1
|
Wan L, Baitao Z, Yuxin T, Zhongfa C, Jihui Z, Ning H, Bicheng Y, Shuhui H, Yanqiu L, Huizhen Y. Mate-pair sequencing assisted prenatal counseling for a rare complex chromosomal rearrangement carrier. Hum Mol Genet 2025; 34:864-869. [PMID: 40044118 PMCID: PMC12056311 DOI: 10.1093/hmg/ddaf012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/23/2024] [Accepted: 01/13/2025] [Indexed: 05/08/2025] Open
Abstract
OBJECTIVE This study was aimed to identify a rare complex rearrangement and assist prenatal counseling. METHOD Mate-pair sequencing (MPseq) combined with karyotypes, copy number variants sequencing and whole exome sequencing was used to provide accurate chromosome breakpoints and assist prenatal diagnosis for a mentally retarded pregnant woman. RESULT MPseq indicated a complex rearrangement involved 25 breakpoints and fusions, disrupting 6 genes. Among which, ZMIZ1 was associated with neurodevelopmental disorders with dysmorphic facies and distal skeletal abnormalities, which was consistent with the phenotype of pregnant women. CONCLUSION MPseq was a cost-effective and accurate method that could be used as a complementary tool for human genetic diagnosis and prenatal counseling.
Collapse
Affiliation(s)
- Lu Wan
- Medical Genetic Center, Jiangxi Provincial Key Laboratory of Birth Defect for Prevention and Control, Jiangxi Maternal and Child Health Hospital, #508 Xizhan Street, Honggutan District, Nanchang, Jiangxi 330006, China
| | - Zeng Baitao
- Medical Genetic Center, Jiangxi Provincial Key Laboratory of Birth Defect for Prevention and Control, Jiangxi Maternal and Child Health Hospital, #508 Xizhan Street, Honggutan District, Nanchang, Jiangxi 330006, China
| | - Tan Yuxin
- Maternal and Child Health Affiliated Hospital of Nanchang University, #461 Bayi Road, Donghu District, Nanchang, Jiangxi 330006, China
| | - Chen Zhongfa
- Medical Genetic Center, Jiangxi Provincial Key Laboratory of Birth Defect for Prevention and Control, Jiangxi Maternal and Child Health Hospital, #508 Xizhan Street, Honggutan District, Nanchang, Jiangxi 330006, China
| | - Zhou Jihui
- Medical Genetic Center, Jiangxi Provincial Key Laboratory of Birth Defect for Prevention and Control, Jiangxi Maternal and Child Health Hospital, #508 Xizhan Street, Honggutan District, Nanchang, Jiangxi 330006, China
| | - Huang Ning
- Medical Genetic Center, Jiangxi Provincial Key Laboratory of Birth Defect for Prevention and Control, Jiangxi Maternal and Child Health Hospital, #508 Xizhan Street, Honggutan District, Nanchang, Jiangxi 330006, China
| | - Yang Bicheng
- Medical Genetic Center, Jiangxi Provincial Key Laboratory of Birth Defect for Prevention and Control, Jiangxi Maternal and Child Health Hospital, #508 Xizhan Street, Honggutan District, Nanchang, Jiangxi 330006, China
| | - Huang Shuhui
- Medical Genetic Center, Jiangxi Provincial Key Laboratory of Birth Defect for Prevention and Control, Jiangxi Maternal and Child Health Hospital, #508 Xizhan Street, Honggutan District, Nanchang, Jiangxi 330006, China
| | - Liu Yanqiu
- Medical Genetic Center, Jiangxi Provincial Key Laboratory of Birth Defect for Prevention and Control, Jiangxi Maternal and Child Health Hospital, #508 Xizhan Street, Honggutan District, Nanchang, Jiangxi 330006, China
| | - Yuan Huizhen
- Medical Genetic Center, Jiangxi Provincial Key Laboratory of Birth Defect for Prevention and Control, Jiangxi Maternal and Child Health Hospital, #508 Xizhan Street, Honggutan District, Nanchang, Jiangxi 330006, China
| |
Collapse
|
2
|
Nguyen AL, Smith EM, Cheeseman IM. Co-essentiality analysis identifies PRR12 as a cohesin interacting protein and contributor to genomic integrity. Dev Cell 2025; 60:1217-1233.e7. [PMID: 39742660 PMCID: PMC12014375 DOI: 10.1016/j.devcel.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 10/07/2024] [Accepted: 12/06/2024] [Indexed: 01/04/2025]
Abstract
The cohesin complex is critical for genome organization and regulation, relying on specialized co-factors to mediate its diverse functional activities. Here, by analyzing patterns of similar gene requirements across cell lines, we identify PRR12 as a mediator of cohesin and genome integrity. We show that PRR12 interacts with NIPBL/MAU2 and the cohesin complex, and that the loss of PRR12 results in reduced cohesin localization and a substantial increase in DNA double-strand breaks in mouse NIH-3T3 cells. Additionally, PRR12 co-localizes with NIPBL to sites of DNA damage in a NIPBL and cohesin-dependent manner. We find that the requirement for PRR12 differs across cell lines, with human HeLa cells exhibiting reduced sensitivity to PRR12 loss compared with mouse NIH-3T3 cells, indicating context-specific roles. Together, our work identifies PRR12 as a regulator of cohesin and provides insight into how genome integrity is maintained across diverse cellular contexts.
