1
|
Zhou Y, Lauschke VM. Population pharmacogenomics: an update on ethnogeographic differences and opportunities for precision public health. Hum Genet 2022; 141:1113-1136. [PMID: 34652573 PMCID: PMC9177500 DOI: 10.1007/s00439-021-02385-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/05/2021] [Indexed: 11/25/2022]
Abstract
Both safety and efficacy of medical treatment can vary depending on the ethnogeographic background of the patient. One of the reasons underlying this variability is differences in pharmacogenetic polymorphisms in genes involved in drug disposition, as well as in drug targets. Knowledge and appreciation of these differences is thus essential to optimize population-stratified care. Here, we provide an extensive updated analysis of population pharmacogenomics in ten pharmacokinetic genes (CYP2D6, CYP2C19, DPYD, TPMT, NUDT15 and SLC22A1), drug targets (CFTR) and genes involved in drug hypersensitivity (HLA-A, HLA-B) or drug-induced acute hemolytic anemia (G6PD). Combined, polymorphisms in the analyzed genes affect the pharmacology, efficacy or safety of 141 different drugs and therapeutic regimens. The data reveal pronounced differences in the genetic landscape, complexity and variant frequencies between ethnogeographic groups. Reduced function alleles of CYP2D6, SLC22A1 and CFTR were most prevalent in individuals of European descent, whereas DPYD and TPMT deficiencies were most common in Sub-Saharan Africa. Oceanian populations showed the highest frequencies of CYP2C19 loss-of-function alleles while their inferred CYP2D6 activity was among the highest worldwide. Frequencies of HLA-B*15:02 and HLA-B*58:01 were highest across Asia, which has important implications for the risk of severe cutaneous adverse reactions upon treatment with carbamazepine and allopurinol. G6PD deficiencies were most frequent in Africa, the Middle East and Southeast Asia with pronounced differences in variant composition. These variability data provide an important resource to inform cost-effectiveness modeling and guide population-specific genotyping strategies with the goal of optimizing the implementation of precision public health.
Collapse
Affiliation(s)
- Yitian Zhou
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden.
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.
| |
Collapse
|
2
|
Ali Albsheer MM, Lover AA, Eltom SB, Omereltinai L, Mohamed N, Muneer MS, Mohamad AO, Abdel Hamid MM. Prevalence of glucose-6-phosphate dehydrogenase deficiency (G6PDd), CareStart qualitative rapid diagnostic test performance, and genetic variants in two malaria-endemic areas in Sudan. PLoS Negl Trop Dis 2021; 15:e0009720. [PMID: 34699526 PMCID: PMC8547650 DOI: 10.1371/journal.pntd.0009720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 08/09/2021] [Indexed: 11/24/2022] Open
Abstract
Glucose-6-phosphate dehydrogenase deficiency (G6PDd) is the most common enzymopathy globally, and deficient individuals may experience severe hemolysis following treatment with 8-aminoquinolines. With increasing evidence of Plasmodium vivax infections throughout sub-Saharan Africa, there is a pressing need for population-level data at on the prevalence of G6PDd. Such evidence-based data will guide the expansion of primaquine and potentially tafenoquine for radical cure of P. vivax infections. This study aimed to quantify G6PDd prevalence in two geographically distinct areas in Sudan, and evaluating the performance of a qualitative CareStart rapid diagnostic test as a point-of-care test. Blood samples were analyzed from 491 unrelated healthy persons in two malaria-endemic sites in eastern and central Sudan. A pre-structured questionnaire was used which included demographic data, risk factors and treatment history. G6PD levels were measured using spectrophotometry (SPINREACT) and first-generation qualitative CareStart rapid tests. G6PD variants (202 G>A; 376 A>G) were determined by PCR/RFLP, with a subset confirmed by Sanger sequencing. The prevalence of G6PDd by spectrophotometry was 5.5% (27/491; at 30% of adjusted male median, AMM); 27.3% (134/491; at 70% of AMM); and 13.1% (64/490) by qualitative CareStart rapid diagnostic test. The first-generation CareStart rapid diagnostic test had an overall sensitivity of 81.5% (95%CI: 61.9 to 93.7) and negative predictive value of 98.8% (97.3 to 99.6). All persons genotyped across both study sites were wild type for the G6PD G202 variant. For G6PD A376G all participants in New Halfa had wild type AA (100%), while in Khartoum the AA polymorphism was found in 90.7%; AG in 2.5%; and GG in 6.8%. Phenotypic G6PD B was detected in 100% of tested participants in New Halfa while in Khartoum, the phenotypes observed were B (96.2%), A (2.8%), and AB (1%). The African A- phenotype was not detected in this study population. Overall, G6PDd prevalence in Sudan is low-to-moderate but highly heterogeneous. Point-of-care testing with the qualitative CareStart rapid diagnostic test demonstrated moderate performance with moderate sensitivity and specificity but high negative predicative value. The two sites harbored primarily the African B phenotype. A country-wide survey is recommended to understand GP6PD deficiencies more comprehensively in Sudan.
