1
|
Ali TT, Merghani M, Al-Azzani M, Gatzemeier LM, Hoppert M, Kaloyanova D, Outeiro TF, Neumann P, Popova B, Braus GH. Rationally designed peptides inhibit the formation of α-synuclein fibrils and oligomers. Eur J Med Chem 2025; 289:117452. [PMID: 40022877 DOI: 10.1016/j.ejmech.2025.117452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
Parkinson's Disease (PD) is characterized by the pathological aggregation of α-synuclein (αSyn) into oligomers and amyloid fibrils, making αSyn aggregation a key target for drug development. Peptides have gained recent attention as potential agents to inhibit aggregation. Two previously identified peptide inhibitors, discovered through large-scale yeast screening, were used as templates for in silico mutagenesis aimed at designing novel peptides with improved efficacy in inhibiting αSyn aggregation and cytotoxicity. The newly designed peptides underwent in silico docking analysis, and the most promising candidates were tested in vitro and in cellular models. Peptides T02 and T05 emerged as the most effective inhibitors, with T02 binding αSyn monomers and T05 targeting lower-order oligomers. Both peptides reduce αSyn fibril and oligomer formation in vitro and significantly suppress αSyn aggregation and cytotoxicity in yeast and human H4 cells. These novel peptides represent antagonists of αSyn aggregation with promising potential for therapeutic intervention for PD.
Collapse
Affiliation(s)
- Tariq T Ali
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Göttingen, Grisebachstr. 8, 37077, Göttingen, Germany
| | - Madiha Merghani
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Waldweg 33, 37073, Göttingen, Germany
| | - Mohammed Al-Azzani
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Waldweg 33, 37073, Göttingen, Germany
| | - Luisa Maria Gatzemeier
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Waldweg 33, 37073, Göttingen, Germany
| | - Michael Hoppert
- Department of General Microbiology, Institute of Microbiology and Genetics, University of Göttingen, Grisebachstr. 8, 37077, Göttingen, Germany
| | - Dora Kaloyanova
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, the Netherlands
| | - Tiago F Outeiro
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Waldweg 33, 37073, Göttingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK; Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077, Göttingen, Germany
| | - Piotr Neumann
- Department of Molecular Structural Biology, Institute of Microbiology & Genetics, University of Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Blagovesta Popova
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Göttingen, Grisebachstr. 8, 37077, Göttingen, Germany.
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Göttingen, Grisebachstr. 8, 37077, Göttingen, Germany.
| |
Collapse
|
2
|
Kang J, Huang G, Ma L, Tong Y, Shahapal A, Chen P, Shen J. Cell-autonomous role of leucine-rich repeat kinase in the protection of dopaminergic neuron survival. eLife 2024; 12:RP92673. [PMID: 38856715 PMCID: PMC11164531 DOI: 10.7554/elife.92673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of Parkinson's disease (PD). However, whether LRRK2 mutations cause PD and degeneration of dopaminergic (DA) neurons via a toxic gain-of-function or a loss-of-function mechanism is unresolved and has pivotal implications for LRRK2-based PD therapies. In this study, we investigate whether Lrrk2 and its functional homolog Lrrk1 play a cell-intrinsic role in DA neuron survival through the development of DA neuron-specific Lrrk conditional double knockout (cDKO) mice. Unlike Lrrk germline DKO mice, DA neuron-restricted Lrrk cDKO mice exhibit normal mortality but develop age-dependent loss of DA neurons, as shown by the progressive reduction of DA neurons in the substantia nigra pars compacta (SNpc) at the ages of 20 and 24 months. Moreover, DA neurodegeneration is accompanied with increases in apoptosis and elevated microgliosis in the SNpc as well as decreases in DA terminals in the striatum, and is preceded by impaired motor coordination. Taken together, these findings provide the unequivocal evidence for the cell-intrinsic requirement of LRRK in DA neurons and raise the possibility that LRRK2 mutations may impair its protection of DA neurons, leading to DA neurodegeneration in PD.
