1
|
Higginson LA, Wang X, He K, Torstrick M, Kim M, Benayoun BA, MacLean A, Chanfreau GF, Morton DJ. The RNA exosome maintains cellular RNA homeostasis by controlling transcript abundance in the brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.30.620488. [PMID: 39554067 PMCID: PMC11565928 DOI: 10.1101/2024.10.30.620488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Intracellular ribonucleases (RNases) are essential in all aspects of RNA metabolism, including maintaining accurate RNA levels. Inherited mutations in genes encoding ubiquitous RNases are associated with human diseases, primarily affecting the nervous system. Recessive mutations in genes encoding an evolutionarily conserved RNase complex, the RNA exosome, lead to syndromic neurodevelopmental disorders characterized by progressive neurodegeneration, such as Pontocerebellar Hypoplasia Type 1b (PCH1b). We establish a CRISPR/Cas9-engineered Drosophila model of PCH1b to study cell-type-specific post-transcriptional regulatory functions of the nuclear RNA exosome complex within fly head tissue. Here, we report that pathogenic RNA exosome mutations alter activity of the complex, causing widespread dysregulation of brain-enriched cellular transcriptomes, including rRNA processing defects-resulting in tissue-specific, progressive neurodegenerative effects in flies. These findings provide a comprehensive understanding of RNA exosome function within a developed animal brain and underscore the critical role of post-transcriptional regulatory machinery in maintaining cellular RNA homeostasis within the brain.
Collapse
|
2
|
Chowdhury TA, Luy DA, Scapellato G, Farache D, Lee ASY, Quinn CC. Ortholog of autism candidate gene RBM27 regulates mitoribosomal assembly factor MALS-1 to protect against mitochondrial dysfunction and axon degeneration during neurodevelopment. PLoS Biol 2024; 22:e3002876. [PMID: 39480871 PMCID: PMC11556708 DOI: 10.1371/journal.pbio.3002876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/12/2024] [Accepted: 10/02/2024] [Indexed: 11/02/2024] Open
Abstract
Mitochondrial dysfunction is thought to be a key component of neurodevelopmental disorders such as autism, intellectual disability, and attention-deficit hyperactivity disorder (ADHD). However, little is known about the molecular mechanisms that protect against mitochondrial dysfunction during neurodevelopment. Here, we address this question through the investigation of rbm-26, the Caenorhabditis elegans ortholog of the RBM27 autism candidate gene, which encodes an RNA-binding protein whose role in neurons is unknown. We report that RBM-26 (RBM26/27) protects against axonal defects by negatively regulating expression of the MALS-1 (MALSU1) mitoribosomal assembly factor. Autism-associated missense variants in RBM-26 cause a sharp decrease in RBM-26 protein expression along with defects in axon overlap and axon degeneration that occurs during larval development. Using a biochemical screen, we identified the mRNA for the MALS-1 mitoribosomal assembly factor as a binding partner for RBM-26. Loss of RBM-26 function causes a dramatic overexpression of mals-1 mRNA and MALS-1 protein. Moreover, genetic analysis indicates that this overexpression of MALS-1 is responsible for the mitochondrial and axon degeneration defects in rbm-26 mutants. These observations reveal a mechanism that regulates expression of a mitoribosomal assembly factor to protect against axon degeneration during neurodevelopment.
Collapse
Affiliation(s)
- Tamjid A. Chowdhury
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - David A. Luy
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Garrett Scapellato
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Dorian Farache
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Amy S. Y. Lee
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Christopher C. Quinn
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
3
|
Chowdhury TA, Luy DA, Scapellato G, Farache D, Lee ASY, Quinn CC. Autism candidate gene rbm-26 ( RBM26/27) regulates MALS-1 to protect against mitochondrial dysfunction and axon degeneration during neurodevelopment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.12.562060. [PMID: 37873356 PMCID: PMC10592788 DOI: 10.1101/2023.10.12.562060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Mitochondrial dysfunction is thought to be a key component of neurodevelopmental disorders such as autism, intellectual disability, and ADHD. However, little is known about the molecular mechanisms that protect against mitochondrial dysfunction during neurodevelopment. Here, we address this question through the investigation of rbm-26, the C. elegans ortholog of the RBM27 autism candidate gene, which encodes an RNA-binding protein whose role in neurons is unknown. We report that RBM-26 (RBM26/27) protects against axonal defects by negatively regulating expression of the MALS-1 (MALSU1) mitoribosomal assembly factor. Autism-associated missense variants in RBM-26 cause a sharp decrease in RBM-26 protein expression along with defects in in axon overlap and axon degeneration that occurs during larval development. Using a biochemical screen, we identified the mRNA for the MALS-1 mitoribosomal assembly factor as a binding partner for RBM-26. Loss of RBM-26 function causes a dramatic overexpression of mals-1 mRNA and MALS-1 protein. Moreover, genetic analysis indicates that this overexpression of MALS-1 is responsible for the mitochondrial and axon degeneration defects in rbm-26 mutants. These observations reveal a mechanism that regulates expression of a mitoribosomal assembly factor to protect against axon degeneration during neurodevelopment.
Collapse
Affiliation(s)
- Tamjid A Chowdhury
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - David A Luy
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Garrett Scapellato
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Dorian Farache
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Amy SY Lee
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Christopher C Quinn
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| |
Collapse
|
4
|
Elsayed LEO, Eltazi IZ, Ahmed AE, Stevanin G. Insights into Clinical, Genetic, and Pathological Aspects of Hereditary Spastic Paraplegias: A Comprehensive Overview. Front Mol Biosci 2021; 8:690899. [PMID: 34901147 PMCID: PMC8662366 DOI: 10.3389/fmolb.2021.690899] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 10/19/2021] [Indexed: 12/31/2022] Open
Abstract
Hereditary spastic paraplegias (HSP) are a heterogeneous group of motor neurodegenerative disorders that have the core clinical presentation of pyramidal syndrome which starts typically in the lower limbs. They can present as pure or complex forms with all classical modes of monogenic inheritance reported. To date, there are more than 100 loci/88 spastic paraplegia genes (SPG) involved in the pathogenesis of HSP. New patterns of inheritance are being increasingly identified in this era of huge advances in genetic and functional studies. A wide range of clinical symptoms and signs are now reported to complicate HSP with increasing overall complexity of the clinical presentations considered as HSP. This is especially true with the emergence of multiple HSP phenotypes that are situated in the borderline zone with other neurogenetic disorders. The genetic diagnostic approaches and the utilized techniques leave a diagnostic gap of 25% in the best studies. In this review, we summarize the known types of HSP with special focus on those in which spasticity is the principal clinical phenotype ("SPGn" designation). We discuss their modes of inheritance, clinical phenotypes, underlying genetics, and molecular pathways, providing some observations about therapeutic opportunities gained from animal models and functional studies. This review may pave the way for more analytic approaches that take into consideration the overall picture of HSP. It will shed light on subtle associations that can explain the occurrence of the disease and allow a better understanding of its observed variations. This should help in the identification of future biomarkers, predictors of disease onset and progression, and treatments for both better functional outcomes and quality of life.
Collapse
Affiliation(s)
- Liena E. O. Elsayed
- Department of Basic Sciences, College of Medicine, Princess Nourah bint Abdulrahman University [PNU], Riyadh, Saudi Arabia
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | | | - Ammar E. Ahmed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Giovanni Stevanin
- Institut du Cerveau – Paris Brain Institute - ICM, Sorbonne Université, INSERM, CNRS, APHP, Paris, France
- CNRS, INCIA, Université de Bordeaux, Bordeaux, France
- Ecole Pratique des Hautes Etudes, EPHE, PSL Research University, Paris, France
| |
Collapse
|
5
|
Slavotinek A, Misceo D, Htun S, Mathisen L, Frengen E, Foreman M, Hurtig JE, Enyenihi L, Sterrett MC, Leung SW, Schneidman-Duhovny D, Estrada-Veras J, Duncan JL, Haaxma CA, Kamsteeg EJ, Xia V, Beleford D, Si Y, Douglas G, Treidene HE, van Hoof A, Fasken MB, Corbett AH. Biallelic variants in the RNA exosome gene EXOSC5 are associated with developmental delays, short stature, cerebellar hypoplasia and motor weakness. Hum Mol Genet 2021; 29:2218-2239. [PMID: 32504085 DOI: 10.1093/hmg/ddaa108] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/10/2020] [Accepted: 05/28/2020] [Indexed: 12/15/2022] Open
Abstract
The RNA exosome is an essential ribonuclease complex required for processing and/or degradation of both coding and non-coding RNAs. We identified five patients with biallelic variants in EXOSC5, which encodes a structural subunit of the RNA exosome. The clinical features of these patients include failure to thrive, short stature, feeding difficulties, developmental delays that affect motor skills, hypotonia and esotropia. Brain MRI revealed cerebellar hypoplasia and ventriculomegaly. While we ascertained five patients, three patients with distinct variants of EXOSC5 were studied in detail. The first patient had a deletion involving exons 5-6 of EXOSC5 and a missense variant, p.Thr114Ile, that were inherited in trans, the second patient was homozygous for p.Leu206His and the third patient had paternal isodisomy for chromosome 19 and was homozygous for p.Met148Thr. The additional two patients ascertained are siblings who had an early frameshift mutation in EXOSC5 and the p.Thr114Ile missense variant that were inherited in trans. We employed three complementary approaches to explore the requirement for EXOSC5 in brain development and assess consequences of pathogenic EXOSC5 variants. Loss of function for exosc5 in zebrafish results in shortened and curved tails/bodies, reduced eye/head size and edema. We modeled pathogenic EXOSC5 variants in both budding yeast and mammalian cells. Some of these variants cause defects in RNA exosome function as well as altered interactions with other RNA exosome subunits. These findings expand the number of genes encoding RNA exosome subunits linked to human disease while also suggesting that disease mechanism varies depending on the specific pathogenic variant.
