipidemia, reduced IGF-1, Insulin and OC serum levels. Thus, the mechanism of osteopenia/osteoporosis in GSDIII is probably multifactorial and we speculate on the factors involved in its pathogenesis.
Collapse
Affiliation(s)
- Daniela Melis
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy.
| | - Alessandro Rossi
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy.
| | - Rosario Pivonello
- Department of Medicine and Surgery, Section of Endocrinology, Federico II University, Naples, Italy.
| | - Antonio Del Puente
- Department of Medicine and Surgery, Section of Rheumatology, Federico II University, Naples, Italy.
| | - Claudia Pivonello
- Department of Medicine and Surgery, Section of Endocrinology, Federico II University, Naples, Italy.
| | - Giuliana Cangemi
- Clinical Pathology Laboratory, Istituto Giannina Gaslini, Genoa, Italy.
| | - Mariarosaria Negri
- Department of Medicine and Surgery, Section of Endocrinology, Federico II University, Naples, Italy.
| | - Annamaria Colao
- Department of Medicine and Surgery, Section of Endocrinology, Federico II University, Naples, Italy.
| | - Generoso Andria
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy.
| | - Giancarlo Parenti
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy.
| |
Collapse
|
21
|
Rousseau-Nepton I, Okubo M, Grabs R, Mitchell J, Polychronakos C, Rodd C. A founder AGL mutation causing glycogen storage disease type IIIa in Inuit identified through whole-exome sequencing: a case series. CMAJ 2015; 187:E68-E73. [PMID: 25602008 DOI: 10.1503/cmaj.140840] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Glycogen storage disease type III is caused by mutations in both alleles of the AGL gene, which leads to reduced activity of glycogen-debranching enzyme. The clinical picture encompasses hypoglycemia, with glycogen accumulation leading to hepatomegaly and muscle involvement (skeletal and cardiac). We sought to identify the genetic cause of this disease within the Inuit community of Nunavik, in whom previous DNA sequencing had not identified such mutations. METHODS Five Inuit children with a clinical and biochemical diagnosis of glycogen storage disease type IIIa were recruited to undergo genetic testing: 2 underwent whole-exome sequencing and all 5 underwent Sanger sequencing to confirm the identified mutation. Selected DNA regions near the AGL gene were also sequenced to identify a potential founder effect in the community. In addition, control samples from 4 adults of European descent and 7 family members of the affected children were analyzed for the specific mutation by Sanger sequencing. RESULTS We identified a homozygous frame-shift deletion, c.4456delT, in exon 33 of the AGL gene in 2 children by whole-exome sequencing. Confirmation by Sanger sequencing showed the same mutation in all 5 patients, and 5 family members were found to be carriers. With the identification of this mutation in 5 probands, the estimated prevalence of genetically confirmed glycogen storage disease type IIIa in this region is among the highest worldwide (1:2500). Despite identical mutations, we saw variations in clinical features of the disease. INTERPRETATION Our detection of a homozygous frameshift mutation in 5 Inuit children determines the cause of glycogen storage disease type IIIa and confirms a founder effect.