Collapse
Affiliation(s)
- Jongkyun Kang
- Department of Neurology, Brigham and Women’s HospitalBostonUnited States
| | - Guodong Huang
- Department of Neurology, Brigham and Women’s HospitalBostonUnited States
| | - Long Ma
- Department of Neurology, Brigham and Women’s HospitalBostonUnited States
| | - Youren Tong
- Department of Neurology, Brigham and Women’s HospitalBostonUnited States
| | - Anu Shahapal
- Department of Neurology, Brigham and Women’s HospitalBostonUnited States
| | - Phoenix Chen
- Department of Neurology, Brigham and Women’s HospitalBostonUnited States
| | - Jie Shen
- Department of Neurology, Brigham and Women’s HospitalBostonUnited States
- Program in Neuroscience, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
3
|
Kang J, Huang G, Ma L, Tong Y, Shahapal A, Chen P, Shen J. Cell autonomous role of leucine-rich repeat kinase in protection of dopaminergic neuron survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.06.561293. [PMID: 37873418 PMCID: PMC10592668 DOI: 10.1101/2023.10.06.561293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of Parkinson's disease (PD), which is the leading neurodegenerative movement disorder characterized by the progressive loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc). However, whether LRRK2 mutations cause PD and degeneration of DA neurons via a toxic gain-of-function or a loss-of-function mechanism is unresolved and has pivotal implications for LRRK2-based PD therapies. In this study, we investigate whether LRRK2 and its functional homologue LRRK1 play an essential, intrinsic role in DA neuron survival through the development of DA neuron-specific LRRK conditional double knockout (cDKO) mice. We first generated and characterized floxed LRRK1 and LRRK2 mice and then confirmed that germline deletions of the floxed LRRK1 and LRRK2 alleles result in null mutations, as evidenced by the absence of LRRK1 and LRRK2 mRNA and protein in the respective homozygous deleted mutant mice. We further examined the specificity of Cre-mediated recombination driven by the dopamine transporter-Cre (DAT-Cre) knockin (KI) allele using a GFP reporter line and confirmed that DAT-Cre-mediated recombination is restricted to DA neurons in the SNpc. Crossing these validated floxed LRRK1 and LRRK2 mice with DAT-Cre KI mice, we then generated DA neuron-restricted LRRK cDKO mice and further showed that levels of LRRK1 and LRRK2 are reduced in dissected ventral midbrains of LRRK cDKO mice. While DA neuron-restricted LRRK cDKO mice of both sexes exhibit normal mortality and body weight, they develop age-dependent loss of DA neurons in the SNpc, as demonstrated by the progressive reduction of DA neurons in the SNpc of LRRK cDKO mice at the ages of 20 and 24 months but the unaffected number of DA neurons at the age of 15 months. Moreover, DA neurodegeneration is accompanied with increases of apoptosis and elevated microgliosis in the SNpc as well as decreases of DA terminals in the striatum, and is preceded by impaired motor coordination. Taken together, these findings provide the unequivocal evidence for the importance of LRRK in DA neurons and raise the possibility that LRRK2 mutations may impair its protection of DA neurons, leading to DA neurodegeneration in PD.
Collapse
Affiliation(s)
- Jongkyun Kang
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| | - Guodong Huang
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| | - Long Ma
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| | - Youren Tong
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| | - Anu Shahapal
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| | - Phoenix Chen
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| | - Jie Shen
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States of America
- Program in Neuroscience, Harvard Medical School, Boston, MA 02115, United States of America
| |
Collapse
|
4
|
Zhang P, Lu Y, Li Y, Wang K, An H, Tan Y. Genome-wide DNA methylation analysis in schizophrenia with tardive dyskinesia: a preliminary study. Genes Genomics 2023; 45:1317-1328. [PMID: 37414911 DOI: 10.1007/s13258-023-01414-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 06/01/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Tardive dyskinesia (TD) develops in 20-30% of schizophrenia patients and up to 50% in patients > 50 years old. DNA methylation may play an important role in the development of TD. OBJECTIVE DNA methylation analyses in schizophrenia with TD. METHODS We conducted a genome-wide DNA methylation analysis in schizophrenia with TD using methylated DNA immunoprecipitation coupled with next-generation sequencing (MeDIP-Seq) in a Chinese sample including five schizophrenia patients with TD and five without TD (NTD), and five healthy controls. The results were expressed as the log2FC, fold change of normalized tags between two groups within the differentially methylated region (DMR). For validation, the pyrosequencing was used to quantify DNA methylation levels of several methylated genes in an independent sample (n = 30). RESULTS Through genome-wide MeDIP-Seq analysis, we identified 116 genes that were significantly differentially methylated in promotor regions in comparison of TD group with NTD group including 66 hypermethylated genes (top 4 genes are GABRR1, VANGL2, ZNF534, and ZNF746) and 50 hypomethylated genes (top 4 genes are DERL3, GSTA4, KNCN, and LRRK1). Part of these genes (such as DERL3, DLGAP2, GABRR1, KLRG2, LRRK1, VANGL2, and ZP3) were previously reported to be associated with methylation in schizophrenia. Gene Ontology enrichment and KEGG pathway analyses identified several pathways. So far, we have confirmed the methylation of 3 genes (ARMC6, WDR75, and ZP3) in schizophrenia with TD using pyrosequencing. CONCLUSIONS This study identified number of methylated genes and pathways for TD and will provide potential biomarkers for TD and serve as a resource for replication in other populations.
Collapse
Affiliation(s)
- Ping Zhang
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, 100096, China
| | - Yongke Lu
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755, USA
| | - Yanli Li
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, 100096, China
| | - Kesheng Wang
- Department of Family and Community Health, School of Nursing, Health Sciences Center, West Virginia University, Office 6419, Post Office Box 9600, Morgantown, WV, 26506, USA.
| | - Huimei An
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, 100096, China
| | - Yunlong Tan
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, 100096, China.
| |
Collapse
|
5
|
Urwyler-Rösselet C, Tanghe G, Devos M, Hulpiau P, Saeys Y, Declercq W. Functions of the RIP kinase family members in the skin. Cell Mol Life Sci 2023; 80:285. [PMID: 37688617 PMCID: PMC10492769 DOI: 10.1007/s00018-023-04917-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/08/2023] [Accepted: 08/08/2023] [Indexed: 09/11/2023]
Abstract
The receptor interacting protein kinases (RIPK) are a family of serine/threonine kinases that are involved in the integration of various stress signals. In response to several extracellular and/or intracellular stimuli, RIP kinases engage signaling cascades leading to the activation of NF-κB and mitogen-activated protein kinases, cell death, inflammation, differentiation and Wnt signaling and can have kinase-dependent and kinase-independent functions. Although it was previously suggested that seven RIPKs are part of the RIPK family, phylogenetic analysis indicates that there are only five genuine RIPKs. RIPK1 and RIPK3 are mainly involved in controlling and executing necroptosis in keratinocytes, while RIPK4 controls proliferation and differentiation of keratinocytes and thereby can act as a tumor suppressor in skin. Therefore, in this review we summarize and discuss the functions of RIPKs in skin homeostasis as well as the signaling pathways involved.
