1
|
Abstract
Mammalian prion diseases are a group of neurodegenerative conditions caused by infection of the central nervous system with proteinaceous agents called prions, including sporadic, variant, and iatrogenic Creutzfeldt-Jakob disease; kuru; inherited prion disease; sheep scrapie; bovine spongiform encephalopathy; and chronic wasting disease. Prions are composed of misfolded and multimeric forms of the normal cellular prion protein (PrP). Prion diseases require host expression of the prion protein gene (PRNP) and a range of other cellular functions to support their propagation and toxicity. Inherited forms of prion disease are caused by mutation of PRNP, whereas acquired and sporadically occurring mammalian prion diseases are controlled by powerful genetic risk and modifying factors. Whereas some PrP amino acid variants cause the disease, others confer protection, dramatically altered incubation times, or changes in the clinical phenotype. Multiple mechanisms, including interference with homotypic protein interactions and the selection of the permissible prion strains in a host, play a role. Several non-PRNP factors have now been uncovered that provide insights into pathways of disease susceptibility or neurotoxicity.
Collapse
Affiliation(s)
- Simon Mead
- Medical Research Council Prion Unit at UCL, Institute of Prion Diseases, University College London, London W1W 7FF, United Kingdom;
| | - Sarah Lloyd
- Medical Research Council Prion Unit at UCL, Institute of Prion Diseases, University College London, London W1W 7FF, United Kingdom;
| | - John Collinge
- Medical Research Council Prion Unit at UCL, Institute of Prion Diseases, University College London, London W1W 7FF, United Kingdom;
| |
Collapse
|
2
|
Zhao Y, Huang J, Liu T, He S, Shang C, Guo L, Du Q, Yao S. Overexpression of long non-coding RNA RP11-396F22.1 correlates poor prognosis of patients with early-stage cervical cancer. Am J Transl Res 2018; 10:684-695. [PMID: 29636859 PMCID: PMC5883110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/16/2018] [Indexed: 06/08/2023]
Abstract
OBJECTIVE The expression level and clinical significances of long non-coding RNAs (LncRNAs) are presently unknown in the early-stage cervical cancer (CC). This study was aimed to explore the expression signatures of lncRNAs between normal and cervix carcinoma tissues and the prognostic value of LncRNAs in early-stage CC patients. MATERIALS AND METHODS The patients diagnosed with FIGO stage I-IIb CC of the First Affiliated Hospital of Sun Yat-sen University between January 1st 2006 and December 31st 2009 were retrospectively reviewed. Molecular microarray was conducted to identify differentially expression profiles of LncRNAs. In situ hybridization was applied for detection of candidate lncRNAs in cervical tissues. RESULTS A total of 2574 upregulated lncRNAs and 3270 downregulated lncRNAs with significantly differential expression (≥2.0-fold) were identified. Among the differentially expressed lncRNAs, RP11-396F22.1 expression was one of the most significantly overexpressed in the CC tissues compared to nomal cervical tissues (P<0.001). In situ hybridization confirmed RP11-396F22.1 expression was highly expressed in cancerous tissues. The results of Scratch and Transwell test showed that the migration ability decreased remarkably in transfected group (P<0.001). Moreover, the coding gene cpne8 was significantly upregulated by RP11-396F22.1 knockdown (P=0.035). CONCLUSIONS These findings demonstrate that LncRNA RP11-396F22.1 might be a potent biomarker for CC progression.