Collapse
Affiliation(s)
- Isabelle Rousseau-Nepton
- Department of Pediatrics (Rousseau-Nepton, Mitchell, Polychronakos), Montreal Children's Hospital, Montréal, Que.; Okinaka Memorial Institute for Medical Research (Okubo), Tokyo, Japan; Endocrine Genetics Laboratory (Grabs), Montreal Children's Hospital, McGill University Health Centre, Montréal, Que.; Department of Pediatrics and Child Health (Rodd), Winnipeg, Man
| | - Minoru Okubo
- Department of Pediatrics (Rousseau-Nepton, Mitchell, Polychronakos), Montreal Children's Hospital, Montréal, Que.; Okinaka Memorial Institute for Medical Research (Okubo), Tokyo, Japan; Endocrine Genetics Laboratory (Grabs), Montreal Children's Hospital, McGill University Health Centre, Montréal, Que.; Department of Pediatrics and Child Health (Rodd), Winnipeg, Man
| | - Rosemarie Grabs
- Department of Pediatrics (Rousseau-Nepton, Mitchell, Polychronakos), Montreal Children's Hospital, Montréal, Que.; Okinaka Memorial Institute for Medical Research (Okubo), Tokyo, Japan; Endocrine Genetics Laboratory (Grabs), Montreal Children's Hospital, McGill University Health Centre, Montréal, Que.; Department of Pediatrics and Child Health (Rodd), Winnipeg, Man
| | | | - John Mitchell
- Department of Pediatrics (Rousseau-Nepton, Mitchell, Polychronakos), Montreal Children's Hospital, Montréal, Que.; Okinaka Memorial Institute for Medical Research (Okubo), Tokyo, Japan; Endocrine Genetics Laboratory (Grabs), Montreal Children's Hospital, McGill University Health Centre, Montréal, Que.; Department of Pediatrics and Child Health (Rodd), Winnipeg, Man
| | - Constantin Polychronakos
- Department of Pediatrics (Rousseau-Nepton, Mitchell, Polychronakos), Montreal Children's Hospital, Montréal, Que.; Okinaka Memorial Institute for Medical Research (Okubo), Tokyo, Japan; Endocrine Genetics Laboratory (Grabs), Montreal Children's Hospital, McGill University Health Centre, Montréal, Que.; Department of Pediatrics and Child Health (Rodd), Winnipeg, Man
| | - Celia Rodd
- Department of Pediatrics (Rousseau-Nepton, Mitchell, Polychronakos), Montreal Children's Hospital, Montréal, Que.; Okinaka Memorial Institute for Medical Research (Okubo), Tokyo, Japan; Endocrine Genetics Laboratory (Grabs), Montreal Children's Hospital, McGill University Health Centre, Montréal, Que.; Department of Pediatrics and Child Health (Rodd), Winnipeg, Man.
| |
Collapse
|
22
|
Okubo M, Ucar SK, Podskarbi T, Murase T, Shin YS, Coker M. Molecular and clinical delineation of 12 patients with glycogen storage disease type III in Western Turkey. Clin Chim Acta 2015; 439:162-7. [PMID: 25451950 DOI: 10.1016/j.cca.2014.10.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 10/11/2014] [Accepted: 10/12/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Glycogen storage disease type III (GSD III; MIM #232400) is an autosomal recessive inherited disorder characterized by fasting hypoglycemia, growth retardation, hepatomegaly, progressive myopathy, and cardiomyopathy. GSD III is caused by deficiency in the glycogen debranching enzyme (gene symbol: AGL). Molecular analyses of AGL have indicated heterogeneity depending on ethnic groups. In Turkey we reported 13 different AGL mutations from GSD III patients in the Eastern region; however, the full spectrum of AGL mutations in Turkish population remains unclear. Here we investigated 12 GSD III patients mostly from Western Turkey. METHODS The full coding exons, their relevant exon-intron boundaries, and the 5'- and 3'-flanking regions of the patients' AGL were sequenced. AGL haplotypes were determined. Splicing mutations were characterized by RNA transcript analysis. RESULTS Twelve different mutations were identified: 7 novel AGL mutations [69-base pair deletion (c.1056_1082+42del69), 21-base par deletion (c.3940_3949+11del21), two small duplications (c.364_365dupCT and c.1497_1500dupAGAG), and 3 splicing mutations (c.1736-11A>G, c.3259+1G>A and c.3588+2T>G)], along with 5 known mutations (c.1019delA, c.958+1G>A, c.4161+5G>A, p.R864X and p.R1218X). Transcripts of splicing mutations (c.1736-11A>G, c.3588+2T>G and c.4161+5G>A) were shown to cause aberrant splicing. AGL haplotype analyses suggested that c.1019delA and c.958+1G>A are founder mutations in Turkish patients, while p.R864X is a recurrent mutation. CONCLUSIONS Our study broadens the spectrum of AGL mutations and demonstrates that mutations in Western Turkey are different from those in the Eastern region.