Collapse
Affiliation(s)
- Anne Slavotinek
- Department of Pediatrics, University of California, San Francisco, CA 94143, USA
| | - Doriana Misceo
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo 0450, Norway
| | - Stephanie Htun
- Department of Pediatrics, University of California, San Francisco, CA 94143, USA
| | - Linda Mathisen
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo 0450, Norway
| | - Eirik Frengen
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo 0450, Norway
| | - Michelle Foreman
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center-Houston, Houston, TX 77030, USA
| | - Jennifer E Hurtig
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center-Houston, Houston, TX 77030, USA
| | - Liz Enyenihi
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | | | - Sara W Leung
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Dina Schneidman-Duhovny
- School of Computer Science and Engineering and the Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Juvianee Estrada-Veras
- Department of Pediatrics-Medical Genetics and Metabolism, Uniformed Services University/Walter Reed NMMC Bethesda, MD 20889, USA
| | - Jacque L Duncan
- Department of Ophthalmology, University of California, San Francisco, CA 94143, USA
| | - Charlotte A Haaxma
- Department of Pediatric Neurology, Amalia Children's Hospital and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6500 HB, The Netherlands
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6500 HB, The Netherlands
| | - Vivian Xia
- Department of Pediatrics, University of California, San Francisco, CA 94143, USA
| | - Daniah Beleford
- Department of Pediatrics, University of California, San Francisco, CA 94143, USA
| | - Yue Si
- GeneDx Inc., MD 20877, USA
| | | | - Hans Einar Treidene
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo 0450, Norway
| | - Ambro van Hoof
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center-Houston, Houston, TX 77030, USA
| | - Milo B Fasken
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Anita H Corbett
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
6
|
Nuovo S, Micalizzi A, Romaniello R, Arrigoni F, Ginevrino M, Casella A, Serpieri V, D'Arrigo S, Briguglio M, Salerno GG, Rossato S, Sartori S, Leuzzi V, Battini R, Ben-Zeev B, Graziano C, Mirabelli Badenier M, Brankovic V, Nardocci N, Spiegel R, Petković Ramadža D, Vento G, Marti I, Simonati A, Dipresa S, Freri E, Mazza T, Bassi MT, Bosco L, Travaglini L, Zanni G, Bertini ES, Vanacore N, Borgatti R, Valente EM. Refining the mutational spectrum and gene-phenotype correlates in pontocerebellar hypoplasia: results of a multicentric study. J Med Genet 2021; 59:399-409. [PMID: 34085948 DOI: 10.1136/jmedgenet-2020-107497] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/27/2021] [Accepted: 02/09/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Pontocerebellar hypoplasias (PCH) comprise a group of genetically heterogeneous disorders characterised by concurrent hypoplasia of the pons and the cerebellum and variable clinical and imaging features. The current classification includes 13 subtypes, with ~20 known causative genes. Attempts have been made to delineate the phenotypic spectrum associated to specific PCH genes, yet clinical and neuroradiological features are not consistent across studies, making it difficult to define gene-specific outcomes. METHODS We performed deep clinical and imaging phenotyping in 56 probands with a neuroradiological diagnosis of PCH, who underwent NGS-based panel sequencing of PCH genes and MLPA for CASK rearrangements. Next, we conducted a phenotype-based unsupervised hierarchical cluster analysis to investigate associations between genes and specific phenotypic clusters. RESULTS A genetic diagnosis was obtained in 43 probands (77%). The most common causative gene was CASK, which accounted for nearly half cases (45%) and was mutated in females and occasionally in males. The European founder mutation p.Ala307Ser in TSEN54 and pathogenic variants in EXOSC3 accounted for 18% and 9% of cases, respectively. VLDLR, TOE1 and RARS2 were mutated in single patients. We were able to confirm only few previously reported associations, including jitteriness and clonus with TSEN54 and lower motor neuron signs with EXOSC3. When considering multiple features simultaneously, a clear association with a phenotypic cluster only emerged for EXOSC3. CONCLUSION CASK represents the major PCH causative gene in Italy. Phenotypic variability associated with the most common genetic causes of PCH is wider than previously thought, with marked overlap between CASK and TSEN54-associated disorders.
Collapse
Affiliation(s)
- Sara Nuovo
- Department of Human Neuroscience, Sapienza University of Rome, Roma, Italy
| | - Alessia Micalizzi
- Laboratory of Medical Genetics, IRCCS Bambino Gesù Children's Hospital, Roma, Italy
| | - Romina Romaniello
- Neuropsychiatry and Neurorehabilitation Unit, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Lecco, Italy
| | - Filippo Arrigoni
- Neuroimaging Lab, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Lecco, Italy
| | - Monia Ginevrino
- Laboratory of Medical Genetics, IRCCS Bambino Gesù Children's Hospital, Roma, Italy.,Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
| | - Antonella Casella
- IRCCS Mondino Foundation, Pavia, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Stefano D'Arrigo
- Department of Developmental Neurology, Fondazione IRCCS, Istituto Neurologico Carlo Besta, Milano, Italy
| | - Marilena Briguglio
- Interdepartmental Program "Autism 0-90", "G. Martino" University Hospital of Messina, Messina, Italy
| | - Grazia Gabriella Salerno
- Child Neurology Unit, Department of Paediatrics, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Sara Rossato
- U.O.C. Pediatria, Ospedale San Bortolo, Vicenza, Italy
| | - Stefano Sartori
- Paediatric Neurology and Neurophysiology Unit, Department of Women's and Children's Health, University Hospital of Padova, Padova, Italy
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, Sapienza University of Rome, Roma, Italy
| | - Roberta Battini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Bruria Ben-Zeev
- Pediatric Neurology Department, The Edmond and Lilly Safra Pediatric Hospital, Sheba Medical Center, Tel Hashomer, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Claudio Graziano
- Medical Genetics Unit, AOU Policlinico di S. Orsola, Bologna, Italy
| | - Marisol Mirabelli Badenier
- Fondazione Istituto David Chiossone Onlus, Genova, Italy.,Child Neuropsychiatry Unit, Department of Neurosciences and Rehabilitation, Istituto G. Gaslini, Genova, Italy
| | - Vesna Brankovic
- Clinic for Child Neurology and Psychiatry, University of Belgrade, Belgrade, Serbia
| | - Nardo Nardocci
- Department of Child Neurology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Ronen Spiegel
- Department of Pediatrics B, Emek Medical Center, Afula, Israel.,Rappaport School of Medicine, Technion, Haifa, Israel
| | | | - Giovanni Vento
- Division of Neonatology, Department of Woman and Child Health and Public Health, Child Health Area, Fondazione Policlinico Universitario A. Gemelli IRCCS-Università Cattolica del Sacro Cuore, Roma, Italy
| | - Itxaso Marti
- Pediatric Neurology, Hospital Universitario Donostia, Biodonostia, Universidad del País Vasco UPV-EHU, San Sebastian, Spain
| | - Alessandro Simonati
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona School of Medicine and Department of Clinical Neuroscience AOUI Verona, Verona, Italy
| | - Savina Dipresa
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| | - Elena Freri
- Department of Child Neurology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Tommaso Mazza
- Bioinformatics Unit, IRCCS Casa Sollievo della Sofferenza, S. Giovanni Rotondo, Italy
| | - Maria Teresa Bassi
- Laboratory of Molecular Biology, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Lecco, Italy
| | - Luca Bosco
- Unit of Neuromuscular and Neurodegenerative Diseases, Department of Neuroscience and Neurorehabilitation, IRCCS Bambino Gesù Children's Hospital, Roma, Italy
| | - Lorena Travaglini
- Unit of Neuromuscular and Neurodegenerative Diseases, Department of Neuroscience and Neurorehabilitation, IRCCS Bambino Gesù Children's Hospital, Roma, Italy
| | - Ginevra Zanni
- Unit of Neuromuscular and Neurodegenerative Diseases, Department of Neuroscience and Neurorehabilitation, IRCCS Bambino Gesù Children's Hospital, Roma, Italy
| | - Enrico Silvio Bertini
- Unit of Neuromuscular and Neurodegenerative Diseases, Department of Neuroscience and Neurorehabilitation, IRCCS Bambino Gesù Children's Hospital, Roma, Italy
| | - Nicola Vanacore
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, Roma, Italy
| | - Renato Borgatti
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Enza Maria Valente
- IRCCS Mondino Foundation, Pavia, Italy .,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
7
|
Ulmke PA, Xie Y, Sokpor G, Pham L, Shomroni O, Berulava T, Rosenbusch J, Basu U, Fischer A, Nguyen HP, Staiger JF, Tuoc T. Post-transcriptional regulation by the exosome complex is required for cell survival and forebrain development via repression of P53 signaling. Development 2021; 148:dev.188276. [PMID: 33462115 DOI: 10.1242/dev.188276] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022]
Abstract
Fine-tuned gene expression is crucial for neurodevelopment. The gene expression program is tightly controlled at different levels, including RNA decay. N6-methyladenosine (m6A) methylation-mediated degradation of RNA is essential for brain development. However, m6A methylation impacts not only RNA stability, but also other RNA metabolism processes. How RNA decay contributes to brain development is largely unknown. Here, we show that Exosc10, a RNA exonuclease subunit of the RNA exosome complex, is indispensable for forebrain development. We report that cortical cells undergo overt apoptosis, culminating in cortical agenesis upon conditional deletion of Exosc10 in mouse cortex. Mechanistically, Exosc10 directly binds and degrades transcripts of the P53 signaling-related genes, such as Aen and Bbc3. Overall, our findings suggest a crucial role for Exosc10 in suppressing the P53 pathway, in which the rapid turnover of the apoptosis effectors Aen and Bbc3 mRNAs is essential for cell survival and normal cortical histogenesis.