Collapse
Affiliation(s)
- Yunhe Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen UniversityZhongshan Second Road 58, Guangzhou 510080, Guangdong, P. R. China
| | - Jiaming Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen UniversityZhongshan Second Road 58, Guangzhou 510080, Guangdong, P. R. China
| | - Tianyu Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen UniversityZhongshan Second Road 58, Guangzhou 510080, Guangdong, P. R. China
| | - Shanyang He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen UniversityZhongshan Second Road 58, Guangzhou 510080, Guangdong, P. R. China
| | - Chunliang Shang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen UniversityZhongshan Second Road 58, Guangzhou 510080, Guangdong, P. R. China
| | - Luyan Guo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen UniversityZhongshan Second Road 58, Guangzhou 510080, Guangdong, P. R. China
| | - Qiqiao Du
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen UniversityZhongshan Second Road 58, Guangzhou 510080, Guangdong, P. R. China
| | - Shuzhong Yao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen UniversityZhongshan Second Road 58, Guangzhou 510080, Guangdong, P. R. China
| |
Collapse
|
3
|
Abstract
Prion diseases are unique neurodegenerative pathologies that can occur with sporadic, genetic, and acquired etiologies. Human and animal prion diseases can be recapitulated in laboratory animals with good reproducibility providing highly controlled models for studying molecular mechanisms of neurodegeneration. In this chapter the overall area of omics research in prion diseases is described. The term omics includes all fields of studies that employ a comprehensive, unbiased, and high-throughput approach to areas of research such as functional genomics, transcriptomics, and proteomics. These kind of approaches can be extremely helpful in identifying disease susceptibility factors and pathways that are dysregulated upon the onset and the progression of the disease. Herein, the most important research about the various forms of prion pathologies in human and in models of prion diseases in animals is presented and discussed.
Collapse
|
4
|
Buchner DA, Nadeau JH. Contrasting genetic architectures in different mouse reference populations used for studying complex traits. Genome Res 2015; 25:775-91. [PMID: 25953951 PMCID: PMC4448675 DOI: 10.1101/gr.187450.114] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/31/2015] [Indexed: 01/14/2023]
Abstract
Quantitative trait loci (QTLs) are being used to study genetic networks, protein functions, and systems properties that underlie phenotypic variation and disease risk in humans, model organisms, agricultural species, and natural populations. The challenges are many, beginning with the seemingly simple tasks of mapping QTLs and identifying their underlying genetic determinants. Various specialized resources have been developed to study complex traits in many model organisms. In the mouse, remarkably different pictures of genetic architectures are emerging. Chromosome Substitution Strains (CSSs) reveal many QTLs, large phenotypic effects, pervasive epistasis, and readily identified genetic variants. In contrast, other resources as well as genome-wide association studies (GWAS) in humans and other species reveal genetic architectures dominated with a relatively modest number of QTLs that have small individual and combined phenotypic effects. These contrasting architectures are the result of intrinsic differences in the study designs underlying different resources. The CSSs examine context-dependent phenotypic effects independently among individual genotypes, whereas with GWAS and other mouse resources, the average effect of each QTL is assessed among many individuals with heterogeneous genetic backgrounds. We argue that variation of genetic architectures among individuals is as important as population averages. Each of these important resources has particular merits and specific applications for these individual and population perspectives. Collectively, these resources together with high-throughput genotyping, sequencing and genetic engineering technologies, and information repositories highlight the power of the mouse for genetic, functional, and systems studies of complex traits and disease models.
Collapse
Affiliation(s)
- David A Buchner
- Department of Genetics and Genome Sciences, Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Joseph H Nadeau
- Pacific Northwest Diabetes Research Institute, Seattle, Washington 98122, USA
| |
Collapse
|
5
|
Lukic A, Uphill J, Brown CA, Beck J, Poulter M, Campbell T, Adamson G, Hummerich H, Whitfield J, Ponto C, Zerr I, Lloyd SE, Collinge J, Mead S. Rare structural genetic variation in human prion diseases. Neurobiol Aging 2015; 36:2004.e1-8. [PMID: 25726360 DOI: 10.1016/j.neurobiolaging.2015.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/22/2014] [Accepted: 01/13/2015] [Indexed: 10/24/2022]
Abstract
Prion diseases are a diverse group of neurodegenerative conditions, caused by the templated misfolding of prion protein. Aside from the strong genetic risk conferred by multiple variants of the prion protein gene (PRNP), several other variants have been suggested to confer risk in the most common type, sporadic Creutzfeldt-Jakob disease (sCJD) or in the acquired prion diseases. Large and rare copy number variants (CNVs) are known to confer risk in several related disorders including Alzheimer's disease (at APP), schizophrenia, epilepsy, mental retardation, and autism. Here, we report the first genome-wide analysis for CNV-associated risk using data derived from a recent international collaborative association study in sCJD (n = 1147 after quality control) and publicly available controls (n = 5427). We also investigated UK patients with variant Creutzfeldt-Jakob disease (n = 114) and elderly women from the Eastern Highlands of Papua New Guinea who proved highly resistant to the epidemic prion disease kuru, who were compared with healthy young Fore population controls (n = 395). There were no statistically significant alterations in the burden of CNVs >100, >500, or >1000 kb, duplications, or deletions in any disease group or geographic region. After correction for multiple testing, no statistically significant associations were found. A UK blood service control sample showed a duplication CNV that overlapped PRNP, but these were not found in prion disease. Heterozygous deletions of a 3' region of the PARK2 gene were found in 3 sCJD patients and no controls (p = 0.001, uncorrected). A cell-based prion infection assay did not provide supportive evidence for a role for PARK2 in prion disease susceptibility. These data are consistent with a modest impact of CNVs on risk of late-onset neurologic conditions and suggest that, unlike APP, PRNP duplication is not a causal high-risk mutation.