Collapse
Affiliation(s)
- Musab M. Ali Albsheer
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
- Faculty of Medical Laboratory Sciences, Sinnar University, Sennar, Sudan
| | - Andrew A. Lover
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts-Amherst; Amherst, Massachusetts, United States of America
| | - Sara B. Eltom
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Leena Omereltinai
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Nouh Mohamed
- Department of Parasitology and Medical Entomology, Faculty of Medical Laboratory Sciences, Nile University, Khartoum, Sudan
| | - Mohamed S. Muneer
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
- Department of Biochemistry, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Abdelrahim O. Mohamad
- Department of Biochemistry, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Muzamil Mahdi Abdel Hamid
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| |
Collapse
|
3
|
Koromina M, Pandi MT, van der Spek PJ, Patrinos GP, Lauschke VM. The ethnogeographic variability of genetic factors underlying G6PD deficiency. Pharmacol Res 2021; 173:105904. [PMID: 34551338 DOI: 10.1016/j.phrs.2021.105904] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 01/01/2023]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency caused by genetic variants in the G6PD gene, constitutes the most common enzymopathy worldwide, affecting approximately 5% of the global population. While carriers are mostly asymptomatic, they are at substantial risk of acute hemolytic anemia upon certain infections or exposure to various medications. As such, information about G6PD activity status in a given patient can constitute an important parameter to guide clinical decision-making. Here, we leveraged whole genome sequencing data from 142,069 unrelated individuals across seven human populations to provide a global comprehensive map of G6PD variability. By integrating established functional classifications with stringent computational predictions using 13 partly orthogonal algorithms for uncharacterized and novel variants, we reveal the large extent of ethnogeographic variability in G6PD deficiency and highlight its population-specific genetic composition. Overall, estimated disease prevalence in males ranged between 12.2% in Africans, 2.7-3.5% across Asia and 2.1% in Middle Easterners to < 0.3% in Europeans, Finnish and Amish. In Africans, the major deficient alleles were A-202A/376 G (minor allele frequency 11.6%) and A-968 C/376 G (0.5%). In contrast, G6PD deficiency in Middle Easterners was primarily due to the Mediterranean allele (1.3%) and the population-specific Cairo variant (0.4%). In South Asia, the most prevalent deficient alleles were Mediterranean (1.7%), Kerala (1.1%), Gond (0.9%) and Orissa (0.2%), whereas in East Asian populations the Canton (1.1%), Kaiping (0.7%) and Viangchan (0.3%) variants were predominant. Combined, our analyses provide a large dataset of G6PD variability across major ethnogeographic groups and can instruct population-specific genotyping strategies to optimize genetically guided therapeutic interventions.
Collapse
Affiliation(s)
- Maria Koromina
- University of Patras, School of Health Sciences, Department of Pharmacy, Laboratory of Pharmacogenomics and Individualized Therapy, Patras, Greece; The Golden Helix Foundation, London, UK
| | - Maria Theodora Pandi
- University of Patras, School of Health Sciences, Department of Pharmacy, Laboratory of Pharmacogenomics and Individualized Therapy, Patras, Greece; Erasmus University Medical Center, Faculty of Medicine and Health Sciences, Department of Pathology, Bioinformatics Unit, Rotterdam, Netherlands
| | - Peter J van der Spek
- Erasmus University Medical Center, Faculty of Medicine and Health Sciences, Department of Pathology, Bioinformatics Unit, Rotterdam, Netherlands
| | - George P Patrinos
- University of Patras, School of Health Sciences, Department of Pharmacy, Laboratory of Pharmacogenomics and Individualized Therapy, Patras, Greece; United Arab Emirates University, College of Medicine and Health Sciences, Department of Pathology, Al-Ain, UAE; United Arab Emirates University, Zayed Center of Health Sciences, Al-Ain, UAE
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.