Collapse
Affiliation(s)
- Pauline Antonie Ulmke
- University Medical Center, Georg-August- University Goettingen, Goettingen 37075, Germany
| | - Yuanbin Xie
- University Medical Center, Georg-August- University Goettingen, Goettingen 37075, Germany.,Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Gannan Medical University, 341000 Ganzhou, The People's Republic of China
| | - Godwin Sokpor
- University Medical Center, Georg-August- University Goettingen, Goettingen 37075, Germany.,Department of Human Genetics, Ruhr University of Bochum, Bochum 44801, Germany
| | - Linh Pham
- University Medical Center, Georg-August- University Goettingen, Goettingen 37075, Germany.,Department of Human Genetics, Ruhr University of Bochum, Bochum 44801, Germany
| | - Orr Shomroni
- Microarray and Deep-Sequencing Core Facility, Georg-August- University Goettingen, Goettingen 37075, Germany
| | - Tea Berulava
- German Center for Neurodegenerative Diseases, Goettingen 37075, Germany
| | - Joachim Rosenbusch
- University Medical Center, Georg-August- University Goettingen, Goettingen 37075, Germany
| | - Uttiya Basu
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Andre Fischer
- German Center for Neurodegenerative Diseases, Goettingen 37075, Germany.,Department for Psychiatry and Psychotherapy, University Medical Center, Georg-August-University Goettingen, Goettingen 37075, Germany.,Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), University of Goettingen, Goettingen 37075, Germany
| | - Huu Phuc Nguyen
- Department of Human Genetics, Ruhr University of Bochum, Bochum 44801, Germany
| | - Jochen F Staiger
- University Medical Center, Georg-August- University Goettingen, Goettingen 37075, Germany
| | - Tran Tuoc
- University Medical Center, Georg-August- University Goettingen, Goettingen 37075, Germany .,Department of Human Genetics, Ruhr University of Bochum, Bochum 44801, Germany
| |
Collapse
|
8
|
Mu W, Heller T, Barañano KW. Two siblings with a novel variant of EXOSC3 extended phenotypic spectrum of pontocerebellar hypoplasia 1B to an exceptionally mild form. BMJ Case Rep 2021; 14:e236732. [PMID: 33462000 PMCID: PMC7813329 DOI: 10.1136/bcr-2020-236732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2020] [Indexed: 01/21/2023] Open
Abstract
Pontocerebellar hypoplasia type 1B (PCH1B) describes an autosomal recessive neurological condition that involves hypoplasia or atrophy of the cerebellum and pons, resulting in neurocognitive impairments. Although there is phenotypic variability, this is often an infantile lethal condition, and most cases have been described to be congenital and neurodegenerative. PCH1B is caused by mutations in the gene EXOSC3, which encodes exosome component 3, a subunit of the human RNA exosome complex. A range of pathogenic variants with some correlation to phenotype have been reported. The most commonly reported pathogenic variant in EXOSC3 is c.395A>C, p.(Asp132Ala); homozygosity for this variant has been proposed to lead to milder phenotypes than compound heterozygosity. In this case, we report two siblings with extraordinarily mild presentations of PCH1B who are compound heterozygous for variants in EXOSC3 c.155delC and c.80T>G. These patients drastically expand the phenotypic variability of PCH1B and raise questions about genotype-phenotype associations.
Collapse
Affiliation(s)
- Weiyi Mu
- Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Teresa Heller
- Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Kristin W Barañano
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Fraga de Andrade I, Mehta C, Bresnick EH. Post-transcriptional control of cellular differentiation by the RNA exosome complex. Nucleic Acids Res 2020; 48:11913-11928. [PMID: 33119769 PMCID: PMC7708067 DOI: 10.1093/nar/gkaa883] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/21/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Given the complexity of intracellular RNA ensembles and vast phenotypic remodeling intrinsic to cellular differentiation, it is instructive to consider the role of RNA regulatory machinery in controlling differentiation. Dynamic post-transcriptional regulation of protein-coding and non-coding transcripts is vital for establishing and maintaining proteomes that enable or oppose differentiation. By contrast to extensively studied transcriptional mechanisms governing differentiation, many questions remain unanswered regarding the involvement of post-transcriptional mechanisms. Through its catalytic activity to selectively process or degrade RNAs, the RNA exosome complex dictates the levels of RNAs comprising multiple RNA classes, thereby regulating chromatin structure, gene expression and differentiation. Although the RNA exosome would be expected to control diverse biological processes, studies to elucidate its biological functions and how it integrates into, or functions in parallel with, cell type-specific transcriptional mechanisms are in their infancy. Mechanistic analyses have demonstrated that the RNA exosome confers expression of a differentiation regulatory receptor tyrosine kinase, downregulates the telomerase RNA component TERC, confers genomic stability and promotes DNA repair, which have considerable physiological and pathological implications. In this review, we address how a broadly operational RNA regulatory complex interfaces with cell type-specific machinery to control cellular differentiation.
Collapse
Affiliation(s)
- Isabela Fraga de Andrade
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, 4009 WIMR, Madison, WI 53705, USA
| | - Charu Mehta
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, 4009 WIMR, Madison, WI 53705, USA
| | - Emery H Bresnick
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, 4009 WIMR, Madison, WI 53705, USA
| |
Collapse
|
10
|
Out or decay: fate determination of nuclear RNAs. Essays Biochem 2020; 64:895-905. [DOI: 10.1042/ebc20200005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/12/2020] [Accepted: 08/24/2020] [Indexed: 02/08/2023]
Abstract
Abstract
In eukaryotes, RNAs newly synthesized by RNA polymerase II (RNAPII) undergo several processing steps prior to transport to the cytoplasm. It has long been known that RNAs with defects in processing or export are removed in the nucleus. Recent studies revealed that RNAs without apparent defects are also subjected to nuclear degradation, indicating that nuclear RNA fate is determined in a more complex and dynamic way than previously thought. Nuclear RNA sorting directly determines the quality and quantity of RNA pools for future translation and thus is of significant importance. In this essay, we will summarize recent studies on this topic, mainly focusing on findings in mammalian system, and discuss about important remaining questions and possible biological relevance for nuclear RNA fate determination.
Collapse
|
11
|
Morton DJ, Jalloh B, Kim L, Kremsky I, Nair RJ, Nguyen KB, Rounds JC, Sterrett MC, Brown B, Le T, Karkare MC, McGaughey KD, Sheng S, Leung SW, Fasken MB, Moberg KH, Corbett AH. A Drosophila model of Pontocerebellar Hypoplasia reveals a critical role for the RNA exosome in neurons. PLoS Genet 2020; 16:e1008901. [PMID: 32645003 PMCID: PMC7373318 DOI: 10.1371/journal.pgen.1008901] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 07/21/2020] [Accepted: 06/01/2020] [Indexed: 12/27/2022] Open
Abstract
The RNA exosome is an evolutionarily-conserved ribonuclease complex critically important for precise processing and/or complete degradation of a variety of cellular RNAs. The recent discovery that mutations in genes encoding structural RNA exosome subunits cause tissue-specific diseases makes defining the role of this complex within specific tissues critically important. Mutations in the RNA exosome component 3 (EXOSC3) gene cause Pontocerebellar Hypoplasia Type 1b (PCH1b), an autosomal recessive neurologic disorder. The majority of disease-linked mutations are missense mutations that alter evolutionarily-conserved regions of EXOSC3. The tissue-specific defects caused by these amino acid changes in EXOSC3 are challenging to understand based on current models of RNA exosome function with only limited analysis of the complex in any multicellular model in vivo. The goal of this study is to provide insight into how mutations in EXOSC3 impact the function of the RNA exosome. To assess the tissue-specific roles and requirements for the Drosophila ortholog of EXOSC3 termed Rrp40, we utilized tissue-specific RNAi drivers. Depletion of Rrp40 in different tissues reveals a general requirement for Rrp40 in the development of many tissues including the brain, but also highlight an age-dependent requirement for Rrp40 in neurons. To assess the functional consequences of the specific amino acid substitutions in EXOSC3 that cause PCH1b, we used CRISPR/Cas9 gene editing technology to generate flies that model this RNA exosome-linked disease. These flies show reduced viability; however, the surviving animals exhibit a spectrum of behavioral and morphological phenotypes. RNA-seq analysis of these Drosophila Rrp40 mutants reveals increases in the steady-state levels of specific mRNAs and ncRNAs, some of which are central to neuronal function. In particular, Arc1 mRNA, which encodes a key regulator of synaptic plasticity, is increased in the Drosophila Rrp40 mutants. Taken together, this study defines a requirement for the RNA exosome in specific tissues/cell types and provides insight into how defects in RNA exosome function caused by specific amino acid substitutions that occur in PCH1b can contribute to neuronal dysfunction.
Collapse
Affiliation(s)
- Derrick J. Morton
- Department of Biology, RRC 1021, Emory University, NE, Atlanta, Georgia, United States of America
| | - Binta Jalloh
- Genetics and Molecular Biology Graduate Program, Emory University, NE, Atlanta, Georgia, United States of America
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Lily Kim
- Department of Biology, RRC 1021, Emory University, NE, Atlanta, Georgia, United States of America
| | - Isaac Kremsky
- Department of Biology, RRC 1021, Emory University, NE, Atlanta, Georgia, United States of America
| | - Rishi J. Nair
- Department of Biology, RRC 1021, Emory University, NE, Atlanta, Georgia, United States of America
| | - Khuong B. Nguyen
- Department of Biology, RRC 1021, Emory University, NE, Atlanta, Georgia, United States of America
| | - J. Christopher Rounds
- Genetics and Molecular Biology Graduate Program, Emory University, NE, Atlanta, Georgia, United States of America
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Maria C. Sterrett
- Department of Biology, RRC 1021, Emory University, NE, Atlanta, Georgia, United States of America
- Biochemistry, Cell and Developmental Biology Graduate Program, Emory University, NE, Atlanta, Georgia, United States of America
| | - Brianna Brown
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Thalia Le
- Department of Biology, RRC 1021, Emory University, NE, Atlanta, Georgia, United States of America
| | - Maya C. Karkare
- Department of Biology, RRC 1021, Emory University, NE, Atlanta, Georgia, United States of America
| | - Kathryn D. McGaughey
- Department of Biology, RRC 1021, Emory University, NE, Atlanta, Georgia, United States of America
| | - Shaoyi Sheng
- Department of Biology, RRC 1021, Emory University, NE, Atlanta, Georgia, United States of America
| | - Sara W. Leung
- Department of Biology, RRC 1021, Emory University, NE, Atlanta, Georgia, United States of America
| | - Milo B. Fasken
- Department of Biology, RRC 1021, Emory University, NE, Atlanta, Georgia, United States of America
| | - Kenneth H. Moberg
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Anita H. Corbett
- Department of Biology, RRC 1021, Emory University, NE, Atlanta, Georgia, United States of America
| |
Collapse
|
12
|
Abstract
The evolutionarily conserved RNA exosome is a multisubunit ribonuclease complex that processes and/or degrades numerous RNAs. Recently, mutations in genes encoding both structural and catalytic subunits of the RNA exosome have been linked to human disease. Mutations in the structural exosome gene EXOSC2 cause a distinct syndrome that includes retinitis pigmentosa, hearing loss, and mild intellectual disability. In contrast, mutations in the structural exosome genes EXOSC3 and EXOSC8 cause pontocerebellar hypoplasia type 1b (PCH1b) and type 1c (PCH1c), respectively, which are related autosomal recessive, neurodegenerative diseases. In addition, mutations in the structural exosome gene EXOSC9 cause a PCH-like disease with cerebellar atrophy and spinal motor neuronopathy. Finally, mutations in the catalytic exosome gene DIS3 have been linked to multiple myeloma, a neoplasm of plasma B cells. How mutations in these RNA exosome genes lead to distinct, tissue-specific diseases is not currently well understood. In this chapter, we examine the role of the RNA exosome complex in human disease and discuss the mechanisms by which mutations in different exosome subunit genes could impair RNA exosome function and give rise to diverse diseases.