Collapse
Affiliation(s)
- Corinne Urwyler-Rösselet
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Giel Tanghe
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
| | - Michael Devos
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
| | - Paco Hulpiau
- VIB Center for Inflammation Research, Ghent, Belgium
- Howest University of Applied Sciences, Brugge, Belgium
| | - Yvan Saeys
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics and Computer Science, Ghent University, Ghent, Belgium
| | - Wim Declercq
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
- VIB Center for Inflammation Research, Ghent, Belgium.
| |
Collapse
|
6
|
Yiğit EN, Sönmez E, Yüksel İ, Aksan Kurnaz I, Çakır T. A transcriptome based approach to predict candidate drug targets and drugs for Parkinson's disease using an in vitro 6-OHDA model. Mol Omics 2023; 19:218-228. [PMID: 36723117 DOI: 10.1039/d2mo00267a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The most common treatment strategies for Parkinson's disease (PD) aim to slow down the neurodegeneration process or control the symptoms. In this study, using an in vitro PD model we carried out a transcriptome-based drug target prediction strategy. We identified novel drug target candidates by mapping genes upregulated in 6-OHDA-treated cells on a human protein-protein interaction network. Among the predicted targets, we show that AKR1C3 and CEBPB are promising in validating our bioinformatics approach since their known ligands, rutin and quercetin, respectively, act as neuroprotective drugs that effectively decrease cell death, and restore the expression profiles of key genes upregulated in 6-OHDA-treated cells. We also show that these two genes upregulated in our in vitro PD model are downregulated to basal levels upon drug administration. As a further validation of our methodology, we further confirm that the potential target genes identified with our bioinformatics approach are also upregulated in post-mortem transcriptome samples of PD patients from the literature. Therefore, we propose that this methodology predicts novel drug targets AKR1C3 and CEBPB, which are relevant to future clinical applications as potential drug repurposing targets for PD. Our systems-based computational approach to predict candidate drug targets can be employed in identifying novel drug targets in other diseases without a priori assumption.
Collapse
Affiliation(s)
- Esra Nur Yiğit
- Institute of Biotechnology, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey.,Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, İstanbul, Turkey
| | - Ekin Sönmez
- Institute of Biotechnology, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey
| | - İsa Yüksel
- Department of Bioengineering, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey.
| | - Işıl Aksan Kurnaz
- Institute of Biotechnology, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey.,Department of Molecular Biology and Genetics, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey
| | - Tunahan Çakır
- Department of Bioengineering, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey.
| |
Collapse
|
7
|
Transcriptomic analysis reveals an association of FCGBP with Parkinson’s disease. NPJ Parkinsons Dis 2022; 8:157. [DOI: 10.1038/s41531-022-00415-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 10/19/2022] [Indexed: 11/13/2022] Open
Abstract
AbstractTranscriptomics in Parkinson’s disease (PD) offers new insights into the molecular mechanism of PD pathogenesis. Several pathways, such as inflammation and protein degradation, have been identified by differential gene expression analysis. Our aim was to identify gene expression differences underlying the disease etiology and the discovery of pre-symptomatic risk biomarkers for PD from a multicenter study in the context of the PROPAG-AGEING project. We performed RNA sequencing from 47 patients with de novo PD, 10 centenarians, and 65 healthy controls. Using identified differentially expressed genes, functional annotations were assigned using gene ontology to unveil significant enriched biological processes. The expression of 16 selected genes was validated using OpenArray® assays and samples from independent cohorts of 201 patients with advanced PD, 340 healthy siblings of PD patients, and 177 healthy controls. Differential gene expression analysis identified higher FCGBP expression in patients with de novo PD compared with healthy controls and compared with centenarians. Furthermore, FCGBP showed no differences in terms of population origin or aging process. The increased FCGBP expression was validated in patients with advanced PD and their siblings. Thus, we provided evidence for an upregulation of FCGBP mRNA levels not only in patients with PD but also in individuals at putative higher risk of PD, suggesting that it could be important in gut–brain PD interaction, mediating the connection between microbiota and intestinal inflammatory processes, as well as neuroinflammation and neurodegeneration.
Collapse
|
8
|
Ermine K, Yu J, Zhang L. Role of Receptor Interacting Protein (RIP) kinases in cancer. Genes Dis 2022; 9:1579-1593. [PMID: 36157481 PMCID: PMC9485196 DOI: 10.1016/j.gendis.2021.10.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 12/25/2022] Open
Abstract
The Receptor Interacting Protein (RIP) kinase family consists of seven Serine/Threonine kinases, which plays a key signaling role in cell survival and cell death. Each RIP family member contains a conserved kinase domain and other domains that determine the specific kinase function through protein-protein interactions. RIP1 and RIP3 are best known for their critical roles in necroptosis, programmed necrosis and a non-apoptotic inflammatory cell death process. Dysregulation of RIP kinases contributes to a variety of pathogenic conditions such as inflammatory diseases, neurological diseases, and cancer. In cancer cells, alterations of RIP kinases at genetic, epigenetic and expression levels are frequently found, and suggested to promote tumor progression and metastasis, escape of antitumor immune response, and therapeutic resistance. However, RIP kinases can be either pro-tumor or anti-tumor depending on specific tumor types and cellular contexts. Therapeutic agents for targeting RIP kinases have been tested in clinical trials mainly for inflammatory diseases. Deregulated expression of these kinases in different types of cancer suggests that they represent attractive therapeutic targets. The focus of this review is to outline the role of RIP kinases in cancer, highlighting potential opportunities to manipulate these proteins in cancer treatment.