Collapse
Affiliation(s)
- Ana Lukic
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - James Uphill
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Craig A Brown
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - John Beck
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Mark Poulter
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Tracy Campbell
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Gary Adamson
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Holger Hummerich
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Jerome Whitfield
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Claudia Ponto
- Department of Neurology, Georg-August University Göttingen, Göttingen, Germany; German Center for Neurodegenrative Diseases (DZNE), Gottingen, Germany
| | - Inga Zerr
- Department of Neurology, Georg-August University Göttingen, Göttingen, Germany; German Center for Neurodegenrative Diseases (DZNE), Gottingen, Germany
| | - Sarah E Lloyd
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - John Collinge
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Simon Mead
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.
| |
Collapse
|
6
|
Brown CA, Schmidt C, Poulter M, Hummerich H, Klöhn PC, Jat P, Mead S, Collinge J, Lloyd SE. In vitro screen of prion disease susceptibility genes using the scrapie cell assay. Hum Mol Genet 2014; 23:5102-8. [PMID: 24833721 PMCID: PMC4159154 DOI: 10.1093/hmg/ddu233] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 05/10/2014] [Indexed: 11/29/2022] Open
Abstract
Prion diseases (transmissible spongiform encephalopathies) are fatal neurodegenerative diseases, including Creutzfeldt-Jakob disease in humans, scrapie in sheep and bovine spongiform encephalopathy in cattle. While genome-wide association studies in human and quantitative trait loci mapping in mice have provided evidence for multiple susceptibility genes, few of these have been confirmed functionally. Phenotyping mouse models is generally the method of choice. However, this is not a feasible option where many novel genes, without pre-existing models, would need to be tested. We have therefore developed and applied an in-vitro screen to triage and prioritize candidate modifier genes for more detailed future studies which is faster, far more cost effective and ethical relative to mouse bioassay models. An in vitro prion bioassay, the scrapie cell assay, uses a neuroblastoma-derived cell line (PK1) that is susceptible to RML prions and able to propagate prions at high levels. In this study, we have generated stable gene silencing and/or overexpressing PK1-derived cell lines to test whether perturbation of 14 candidate genes affects prion susceptibility. While no consistent differences were determined for seven genes, highly significant changes were detected for Zbtb38, Sorcs1, Stmn2, Hspa13, Fkbp9, Actr10 and Plg, suggesting that they play key roles in the fundamental processes of prion propagation or clearance. Many neurodegenerative diseases involve the accumulation of misfolded protein aggregates and 'prion-like' seeding and spread has been implicated in their pathogenesis. It is therefore expected that some of these prion-modifier genes may be of wider relevance in neurodegeneration.