Collapse
Affiliation(s)
- Milo B Fasken
- Department of Biology, RRC 1021, Emory University, Atlanta, GA, USA.
| | - Derrick J Morton
- Department of Biology, RRC 1021, Emory University, Atlanta, GA, USA
| | - Emily G Kuiper
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Stephanie K Jones
- Department of Biology, RRC 1021, Emory University, Atlanta, GA, USA
- Genetics and Molecular Biology Graduate Program, Emory University, Atlanta, GA, USA
| | - Sara W Leung
- Department of Biology, RRC 1021, Emory University, Atlanta, GA, USA
| | - Anita H Corbett
- Department of Biology, RRC 1021, Emory University, Atlanta, GA, USA.
| |
Collapse
|
13
|
Zanni G, Nardella M, Barresi S, Bellacchio E, Niceta M, Ciolfi A, Pro S, D'Arrigo S, Tartaglia M, Bertini E. De novo p.T362R mutation in MORC2 causes early onset cerebellar ataxia, axonal polyneuropathy and nocturnal hypoventilation. Brain 2019; 140:e34. [PMID: 28402445 DOI: 10.1093/brain/awx083] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Ginevra Zanni
- Department of Neurosciences, Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marta Nardella
- Department of Neurosciences, Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sabina Barresi
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Marcello Niceta
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Ciolfi
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Stefano Pro
- Department of Neurosciences, Unit of Neurology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Stefano D'Arrigo
- Developmental Neurology Division, IRCCS Fondazione Istituto Neurologico C. Besta, Milan, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Enrico Bertini
- Department of Neurosciences, Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
14
|
Borji R, Zghal F, Zarrouk N, Martin V, Sahli S, Rebai H. Neuromuscular fatigue and recovery profiles in individuals with intellectual disability. JOURNAL OF SPORT AND HEALTH SCIENCE 2019; 8:242-248. [PMID: 31193221 PMCID: PMC6523034 DOI: 10.1016/j.jshs.2017.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/01/2017] [Accepted: 02/14/2017] [Indexed: 06/09/2023]
Abstract
PURPOSE This study aimed to explore neuromuscular fatigue and recovery profiles in individuals with intellectual disability (ID) after exhausting submaximal contraction. METHODS Ten men with ID were compared to 10 men without ID. The evaluation of neuromuscular function consisted in brief (3 s) isometric maximal voluntary contraction (IMVC) of the knee extension superimposed with electrical nerve stimulation before, immediately after, and during 33 min after an exhausting submaximal isometric task at 15% of the IMVC. Force, voluntary activation level (VAL), potentiated twitch (Ptw), and electromyography (EMG) signals were measured during IMVC and then analyzed. RESULTS Individuals with ID developed lower baseline IMVC, VAL, Ptw, and RMS/Mmax ratio (root-mean-square value normalized to the maximal peak-to-peak amplitude of the M-wave) than controls (p < 0.05). Nevertheless, the time to task failure was significantly longer in ID vs. controls (p < 0.05). The 2 groups presented similar IMVC decline and recovery kinetics after the fatiguing exercise. However, individuals with ID presented higher VAL and RMS/Mmax ratio declines but lower Ptw decline compared to those without ID. Moreover, individuals with ID demonstrated a persistent central fatigue but faster recovery from peripheral fatigue. CONCLUSION These differences in neuromuscular fatigue profiles and recovery kinetics should be acknowledged when prescribing training programs for individuals with ID.
Collapse
Affiliation(s)
- Rihab Borji
- Research Unit Education, Motor Skills, Sports and Health (EM2S, UR15JS01), Higher Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax 3000, Tunisia
| | - Firas Zghal
- Research Unit Education, Motor Skills, Sports and Health (EM2S, UR15JS01), Higher Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax 3000, Tunisia
| | - Nidhal Zarrouk
- Research Unit Education, Motor Skills, Sports and Health (EM2S, UR15JS01), Higher Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax 3000, Tunisia
| | - Vincent Martin
- Laboratory of Metabolic Adaptations to Exercise in Physiological and Pathological Conditions, Blaise Pascal University, Clermont-Ferrand 63000, France
| | - Sonia Sahli
- Research Unit Education, Motor Skills, Sports and Health (EM2S, UR15JS01), Higher Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax 3000, Tunisia
| | - Haithem Rebai
- Research Unit Education, Motor Skills, Sports and Health (EM2S, UR15JS01), Higher Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax 3000, Tunisia
| |
Collapse
|
15
|
Le Duc D, Horn S, Jamra RA, Schaper J, Wieczorek D, Redler S. Novel EXOSC3 pathogenic variant results in a mild course of neurologic disease with cerebellum involvement. Eur J Med Genet 2019; 63:103649. [PMID: 30986545 DOI: 10.1016/j.ejmg.2019.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/21/2019] [Accepted: 04/04/2019] [Indexed: 10/27/2022]
Abstract
EXOSC3-related autosomal recessive neurodevelopmental disorders are rare entities with variable clinical course and prognosis. They are characterized by hypoplasia of cerebellar structures and pons, degeneration of the anterior horn cells and motor as well as neurocognitive impairment. Phenotypic expression is variable with an overall poor outcome. Current research suggests clear genotype-phenotype correlations among EXOSC3-pathogenic-variants carriers. Homozygosity for the EXOSC3 variant c.395A > C, p.(Asp132Ala) is proposed to lead to a rather mild phenotype compared to compound-heterozygous EXOSC3-pathogenic-variants carriers with lethal neurological disease in very early childhood. In this study, we report two siblings (21- and 8-year-old) affected by PCH1B with an unusual presentation. We identified compound heterozygosity for the well-established EXOSC3 variant c.395A > C, p.(Asp132Ala) and the novel variant c.572G > A, p.(Gly191Asp), expanding the genetic spectrum. Phenotypic presentation of the siblings was strikingly different from that of literature reports with a surprisingly mild disease manifestation and an unexpected intrafamilial variability. This study demonstrates the extensive clinical heterogeneity and the broad phenotypic spectrum associated with EXOSC3-associated disorders. Enlargement of sample sizes and reports of novel cases will be essential for the delineation of associated phenotypes.
Collapse
Affiliation(s)
- Diana Le Duc
- Institute of Human Genetics, University of Leipzig, Leipzig, Germany
| | - Susanne Horn
- Institute of Human Genetics, University of Leipzig, Leipzig, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig, Leipzig, Germany
| | - Jörg Schaper
- Heinrich-Heine-University, Medical Faculty, Department of Diagnostic and Interventional Radiology, Düsseldorf, Germany
| | - Dagmar Wieczorek
- Heinrich-Heine-University, Medical Faculty, Institute of Human Genetics, Düsseldorf, Germany
| | - Silke Redler
- Heinrich-Heine-University, Medical Faculty, Institute of Human Genetics, Düsseldorf, Germany; Heinrich-Heine-University, Medical Faculty, Center of Rare Disorders, Düsseldorf, Germany.
| |
Collapse
|
16
|
Pinto MM, Monges S, Malfatti E, Lubieniecki F, Lornage X, Alias L, Labasse C, Madelaine A, Fardeau M, Laporte J, Tizzano EF, Romero NB. Sarcomeric disorganization and nemaline bodies in muscle biopsies of patients with EXOSC3-related type 1 pontocerebellar hypoplasia. Muscle Nerve 2018; 59:137-141. [PMID: 30025162 DOI: 10.1002/mus.26305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2018] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Mutations in the EXOSC3 gene are responsible for type 1 pontocerebellar hypoplasia, an autosomal recessive congenital disorder characterized by cerebellar atrophy, developmental delay, and anterior horn motor neuron degeneration. Muscle biopsies of these patients often show characteristics resembling classic spinal muscle atrophy, but to date, no distinct features have been identified. METHODS Clinical data and muscle biopsy findings of 3 unrelated patients with EXOSC3 mutations are described. RESULTS All patients presented as a severe congenital cognitive and neuromuscular phenotype with short survival, harboring the same point mutation (c.92G>C; p.Gly31Ala). Muscle biopsies consistently showed variable degrees of sarcomeric disorganization with myofibrillar remnants, Z-line thickening, and small nemaline bodies. CONCLUSIONS In this uniform genetic cohort of patients with EXOSC3 mutations, sarcomeric disruption and rod structures were prominent features of muscle biopsies. In the context of neonatal hypotonia, ultrastructural studies might provide early clues for the diagnosis of EXOSC3-related pontocerebellar hypoplasia. Muscle Nerve 59:137-141, 2019.