| |
Collapse
|
4
|
Bancone G, Chu CS. G6PD Variants and Haemolytic Sensitivity to Primaquine and Other Drugs. Front Pharmacol 2021; 12:638885. [PMID: 33790795 PMCID: PMC8005603 DOI: 10.3389/fphar.2021.638885] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/01/2021] [Indexed: 02/04/2023] Open
Abstract
Restrictions on the cultivation and ingestion of fava beans were first reported as early as the fifth century BC. Not until the late 19th century were clinical descriptions of fava-induced disease reported and soon after characterised as “favism” in the early 20th century. It is now well known that favism as well as drug-induced haemolysis is caused by a deficiency of the glucose-6-phosphate dehydrogenase (G6PD) enzyme, one of the most common enzyme deficiency in humans. Interest about the interaction between G6PD deficiency and therapeutics has increased recently because mass treatment with oxidative 8-aminoquinolines is necessary for malaria elimination. Historically, assessments of haemolytic risk have focused on the clinical outcomes (e.g., haemolysis) associated with either a simplified phenotypic G6PD characterisation (deficient or normal) or an ill-fitting classification of G6PD genetic variants. It is increasingly apparent that detailed knowledge of both aspects is required for a complete understanding of haemolytic risk. While more attention has been devoted recently to better phenotypic characterisation of G6PD activity (including the development of new point-of care tests), the classification of G6PD variants should be revised to be clinically useful in malaria eliminating countries and in populations with prevalent G6PD deficiency. The scope of this work is to summarize available literature on drug-induced haemolysis among individuals with different G6PD variants and to highlight knowledge gaps that could be filled with further clinical and laboratory research.
Collapse
Affiliation(s)
- Germana Bancone
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Cindy S Chu
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Praoparotai A, Junkree T, Imwong M, Boonyuen U. Functional and structural analysis of double and triple mutants reveals the contribution of protein instability to clinical manifestations of G6PD variants. Int J Biol Macromol 2020; 158:884-893. [PMID: 32387609 DOI: 10.1016/j.ijbiomac.2020.05.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/11/2020] [Accepted: 05/04/2020] [Indexed: 11/18/2022]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common polymorphism and enzymopathy in humans, affecting approximately 400 million people worldwide. Over 200 point mutations have been identified in g6pd and the molecular mechanisms underlying the severity of G6PD variants differ. We report the detailed functional and structural characterization of 11 recombinant human G6PD variants: G6PD Asahi, G6PD A, G6PD Guadalajara, G6PD Acrokorinthos, G6PD Ananindeua, G6PD A-(202), G6PD Sierra Leone, G6PD A-(680), G6PD A-(968), G6PD Mount Sinai and G6PD No name. G6PD Guadalajara, G6PD Mount Sinai and G6PD No name are inactive variants and, correlating with the observed clinical manifestations, exhibit complete loss of enzyme activity. Protein structural instability, causing a reduction in catalytic efficiency, contributes to the clinical phenotypes of all variants. In double and triple mutants sharing the G6PD A mutation, we observed cooperative interaction between two and three mutations to cause protein dysfunction. The G6PD A (Asn126Asp) mutation exhibits no effect on protein activity and stability, indicating that the additional mutations in these G6PD variants significantly contribute to enzyme deficiency. We provide insight into the molecular basis of G6PD deficiency, which can explain the severity of clinical manifestations observed in individuals with G6PD deficiency.
Collapse
Affiliation(s)
- Aun Praoparotai
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Thanyaphorn Junkree
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Usa Boonyuen
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
6
|
Djigo OKM, Bollahi MA, Hasni Ebou M, Ould Ahmedou Salem MS, Tahar R, Bogreau H, Basco L, Ould Mohamed Salem Boukhary A. Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania. PLoS One 2019; 14:e0220977. [PMID: 31525211 PMCID: PMC6746352 DOI: 10.1371/journal.pone.0220977] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/26/2019] [Indexed: 02/06/2023] Open
Abstract
Background Primaquine is recommended by the World Health Organization (WHO) for radical treatment of Plasmodium vivax malaria. This drug is known to provoke acute hemolytic anemia in individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency. Due to lack of data on G6PD deficiency, the use of primaquine has been limited in Africa. In the present study, G6PD deficiency was investigated in blood donors of various ethnic groups living in Nouakchott, a P. vivax endemic area in Mauritania. Methodology/Principal findings Venous blood samples from 443 healthy blood donors recruited at the National Transfusion Center in Nouakchott were screened for G6PD activity using the CareStart G6PD deficiency rapid diagnostic test. G6PD allelic variants were investigated using DiaPlexC G6PD genotyping kit that detects African (A-) and Mediterranean (B-) variants. Overall, 50 of 443 (11.3%) individuals (49 [11.8%] men and 1 [3.7%] woman) were phenotypically deficient. Amongst men, Black Africans had the highest prevalence of G6PD deficiency (15 of 100 [15%]) and White Moors the lowest (10 of 168, [5.9%]). The most commonly observed G6PD allelic variants among 44 tested G6PD-deficient men were the African variant A- (202A/376G) in 14 (31.8%), the Mediterranean variant B- (563T) in 13 (29.5%), and the Betica-Selma A- (376G/968C) allelic variant in 6 (13.6%). The Santamaria A- variant (376G/542T) and A variant (376G) were observed in only one and two individuals, respectively. None of the expected variants was observed in 8 (18.2%) of the tested phenotypically G6PD-deficient men. Conclusion This is the first published data on G6PD deficiency in Mauritanians. The prevalence of phenotypic G6PD deficiency was relatively high (11.3%). It was mostly associated with either African or Mediterranean variants, in agreement with diverse Arab and Black African origins of the Mauritanian population.