Collapse
Affiliation(s)
- Craig A Brown
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Christian Schmidt
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Mark Poulter
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Holger Hummerich
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Peter-C Klöhn
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Parmjit Jat
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Simon Mead
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - John Collinge
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Sarah E Lloyd
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
7
|
Reinhardt P, Schmid B, Burbulla LF, Schöndorf DC, Wagner L, Glatza M, Höing S, Hargus G, Heck SA, Dhingra A, Wu G, Müller S, Brockmann K, Kluba T, Maisel M, Krüger R, Berg D, Tsytsyura Y, Thiel CS, Psathaki OE, Klingauf J, Kuhlmann T, Klewin M, Müller H, Gasser T, Schöler HR, Sterneckert J. Genetic correction of a LRRK2 mutation in human iPSCs links parkinsonian neurodegeneration to ERK-dependent changes in gene expression. Cell Stem Cell 2013; 12:354-67. [PMID: 23472874 DOI: 10.1016/j.stem.2013.01.008] [Citation(s) in RCA: 397] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 12/06/2012] [Accepted: 01/11/2013] [Indexed: 02/07/2023]
Abstract
The LRRK2 mutation G2019S is the most common genetic cause of Parkinson's disease (PD). To better understand the link between mutant LRRK2 and PD pathology, we derived induced pluripotent stem cells from PD patients harboring LRRK2 G2019S and then specifically corrected the mutant LRRK2 allele. We demonstrate that gene correction resulted in phenotypic rescue in differentiated neurons and uncovered expression changes associated with LRRK2 G2019S. We found that LRRK2 G2019S induced dysregulation of CPNE8, MAP7, UHRF2, ANXA1, and CADPS2. Knockdown experiments demonstrated that four of these genes contribute to dopaminergic neurodegeneration. LRRK2 G2019S induced increased extracellular-signal-regulated kinase 1/2 (ERK) phosphorylation. Transcriptional dysregulation of CADPS2, CPNE8, and UHRF2 was dependent on ERK activity. We show that multiple PD-associated phenotypes were ameliorated by inhibition of ERK. Therefore, our results provide mechanistic insight into the pathogenesis induced by mutant LRRK2 and pointers for the development of potential new therapeutics.
Collapse
Affiliation(s)
- Peter Reinhardt
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Lloyd SE, Mead S, Collinge J. Genetics of prion diseases. Curr Opin Genet Dev 2013; 23:345-51. [PMID: 23518043 PMCID: PMC3705206 DOI: 10.1016/j.gde.2013.02.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 02/18/2013] [Accepted: 02/18/2013] [Indexed: 01/08/2023]
Abstract
Prion diseases are transmissible, fatal neurodegenerative diseases that include scrapie and bovine spongiform encephalopathy (BSE) in animals and Creutzfeldt-Jakob disease (CJD) in human. The prion protein gene (PRNP) is the major genetic determinant of susceptibility, however, several studies now suggest that other genes are also important. Two recent genome wide association studies in human have identified four new loci of interest: ZBTB38-RASA2 in UK CJD cases and MTMR7 and NPAS2 in variant CJD. Complementary studies in mouse have used complex crosses to identify new modifiers such as Cpne8 and provided supporting evidence for previously implicated genes (Rarb and Stmn2). Expression profiling has identified new candidates, including Hspa13, which reduces incubation time in a transgenic model.