Collapse
Affiliation(s)
- Minoru Okubo
- Okinaka Memorial Institute for Medical Research, Tokyo, Japan; Department of Endocrinology and Metabolism, Toranomon Hospital, Tokyo, Japan.
| | - Sema Kalkan Ucar
- Department of Pediatric Metabolism and Nutrition, Ege University Medical Faculty, Izmir, Turkey
| | | | - Toshio Murase
- Okinaka Memorial Institute for Medical Research, Tokyo, Japan
| | - Yoon S Shin
- Molecular Genetics and Metabolism Laboratory, Munich, Germany
| | - Mahmut Coker
- Department of Pediatric Metabolism and Nutrition, Ege University Medical Faculty, Izmir, Turkey
| |
Collapse
|
23
|
Ko JS, Moon JS, Seo JK, Yang HR, Chang JY, Park SS. A mutation analysis of the AGL gene in Korean patients with glycogen storage disease type III. J Hum Genet 2013; 59:42-5. [PMID: 24257475 DOI: 10.1038/jhg.2013.117] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/20/2013] [Accepted: 09/27/2013] [Indexed: 11/09/2022]
Abstract
Glycogen storage disease type III (GSD III) is an autosomal recessive disorder that is characterized by the excessive accumulation of abnormal glycogen in the liver and muscles and is caused by a deficiency in glycogen debranching enzyme (amylo-1,6-glucosidase, 4-alpha-glucanotransferase (AGL)) activity. To investigate the molecular characteristics of GSD III patients in Korea, we have sequenced the AGL gene in eight children with GSD III. All patients were compound heterozygotes. We identified 10 different mutations (five novel and five previously reported). The novel mutations include one nonsense (c.1461G>A, p.W487X), three splicing (c.293+4_293+6delAGT in IVS4, c.460+1G>T in IVS5, c.2682-8A>G in IVS21) and one missense mutation (c.2591G>C, p.R864P). Together, p.R285X, c.1735+1G>T and p.L1139P accounted for 56% of all alleles, while the remaining mutations are heterogeneous. These three mutations can be common in Korea, and further larger studies are needed to confirm our findings.
Collapse
Affiliation(s)
- Jae Sung Ko
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Jin Soo Moon
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Jeong Kee Seo
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Hye Ran Yang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Ju Young Chang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Sung Sup Park
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
24
|
Ben Rhouma F, Azzouz H, Petit FM, Khelifa MB, Chehida AB, Nasrallah F, Parisot F, Lasram K, Kefi R, Bouyacoub Y, Romdhane L, Baussan C, Kaabachi N, Ben Dridi MF, Tebib N, Abdelhak S. Molecular and biochemical characterization of a novel intronic single point mutation in a Tunisian family with glycogen storage disease type III. Mol Biol Rep 2013; 40:4197-202. [PMID: 23649758 DOI: 10.1007/s11033-013-2500-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 04/27/2013] [Indexed: 10/26/2022]
Abstract
Genetic deficiency of the glycogen debranching enzyme causes glycogen storage disease type III, an autosomal recessive inherited disorder. The gene encoding this enzyme is designated as AGL gene. The disease is characterized by fasting hypoglycemia, hepatomegaly, growth retardation, progressive myopathy and cardiomyopathy. In the present study, we present clinical features and molecular characterization of two consanguineous Tunisian siblings suffering from Glycogen storage disease type III. The full coding exons of the AGL gene and their corresponding exon-intron boundaries were amplified for the patients and their parents. Gene sequencing identified a novel single point mutation at the conserved polypyrimidine tract of intron 21 in a homozygous state (IVS21-8A>G). This variant cosegregated with the disease and was absent in 102 control chromosomes. In silico analysis using online resources showed a decreased score of the acceptor splice site of intron 21. RT-PCR analysis of the AGL splicing pattern revealed a 7 bp sequence insertion between exon 21 and exon 22 due to the creation of a new 3' splice site. The predicted mutant enzyme was truncated by the loss of 637 carboxyl-terminal amino acids as a result of premature termination. This novel mutation is the first mutation identified in the region of Bizerte and the tenth AGL mutation identified in Tunisia. Screening for this mutation can improve the genetic counseling and prenatal diagnosis of GSD III.