Collapse
Affiliation(s)
- Kaylee Ermine
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Jian Yu
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Lin Zhang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
9
|
Lv S, Jiang Y, Li Y, Huang R, Peng L, Ma Z, Lu N, Lin X, Yan J. Comparative and evolutionary analysis of RIP kinases in immune responses. Front Genet 2022; 13:796291. [PMID: 36263437 PMCID: PMC9573974 DOI: 10.3389/fgene.2022.796291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 08/01/2022] [Indexed: 11/29/2022] Open
Abstract
The group of receptor-interacting protein (RIP) kinases has seven members (RIPK1–7), with one homologous kinase domain but distinct non-kinase regions. Although RIPK1–3 have emerged as key modulators of inflammation and cell death, few studies have connected RIPK4–7 to immune responses. The divergence in domain structures and paralogue information in the Ensembl database have raised question about the phylogeny of RIPK1–7. In this study, phylogenetic trees of RIPK1–7 and paralogues constructed using full-length amino acid sequences or Kinase domain demonstrate that RIPK6 and RIPK7 are distinct from RIPK1–5 and paralogues shown in the Ensembl database are inaccurate. Comparative and evolutionary analyses were subsequently performed to gain new clues about the potential functions of RIPK3–7. RIPK3 gene loss in birds and animals that undergo torpor, a common physiological phenomenon in cold environments, implies that RIPK3 may be involved in ischemia-reperfusion injury and/or high metabolic rate. The negligible expression of RIPK4 and RIPK5 in immune cells is likely responsible for the lack of studies on the direct role of these members in immunity; RIPK6 and RIPK7 are conserved among plants, invertebrates and vertebrates, and dominantly expressed in innate immune cells, indicating their roles in innate immunity. Overall, our results provide insights into the multifaceted and conserved biochemical functions of RIP kinases.
Collapse
Affiliation(s)
- Shangge Lv
- Department of Diagnostics, Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yu Jiang
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health. University of Memphis, Memphis, TN, United States
| | - Yuzheng Li
- College of Land Science and Technology, China Agricultural University, Beijing, China
| | - Ruilin Huang
- Department of Diagnostics, Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lingyu Peng
- Department of Diagnostics, Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhaoyin Ma
- Department of Diagnostics, Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Nan Lu
- Department of Diagnostics, Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Nan Lu, ; Xiaoying Lin, ; Jie Yan,
| | - Xiaoying Lin
- Department of Diagnostics, Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Nan Lu, ; Xiaoying Lin, ; Jie Yan,
| | - Jie Yan
- Department of Diagnostics, Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Nan Lu, ; Xiaoying Lin, ; Jie Yan,
| |
Collapse
|
10
|
Galano M, Ezzat S, Papadopoulos V. SCP2 variant is associated with alterations in lipid metabolism, brainstem neurodegeneration, and testicular defects. Hum Genomics 2022; 16:32. [PMID: 35996156 PMCID: PMC9396802 DOI: 10.1186/s40246-022-00408-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/11/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The detoxification of very long-chain and branched-chain fatty acids and the metabolism of cholesterol to form bile acids occur largely through a process called peroxisomal β-oxidation. Mutations in several peroxisomal proteins involved in β-oxidation have been reported, resulting in diseases characterized by neurological defects. The final step of the peroxisomal β-oxidation pathway is catalyzed by sterol carrier protein-x (SCPx), which is encoded by the SCP2 gene. Previously, there have been two reports of SCPx deficiency, which resulted from a homozygous or compound heterozygous SCP2 mutation. We report herein the first patient with a heterozygous SCP2 mutation leading to SCPx deficiency. RESULTS Clinical presentations of the patient included progressive brainstem neurodegeneration, cardiac dysrhythmia, muscle wasting, and azoospermia. Plasma fatty acid analysis revealed abnormal values of medium-, long-, and very long-chain fatty acids. Protein expression of SCPx and other enzymes involved in β-oxidation were altered between patient and normal fibroblasts. RNA sequencing and lipidomic analyses identified metabolic pathways that were altered between patient and normal fibroblasts including PPAR signaling, serotonergic signaling, steroid biosynthesis, and fatty acid degradation. Treatment with fenofibrate or 4-hydroxytamoxifen increased SCPx levels, and certain fatty acid levels in patient fibroblasts. CONCLUSIONS These findings suggest that the patient's SCP2 mutation resulted in decreased protein levels of SCPx, which may be associated with many metabolic pathways. Increasing SCPx levels through pharmacological interventions may reverse some effects of SCPx deficiency. Collectively, this work provides insight into many of the clinical consequences of SCPx deficiency and provides evidence for potential treatment strategies.