Collapse
Affiliation(s)
- Sarah E Lloyd
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, London, WC1N 3BG, UK
| | | | | |
Collapse
|
9
|
Shaham O, Gueta K, Mor E, Oren-Giladi P, Grinberg D, Xie Q, Cvekl A, Shomron N, Davis N, Keydar-Prizant M, Raviv S, Pasmanik-Chor M, Bell RE, Levy C, Avellino R, Banfi S, Conte I, Ashery-Padan R. Pax6 regulates gene expression in the vertebrate lens through miR-204. PLoS Genet 2013; 9:e1003357. [PMID: 23516376 PMCID: PMC3597499 DOI: 10.1371/journal.pgen.1003357] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 01/17/2013] [Indexed: 12/22/2022] Open
Abstract
During development, tissue-specific transcription factors regulate both protein-coding and non-coding genes to control differentiation. Recent studies have established a dual role for the transcription factor Pax6 as both an activator and repressor of gene expression in the eye, central nervous system, and pancreas. However, the molecular mechanism underlying the inhibitory activity of Pax6 is not fully understood. Here, we reveal that Trpm3 and the intronic microRNA gene miR-204 are co-regulated by Pax6 during eye development. miR-204 is probably the best known microRNA to function as a negative modulator of gene expression during eye development in vertebrates. Analysis of genes altered in mouse Pax6 mutants during lens development revealed significant over-representation of miR-204 targets among the genes up-regulated in the Pax6 mutant lens. A number of new targets of miR-204 were revealed, among them Sox11, a member of the SoxC family of pro-neuronal transcription factors, and an important regulator of eye development. Expression of Trpm/miR-204 and a few of its targets are also Pax6-dependent in medaka fish eyes. Collectively, this study identifies a novel evolutionarily conserved mechanism by which Pax6 controls the down-regulation of multiple genes through direct up-regulation of miR-204. The transcription factor Pax6 is reiteratively employed in space and time for the establishment of progenitor pools and the differentiation of neuronal and non-neuronal lineages of the CNS, pancreas, and eye. Execution of these diverse developmental programs depends on simultaneous activation and repression of gene networks functioning downstream of Pax6. MicroRNAs function as inhibitors of gene expression. Many microRNA genes are transcribed through common promoters of host genes. In this study, using wide-scale analysis of changes in gene expression following Pax6 deletion in the lens, we discover that Pax6 regulates the gene Trpm3 and its hosted microRNA, miR-204. We then show that miR-204 suppresses several target genes in the lens, notably the neuronal gene Sox11. Lastly, by conducting parallel experiments in the medaka fish, we show that Pax6 control of miR-204 and its target genes is evolutionarily conserved between mammals and fish, stressing the biological importance of this pathway. Pax6 regulation of miR-204 explains part of the complex, divergent inhibitory activity of Pax6 in ocular progenitor cells, which is required to establish and maintain the identity and function of ocular tissues.
Collapse
Affiliation(s)
- Ohad Shaham
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Karen Gueta
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eyal Mor
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Pazit Oren-Giladi
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dina Grinberg
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Qing Xie
- Department of Genetics and Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Ales Cvekl
- Department of Genetics and Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Noam Shomron
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Noa Davis
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Maya Keydar-Prizant
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shaul Raviv
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Rachel E. Bell
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Carmit Levy
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Sandro Banfi
- Telethon Institute of Genetics and Medicine, Naples, Italy
- Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Ivan Conte
- Telethon Institute of Genetics and Medicine, Naples, Italy
- * E-mail: (IC); (RA-P)
| | - Ruth Ashery-Padan
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- * E-mail: (IC); (RA-P)
| |
Collapse
|
10
|
Sod1 deficiency reduces incubation time in mouse models of prion disease. PLoS One 2013; 8:e54454. [PMID: 23349894 PMCID: PMC3551847 DOI: 10.1371/journal.pone.0054454] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 12/11/2012] [Indexed: 11/19/2022] Open
Abstract
Prion infections, causing neurodegenerative conditions such as Creutzfeldt-Jakob disease and kuru in humans, scrapie in sheep and BSE in cattle are characterised by prolonged and variable incubation periods that are faithfully reproduced in mouse models. Incubation time is partly determined by genetic factors including polymorphisms in the prion protein gene. Quantitative trait loci studies in mice and human genome-wide association studies have confirmed that multiple genes are involved. Candidate gene approaches have also been used and identified App, Il1-r1 and Sod1 as affecting incubation times. In this study we looked for an association between App, Il1-r1 and Sod1 representative SNPs and prion disease incubation time in the Northport heterogeneous stock of mice inoculated with the Chandler/RML prion strain. No association was seen with App, however, significant associations were seen with Il1-r1 (P = 0.02) and Sod1 (P<0.0001) suggesting that polymorphisms at these loci contribute to the natural variation observed in incubation time. Furthermore, following challenge with Chandler/RML, ME7 and MRC2 prion strains, Sod1 deficient mice showed highly significant reductions in incubation time of 20, 13 and 24%, respectively. No differences were detected in Sod1 expression or activity. Our data confirm the protective role of endogenous Sod1 in prion disease.