Collapse
Affiliation(s)
- Faten Ben Rhouma
- Laboratoire de Genomique Biomedicale et Oncogenetique LR11IPT05, Institut Pasteur de Tunis, 1002, Tunis, Tunisia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Romdhane L, Kefi R, Azaiez H, Ben Halim N, Dellagi K, Abdelhak S. Founder mutations in Tunisia: implications for diagnosis in North Africa and Middle East. Orphanet J Rare Dis 2012; 7:52. [PMID: 22908982 PMCID: PMC3495028 DOI: 10.1186/1750-1172-7-52] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 08/02/2012] [Indexed: 01/17/2023] Open
Abstract
Background Tunisia is a North African country of 10 million inhabitants. The native background population is Berber. However, throughout its history, Tunisia has been the site of invasions and migratory waves of allogenic populations and ethnic groups such as Phoenicians, Romans, Vandals, Arabs, Ottomans and French. Like neighbouring and Middle Eastern countries, the Tunisian population shows a relatively high rate of consanguinity and endogamy that favor expression of recessive genetic disorders at relatively high rates. Many factors could contribute to the recurrence of monogenic morbid trait expression. Among them, founder mutations that arise in one ancestral individual and diffuse through generations in isolated communities. Method We report here on founder mutations in the Tunisian population by a systematic review of all available data from PubMed, other sources of the scientific literature as well as unpublished data from our research laboratory. Results We identified two different classes of founder mutations. The first includes founder mutations so far reported only among Tunisians that are responsible for 30 genetic diseases. The second group represents founder haplotypes described in 51 inherited conditions that occur among Tunisians and are also shared with other North African and Middle Eastern countries. Several heavily disabilitating diseases are caused by recessive founder mutations. They include, among others, neuromuscular diseases such as congenital muscular dystrophy and spastic paraglegia and also severe genodermatoses such as dystrophic epidermolysis bullosa and xeroderma pigmentosa. Conclusion This report provides informations on founder mutations for 73 genetic diseases either specific to Tunisians or shared by other populations. Taking into account the relatively high number and frequency of genetic diseases in the region and the limited resources, screening for these founder mutations should provide a rapid and cost effective tool for molecular diagnosis. Indeed, our report should help designing appropriate measures for carrier screening, better evaluation of diseases burden and setting up of preventive measures at the regional level.
Collapse
Affiliation(s)
- Lilia Romdhane
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, BP 74, 13 Place Pasteur, Tunis 1002, Tunisia
| | | | | | | | | | | |
Collapse
|
26
|
Molecular and biochemical characterization of Tunisian patients with glycogen storage disease type III. J Hum Genet 2011; 57:170-5. [PMID: 22089644 DOI: 10.1038/jhg.2011.122] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Glycogen storage disease type III (GSD III) is an autosomal recessive inborn error of metabolism caused by mutations in the glycogen debranching enzyme amylo-1,6-glucosidase gene, which is located on chromosome 1p21.2. GSD III is characterized by the storage of structurally abnormal glycogen, termed limit dextrin, in both skeletal and cardiac muscle and/or liver, with great variability in resultant organ dysfunction. The spectrum of AGL gene mutations in GSD III patients depends on ethnic group. The most prevalent mutations have been reported in the North African Jewish population and in an isolate such as the Faroe Islands. Here, we present the molecular and biochemical analyses of 22 Tunisian GSD III patients. Molecular analysis revealed three novel mutations: nonsense (Tyr1148X) and two deletions (3033_3036del AATT and 3216_3217del GA) and five known mutations: three nonsense (R864X, W1327X and W255X), a missense (R524H) and an acceptor splice-site mutation (IVS32-12A>G). Each mutation is associated to a specific haplotype. This is the first report of screening for mutations of AGL gene in the Tunisian population.
Collapse
|
27
|
Erez A, Shchelochkov OA, Plon SE, Scaglia F, Lee B. Insights into the pathogenesis and treatment of cancer from inborn errors of metabolism. Am J Hum Genet 2011. [PMID: 21473982 DOI: 10.1016/j.ajhg.2011.03.005.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Mutations in genes that play fundamental roles in metabolic pathways have been found to also play a role in tumor development and susceptibility to cancer. At the same time, significant progress has been made in the treatment of patients with inborn errors of metabolism (IEM),(1) resulting in increased longevity and the unmasking of cancer predisposition, frequently hepatocellular carcinoma, in these conditions. These patients offer a potential opportunity to deepen our understanding of how intermediary metabolism impacts tumorigenesis. We provide an overview from the perspective of cancers in patients affected with IEM and discuss how dysregulation of these specific metabolic pathways might contribute to the mechanisms of cancer development and treatment.