Collapse
Affiliation(s)
- Oum kelthoum Mamadou Djigo
- Unité de recherche Génomes et Milieux, Faculté des Sciences et Techniques, Université de Nouakchott Al-Aasriya, Nouveau Campus Universitaire, Nouakchott, Mauritania
| | | | - Moina Hasni Ebou
- Unité de recherche Génomes et Milieux, Faculté des Sciences et Techniques, Université de Nouakchott Al-Aasriya, Nouveau Campus Universitaire, Nouakchott, Mauritania
| | - Mohamed Salem Ould Ahmedou Salem
- Unité de recherche Génomes et Milieux, Faculté des Sciences et Techniques, Université de Nouakchott Al-Aasriya, Nouveau Campus Universitaire, Nouakchott, Mauritania
| | - Rachida Tahar
- UMR 216 MERIT, IRD, Faculté de Pharmacie, Univ. Paris Descartes, Paris, France
| | - Hervé Bogreau
- Unité de Parasitologie et d’Entomologie, Institut de Recherche Biomédicale des Armées, IHU-Méditerranée Infection, Marseille, France
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
- Centre National de Référence du Paludisme, Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Marseille, France
| | - Leonardo Basco
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Ali Ould Mohamed Salem Boukhary
- Unité de recherche Génomes et Milieux, Faculté des Sciences et Techniques, Université de Nouakchott Al-Aasriya, Nouveau Campus Universitaire, Nouakchott, Mauritania
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
- * E-mail:
| |
Collapse
|
7
|
Russo R, Andolfo I, Manna F, Gambale A, Marra R, Rosato BE, Caforio P, Pinto V, Pignataro P, Radhakrishnan K, Unal S, Tomaiuolo G, Forni GL, Iolascon A. Multi-gene panel testing improves diagnosis and management of patients with hereditary anemias. Am J Hematol 2018; 93:672-682. [PMID: 29396846 DOI: 10.1002/ajh.25058] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 01/31/2018] [Indexed: 12/14/2022]
Abstract
Mutations in more than 70 genes cause hereditary anemias (HA), a highly heterogeneous group of rare/low frequency disorders in which we included: hyporegenerative anemias, as congenital dyserythropoietic anemia (CDA) and Diamond-Blackfan anemia; hemolytic anemias due to erythrocyte membrane defects, as hereditary spherocytosis and stomatocytosis; hemolytic anemias due to enzymatic defects. The study describes the diagnostic workflow for HA, based on the development of two consecutive versions of a targeted-NGS panel, including 34 and 71 genes, respectively. Seventy-four probands from 62 unrelated families were investigated. Our study includes the most comprehensive gene set for these anemias and the largest cohort of patients described so far. We obtained an overall diagnostic yield of 64.9%. Despite 54.2% of cases showed conclusive diagnosis fitting well to the clinical suspicion, the multi-gene analysis modified the original clinical diagnosis in 45.8% of patients (nonmatched phenotype-genotype). Of note, 81.8% of nonmatched patients were clinically suspected to suffer from CDA. Particularly, 45.5% of the probands originally classified as CDA exhibited a conclusive diagnosis of chronic anemia due to enzymatic defects, mainly due to mutations in PKLR gene. Interestingly, we also identified a syndromic CDA patient with mild anemia and epilepsy, showing a homozygous mutation in CAD gene, recently associated to early infantile epileptic encephalopathy-50 and CDA-like anemia. Finally, we described a patient showing marked iron overload due to the coinheritance of PIEZO1 and SEC23B mutations, demonstrating that the multi-gene approach is valuable not only for achieving a correct and definitive diagnosis, but also for guiding treatment.