Collapse
|
11
|
Akhtar S, Wenborn A, Brandner S, Collinge J, Lloyd SE. Sex effects in mouse prion disease incubation time. PLoS One 2011; 6:e28741. [PMID: 22174884 PMCID: PMC3236759 DOI: 10.1371/journal.pone.0028741] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 11/14/2011] [Indexed: 11/18/2022] Open
Abstract
Prion disease incubation time in mice is determined by many factors including PrP expression level, Prnp alleles, genetic background, prion strain and route of inoculation. Sex differences have been described in age of onset for vCJD and in disease duration for both vCJD and sporadic CJD and have also been shown in experimental models. The sex effects reported for mouse incubation times are often contradictory and detail only one strain of mice or prions, resulting in broad generalisations and a confusing picture. To clarify the effect of sex on prion disease incubation time in mice we have compared male and female transmission data from twelve different inbred lines of mice inoculated with at least two prion strains, representing both mouse-adapted scrapie and BSE. Our data show that sex can have a highly significant difference on incubation time. However, this is limited to particular mouse and prion strain combinations. No sex differences were seen in endogenous PrPC levels nor in the neuropathological markers of prion disease: PrPSc distribution, spongiosis, neuronal loss and gliosis. These data suggest that when comparing incubation times between experimental groups, such as testing the effects of modifier genes or therapeutics, single sex groups should be used.
Collapse
Affiliation(s)
- Shaheen Akhtar
- Medical Research Council Prion Unit and Department of Neurodegenerative Disease, University College London Institute of Neurology, London, United Kingdom
| | - Adam Wenborn
- Medical Research Council Prion Unit and Department of Neurodegenerative Disease, University College London Institute of Neurology, London, United Kingdom
| | - Sebastian Brandner
- Medical Research Council Prion Unit and Department of Neurodegenerative Disease, University College London Institute of Neurology, London, United Kingdom
| | - John Collinge
- Medical Research Council Prion Unit and Department of Neurodegenerative Disease, University College London Institute of Neurology, London, United Kingdom
| | - Sarah E. Lloyd
- Medical Research Council Prion Unit and Department of Neurodegenerative Disease, University College London Institute of Neurology, London, United Kingdom
- * E-mail:
| |
Collapse
|
12
|
Abstract
Over the last decade remarkable advances in genotyping and sequencing technology have resulted in hundreds of novel gene associations with disease. These have typically involved high frequency alleles in common diseases and with the advent of next generation sequencing, disease causing recessive mutations in rare inherited syndromes. Here we discuss the impact of these advances and other gene discovery methods in the prion diseases. Several quantitative trait loci in mouse have been mapped and their human counterparts analysed (HECTD2, CPNE8); other candidate genes regions have been chosen for functional reasons (SPRN, CTSD). Human genome wide association has been done in variant Creutzfeldt-Jakob disease (CJD) and are ongoing in larger collections of sporadic CJD with findings around, but not clearly beyond, the levels of statistical significance required in these studies (THRB-RARB, STMN2). Future work will include closer integration of animal and human genetic studies, larger and combined genome wide association, analysis of structural genetic variantion and next generation sequencing studies involving the entire coding exome or genome.