Collapse
Affiliation(s)
- Ayelet Erez
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
28
|
|
29
|
Okubo M, Spengos K, Manta P, Fateen E. Phenotypical variability in glycogen storage disease type III with a recurrent AGL mutation c.750-753delAGAC. Muscle Nerve 2011; 43:451. [PMID: 21321962 DOI: 10.1002/mus.21943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
30
|
Erez A, Shchelochkov OA, Plon SE, Scaglia F, Lee B. Insights into the pathogenesis and treatment of cancer from inborn errors of metabolism. Am J Hum Genet 2011; 88:402-21. [PMID: 21473982 PMCID: PMC3071916 DOI: 10.1016/j.ajhg.2011.03.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2011] [Revised: 02/22/2011] [Accepted: 03/09/2011] [Indexed: 02/07/2023] Open
Abstract
Mutations in genes that play fundamental roles in metabolic pathways have been found to also play a role in tumor development and susceptibility to cancer. At the same time, significant progress has been made in the treatment of patients with inborn errors of metabolism (IEM),(1) resulting in increased longevity and the unmasking of cancer predisposition, frequently hepatocellular carcinoma, in these conditions. These patients offer a potential opportunity to deepen our understanding of how intermediary metabolism impacts tumorigenesis. We provide an overview from the perspective of cancers in patients affected with IEM and discuss how dysregulation of these specific metabolic pathways might contribute to the mechanisms of cancer development and treatment.
Collapse
Affiliation(s)
- Ayelet Erez
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
31
|
Crushell E, Treacy EP, Dawe J, Durkie M, Beauchamp NJ. Glycogen storage disease type III in the Irish population. J Inherit Metab Dis 2010; 33 Suppl 3:S215-8. [PMID: 20490926 DOI: 10.1007/s10545-010-9096-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 03/04/2010] [Accepted: 03/31/2010] [Indexed: 10/19/2022]
Abstract
Glycogen storage disease type III (GSD III) results from mutations of the AGL gene encoding the glycogen debrancher enzyme. The disease has clinical and biochemical heterogeneity reflecting the severity of the AGL mutations. We sought to characterise the molecular defects in our cohort of Irish patients with GSD III. Fifteen patients from eight unrelated Irish families were identified: six males and nine females. The age ranged from 2-39 years old, and all presented in the first 3 years of life. Four patients (of three families) had mild disease with hepatomegaly, mild hypoglycaemia and normal creatine kinase (CK) levels. Five families had more severe disease, with liver and skeletal muscle involvement and elevated CK. Eleven different mutations were identified amongst the eight families. Of the 11, six were novel: p.T512fs, p.S736fs, p.A1400fs, p.K1407fs, p.Y519X and p.D627Y. The family homozygous for p.A1400fs had the most severe phenotype (early-onset hypoglycaemia, massive hepatomegaly, myopathy and hypertrophic cardiomyopathy before age 2 years), which was not halted by aggressive carbohydrate and protein supplementation. Conversely, the only missense mutation identified in the cohort, p.D627Y, was associated with a mild phenotype. The phenotypic diversity in our GSD III cohort is mirrored by the allelic heterogeneity. We describe two novel null mutations in exon 32 in two families with severe GSD III resistant to current treatment modalities. Knowledge of the specific mutations segregating in this cohort may allow for the development of new therapeutic interventions.