Collapse
Affiliation(s)
- Melanie Galano
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Ave, Los Angeles, CA, 90089, USA
| | - Shereen Ezzat
- Department of Medicine, University of Toronto and Princess Margaret Cancer Center, Toronto, ON, M5G 2C1, Canada
| | - Vassilios Papadopoulos
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Ave, Los Angeles, CA, 90089, USA.
| |
Collapse
|
11
|
Xu H, Yu S, Peng K, Gao L, Chen S, Shen Z, Han Z, Chen M, Lin J, Chen S, Kang M. The role of EEF1D in disease pathogenesis: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1600. [PMID: 34790806 PMCID: PMC8576685 DOI: 10.21037/atm-21-5025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/16/2021] [Indexed: 11/17/2022]
Abstract
Objective The purpose of this paper was to investigate the role and mechanism of EEF1D in various diseases, especially in tumorigenesis and development, and explore the possibility of EEF1D as a biological target. Background EEF1D is a part of the EEF1 protein complex, which can produce four protein isoforms, of which three short isoforms are used as translation elongation factors. The three short isoforms play a role in anti-aging, regulating the cell cycle, and promoting the occurrence and development of malignant tumors, and the only long-form isoform plays a role in the development of the nervous system. Methods We searched the PubMed and Web of Science databases for literature up to January 2021 using relevant keywords, including “EEF1D”, “eukaryotic translation elongation factor 1 delta”, “translation elongation factor”, “translation elongation factor and cancer”, and “translation elongation factor and nervous system disease”. We then created an overview of the literature and summarized the results of the paper. Conclusions Through the review of relevant articles, we found that EEF1D is obviously overexpressed in a variety of tumors, and can regulate the proliferation of tumor cells and tumor growth, as well as play a role in tumor invasion. EEF1D is likely to become a new biological target for tumor therapy and diagnosis.
Collapse
Affiliation(s)
- Hui Xu
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shaobin Yu
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Kaiming Peng
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Lei Gao
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Sui Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhimin Shen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Ziyang Han
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Mingduan Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jihong Lin
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shuchen Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Mingqiang Kang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Science, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fuzhou, China
| |
Collapse
|
12
|
Skariah G, Todd PK. Translational control in aging and neurodegeneration. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1628. [PMID: 32954679 DOI: 10.1002/wrna.1628] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/19/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022]
Abstract
Protein metabolism plays central roles in age-related decline and neurodegeneration. While a large body of research has explored age-related changes in protein degradation, alterations in the efficiency and fidelity of protein synthesis with aging are less well understood. Age-associated changes occur in both the protein synthetic machinery (ribosomal proteins and rRNA) and within regulatory factors controlling translation. At the same time, many of the interventions that prolong lifespan do so in part by pre-emptively decreasing protein synthesis rates to allow better harmonization to age-related declines in protein catabolism. Here we review the roles of translation regulation in aging, with a specific focus on factors implicated in age-related neurodegeneration. We discuss how emerging technologies such as ribosome profiling and superior mass spectrometric approaches are illuminating age-dependent mRNA-specific changes in translation rates across tissues to reveal a critical interplay between catabolic and anabolic pathways that likely contribute to functional decline. These new findings point to nodes in posttranscriptional gene regulation that both contribute to aging and offer targets for therapy. This article is categorized under: Translation > Translation Regulation Translation > Ribosome Biogenesis Translation > Translation Mechanisms.
Collapse
Affiliation(s)
- Geena Skariah
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Peter K Todd
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
- Ann Arbor VA Healthcare System, Department of Veterans Affairs, Ann Arbor, Michigan, USA
| |
Collapse
|
13
|
Krahn AI, Wells C, Drewry DH, Beitel LK, Durcan TM, Axtman AD. Defining the Neural Kinome: Strategies and Opportunities for Small Molecule Drug Discovery to Target Neurodegenerative Diseases. ACS Chem Neurosci 2020; 11:1871-1886. [PMID: 32464049 DOI: 10.1021/acschemneuro.0c00176] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Kinases are highly tractable drug targets that have reached unparalleled success in fields such as cancer but whose potential has not yet been realized in neuroscience. There are currently 55 approved small molecule kinase-targeting drugs, 48 of which have an anticancer indication. The intrinsic complexity linked to central nervous system (CNS) drug development and a lack of validated targets has hindered progress in developing kinase inhibitors for CNS disorders when compared to other therapeutic areas such as oncology. Identification and/or characterization of new kinases as potential drug targets for neurodegenerative diseases will create opportunities for the development of CNS drugs in the future. The track record of kinase inhibitors in other disease indications supports the idea that with the best targets identified small molecule kinase modulators will become impactful therapeutics for neurodegenerative diseases. This Review highlights the imminent need for new therapeutics to treat the most prevalent neurodegenerative diseases as well as the promise of kinase inhibitors to address this need. With a focus on kinases that remain largely unexplored after decades of dedicated research in the kinase field, we offer specific examples of understudied kinases that are supported by patient-derived data as linked to Alzheimer's disease, Parkinson's disease, and/or amyotrophic lateral sclerosis. Finally, we show literature-reported high-quality inhibitors for several understudied kinases and suggest other kinases that merit additional medicinal chemistry efforts to elucidate their therapeutic potential.