Collapse
Affiliation(s)
- Miguel M Pinto
- Neurology Department, Hospital de Egas Moniz, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal
| | - Soledad Monges
- Neuropediatric and Neuropathology Departments, National Pediatric Hospital J-P-Garrahan, Buenos Aires, Argentina
| | - Edoardo Malfatti
- Unité de Morphologie Neuromusculaire, Institut de Myologie, Sorbonne University, INSERM UMR 974, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, 75013, Paris, France
| | - Fabiana Lubieniecki
- Neuropediatric and Neuropathology Departments, National Pediatric Hospital J-P-Garrahan, Buenos Aires, Argentina
| | - Xavière Lornage
- Department of Translational Medicine and Neurogenetics, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), INSERM U1258, CNRS UMR7104, Université de Strasbourg, Illkirch, France
| | - Laura Alias
- Department of Genetics, Hospital Sant Pau and CIBERER, Barcelona, Spain
| | - Clémence Labasse
- Unité de Morphologie Neuromusculaire, Institut de Myologie, Sorbonne University, INSERM UMR 974, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, 75013, Paris, France
| | - Angéline Madelaine
- Unité de Morphologie Neuromusculaire, Institut de Myologie, Sorbonne University, INSERM UMR 974, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, 75013, Paris, France
| | - Michel Fardeau
- Unité de Morphologie Neuromusculaire, Institut de Myologie, Sorbonne University, INSERM UMR 974, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, 75013, Paris, France
| | - Jocelyn Laporte
- Department of Translational Medicine and Neurogenetics, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), INSERM U1258, CNRS UMR7104, Université de Strasbourg, Illkirch, France
| | - Eduardo F Tizzano
- Department of Clinical and Molecular Genetics and Rare Diseases Division, Hospital Vall d'Hebron and CIBERER, Barcelona, Spain
| | - Norma B Romero
- Unité de Morphologie Neuromusculaire, Institut de Myologie, Sorbonne University, INSERM UMR 974, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, 75013, Paris, France
| |
Collapse
|
17
|
François-Moutal L, Jahanbakhsh S, Nelson ADL, Ray D, Scott DD, Hennefarth MR, Moutal A, Perez-Miller S, Ambrose AJ, Al-Shamari A, Coursodon P, Meechoovet B, Reiman R, Lyons E, Beilstein M, Chapman E, Morris QD, Van Keuren-Jensen K, Hughes TR, Khanna R, Koehler C, Jen J, Gokhale V, Khanna M. A Chemical Biology Approach to Model Pontocerebellar Hypoplasia Type 1B (PCH1B). ACS Chem Biol 2018; 13:3000-3010. [PMID: 30141626 DOI: 10.1021/acschembio.8b00745] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mutations of EXOSC3 have been linked to the rare neurological disorder known as Pontocerebellar Hypoplasia type 1B (PCH1B). EXOSC3 is one of three putative RNA-binding structural cap proteins that guide RNA into the RNA exosome, the cellular machinery that degrades RNA. Using RNAcompete, we identified a G-rich RNA motif binding to EXOSC3. Surface plasmon resonance (SPR) and microscale thermophoresis (MST) indicated an affinity in the low micromolar range of EXOSC3 for long and short G-rich RNA sequences. Although several PCH1B-causing mutations in EXOSC3 did not engage a specific RNA motif as shown by RNAcompete, they exhibited lower binding affinity to G-rich RNA as demonstrated by MST. To test the hypothesis that modification of the RNA-protein interface in EXOSC3 mutants may be phenocopied by small molecules, we performed an in-silico screen of 50 000 small molecules and used enzyme-linked immunosorbant assays (ELISAs) and MST to assess the ability of the molecules to inhibit RNA-binding by EXOSC3. We identified a small molecule, EXOSC3-RNA disrupting (ERD) compound 3 (ERD03), which ( i) bound specifically to EXOSC3 in saturation transfer difference nuclear magnetic resonance (STD-NMR), ( ii) disrupted the EXOSC3-RNA interaction in a concentration-dependent manner, and ( iii) produced a PCH1B-like phenotype with a 50% reduction in the cerebellum and an abnormally curved spine in zebrafish embryos. This compound also induced modification of zebrafish RNA expression levels similar to that observed with a morpholino against EXOSC3. To our knowledge, this is the first example of a small molecule obtained by rational design that models the abnormal developmental effects of a neurodegenerative disease in a whole organism.
Collapse
Affiliation(s)
- Liberty François-Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
- Center for Innovation in Brain Science, Tucson, Arizona 85721, United States
| | - Shahriyar Jahanbakhsh
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Andrew D. L. Nelson
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721, United States
| | - Debashish Ray
- Donnelly Centre, University of Toronto, Toronto, Canada M5S 3E1
| | - David D. Scott
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
- Center for Innovation in Brain Science, Tucson, Arizona 85721, United States
| | - Matthew R. Hennefarth
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
| | - Samantha Perez-Miller
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
- Center for Innovation in Brain Science, Tucson, Arizona 85721, United States
| | - Andrew J. Ambrose
- Pharmacology and Toxicology, School of Pharmacy, University of Arizona, Tucson, Arizona 85724, United States
| | - Ahmed Al-Shamari
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
| | - Philippe Coursodon
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
| | | | - Rebecca Reiman
- Neurogenomics Division, TGen, Phoenix, Arizona 85004, United States
| | - Eric Lyons
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721, United States
| | - Mark Beilstein
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721, United States
| | - Eli Chapman
- Pharmacology and Toxicology, School of Pharmacy, University of Arizona, Tucson, Arizona 85724, United States
| | - Quaid D. Morris
- Donnelly Centre, University of Toronto, Toronto, Canada M5S 3E1
- Department of Molecular Genetics, University of Toronto, Toronto, Canada M5S 1A8
- Department of Computer Science, University of Toronto, Toronto, Canada M5S 2E4
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Canada M5S3G4
| | | | - Timothy R. Hughes
- Donnelly Centre, University of Toronto, Toronto, Canada M5S 3E1
- Department of Molecular Genetics, University of Toronto, Toronto, Canada M5S 1A8
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
- Center for Innovation in Brain Science, Tucson, Arizona 85721, United States
| | - Carla Koehler
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Joanna Jen
- Mount Sinai, New York, New York 10029, United States
| | - Vijay Gokhale
- Bio5 Institute, University of Arizona, Tucson, Arizona, United States
| | - May Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
- Center for Innovation in Brain Science, Tucson, Arizona 85721, United States
| |
Collapse
|
18
|
Ivanov I, Atkinson D, Litvinenko I, Angelova L, Andonova S, Mumdjiev H, Pacheva I, Panova M, Yordanova R, Belovejdov V, Petrova A, Bosheva M, Shmilev T, Savov A, Jordanova A. Pontocerebellar hypoplasia type 1 for the neuropediatrician: Genotype-phenotype correlations and diagnostic guidelines based on new cases and overview of the literature. Eur J Paediatr Neurol 2018; 22:674-681. [PMID: 29656927 DOI: 10.1016/j.ejpn.2018.03.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/20/2018] [Accepted: 03/27/2018] [Indexed: 10/17/2022]
Abstract
Pontocerebellar hypoplasia type 1 (PCH1) is a major cause of non-5q spinal muscular atrophy (SMA). We screened 128 SMN1-negative SMA patients from Bulgaria for a frequent mutation -p.G31A in EXOSC3, and performed a literature review of all genetically verified PCH1 cases. Homozygous p.G31A/EXOSC3 mutation was identified in 14 Roma patients, representing three fourths of all our SMN1-negative Roma SMA cases. The phenotype of the p.G31A/EXOSC3 homozygotes was compared to the clinical presentation of all reported to date genetically verified PCH1 cases. Signs of antenatal onset of disease present at birth were common in all PCH1 sub-types except in the homozygous p.D132A/EXOSC3 patients. The PCH1sub-types with early death (between ages 1 day and 17 months), seen in patients with p.G31A/EXOSC3 or SLC25A46 mutations have a SMA type 1-like clinical presentation but with global developmental delay, visual and hearing impairment, with or without microcephaly, nystagmus and optic atrophy. Mutations with milder presentation (homozygous p.D132A/EXOSC3 or VRK1) may display additionally signs of upper motor neuron impairment, dystonia or ataxia and die at age between 5 and 18 years. Other EXOSC3 mutations and EXOSC8 cases are intermediate - SMA type 1-like presentation, spasticity (mostly in EXOSC8) and death between 3 months and 5 years. There is no correlation between neurological onset and duration of life. We add marble-like skin and congenital laryngeal stridor as features of PCH1. We show that imaging signs of cerebellar and pontine hypoplasia may be missing early in infancy. EMG signs of anterior horn neuronopathy may be missing in PCH1 patients with SLC25A46 mutations. Thus, there is considerable phenotypic variability in PCH1, with some cases being more SMA-like, than PCH-like. Detailed clinical evaluation and ethnicity background may guide genetic testing and subsequent genetic counseling.
Collapse
Affiliation(s)
- I Ivanov
- Department of Pediatrics, St. George University Hospital, Medical University-Plovdiv, Plovdiv, Bulgaria.
| | - D Atkinson
- VIB Center for Molecular Neurology, University of Antwerp, Belgium.
| | - I Litvinenko
- Department of Pediatrics, SBALDB "Prof. D-r Ivan Mitev", Medical University-Sofia, Sofia, Bulgaria.
| | - L Angelova
- Department of Medical Genetics, University Hospital "St. Marina", Medical University of Varna, Varna, Bulgaria.
| | - S Andonova
- National Genetic Laboratory, Maichin Dom University Hospital, Sofia, Bulgaria.
| | - H Mumdjiev
- Department of Neonatology, Prof. Stoyan Kirkovich University Hospital, Medical Faculty of Tracian University, Stara Zagora, Bulgaria.
| | - I Pacheva
- Department of Pediatrics, St. George University Hospital, Medical University-Plovdiv, Plovdiv, Bulgaria.
| | - M Panova
- Department of Pediatrics, St. George University Hospital, Medical University-Plovdiv, Plovdiv, Bulgaria.
| | - R Yordanova
- Department of Pediatrics, St. George University Hospital, Medical University-Plovdiv, Plovdiv, Bulgaria.
| | - V Belovejdov
- Department of Pathology, St. George University Hospital, Medical University-Plovdiv, Plovdiv, Bulgaria.
| | - A Petrova
- Department of Radiology, St. George University Hospital, Medical University-Plovdiv, Plovdiv, Bulgaria.
| | - M Bosheva
- Department of Pediatrics, St. George University Hospital, Medical University-Plovdiv, Plovdiv, Bulgaria.
| | - T Shmilev
- Department of Pediatrics, St. George University Hospital, Medical University-Plovdiv, Plovdiv, Bulgaria.