Collapse
Affiliation(s)
- Roberta Russo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche; Università degli Studi di Napoli Federico II; Napoli Italy
- CEINGE Biotecnologie Avanzate; Napoli Italy
| | - Immacolata Andolfo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche; Università degli Studi di Napoli Federico II; Napoli Italy
- CEINGE Biotecnologie Avanzate; Napoli Italy
| | - Francesco Manna
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche; Università degli Studi di Napoli Federico II; Napoli Italy
- CEINGE Biotecnologie Avanzate; Napoli Italy
| | - Antonella Gambale
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche; Università degli Studi di Napoli Federico II; Napoli Italy
- CEINGE Biotecnologie Avanzate; Napoli Italy
| | - Roberta Marra
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche; Università degli Studi di Napoli Federico II; Napoli Italy
- CEINGE Biotecnologie Avanzate; Napoli Italy
| | - Barbara Eleni Rosato
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche; Università degli Studi di Napoli Federico II; Napoli Italy
- CEINGE Biotecnologie Avanzate; Napoli Italy
| | - Paola Caforio
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche; Università degli Studi di Napoli Federico II; Napoli Italy
- CEINGE Biotecnologie Avanzate; Napoli Italy
| | - Valeria Pinto
- Centro della Microcitemia e Anemie Congenite, Ospedale Galliera; Genova Italy
| | | | - Kottayam Radhakrishnan
- Paediatric Haematology/Oncology, Children's Cancer Centre, Monash Children's Hospital; Melbourne Victoria 3168 Australia
- Department of Haematology; Monash Medical Centre; Melbourne Victoria 3168 Australia
| | - Sule Unal
- Division of Pediatric Hematology; Hacettepe University; Ankara Turkey
| | - Giovanna Tomaiuolo
- Dipartimento di Ingegneria Chimica; dei Materiali e della Prod. Indus., Federico II; Napoli Italy
| | - Gian Luca Forni
- Centro della Microcitemia e Anemie Congenite, Ospedale Galliera; Genova Italy
| | - Achille Iolascon
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche; Università degli Studi di Napoli Federico II; Napoli Italy
- CEINGE Biotecnologie Avanzate; Napoli Italy
| |
Collapse
|
8
|
Gómez-Manzo S, Marcial-Quino J, Vanoye-Carlo A, Serrano-Posada H, Ortega-Cuellar D, González-Valdez A, Castillo-Rodríguez RA, Hernández-Ochoa B, Sierra-Palacios E, Rodríguez-Bustamante E, Arreguin-Espinosa R. Glucose-6-Phosphate Dehydrogenase: Update and Analysis of New Mutations around the World. Int J Mol Sci 2016; 17:ijms17122069. [PMID: 27941691 PMCID: PMC5187869 DOI: 10.3390/ijms17122069] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 12/03/2016] [Accepted: 12/05/2016] [Indexed: 01/27/2023] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) is a key regulatory enzyme in the pentose phosphate pathway which produces nicotinamide adenine dinucleotide phosphate (NADPH) to maintain an adequate reducing environment in the cells and is especially important in red blood cells (RBC). Given its central role in the regulation of redox state, it is understandable that mutations in the gene encoding G6PD can cause deficiency of the protein activity leading to clinical manifestations such as neonatal jaundice and acute hemolytic anemia. Recently, an extensive review has been published about variants in the g6pd gene; recognizing 186 mutations. In this work, we review the state of the art in G6PD deficiency, describing 217 mutations in the g6pd gene; we also compile information about 31 new mutations, 16 that were not recognized and 15 more that have recently been reported. In order to get a better picture of the effects of new described mutations in g6pd gene, we locate the point mutations in the solved three-dimensional structure of the human G6PD protein. We found that class I mutations have the most deleterious effects on the structure and stability of the protein.