Collapse
Affiliation(s)
- Ana Lukic
- National Prion Clinic, UCLH NHS Trust, London, UK
| | | |
Collapse
|
13
|
Wadsworth JDF, Dalmau-Mena I, Joiner S, Linehan JM, O'Malley C, Powell C, Brandner S, Asante EA, Ironside JW, Hilton DA, Collinge J. Effect of fixation on brain and lymphoreticular vCJD prions and bioassay of key positive specimens from a retrospective vCJD prevalence study. J Pathol 2011; 223:511-8. [PMID: 21294124 DOI: 10.1002/path.2821] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 10/21/2010] [Accepted: 11/06/2010] [Indexed: 11/11/2022]
Abstract
Anonymous screening of lymphoreticular tissues removed during routine surgery has been applied to estimate the UK population prevalence of asymptomatic vCJD prion infection. The retrospective study of Hilton et al (J Pathol 2004; 203: 733-739) found accumulation of abnormal prion protein in three formalin-fixed appendix specimens. This led to an estimated UK prevalence of vCJD infection of ∼1 in 4000, which remains the key evidence supporting current risk reduction measures to reduce iatrogenic transmission of vCJD prions in the UK. Confirmatory testing of these positives has been hampered by the inability to perform immunoblotting of formalin-fixed tissue. Animal transmission studies offer the potential for 'gold standard' confirmatory testing but are limited by both transmission barrier effects and known effects of fixation on scrapie prion titre in experimental models. Here we report the effects of fixation on brain and lymphoreticular human vCJD prions and comparative bioassay of two of the three prevalence study formalin-fixed, paraffin-embedded (FFPE) appendix specimens using transgenic mice expressing human prion protein (PrP). While transgenic mice expressing human PrP 129M readily reported vCJD prion infection after inoculation with frozen vCJD brain or appendix, and also FFPE vCJD brain, no infectivity was detected in FFPE vCJD spleen. No prion transmission was observed from either of the FFPE appendix specimens. The absence of detectable infectivity in fixed, known positive vCJD lymphoreticular tissue precludes interpreting negative transmissions from vCJD prevalence study appendix specimens. In this context, the Hilton et al study should continue to inform risk assessment pending the outcome of larger-scale studies on discarded surgical tissues and autopsy samples.
Collapse
Affiliation(s)
- Jonathan D F Wadsworth
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Westaway D, Daude N, Wohlgemuth S, Harrison P. The PrP-Like Proteins Shadoo and Doppel. Top Curr Chem (Cham) 2011; 305:225-56. [DOI: 10.1007/128_2011_190] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
15
|
Abstract
Prion diseases or transmissible spongiform encephalopathies (TSEs) are neurodegenerative disorders of humans and animals for which there are no effective treatments or cure. They include Creutzfeldt-Jakob disease (CJD) in humans and sheep scrapie, bovine spongiform encephalopathy (BSE) and chronic wasting disease (CWD) in cervids. The prion protein (PrP) is central to the disease process. An abnormal form of PrP is generally considered to be the sole or principal component of the infectious agent and a multimeric isomer (PrP(Sc)) is deposited in affected brains. Inherited prion diseases are caused by over 30 mutations in the prion protein gene (PRNP) and common polymorphisms can have a considerable affect on susceptibility and phenotype. Susceptibility and incubation time are also partly determined by other (non-PRNP) genetic modifiers. Understanding how these other genes modify prion diseases may lead to insights into biological mechanisms. Several approaches including human genome wide association studies (GWAS), mouse mapping and differential expression studies are now revealing some of these genes which include RARB (retinoic acid receptor beta), the E3 ubiquitin ligase HECTD2 and SPRN (Shadoo, shadow of prion protein gene).