| | - A Savov
- National Genetic Laboratory, Maichin Dom University Hospital, Sofia, Bulgaria.
| | - A Jordanova
- VIB Center for Molecular Neurology, University of Antwerp, Belgium; Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical University-Sofia, Sofia, Bulgaria.
| |
Collapse
|
19
|
Morton DJ, Kuiper EG, Jones SK, Leung SW, Corbett AH, Fasken MB. The RNA exosome and RNA exosome-linked disease. RNA (NEW YORK, N.Y.) 2018; 24:127-142. [PMID: 29093021 PMCID: PMC5769741 DOI: 10.1261/rna.064626.117] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The RNA exosome is an evolutionarily conserved, ribonuclease complex that is critical for both processing and degradation of a variety of RNAs. Cofactors that associate with the RNA exosome likely dictate substrate specificity for this complex. Recently, mutations in genes encoding both structural subunits of the RNA exosome and its cofactors have been linked to human disease. Mutations in the RNA exosome genes EXOSC3 and EXOSC8 cause pontocerebellar hypoplasia type 1b (PCH1b) and type 1c (PCH1c), respectively, which are similar autosomal-recessive, neurodegenerative diseases. Mutations in the RNA exosome gene EXOSC2 cause a distinct syndrome with various tissue-specific phenotypes including retinitis pigmentosa and mild intellectual disability. Mutations in genes that encode RNA exosome cofactors also cause tissue-specific diseases with complex phenotypes. How mutations in these genes give rise to distinct, tissue-specific diseases is not clear. In this review, we discuss the role of the RNA exosome complex and its cofactors in human disease, consider the amino acid changes that have been implicated in disease, and speculate on the mechanisms by which exosome gene mutations could underlie dysfunction and disease.
Collapse
Affiliation(s)
- Derrick J Morton
- Department of Biology, Emory University, NE, Atlanta, Georgia 30322, USA
| | - Emily G Kuiper
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Stephanie K Jones
- Department of Biology, Emory University, NE, Atlanta, Georgia 30322, USA
- Genetics and Molecular Biology Graduate Program, Emory University, NE, Atlanta, Georgia 30322, USA
| | - Sara W Leung
- Department of Biology, Emory University, NE, Atlanta, Georgia 30322, USA
| | - Anita H Corbett
- Department of Biology, Emory University, NE, Atlanta, Georgia 30322, USA
| | - Milo B Fasken
- Department of Biology, Emory University, NE, Atlanta, Georgia 30322, USA
| |
Collapse
|
20
|
Abstract
Ribonucleic acid (RNA) homeostasis is dynamically modulated in response to changing physiological conditions. Tight regulation of RNA abundance through both transcription and degradation determines the amount, timing, and location of protein translation. This balance is of particular importance in neurons, which are among the most metabolically active and morphologically complex cells in the body. As a result, any disruptions in RNA degradation can have dramatic consequences for neuronal health. In this chapter, we will first discuss mechanisms of RNA stabilization and decay. We will then explore how the disruption of these pathways can lead to neurodegenerative disease.
Collapse
|
21
|
Hartwig C, Monis WJ, Chen X, Dickman DK, Pazour GJ, Faundez V. Neurodevelopmental disease mechanisms, primary cilia, and endosomes converge on the BLOC-1 and BORC complexes. Dev Neurobiol 2017; 78:311-330. [PMID: 28986965 DOI: 10.1002/dneu.22542] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/08/2017] [Accepted: 09/15/2017] [Indexed: 12/12/2022]
Abstract
The biogenesis of lysosome-related organelles complex-1 (BLOC-1) and the bloc-one-related complex (BORC) are the cytosolic protein complexes required for specialized membrane protein traffic along the endocytic route and the spatial distribution of endosome-derived compartments, respectively. BLOC-1 and BORC complex subunits and components of their interactomes have been associated with the risk and/or pathomechanisms of neurodevelopmental disorders. Thus, cellular processes requiring BLOC-1 and BORC interactomes have the potential to offer novel insight into mechanisms underlying behavioral defects. We focus on interactions between BLOC-1 or BORC subunits with the actin and microtubule cytoskeleton, membrane tethers, and SNAREs. These interactions highlight requirements for BLOC-1 and BORC in membrane movement by motors, control of actin polymerization, and targeting of membrane proteins to specialized cellular domains such as the nerve terminal and the primary cilium. We propose that the endosome-primary cilia pathway is an underappreciated hub in the genesis and mechanisms of neurodevelopmental disorders. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 311-330, 2018.
Collapse
Affiliation(s)
- Cortnie Hartwig
- Department of Cell Biology, Emory University, Atlanta, Georgia, 30322
| | - William J Monis
- Program in Molecular Medicine, University of Massachusetts Medical School, Biotech II, Worcester, Massachusetts, 01605
| | - Xun Chen
- Department of Biology, Neurobiology Section, University of Southern California, Los Angeles, California, 90089
| | - Dion K Dickman
- Department of Biology, Neurobiology Section, University of Southern California, Los Angeles, California, 90089
| | - Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Biotech II, Worcester, Massachusetts, 01605
| | - Victor Faundez
- Department of Cell Biology, Emory University, Atlanta, Georgia, 30322
| |
Collapse
|
22
|
Schottmann G, Picker-Minh S, Schwarz JM, Gill E, Rodenburg RJT, Stenzel W, Kaindl AM, Schuelke M. Recessive mutation in EXOSC3 associates with mitochondrial dysfunction and pontocerebellar hypoplasia. Mitochondrion 2017; 37:46-54. [PMID: 28687512 DOI: 10.1016/j.mito.2017.06.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 06/06/2017] [Accepted: 06/21/2017] [Indexed: 12/13/2022]
Abstract
Recessive mutations in EXOSC3, encoding a subunit of the human RNA exosome complex, cause pontocerebellar hypoplasia type 1b (PCH1B). We report a boy with severe muscular hypotonia, psychomotor retardation, progressive microcephaly, and cerebellar atrophy. Biochemical abnormalities comprised mitochondrial complex I and pyruvate dehydrogenase complex (PDHc) deficiency. Whole exome sequencing uncovered a known EXOSC3 mutation p.(D132A) as the underlying cause. In patient fibroblasts, a large portion of the EXOSC3 protein was trapped in the cytosol. MtDNA copy numbers in muscle were reduced to 35%, but mutations in the mtDNA and in nuclear mitochondrial genes were ruled out. RNA-Seq of patient muscle showed highly increased mRNA copy numbers, especially for genes encoding structural subunits of OXPHOS complexes I, III, and IV, possibly due to reduced degradation by a dysfunctional exosome complex. This is the first case of mitochondrial dysfunction associated with an EXOSC3 mutation, which expands the phenotypic spectrum of PCH1B. We discuss the links between exosome and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Gudrun Schottmann
- NeuroCure Clinical Research Center (NCRC), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Department of Neuropediatrics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Sylvie Picker-Minh
- Department of Neuropediatrics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Center for Chronically Sick Children, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Berlin Institute of Health (BIH), Berlin, Germany
| | - Jana Marie Schwarz
- NeuroCure Clinical Research Center (NCRC), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Esther Gill
- NeuroCure Clinical Research Center (NCRC), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Richard J T Rodenburg
- Radboud Center for Mitochondrial Disorders, Department of Pediatrics, Translational Metabolic Laboratory, Radboudumc, Nijmegen, The Netherlands
| | - Werner Stenzel
- Institute of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Angela M Kaindl
- Department of Neuropediatrics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Center for Chronically Sick Children, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Berlin Institute of Health (BIH), Berlin, Germany.
| | - Markus Schuelke
- NeuroCure Clinical Research Center (NCRC), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany; Department of Neuropediatrics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany.
| |
Collapse
|
23
|
Rialdi A, Hultquist J, Jimenez-Morales D, Peralta Z, Campisi L, Fenouil R, Moshkina N, Wang ZZ, Laffleur B, Kaake RM, McGregor MJ, Haas K, Pefanis E, Albrecht RA, Pache L, Chanda S, Jen J, Ochando J, Byun M, Basu U, García-Sastre A, Krogan N, van Bakel H, Marazzi I. The RNA Exosome Syncs IAV-RNAPII Transcription to Promote Viral Ribogenesis and Infectivity. Cell 2017; 169:679-692.e14. [PMID: 28475896 PMCID: PMC6217988 DOI: 10.1016/j.cell.2017.04.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 03/08/2017] [Accepted: 04/14/2017] [Indexed: 01/08/2023]
Abstract
The nuclear RNA exosome is an essential multi-subunit complex that controls RNA homeostasis. Congenital mutations in RNA exosome genes are associated with neurodegenerative diseases. Little is known about the role of the RNA exosome in the cellular response to pathogens. Here, using NGS and human and mouse genetics, we show that influenza A virus (IAV) ribogenesis and growth are suppressed by impaired RNA exosome activity. Mechanistically, the nuclear RNA exosome coordinates the initial steps of viral transcription with RNAPII at host promoters. The viral polymerase complex co-opts the nuclear RNA exosome complex and cellular RNAs en route to 3' end degradation. Exosome deficiency uncouples chromatin targeting of the viral polymerase complex and the formation of cellular:viral RNA hybrids, which are essential RNA intermediates that license transcription of antisense genomic viral RNAs. Our results suggest that evolutionary arms races have shaped the cellular RNA quality control machinery.