Collapse
Affiliation(s)
- Andrea I. Krahn
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada H3A 2B4
| | - Carrow Wells
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - David H. Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Lenore K. Beitel
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada H3A 2B4
| | - Thomas M. Durcan
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada H3A 2B4
| | - Alison D. Axtman
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
14
|
Hou J, Pang Y, Li Q. Comprehensive Evolutionary Analysis of Lamprey TNFR-Associated Factors (TRAFs) and Receptor-Interacting Protein Kinase (RIPKs) and Insights Into the Functional Characterization of TRAF3/6 and RIPK1. Front Immunol 2020; 11:663. [PMID: 32373123 PMCID: PMC7179693 DOI: 10.3389/fimmu.2020.00663] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 03/23/2020] [Indexed: 12/24/2022] Open
Abstract
TNFR-associated factors (TRAFs) and receptor-interacting protein kinases (RIPKs) are important immunological linker molecules in mammals and play important roles in the TNFα, TLR and IFN signaling pathways. However, the evolutionary origins of these genes in vertebrates have not previously been described in lampreys. In this study, we searched the genomes of Lampetra japonicum, Lethenteron reissneri, and Petromyzon marinus for genes encoding trafs and ripks and performed homologous sequence alignment, phylogenetic tree, functional domain, conserved motif, gene structure, and synteny analyses to determine their evolutionary relationships. The distribution of the lamprey traf and ripk families and the immune response of the gene families in lampreys stimulated by different pathogens were also demonstrated, suggesting a role of structural changes in expression and functional diversification. Additionally, the dual luciferase reporter gene assay showed that the addition of exogenous immunomodulator (TNFα or IFN) to the overexpression of LjLRIPK1a or LjTRAF3/6 significantly downregulated NF-κB or ISRE activation. LjRIPK1a can significantly enhance caspase-8 activity, and overexpression of LjRIPK1a or LjTRAF3a/6 in HEK293T cells results in cell apoptosis. In summary, this study makes an important contribution to the understanding of the traf and ripk gene families in different vertebrates. Our results also provide new evidence for the evolution of vertebrate TRAFs and RIPKs and their impacts on immune regulation.
Collapse
Affiliation(s)
- Jianqiang Hou
- College of Life Sciences, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Yue Pang
- College of Life Sciences, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Qingwei Li
- College of Life Sciences, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| |
Collapse
|
15
|
Miryounesi M, Nikfar A, Changi‐Ashtiani M, Shahrooei M, Dinmohammadi H, Shahani T, Zarvandi S, Bahrami T, Momenilandi M, Rokni‐Zadeh H. A novel homozygous
LRRK1
stop gain mutation in a patient suspected with osteosclerotic metaphyseal dysplasia. Ann Hum Genet 2019; 84:102-106. [DOI: 10.1111/ahg.12352] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 07/25/2019] [Accepted: 08/27/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Mohammad Miryounesi
- Genomic Research Center Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Ali Nikfar
- Department of Genetics and Molecular Medicine, School of Medicine Zanjan University of Medical Sciences (ZUMS) Zanjan Iran
| | - Majid Changi‐Ashtiani
- School of Mathematics Institute for Research in Fundamental Sciences (IPM) Tehran Iran
| | - Mohammad Shahrooei
- Department of Microbiology and Immunology, Laboratory of Clinical Bacteriology and Mycology KU Leuven Leuven Belgium
- Specialized Immunology Laboratory of Dr. Shahrooei Ahvaz Iran
| | - Hossein Dinmohammadi
- Department of Genetics and Molecular Medicine, School of Medicine Zanjan University of Medical Sciences (ZUMS) Zanjan Iran
| | - Tina Shahani
- Department of Genetics and Molecular Medicine, School of Medicine Zanjan University of Medical Sciences (ZUMS) Zanjan Iran
| | - Samira Zarvandi
- Department of Medical Biotechnology, School of Medicine Zanjan University of Medical Sciences (ZUMS) Zanjan Iran
| | - Tahereh Bahrami
- Department of Medical Biotechnology, School of Medicine Zanjan University of Medical Sciences (ZUMS) Zanjan Iran
| | | | - Hassan Rokni‐Zadeh
- Department of Medical Biotechnology, School of Medicine Zanjan University of Medical Sciences (ZUMS) Zanjan Iran
| |
Collapse
|
16
|
Lewis PA. Leucine rich repeat kinase 2: a paradigm for pleiotropy. J Physiol 2019; 597:3511-3521. [PMID: 31124140 DOI: 10.1113/jp276163] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/09/2019] [Indexed: 12/11/2022] Open
Abstract
The LRRK2 gene, coding for leucine rich repeat kinase 2 (LRRK2), is a key player in the genetics of Parkinson's disease. Despite extensive efforts, LRRK2 has proved remarkably evasive with regard to attempts to understand both the role it plays in disease and its normal physiological function. At least part of why LRRK2 has been so difficult to define is that it appears to be many things to many cellular functions and diseases - a pleiotropic actor at both the genetic and the molecular level. Gaining greater insight into the mechanisms and pathways allowing LRRK2 to act in this manner will have implications for our understanding of the role of genes in the aetiology of complex disease, the molecular underpinnings of signal transduction pathways in the cell, and drug discovery in the genome era.