Collapse
Affiliation(s)
- Ellen Crushell
- National Centre for Inherited Metabolic Disorders, Children's University Hospital, Temple St, Dublin 1, Ireland.
| | | | | | | | | |
Collapse
|
32
|
Inborn errors of energy metabolism associated with myopathies. J Biomed Biotechnol 2010; 2010:340849. [PMID: 20589068 PMCID: PMC2877206 DOI: 10.1155/2010/340849] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 01/19/2010] [Accepted: 02/22/2010] [Indexed: 12/31/2022] Open
Abstract
Inherited neuromuscular disorders affect approximately one in 3,500 children. Structural muscular defects are most common; however functional impairment of skeletal and cardiac muscle in both children and adults may be caused by inborn errors of energy metabolism as well. Patients suffering from metabolic myopathies due to compromised energy metabolism may present with exercise intolerance, muscle pain, reversible or progressive muscle weakness, and myoglobinuria. In this review, the physiology of energy metabolism in muscle is described, followed by the presentation of distinct disorders affecting skeletal and cardiac muscle: glycogen storage diseases types III, V, VII, fatty acid oxidation defects, and respiratory chain defects (i.e., mitochondriopathies). The diagnostic work-up and therapeutic options in these disorders are discussed.
Collapse
|
33
|
Molecular analysis of the AGL gene: Identification of 25 novel mutations and evidence of genetic heterogeneity in patients with Glycogen Storage Disease Type III. Genet Med 2010; 12:424-30. [DOI: 10.1097/gim.0b013e3181d94eaa] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
34
|
Aoyama Y, Endo Y, Ebara T, Murase T, Shin YS, Podskarbi T, Ozer I, Demirkol M, Gökçay G, Okubo M. Novel AGL mutation in a Turkish patient with glycogen storage disease type IIIa. Pediatr Int 2010; 52:145-7. [PMID: 20158661 DOI: 10.1111/j.1442-200x.2009.02943.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yoshiko Aoyama
- Okinaka Memorial Institute for Medical Research, Toranomon Hospital, Minato-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Aoyama Y, Ozer I, Demirkol M, Ebara T, Murase T, Podskarbi T, Shin YS, Gokcay G, Okubo M. Molecular features of 23 patients with glycogen storage disease type III in Turkey: a novel mutation p.R1147G associated with isolated glucosidase deficiency, along with 9 AGL mutations. J Hum Genet 2009; 54:681-6. [DOI: 10.1038/jhg.2009.100] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
SINE indel polymorphism of AGL gene and association with growth and carcass traits in Landrace x Jeju Black pig F(2) population. Mol Biol Rep 2009; 37:467-71. [PMID: 19649726 PMCID: PMC2801833 DOI: 10.1007/s11033-009-9644-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2009] [Accepted: 07/21/2009] [Indexed: 10/31/2022]
Abstract
Genetic polymorphisms in the glycogen debrancher enzyme (AGL) gene were assessed with regard to their association with growth and carcass traits in the F(2) population crossbred Landrace and Jeju (Korea) Black pig. Three genotypes representing the insertion and/or deletion (indel) polymorphisms of short interspersed nuclear element were detected at frequencies of 0.278 (L/L), 0.479 (L/S), and 0.243 (S/S), respectively. The AGL S allele-containing pigs evidenced significantly heavier body weights at birth, the 3rd week, 10th week, and 20th week during developmental stages and higher average daily gains during the late period than were noted in the L/L homozygous pigs (P < 0.05), respectively. However, average daily gains during the early period were not significantly associated with genotype distribution (P > 0.05). With regard to the carcass traits, the S allele pigs (S/-) evidenced significantly heavier carcass weights and thicker backfat than was measured in L/L homozygous pigs (P < 0.05). However, body lengths, meat color, and marbling scores were all found not to be statistically significant (P > 0.05). Consequently, the faster growth rate during the late period and backfat deposition rather than intramuscular fat deposition cause differences in pig productivity according to genotypes of the AGL gene. These findings indicate that the AGL genotypes may prove to be useful genetic markers for the improvement of Jeju Black pig-related crossbreeding systems.