Collapse
Affiliation(s)
- Alexander Rialdi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA
| | - Judd Hultquist
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158-2140, USA
| | - David Jimenez-Morales
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158-2140, USA
| | - Zuleyma Peralta
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA
| | - Laura Campisi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA
| | - Romain Fenouil
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA
| | - Natasha Moshkina
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA
| | - Zhen Zhen Wang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA
| | - Brice Laffleur
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Robyn M Kaake
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158-2140, USA
| | - Michael J McGregor
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158-2140, USA
| | - Kelsey Haas
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158-2140, USA
| | - Evangelos Pefanis
- Regeneron Pharmaceuticals and Regeneron Genetics Center, Tarrytown, NY 10591, USA
| | - Randy A Albrecht
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA
| | - Lars Pache
- Burnham Institute for Medical Research, La Jolla, CA 92037, USA
| | - Sumit Chanda
- Burnham Institute for Medical Research, La Jolla, CA 92037, USA
| | - Joanna Jen
- Department of Neurology, University of California, Los Angeles, CA 90095, USA
| | - Jordi Ochando
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA
| | - Minji Byun
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA
| | - Uttiya Basu
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA; Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA
| | - Nevan Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158-2140, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA
| | - Ivan Marazzi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA.
| |
Collapse
|
24
|
Flex E, Niceta M, Cecchetti S, Thiffault I, Au MG, Capuano A, Piermarini E, Ivanova AA, Francis JW, Chillemi G, Chandramouli B, Carpentieri G, Haaxma CA, Ciolfi A, Pizzi S, Douglas GV, Levine K, Sferra A, Dentici ML, Pfundt RR, Le Pichon JB, Farrow E, Baas F, Piemonte F, Dallapiccola B, Graham JM, Saunders CJ, Bertini E, Kahn RA, Koolen DA, Tartaglia M. Biallelic Mutations in TBCD, Encoding the Tubulin Folding Cofactor D, Perturb Microtubule Dynamics and Cause Early-Onset Encephalopathy. Am J Hum Genet 2016; 99:962-973. [PMID: 27666370 DOI: 10.1016/j.ajhg.2016.08.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/09/2016] [Indexed: 12/13/2022] Open
Abstract
Microtubules are dynamic cytoskeletal elements coordinating and supporting a variety of neuronal processes, including cell division, migration, polarity, intracellular trafficking, and signal transduction. Mutations in genes encoding tubulins and microtubule-associated proteins are known to cause neurodevelopmental and neurodegenerative disorders. Growing evidence suggests that altered microtubule dynamics may also underlie or contribute to neurodevelopmental disorders and neurodegeneration. We report that biallelic mutations in TBCD, encoding one of the five co-chaperones required for assembly and disassembly of the αβ-tubulin heterodimer, the structural unit of microtubules, cause a disease with neurodevelopmental and neurodegenerative features characterized by early-onset cortical atrophy, secondary hypomyelination, microcephaly, thin corpus callosum, developmental delay, intellectual disability, seizures, optic atrophy, and spastic quadriplegia. Molecular dynamics simulations predicted long-range and/or local structural perturbations associated with the disease-causing mutations. Biochemical analyses documented variably reduced levels of TBCD, indicating relative instability of mutant proteins, and defective β-tubulin binding in a subset of the tested mutants. Reduced or defective TBCD function resulted in decreased soluble α/β-tubulin levels and accelerated microtubule polymerization in fibroblasts from affected subjects, demonstrating an overall shift toward a more rapidly growing and stable microtubule population. These cells displayed an aberrant mitotic spindle with disorganized, tangle-shaped microtubules and reduced aster formation, which however did not alter appreciably the rate of cell proliferation. Our findings establish that defective TBCD function underlies a recognizable encephalopathy and drives accelerated microtubule polymerization and enhanced microtubule stability, underscoring an additional cause of altered microtubule dynamics with impact on neuronal function and survival in the developing brain.
Collapse
|
25
|
Müller JS, Giunta M, Horvath R. Exosomal Protein Deficiencies: How Abnormal RNA Metabolism Results in Childhood-Onset Neurological Diseases. J Neuromuscul Dis 2015; 2:S31-S37. [PMID: 27127732 PMCID: PMC4845884 DOI: 10.3233/jnd-150086] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Defects of RNA metabolism have been increasingly identified in various forms of inherited neurological diseases. Recently, abnormal RNA degradation due to mutations in human exosome subunit genes has been shown to cause complex childhood onset neurological presentations including spinal muscular atrophy, pontocerebellar hypoplasia and myelination deficiencies. This paper summarizes our current knowledge about the exosome in human neurological disease and provides some important insights into potential disease mechanisms.
Collapse
Affiliation(s)
- Juliane S. Müller
- Institute of Genetic Medicine, The John Walton Muscular Dystrophy Research Centre, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK
| | - Michele Giunta
- Institute of Genetic Medicine, The John Walton Muscular Dystrophy Research Centre, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK
| | - Rita Horvath
- Institute of Genetic Medicine, The John Walton Muscular Dystrophy Research Centre, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
26
|
Klebe S, Stevanin G, Depienne C. Clinical and genetic heterogeneity in hereditary spastic paraplegias: from SPG1 to SPG72 and still counting. Rev Neurol (Paris) 2015; 171:505-30. [PMID: 26008818 DOI: 10.1016/j.neurol.2015.02.017] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/10/2015] [Accepted: 02/19/2015] [Indexed: 12/11/2022]
Abstract
Hereditary spastic paraplegias (HSPs) are genetically determined neurodegenerative disorders characterized by progressive weakness and spasticity of lower limbs, and are among the most clinically and genetically heterogeneous human diseases. All modes of inheritance have been described, and the recent technological revolution in molecular genetics has led to the identification of 76 different spastic gait disease-loci with 59 corresponding spastic paraplegia genes. Autosomal recessive HSP are usually associated with diverse additional features (referred to as complicated forms), contrary to autosomal dominant HSP, which are mostly pure. However, the identification of additional mutations and families has considerably enlarged the clinical spectra, and has revealed a huge clinical variability for almost all HSP; complicated forms have also been described for primary pure HSP subtypes, adding further complexity to the genotype-phenotype correlations. In addition, the introduction of next generation sequencing in clinical practice has revealed a genetic and phenotypic overlap with other neurodegenerative disorders (amyotrophic lateral sclerosis, neuropathies, cerebellar ataxias, etc.) and neurodevelopmental disorders, including intellectual disability. This review aims to describe the most recent advances in the field and to provide genotype-phenotype correlations that could help clinical diagnoses of this heterogeneous group of disorders.
Collapse
Affiliation(s)
- S Klebe
- Department of neurology, university hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - G Stevanin
- Sorbonne universités, UPMC université Paris 06, 91-105, boulevard de l'Hôpital, 75013 Paris, France; ICM, CNRS UMR 7225, Inserm U 1127, 47/83, boulevard de l'Hôpital, 75013 Paris, France; École pratique des hautes études, 4-14, rue Ferrus, 75014 Paris, France; Département de génétique, AP-HP, hôpital Pitié-Salpêtrière, 47/83, boulevard de l'Hôpital, 75013 Paris, France
| | - C Depienne
- Sorbonne universités, UPMC université Paris 06, 91-105, boulevard de l'Hôpital, 75013 Paris, France; ICM, CNRS UMR 7225, Inserm U 1127, 47/83, boulevard de l'Hôpital, 75013 Paris, France; Département de génétique, AP-HP, hôpital Pitié-Salpêtrière, 47/83, boulevard de l'Hôpital, 75013 Paris, France.
| |
Collapse
|
27
|
Delving into the complexity of hereditary spastic paraplegias: how unexpected phenotypes and inheritance modes are revolutionizing their nosology. Hum Genet 2015; 134:511-38. [PMID: 25758904 PMCID: PMC4424374 DOI: 10.1007/s00439-015-1536-7] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 02/23/2015] [Indexed: 12/11/2022]
Abstract
Hereditary spastic paraplegias (HSP) are rare neurodegenerative diseases sharing the degeneration of the corticospinal tracts as the main pathological characteristic. They are considered one of the most heterogeneous neurological disorders. All modes of inheritance have been described for the 84 different loci and 67 known causative genes implicated up to now. Recent advances in molecular genetics have revealed clinico-genetic heterogeneity of these disorders including their clinical and genetic overlap with other diseases of the nervous system. The systematic analysis of a large set of genes, including exome sequencing, is unmasking unusual phenotypes or inheritance modes associated with mutations in HSP genes and related genes involved in various neurological diseases. A new nosology may emerge after integration and understanding of these new data to replace the current classification. Collectively, functions of the known genes implicate the disturbance of intracellular membrane dynamics and trafficking as the consequence of alterations of cytoskeletal dynamics, lipid metabolism and organelle structures, which represent in fact a relatively small number of cellular processes that could help to find common curative approaches, which are still lacking.
Collapse
|
28
|
Halevy A, Lerer I, Cohen R, Kornreich L, Shuper A, Gamliel M, Zimerman BE, Korabi I, Meiner V, Straussberg R, Lossos A. Novel EXOSC3 mutation causes complicated hereditary spastic paraplegia. J Neurol 2014; 261:2165-9. [DOI: 10.1007/s00415-014-7457-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 07/28/2014] [Indexed: 01/12/2023]
|
29
|
Weitzer S, Hanada T, Penninger JM, Martinez J. CLP1 as a novel player in linking tRNA splicing to neurodegenerative disorders. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 6:47-63. [DOI: 10.1002/wrna.1255] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/27/2014] [Accepted: 06/28/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Stefan Weitzer
- IMBA; Institute of Molecular Biotechnology of the Academy of Sciences; Vienna Austria
| | - Toshikatsu Hanada
- TK Project, Medical Innovation Center; Kyoto University Graduate School of Medicine; Kyoto Japan
| | - Josef M. Penninger
- IMBA; Institute of Molecular Biotechnology of the Academy of Sciences; Vienna Austria
| | - Javier Martinez
- IMBA; Institute of Molecular Biotechnology of the Academy of Sciences; Vienna Austria
| |
Collapse
|
30
|
Boczonadi V, Müller JS, Pyle A, Munkley J, Dor T, Quartararo J, Ferrero I, Karcagi V, Giunta M, Polvikoski T, Birchall D, Princzinger A, Cinnamon Y, Lützkendorf S, Piko H, Reza M, Florez L, Santibanez-Koref M, Griffin H, Schuelke M, Elpeleg O, Kalaydjieva L, Lochmüller H, Elliott DJ, Chinnery PF, Edvardson S, Horvath R. EXOSC8 mutations alter mRNA metabolism and cause hypomyelination with spinal muscular atrophy and cerebellar hypoplasia. Nat Commun 2014; 5:4287. [PMID: 24989451 PMCID: PMC4102769 DOI: 10.1038/ncomms5287] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 06/03/2014] [Indexed: 12/21/2022] Open
Abstract
The exosome is a multi-protein complex, required for the degradation of AU-rich element (ARE) containing messenger RNAs (mRNAs). EXOSC8 is an essential protein of the exosome core, as its depletion causes a severe growth defect in yeast. Here we show that homozygous missense mutations in EXOSC8 cause progressive and lethal neurological disease in 22 infants from three independent pedigrees. Affected individuals have cerebellar and corpus callosum hypoplasia, abnormal myelination of the central nervous system or spinal motor neuron disease. Experimental downregulation of EXOSC8 in human oligodendroglia cells and in zebrafish induce a specific increase in ARE mRNAs encoding myelin proteins, showing that the imbalanced supply of myelin proteins causes the disruption of myelin, and explaining the clinical presentation. These findings show the central role of the exosomal pathway in neurodegenerative disease. The exosome is responsible for mRNA degradation, which is an important step in the regulation of gene expression. Here the authors report that homozygous missense mutations in the exosome subunit, EXOSC8, may cause neurodegenerative disease in infants through the dysregulation of myelin expression.