Collapse
Affiliation(s)
- Patrick A Lewis
- School of Pharmacy, University of Reading, Whiteknights, Reading, RG6 6AP, UK.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| |
Collapse
|
17
|
Porf-2 = Arhgap39 = Vilse: A Pivotal Role in Neurodevelopment, Learning and Memory. eNeuro 2018; 5:eN-REV-0082-18. [PMID: 30406180 PMCID: PMC6220574 DOI: 10.1523/eneuro.0082-18.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 01/06/2023] Open
Abstract
Small GTP-converting enzymes, GTPases, are essential for the efficient completion of many physiological and developmental processes. They are regulated by GTPase activating proteins (GAPs) and guanine nucleotide exchange factors (GEFs). Arhgap39, also known as preoptic regulatory factor-2 (Porf-2) or Vilse, a member of the Rho GAP group, was first identified in 1990 in the rat CNS. It has since been shown to regulate apoptosis, cell migration, neurogenesis, and cerebral and hippocampal dendritic spine morphology. It plays a pivotal role in neurodevelopment and learning and memory. Homologous or orthologous genes are found in more than 280 vertebrate and invertebrate species, suggesting preservation through evolution. Not surprisingly, loss of the Arhgap39/Porf-2 gene in mice manifests as an embryonic lethal condition. Although Arhgap39/Porf-2 is highly expressed in the brain, it is also widely distributed throughout the body, with potential additional roles in oncogenesis and morphogenesis. This review summarizes, for the first time, the known information about this gene under its various names, in addition to considering its transcripts and proteins. The majority of findings described have been made in rats, mice, humans, and fruit flies. This work surveys the known functions, functional mediators, variables modifying expression and upstream regulators of expression, and potential physiological and pathological roles of Arhgap39/Porf-2 in health and disease.
Collapse
|
18
|
Schormair B, Kemlink D, Mollenhauer B, Fiala O, Machetanz G, Roth J, Berutti R, Strom TM, Haslinger B, Trenkwalder C, Zahorakova D, Martasek P, Ruzicka E, Winkelmann J. Diagnostic exome sequencing in early-onset Parkinson's disease confirms VPS13C as a rare cause of autosomal-recessive Parkinson's disease. Clin Genet 2018; 93:603-612. [PMID: 28862745 DOI: 10.1111/cge.13124] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/24/2017] [Accepted: 07/30/2017] [Indexed: 12/18/2022]
Abstract
Parkinson's disease (PD) is a genetically heterogeneous disorder and new putative disease genes are discovered constantly. Therefore, whole-exome sequencing could be an efficient approach to genetic testing in PD. To evaluate its performance in early-onset sporadic PD, we performed diagnostic exome sequencing in 80 individuals with manifestation of PD symptoms at age 40 or earlier and a negative family history of PD. Variants in validated and candidate disease genes and risk factors for PD and atypical Parkinson syndromes were annotated, followed by further analysis for selected variants. We detected pathogenic variants in Mendelian genes in 6.25% of cases and high-impact risk factor variants in GBA in 5% of cases, resulting in overall maximum diagnostic yield of 11.25%. One individual was compound heterozygous for variants affecting canonical splice sites in VPS13C, confirming the causal role of protein-truncating variants in this gene linked to autosomal-recessive early-onset PD. Despite the low diagnostic yield of exome sequencing in sporadic early-onset PD, the confirmation of the recently discovered VPS13C gene highlights its advantage over using predefined gene panels.
Collapse
Affiliation(s)
- B Schormair
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany.,Institute of Human Genetics, Technische Universität München, Munich, Germany
| | - D Kemlink
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine and General University Hospital in Prague, Charles University in Prague, Prague, Czech Republic
| | - B Mollenhauer
- Paracelsus-Elena-Klinik, Kassel, Germany.,Institute of Neuropathology and Department of Neurosurgery, University Medical Center Göttingen, Göttingen, Germany
| | - O Fiala
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine and General University Hospital in Prague, Charles University in Prague, Prague, Czech Republic.,Institute of Neuropsychiatric Care (INEP), Prague, Czech Republic
| | | | - J Roth
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine and General University Hospital in Prague, Charles University in Prague, Prague, Czech Republic
| | - R Berutti
- Institute of Human Genetics, Helmholtz Zentrum München, Munich, Germany
| | - T M Strom
- Institute of Human Genetics, Technische Universität München, Munich, Germany.,Institute of Human Genetics, Helmholtz Zentrum München, Munich, Germany
| | - B Haslinger
- Neurologische Klinik und Poliklinik, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | | | - D Zahorakova
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine and General University Hospital in Prague, Charles University in Prague, Prague, Czech Republic
| | - P Martasek
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine and General University Hospital in Prague, Charles University in Prague, Prague, Czech Republic
| | - E Ruzicka
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine and General University Hospital in Prague, Charles University in Prague, Prague, Czech Republic
| | - J Winkelmann
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany.,Institute of Human Genetics, Technische Universität München, Munich, Germany.,Neurologische Klinik und Poliklinik, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
19
|
Langston RG, Rudenko IN, Cookson MR. The function of orthologues of the human Parkinson's disease gene LRRK2 across species: implications for disease modelling in preclinical research. Biochem J 2016; 473:221-32. [PMID: 26811536 PMCID: PMC5165698 DOI: 10.1042/bj20150985] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In the period since LRRK2 (leucine-rich repeat kinase 2) was identified as a causal gene for late-onset autosomal dominant parkinsonism, a great deal of work has been aimed at understanding whether the LRRK2 protein might be a druggable target for Parkinson's disease (PD). As part of this effort, animal models have been developed to explore both the normal and the pathophysiological roles of LRRK2. However, LRRK2 is part of a wider family of proteins whose functions in different organisms remain poorly understood. In this review, we compare the information available on biochemical properties of LRRK2 homologues and orthologues from different species from invertebrates (e.g. Caenorhabditis elegans and Drosophila melanogaster) to mammals. We particularly discuss the mammalian LRRK2 homologue, LRRK1, and those species where there is only a single LRRK homologue, discussing examples where each of the LRRK family of proteins has distinct properties as well as those cases where there appear to be functional redundancy. We conclude that uncovering the function of LRRK2 orthologues will help to elucidate the key properties of human LRRK2 as well as to improve understanding of the suitability of different animal models for investigation of LRRK2-related PD.