Collapse
Affiliation(s)
- Sarah Lloyd
- MRC Prion Unit and Department of Neurodegenerative Diseases, UCL Institute of Neurology, London, WC1N 3BG, UK
| | | | | |
Collapse
|
16
|
Grizenkova J, Akhtar S, Collinge J, Lloyd SE. The retinoic acid receptor beta (Rarb) region of Mmu14 is associated with prion disease incubation time in mouse. PLoS One 2010; 5:e15019. [PMID: 21151910 PMCID: PMC2997791 DOI: 10.1371/journal.pone.0015019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 10/10/2010] [Indexed: 11/18/2022] Open
Abstract
In neurodegenerative conditions such as Alzheimer's and prion disease it has been shown that host genetic background can have a significant effect on susceptibility. Indeed, human genome-wide association studies (GWAS) have implicated several candidate genes. Understanding such genetic susceptibility is relevant to risks of developing variant CJD (vCJD) in populations exposed to bovine spongiform encephalopathy (BSE) and understanding mechanisms of neurodegeneration. In mice, aspects of prion disease susceptibility can be modelled by examining the incubation period following experimental inoculation. Quantitative trait linkage studies have already identified multiple candidate genes; however, it is also possible to take an individual candidate gene approach. Rarb and Stmn2 were selected as candidates based on the known association with vCJD. Because of the increasing overlap described between prion and Alzheimer's diseases we also chose Clu, Picalm and Cr1, which were identified as part of Alzheimer's disease GWAS. Clusterin (Clu) was considered to be of particular interest as it has already been implicated in prion disease. Approximately 1,000 heterogeneous stock (HS) mice were inoculated intra-cerebrally with Chandler/RML prions and incubation times were recorded. Candidate genes were evaluated by sequencing the whole transcript including exon-intron boundaries and potential promoters in the parental lines of the HS mice. Representative SNPs were genotyped in the HS mice. No SNPs were identified in Cr1 and no statistical association with incubation time was seen for Clu (P = 0.96) and Picalm (P = 0.91). Significant associations were seen for both Stmn2 (P = 0.04) and Rarb (P = 0.0005), however, this was only highly significant for Rarb. This data provides significant further support for a role for the Rarb region of Mmu14 and Stmn2 in prion disease.
Collapse
Affiliation(s)
- Julia Grizenkova
- MRC Prion Unit and Department of Neurodegenerative Diseases, UCL Institute of Neurology, University College, London, United Kingdom
| | - Shaheen Akhtar
- MRC Prion Unit and Department of Neurodegenerative Diseases, UCL Institute of Neurology, University College, London, United Kingdom
| | - John Collinge
- MRC Prion Unit and Department of Neurodegenerative Diseases, UCL Institute of Neurology, University College, London, United Kingdom
| | - Sarah E. Lloyd
- MRC Prion Unit and Department of Neurodegenerative Diseases, UCL Institute of Neurology, University College, London, United Kingdom
| |
Collapse
|
17
|
Iyegbe CO, Abiola OO, Towlson C, Powell JF, Whatley SA. Evidence for varied aetiologies regulating the transmission of prion disease: implications for understanding the heritable basis of prion incubation times. PLoS One 2010; 5:e14186. [PMID: 21152031 PMCID: PMC2996284 DOI: 10.1371/journal.pone.0014186] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 08/12/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Transmissible Spongiform Encephalopathies (TSEs) are a group of progressive fatal neurodegenerative disorders, triggered by abnormal folding of the endogenous prion protein molecule. The encoding gene is a major biological factor influencing the length of the asymptomatic period after infection. It remains unclear the extent to which the variation between quantitative trait loci (QTLs) reported in mouse models is due to methodological differences between approaches or genuine differences between traits. With this in mind, our approach to identifying genetic factors has sought to extend the linkage mapping approach traditionally applied, to a series of additional traits, while minimising methodological variability between them. Our approach allows estimations of heritability to be derived, as well as predictions to be made about possible existence of genetic overlap between the various traits. METHODOLOGY/PRINCIPAL FINDINGS Our data indicate a surprising degree of heritability (up to 60%). Correlations between traits are also identified. A series of QTLs on chromosomes 1, 2, 3, 4, 6, 11 and 18 accompany our heritability estimates. However, only a locus on chromosome 11 has a general effect across all 4 models explored. CONCLUSIONS/SIGNIFICANCE We have achieved some success in detecting novel and pre-existing QTLs associated with incubation time. However, aside from the general effects described, the model-specific nature of the broader host genetic architecture has also been brought into clearer focus. This suggests that genetic overlap can only partially account for the general heritability of incubation time when factors, such as the nature of the TSE agent and the route of administration are considered. This point is highly relevant to vCJD (a potential threat to public health) where the route of primary importance is oral, while the QTLs being sought derive exclusively from studies of the ic route. Our results highlight the limitations of a single-model approach to QTL-mapping of TSEs.
Collapse
Affiliation(s)
- Conrad O Iyegbe
- Psychosis Centre, Institute of Psychiatry, King's College London, London, United Kingdom.
| | | | | | | | | |
Collapse
|