Collapse
Affiliation(s)
- Veronika Boczonadi
- 1] Institute of Genetic Medicine, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK [2]
| | - Juliane S Müller
- 1] Institute of Genetic Medicine, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK [2]
| | - Angela Pyle
- 1] Institute of Genetic Medicine, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK [2]
| | - Jennifer Munkley
- 1] Institute of Genetic Medicine, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK [2]
| | - Talya Dor
- The Monique and Jacques Roboh Department of Genetic Research, Hadassah- Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Jade Quartararo
- Department of Life Sciences, University of Parma, Parco Area delle Scienze 11A, Parma 43124, Italy
| | - Ileana Ferrero
- Department of Life Sciences, University of Parma, Parco Area delle Scienze 11A, Parma 43124, Italy
| | - Veronika Karcagi
- Department of Molecular Genetics and Diagnostics, NIEH, Albert Florian ut 2-6, Budapest 1097, Hungary
| | - Michele Giunta
- Institute of Genetic Medicine, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Tuomo Polvikoski
- Department of Pathology, Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| | - Daniel Birchall
- Neuroradiology Department, Regional Neurosciences Centre, Queen Victoria Road, Newcastle upon Tyne NE1 4PL, UK
| | - Agota Princzinger
- Department of Paediatrics, Josa Andras Hospital, Szent Istvan utca 6, Nyiregyhaza 4400, Hungary
| | - Yuval Cinnamon
- 1] The Monique and Jacques Roboh Department of Genetic Research, Hadassah- Hebrew University Medical Center, Jerusalem 91120, Israel [2] Department of Poultry and Aquaculture Sciences, Institute of Animal Science, Agricultural Research Organization, The Volcani Center, P.O.Box 6, Bet Dagan 50250, Israel
| | - Susanne Lützkendorf
- Department of Neuropediatrics and NeuroCure Clinical Research Center, Charité-Universitätsmedizin, Charité-Platz 1, 10117 Berlin, Germany
| | - Henriett Piko
- Department of Molecular Genetics and Diagnostics, NIEH, Albert Florian ut 2-6, Budapest 1097, Hungary
| | - Mojgan Reza
- Institute of Genetic Medicine, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Laura Florez
- Western Australian Institute for Medical Research/Centre for Medical Research, The University of Western Australia, 35 Stirling Highway Crawley, Western Australia 6009 Perth, Australia
| | - Mauro Santibanez-Koref
- Institute of Genetic Medicine, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Helen Griffin
- Institute of Genetic Medicine, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Markus Schuelke
- Department of Neuropediatrics and NeuroCure Clinical Research Center, Charité-Universitätsmedizin, Charité-Platz 1, 10117 Berlin, Germany
| | - Orly Elpeleg
- The Monique and Jacques Roboh Department of Genetic Research, Hadassah- Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Luba Kalaydjieva
- Western Australian Institute for Medical Research/Centre for Medical Research, The University of Western Australia, 35 Stirling Highway Crawley, Western Australia 6009 Perth, Australia
| | - Hanns Lochmüller
- Institute of Genetic Medicine, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - David J Elliott
- Institute of Genetic Medicine, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Patrick F Chinnery
- Institute of Genetic Medicine, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Shimon Edvardson
- The Monique and Jacques Roboh Department of Genetic Research, Hadassah- Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Rita Horvath
- Institute of Genetic Medicine, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| |
Collapse
|
31
|
Rudnik-Schöneborn S, Barth PG, Zerres K. Pontocerebellar hypoplasia. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2014; 166C:173-83. [PMID: 24924738 DOI: 10.1002/ajmg.c.31403] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pontocerebellar hypoplasia (PCH) is a clinically and genetically heterogeneous group of autosomal recessively inherited neurodevelopmental disorders. Following the rapidly increasing number of genes identified in different subtypes, the clinical spectrum has been broadened to completely different neurological phenotypes. In this review we will address the clinical picture, neuroradiological, pathoanatomic, and genetic findings in the currently known PCH subtypes.
Collapse
|
32
|
Eggens VR, Barth PG, Niermeijer JMF, Berg JN, Darin N, Dixit A, Fluss J, Foulds N, Fowler D, Hortobágyi T, Jacques T, King MD, Makrythanasis P, Máté A, Nicoll JAR, O'Rourke D, Price S, Williams AN, Wilson L, Suri M, Sztriha L, Dijns-de Wissel MB, van Meegen MT, van Ruissen F, Aronica E, Troost D, Majoie CB, Marquering HA, Poll-Thé BT, Baas F. EXOSC3 mutations in pontocerebellar hypoplasia type 1: novel mutations and genotype-phenotype correlations. Orphanet J Rare Dis 2014; 9:23. [PMID: 24524299 PMCID: PMC3928094 DOI: 10.1186/1750-1172-9-23] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 02/06/2014] [Indexed: 11/24/2022] Open
Abstract
Background Pontocerebellar hypoplasia (PCH) represents a group of neurodegenerative disorders with prenatal onset. Eight subtypes have been described thus far (PCH1-8) based on clinical and genetic features. Common characteristics include hypoplasia and atrophy of the cerebellum, variable pontine atrophy, and severe mental and motor impairments. PCH1 is distinctly characterized by the combination with degeneration of spinal motor neurons. Recently, mutations in the exosome component 3 gene (EXOSC3) have been identified in approximately half of the patients with PCH subtype 1. Methods We selected a cohort of 99 PCH patients (90 families) tested negative for mutations in the TSEN genes, RARS2, VRK1 and CASK. Patients in this cohort were referred with a tentative diagnose PCH type 1, 2, 4, 7 or unclassified PCH. Genetic analysis of the EXOSC3 gene was performed using Sanger sequencing. Clinical data, MR images and autopsy reports of patients positive for EXOSC3 mutations were analyzed. Results EXOSC3 mutations were found in twelve families with PCH subtype 1, and were not found in patients with other PCH subtypes. Identified mutations included a large deletion, nonsense and missense mutations. Examination of clinical data reveals a prolonged disease course in patients with a homozygous p.D132A mutation. MRI shows variable pontine hypoplasia in EXOSC3 mediated PCH, where the pons is largely preserved in patients with a homozygous p.D132A mutation, but attenuated in patients with other mutations. Additionally, bilateral cerebellar cysts were found in patients compound heterozygous for a p.D132A mutation and a nonsense allele. Conclusions EXOSC3 mediated PCH shows clear genotype-phenotype correlations. A homozygous p.D132A mutation leads to PCH with possible survival into early puberty, and preservation of the pons. Compound heterozygosity for a p.D132A mutation and a nonsense or p.Y109N allele, a homozygous p.G31A mutation or a p.G135E mutation causes a more rapidly progressive course leading to death in infancy and attenuation of the ventral pons. Our findings imply a clear correlation between genetic mutation and clinical outcome in EXOSC3 mediated PCH, including variable involvement of the pons.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Frank Baas
- Department of Genome Analysis, Academic Medical Centre, Amsterdam, the Netherlands.
| |
Collapse
|
33
|
Fabre A, Badens C. Human Mendelian diseases related to abnormalities of the RNA exosome or its cofactors. Intractable Rare Dis Res 2014; 3:8-11. [PMID: 25343120 PMCID: PMC4204543 DOI: 10.5582/irdr.3.8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 02/06/2014] [Accepted: 02/10/2014] [Indexed: 01/03/2023] Open
Abstract
The RNA exosome has a key role in RNA decays and RNA quality control. In 2012, two human Mendelian diseases: syndromic diarrhea/tricho-hepato-enteric syndrome (SD/THE) and Ponto-cerebellar hypoplasia type 1(PCH1) were linked to the RNA exosome or its cofactor's defect. SD/THE's main features are an intractable diarrhea of infancy associated with hair abnormalities, facial dysmorphism, intra uterine growth restriction and immune deficiency. SD/THE is caused by a defect of the SKI complex (TTC37 and SKIV2L), the cytoplasmic co-factor of the RNA exosome for mRNA degradation. PCH1's main features are atrophy of the pons and of the cerebellum, a progressive microcephaly with developmental delay and muscle atrophy secondary to spinal anterior horn cell loss. In 30-40% of patients, PCH1 is caused by a defect in EXOSC3 which encodes RRP40, a protein of the cap of the RNA exosome. Thanks to knowledge about other forms of PCH it could be assumed that the altered substrates are probably transfer RNA However, as there exists no patient with two null mutations, residual RNA exosome functionality is probably required to preserve viability. Thus, to date two very different human Mendelian diseases have been related to the dysfunctioning of the RNA exosome. It illustrates the versatility of the RNA exosome function and substrate.
Collapse
Affiliation(s)
- Alexandre Fabre
- Service de pédiatrie Multidisciplinaire, Hôpital des Enfants de la Timone, APHM, Marseille, France
- UMR_S 910, Aix-Marseille Université, Marseille, France
- Address correspondence to: Dr. Alexandre Fabre, Service de pédiatrie Multidisciplinaire, Hôpital des Enfants de la Timone, APHM, Marseille, France. E-mail:
| | - Catherine Badens
- UMR_S 910, Aix-Marseille Université, Marseille, France
- Service de Génétique Moléculaire, Hôpital des Enfants de la Timone, APHM, Marseille, France
| |
Collapse
|