Collapse
|
37
|
Yamamoto E, Watanabe Y, Makino Y, Omichi K. Inspection of the activator binding site for 4-alpha-glucanotransferase in porcine liver glycogen debranching enzyme with fluorogenic dextrins. J Biochem 2009; 145:585-90. [PMID: 19155269 DOI: 10.1093/jb/mvp012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recently, we found that alpha-, beta- and gamma-cyclodextrins accelerated the 4-alpha-glucanotransferase action of porcine liver glycogen debranching enzyme (GDE) on Glcalpha1-4Glcalpha1-4Glcalpha1-4(Glcalpha1-4Glcalpha1-4Glcalpha1-4Glcalpha1-6)Glcalpha1-4Glcalpha1-4Glcalpha1-4Glcalpha1-4GlcPA (B5/84), and proposed the presence of an activator binding site in the GDE molecule. In liver cells, the structures of alpha-glucans proximal to the site GDE acts are not cyclodextrins, but glycogen and its degradation products. To estimate the structural characteristics of intrinsic activators and to inspect the features of the activator binding site, we examined the effects of four fluorogenic dextrins, (Glcalpha1-6)(m)Glcalpha1-4(Glcalpha1-4)(n)GlcPA (B5/51, m = 1, n = 3; B6/61, m = 1, n = 4; B7/71, m = 1, n = 5; G6PA, m = 0, n = 4), on the debranching of B5/84 by porcine liver GDE. The GDE 4-alpha-glucanotransferase removed the maltotriosyl residue from the maltotetraosyl branch of B5/84, producing Glcalpha1-4Glcalpha1-4Glcalpha1-4(Glcalpha1-6)Glcalpha1-4Glcalpha1-4Glcalpha1-4Glcalpha1-4GlcPA (B5/81). In the presence of G6PA, the removed maltotriosyl residue was transferred to G6PA to give Glcalpha1-4Glcalpha1-4Glcalpha1-4Glcalpha1-4Glcalpha1-4Glcalpha1-4Glcalpha1-4Glcalpha1-4GlcPA (G9PA). In the absence of G6PA, the removed maltotriosyl residue was transferred to water. B7/71, B6/61 and B5/51 did not undergo any changes by the GDE, but they accelerated the action of the 4-alpha-glucanotransferase in removing the maltotriosyl residue. Of the four fluorogenic dextrins examined, B6/61 most strongly accelerated the 4-alpha-glucanotransferase action. The activator binding site is likely to be a space that accommodates the structure of Glcalpha1-6Glcalpha1-4Glcalpha1-4Glcalpha1-4Glcalpha1-4Glc.
Collapse
Affiliation(s)
- Eriko Yamamoto
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, Japan
| | | | | | | |
Collapse
|
38
|
Endo Y, Fateen E, El Shabrawy M, Aoyama Y, Ebara T, Murase T, Podskarbi T, Shin YS, Okubo M. Egyptian glycogen storage disease type III - identification of six novel AGL mutations, including a large 1.5 kb deletion and a missense mutation p.L620P with subtype IIId. Clin Chem Lab Med 2009; 47:1233-1238. [PMID: 19754354 DOI: 10.1515/cclm.2009.281] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Glycogen storage disease type III (GSD III) is caused by mutations in AGL which encodes for a single protein with two enzyme activities: oligo-1, 4-1, 4-glucantransferase (transferase) and amylo-1, 6-glucosidase. Activity of both enzymes is lost in most patients with GSD III, but in the very rare subtype IIId, transferase activity is deficient. Since the spectrum of AGL mutations is dependent on the ethnic group, we investigated the clinical and molecular characteristics in Egyptian patients with GSD III. METHODS Clinical features were examined in five Egyptian patients. AGL was sequenced and AGL haplotypes were determined. RESULTS Six novel AGL mutations were identified: a large deletion (c.3481-3588+1417del1525 bp), two insertions (c.1389insG and c.2368insA), two small deletions (c.2223-2224delGT and c.4041delT), and a missense mutation (p.L620P). p.L620P was found in a patient with IIId. Each mutation was located on a different AGL haplotype. CONCLUSIONS Our results suggest that there is allelic and phenotypic heterogeneity of GSD III in Egypt. This is the second description of a large deletion in AGL. p.L620P is the second mutation found in GSD IIId.
Collapse
Affiliation(s)
- Yoriko Endo
- Okinaka Memorial Institute for Medical Research, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Schoser B, Gläser D, Müller-Höcker J. Clinicopathological analysis of the homozygous p.W1327XAGLmutation in glycogen storage disease type 3. Am J Med Genet A 2008; 146A:2911-5. [DOI: 10.1002/ajmg.a.32529] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|