Collapse
Affiliation(s)
- Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud 04530, Mexico.
| | - Jaime Marcial-Quino
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Instituto Nacional de Pediatría, Secretaría de Salud 04530, Mexico.
| | - America Vanoye-Carlo
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secretaría de Salud 04530, Mexico.
| | - Hugo Serrano-Posada
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Laboratorio de Bioingeniería, Universidad de Colima, Colima 28400, Mexico.
| | - Daniel Ortega-Cuellar
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, Secretaría de Salud 04530, Mexico.
| | - Abigail González-Valdez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
| | | | - Beatriz Hernández-Ochoa
- Laboratorio de Inmunoquímica, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico.
| | - Edgar Sierra-Palacios
- Colegio de Ciencias y Humanidades, Plantel Casa Libertad, Universidad Autónoma de la Ciudad de México, Mexico City 09620, Mexico.
| | - Eduardo Rodríguez-Bustamante
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Mexico City 04510, Mexico.
| | - Roberto Arreguin-Espinosa
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Mexico City 04510, Mexico.
| |
Collapse
|
9
|
Characterization of G6PD genotypes and phenotypes on the northwestern Thailand-Myanmar border. PLoS One 2014; 9:e116063. [PMID: 25536053 PMCID: PMC4275285 DOI: 10.1371/journal.pone.0116063] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/02/2014] [Indexed: 11/19/2022] Open
Abstract
Mutations in the glucose-6-phosphate dehydrogenase (G6PD) gene result in red blood cells with increased susceptibility to oxidative damage. Significant haemolysis can be caused by primaquine and other 8-aminoquinoline antimalarials used for the radical treatment of Plasmodium vivax malaria. The distribution and phenotypes of mutations causing G6PD deficiency in the male population of migrants and refugees in a malaria endemic region on the Thailand-Myanmar border were characterized. Blood samples for G6PD fluorescent spot test (FST), G6PD genotyping, and malaria testing were taken from 504 unrelated males of Karen and Burman ethnicities presenting to the outpatient clinics. The overall frequency of G6PD deficiency by the FST was 13.7%. Among the deficient subjects, almost 90% had the Mahidol variant (487G>A) genotype. The remaining subjects had Chinese-4 (392G>T), Viangchan (871G>A), Açores (595A>G), Seattle (844G>C) and Mediterranean (563C>T) variants. Quantification of G6PD activity was performed using a modification of the standard spectrophotometric assay on a subset of 24 samples with Mahidol, Viangchan, Seattle and Chinese-4 mutations; all samples showed a residual enzymatic activity below 10% of normal and were diagnosed correctly by the FST. Further studies are needed to characterise the haemolytic risk of using 8-aminoquinolines in patients with these genotypes.
Collapse
|
10
|
Carter TE, Maloy H, von Fricken M, St Victor Y, Romain JR, Okech BA, Mulligan CJ. Glucose-6-phosphate dehydrogenase deficiency A- variant in febrile patients in Haiti. Am J Trop Med Hyg 2014; 91:412-4. [PMID: 24891465 DOI: 10.4269/ajtmh.14-0053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Haiti is one of two remaining malaria-endemic countries in the Caribbean. To decrease malaria transmission in Haiti, primaquine was recently added to the malaria treatment public health policy. One limitation of primaquine is that, at certain doses, primaquine can cause hemolytic anemia in individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency (G6PDd). In this study, we genotyped two mutations (A376G and G202A), which confer the most common G6PDd variant in West African populations, G6PDd A-. We estimated the frequency of G6PDd A- in a sample of febrile patients enrolled in an on-going malaria study who represent a potential target population for a primaquine mass drug administration. We found that 33 of 168 individuals carried the G6PDd A- allele (includes A- hemizygous males, A- homozygous or heterozygous females) and could experience toxicity if treated with primaquine. These data inform discussions on safe and effective primaquine dosing and future malaria elimination strategies for Haiti.