Collapse
Affiliation(s)
- Rebekah G. Langston
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, NIA, NIH, Bethesda, MD, 20892
| | - Iakov N. Rudenko
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, NIA, NIH, Bethesda, MD, 20892
| | - Mark R. Cookson
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, NIA, NIH, Bethesda, MD, 20892
| |
Collapse
|
20
|
Wallings R, Manzoni C, Bandopadhyay R. Cellular processes associated with LRRK2 function and dysfunction. FEBS J 2015; 282:2806-26. [PMID: 25899482 PMCID: PMC4522467 DOI: 10.1111/febs.13305] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/23/2015] [Accepted: 04/20/2015] [Indexed: 02/07/2023]
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2)-encoding gene are the most common cause of monogenic Parkinson's disease. The identification of LRRK2 polymorphisms associated with increased risk for sporadic Parkinson's disease, as well as the observation that LRRK2-Parkinson's disease has a pathological phenotype that is almost indistinguishable from the sporadic form of disease, suggested LRRK2 as the culprit to provide understanding for both familial and sporadic Parkinson's disease cases. LRRK2 is a large protein with both GTPase and kinase functions. Mutations segregating with Parkinson's disease reside within the enzymatic core of LRRK2, suggesting that modification of its activity impacts greatly on disease onset and progression. Although progress has been made since its discovery in 2004, there is still much to be understood regarding LRRK2's physiological and neurotoxic properties. Unsurprisingly, given the presence of multiple enzymatic domains, LRRK2 has been associated with a diverse set of cellular functions and signalling pathways including mitochondrial function, vesicle trafficking together with endocytosis, retromer complex modulation and autophagy. This review discusses the state of current knowledge on the role of LRRK2 in health and disease with discussion of potential substrates of phosphorylation and functional partners with particular emphasis on signalling mechanisms. In addition, the use of immune cells in LRRK2 research and the role of oxidative stress as a regulator of LRRK2 activity and cellular function are also discussed.
Collapse
Affiliation(s)
- Rebecca Wallings
- Reta Lila Weston Institute of Neurological Studies and Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Claudia Manzoni
- School of Pharmacy, University of Reading, UK.,UCL Institute of Neurology, London, UK
| | - Rina Bandopadhyay
- Reta Lila Weston Institute of Neurological Studies and Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| |
Collapse
|
21
|
Kaitsuka T, Matsushita M. Regulation of translation factor EEF1D gene function by alternative splicing. Int J Mol Sci 2015; 16:3970-9. [PMID: 25686034 PMCID: PMC4346937 DOI: 10.3390/ijms16023970] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/04/2015] [Indexed: 11/16/2022] Open
Abstract
Alternative splicing is an exquisite mechanism that allows one coding gene to have multiple functions. The alternative splicing machinery is necessary for proper development, differentiation and stress responses in a variety of organisms, and disruption of this machinery is often implicated in human diseases. Previously, we discovered a long form of eukaryotic elongation factor 1Bδ (eEF1Bδ; this long-form eEF1Bδ results from alternative splicing of EEF1D transcripts and regulates the cellular stress response by transcriptional activation, not translational enhancement, of heat-shock responsive genes. In this review, we discuss the molecular function of EEF1D alternative splicing products and the estimated implication of human diseases.
Collapse
Affiliation(s)
- Taku Kaitsuka
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| | - Masayuki Matsushita
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan.
| |
Collapse
|
22
|
Martin I, Kim JW, Dawson VL, Dawson TM. LRRK2 pathobiology in Parkinson's disease. J Neurochem 2014; 131:554-65. [PMID: 25251388 DOI: 10.1111/jnc.12949] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/14/2014] [Accepted: 09/16/2014] [Indexed: 12/11/2022]
Abstract
Mutations in the catalytic Roc-COR and kinase domains of leucine-rich repeat kinase 2 (LRRK2) are a common cause of familial Parkinson's disease (PD). LRRK2 mutations cause PD with age-related penetrance and clinical features identical to late-onset sporadic PD. Biochemical studies support an increase in LRRK2 kinase activity and a decrease in GTPase activity for kinase domain and Roc-COR mutations, respectively. Strong evidence exists that LRRK2 toxicity is kinase dependent leading to extensive efforts to identify selective and brain-permeable LRRK2 kinase inhibitors for clinical development. Cell and animal models of PD indicate that LRRK2 mutations affect vesicular trafficking, autophagy, protein synthesis, and cytoskeletal function. Although some of these biological functions are affected consistently by most disease-linked mutations, others are not and it remains currently unclear how mutations that produce variable effects on LRRK2 biochemistry and function all commonly result in the degeneration and death of dopamine neurons. LRRK2 is typically present in Lewy bodies and its toxicity in mammalian models appears to be dependent on the presence of α-synuclein, which is elevated in human iPS-derived dopamine neurons from patients harboring LRRK2 mutations. Here, we summarize biochemical and functional studies of LRRK2 and its mutations and focus on aberrant vesicular trafficking and protein synthesis as two leading mechanisms underlying LRRK2-linked disease.
Collapse
Affiliation(s)
- Ian Martin
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|