Collapse
Affiliation(s)
- Tamar E Carter
- Genetics and Genomics Program, University of Florida, Gainesville, Florida; Department of Anthropology, University of Florida, Gainesville, Florida; Genetics Institute, University of Florida, Gainesville, Florida; Department of Medicinal Chemistry, University of Florida, Gainesville, Florida; Emerging Pathogens Institute, University of Florida, Gainesville, Florida; Department of Environmental and Global Health, University of Florida, Gainesville, Florida; Hospital Saint Croix, Leogane, Haiti; Blanchard Clinic, Terre Noire, Haiti
| | - Halley Maloy
- Genetics and Genomics Program, University of Florida, Gainesville, Florida; Department of Anthropology, University of Florida, Gainesville, Florida; Genetics Institute, University of Florida, Gainesville, Florida; Department of Medicinal Chemistry, University of Florida, Gainesville, Florida; Emerging Pathogens Institute, University of Florida, Gainesville, Florida; Department of Environmental and Global Health, University of Florida, Gainesville, Florida; Hospital Saint Croix, Leogane, Haiti; Blanchard Clinic, Terre Noire, Haiti
| | - Michael von Fricken
- Genetics and Genomics Program, University of Florida, Gainesville, Florida; Department of Anthropology, University of Florida, Gainesville, Florida; Genetics Institute, University of Florida, Gainesville, Florida; Department of Medicinal Chemistry, University of Florida, Gainesville, Florida; Emerging Pathogens Institute, University of Florida, Gainesville, Florida; Department of Environmental and Global Health, University of Florida, Gainesville, Florida; Hospital Saint Croix, Leogane, Haiti; Blanchard Clinic, Terre Noire, Haiti
| | - Yves St Victor
- Genetics and Genomics Program, University of Florida, Gainesville, Florida; Department of Anthropology, University of Florida, Gainesville, Florida; Genetics Institute, University of Florida, Gainesville, Florida; Department of Medicinal Chemistry, University of Florida, Gainesville, Florida; Emerging Pathogens Institute, University of Florida, Gainesville, Florida; Department of Environmental and Global Health, University of Florida, Gainesville, Florida; Hospital Saint Croix, Leogane, Haiti; Blanchard Clinic, Terre Noire, Haiti
| | - Jean R Romain
- Genetics and Genomics Program, University of Florida, Gainesville, Florida; Department of Anthropology, University of Florida, Gainesville, Florida; Genetics Institute, University of Florida, Gainesville, Florida; Department of Medicinal Chemistry, University of Florida, Gainesville, Florida; Emerging Pathogens Institute, University of Florida, Gainesville, Florida; Department of Environmental and Global Health, University of Florida, Gainesville, Florida; Hospital Saint Croix, Leogane, Haiti; Blanchard Clinic, Terre Noire, Haiti
| | - Bernard A Okech
- Genetics and Genomics Program, University of Florida, Gainesville, Florida; Department of Anthropology, University of Florida, Gainesville, Florida; Genetics Institute, University of Florida, Gainesville, Florida; Department of Medicinal Chemistry, University of Florida, Gainesville, Florida; Emerging Pathogens Institute, University of Florida, Gainesville, Florida; Department of Environmental and Global Health, University of Florida, Gainesville, Florida; Hospital Saint Croix, Leogane, Haiti; Blanchard Clinic, Terre Noire, Haiti
| | - Connie J Mulligan
- Genetics and Genomics Program, University of Florida, Gainesville, Florida; Department of Anthropology, University of Florida, Gainesville, Florida; Genetics Institute, University of Florida, Gainesville, Florida; Department of Medicinal Chemistry, University of Florida, Gainesville, Florida; Emerging Pathogens Institute, University of Florida, Gainesville, Florida; Department of Environmental and Global Health, University of Florida, Gainesville, Florida; Hospital Saint Croix, Leogane, Haiti; Blanchard Clinic, Terre Noire, Haiti
| |
Collapse
|
11
|
|
12
|
Van Malderen C, Van Geertruyden JP, Machevo S, González R, Bassat Q, Talisuna A, Yeka A, Nabasumba C, Piola P, Daniel A, Turyakira E, Forret P, Van Overmeir C, Van Loen H, Robert A, D’ Alessandro U. Glucose-6-phosphate dehydrogenase deficiency, chlorproguanil-dapsone with artesunate and post-treatment haemolysis in African children treated for uncomplicated malaria. Malar J 2012; 11:139. [PMID: 22546009 PMCID: PMC3393623 DOI: 10.1186/1475-2875-11-139] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 04/30/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria is a leading cause of mortality, particularly in sub-Saharan African children. Prompt and efficacious treatment is important as patients may progress within a few hours to severe and possibly fatal disease. Chlorproguanil-dapsone-artesunate (CDA) was a promising artemisinin-based combination therapy (ACT), but its development was prematurely stopped because of safety concerns secondary to its associated risk of haemolytic anaemia in glucose-6-phosphate dehydrogenase (G6PD)-deficient individuals. The objective of the study was to assess whether CDA treatment and G6PD deficiency are risk factors for a post-treatment haemoglobin drop in African children<5 years of age with uncomplicated malaria. METHODS This case-control study was performed in the context of a larger multicentre randomized clinical trial comparing safety and efficacy of four different ACT in children with uncomplicated malaria. Children, who after treatment experienced a haemoglobin drop≥2 g/dl (cases) within the first four days (days 0, 1, 2, and 3), were compared with those without an Hb drop (controls). Cases and controls were matched for study site, sex, age and baseline haemoglobin measurements. Data were analysed using a conditional logistic regression model. RESULTS G6PD deficiency prevalence, homo- or hemizygous, was 8.5% (10/117) in cases and 6.8% (16/234) in controls (p=0.56). The risk of a Hb drop≥2 g/dl was not associated with either G6PD deficiency (adjusted odds ratio (AOR): 0.81; p=0.76) or CDA treatment (AOR: 1.28; p=0.37) alone. However, patients having both risk factors tended to have higher odds (AOR: 11.13; p=0.25) of experiencing a Hb drop≥2 g/dl within the first four days after treatment, however this finding was not statistically significant, mainly because G6PD deficient patients treated with CDA were very few. In non-G6PD deficient individuals, the proportion of cases was similar between treatment groups while in G6PD-deficient individuals, haemolytic anaemia occurred more frequently in children treated with CDA (56%) than in those treated with other ACT (29%), though the difference was not significant (p=0.49). CONCLUSION The use of CDA for treating uncomplicated malaria may increase the risk of haemolytic anaemia in G6PD-deficient children.
Collapse
Affiliation(s)
- Carine Van Malderen
- Faculté de pharmacie et des sciences biomédicales, Université catholique de Louvain, Brussels, Belgium
- Institute of Tropical Medicine, Antwerp, Belgium
| | | | - Sonia Machevo
- Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique
| | - Raquel González
- Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique
- Barcelona Centre for International Health Research (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Quique Bassat
- Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique
- Barcelona Centre for International Health Research (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Ambrose Talisuna
- Department of Epidemiology and Biostatistics, Makerere University School of Public Health, P.O Box 7072, Kampala, Uganda
- Malaria Public Health and Epidemiology Group (MPHEG), University of Oxford-KEMRI-Wellcome Trust Research Program, Nairobi, Kenya
| | - Adoke Yeka
- Department of Epidemiology and Biostatistics, Makerere University School of Public Health, P.O Box 7072, Kampala, Uganda
| | | | | | | | | | | | | | | | - Annie Robert
- Université catholique de Louvain. Brussels Health Sector – Institut de recherche expérimentale et clinique Pôle, Epidémiologie et biostatistique B1.30.13, Brussels, Belgium
| | | |
Collapse
|
13
|
Jalloh A, Jalloh M, Matsuoka H. T-cell epitope polymorphisms of the Plasmodium falciparum circumsporozoite protein among field isolates from Sierra Leone: age-dependent haplotype distribution? Malar J 2009; 8:120. [PMID: 19500348 PMCID: PMC2698914 DOI: 10.1186/1475-2875-8-120] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Accepted: 06/05/2009] [Indexed: 11/23/2022] Open
Abstract
Background In the context of the development of a successful malaria vaccine, understanding the polymorphisms exhibited by malaria antigens in natural parasite populations is crucial for proper vaccine design. Recent observations have indicated that sequence polymorphisms in the C-terminal T-cell epitopes of the Plasmodium falciparum circumsporozoite protein (Pfcsp) are rather low and apparently stable in low endemic areas. This study sought to assess the pattern in a malaria endemic setting in Africa, using samples from Freetown, Sierra Leone. Methods Filter-paper blood samples were collected from subjects at a teaching hospital in Freetown during September–October 2006 and in April–May 2007. The C-terminal portion of the Pfcsp gene spanning the Th2R and Th3R epitopes was amplified and directly sequenced; sequences were analysed with subject parameters and polymorphism patterns in Freetown were compared to that in other malaria endemic areas. Results and Discussion Overall, the genetic diversity in Freetown was high. From a total of 99 sequences, 42 haplotypes were identified with at least three accounting for 44.4% (44/99): the 3D7-type (19.2%), a novel type, P-01 (17.2%), and E12 (8.1%). Interestingly, all were unique to the African sub-region and there appeared to be predilection for certain haplotypes to distribute in certain age-groups: the 3D7 type was detected mainly in hospitalized children under 15 years of age, while the P-01 type was common in adult antenatal females (Pearson Chi-square = 48.750, degrees of freedom = 34, P = 0.049). In contrast, the single-haplotype predominance (proportion > 50%) pattern previously identified in Asia was not detected in Freetown. Conclusion Haplotype distribution of the T-cell epitopes of Pfcsp in Freetown appeared to vary with age in the study population, and the polymorphism patterns were similar to that observed in neighbouring Gambia, but differed significantly at the sequence level from that observed in Asia. The findings further emphasize the role of local factors in generating polymorphisms in the T-cell epitopes of the P. falciparum circumsporozoite protein.
Collapse
Affiliation(s)
- Amadu Jalloh
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke, Tochigi, Japan.
| | | | | |
Collapse
|