Collapse
Affiliation(s)
| | - Eric M Smith
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
3
|
Chang R, Wei M, Li C, Jiang Y, Zhang J. Association between epigenome-wide DNA methylation changes and early neurodevelopment in preschool children: Evidence from a former impoverished county in Central China. Gene 2025; 945:149275. [PMID: 39875007 DOI: 10.1016/j.gene.2025.149275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 01/21/2025] [Accepted: 01/24/2025] [Indexed: 01/30/2025]
Abstract
BACKGROUND Existing epigenome-wide association studies (EWAS) investigating the association between DNA methylation (DNAm) and child neurodevelopment have been predominantly conducted within Western populations, and yielded inconsistent results, leading to a significant gap within non-Western setting, particularly in resource-limited rural areas of Central China. OBJECTIVES To investigate the association between altered epigenome-wide DNAm and neurodevelopment in preschool children from resource-limited rural areas of Central China. METHODS This case-control study involved 64 preschoolers. We assessed children's neurodevelopment using the Gesell Developmental Diagnostic Scale. The neurodevelopmental potential was expressed as a global developmental quotient (DQ) score. We conducted an EWAS with an Illumina Infinium MethylationEPIC v1.0 BeadChip array, using blood samples from 32 suspected developmental delay children (DQ scores < 85) and 32 controls (DQ scores ≥ 85). Differentially methylated probes (DMPs) and differentially methylated regions (DMRs) between the suspected developmental delay and control groups were analyzed. Multivariate linear regression models were used to evaluate the association between global DQ scores and DNAm. Functional enrichment analyses were conducted using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). The BECon tool was utilized to estimate the concordance of CpGs between blood and the human brain. RESULTS A total of 66 DMRs (PFDR < 0.05) were identified between the two groups, but no DMPs were found. After FDR correction, 844 methylated CpG sites exhibited significant associations with the global DQ scores in children. Genes annotated by methylated CpGs were mainly enriched in the "oxytocin signaling pathway", "mTOR signaling pathway", and "thyroid hormone signaling pathway". They were also involved in the "regulation of cell development", "cell-cell junction", and "ATPase activity". Among the top 20 CpGs, nine global DQ scores related-CpGs had blood-brain DNA methylation correlations, and six CpGs among them had an absolute Spearman correlation coefficient bigger than 0.2. CONCLUSIONS Preschoolers from a former impoverished county exhibited epigenome-wide DNAm changes strongly linked to early neurodevelopment. This study enhances our understanding of the epigenetic landscape associated with early neurodevelopment, and suggests the potential for developmenting epigenetic biomarkers that could facilitate the early identification of children at a higher risk of compromised neurodevelopment, as well as holding implication to inform novel interventions, especially in underprivileged regions.
Collapse
Affiliation(s)
- Rui Chang
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengna Wei
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunan Li
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanfen Jiang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianduan Zhang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China.
| |
Collapse
|
4
|
Javidi E, Javidi S, Antaki F, Campeau PM, Ospina LH. A novel ZMIZ1 variant associated with NEDDFSA and new ocular features: case report and review of literature. Ophthalmic Genet 2025; 46:92-100. [PMID: 39658964 DOI: 10.1080/13816810.2024.2438652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/13/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024]
Abstract
INTRODUCTION Neurodevelopmental disorder with dysmorphic facies and distal skeletal anomalies (NEDDFSA) is a recently described syndromic disease linked to ZMIZ1 genetic variants. We present a novel ZMIZ1 variant associated with a phenotype of NEDDFSA in a pediatric patient presenting with multiple anomalies including bilateral congenital ptosis and blepharophimosis, floppy eyelids, telecanthus, downward palpebral slants, myopia, cryptorchidism, hallux valgus and developmental delay. METHODS Genetic testing performed on a large panel revealed a likely pathogenic de novo variant in the ZMIZ1 gene (heterozygous, c.881C>T), consistent with a molecular diagnosis of an autosomal dominant ZMIZ1-related condition. This variant was predicted to result in the amino acid substitution p.Thr294Ile. We also conducted a targeted literature review for reported cases of ZMIZ1 variants and associated phenotypes by searching MEDLINE through PubMed and Google Scholar from inception to May 2024. References and abstracts were screened independently by two authors. Review of the literature permitted the analysis of 27 cases of ZMIZ1 variants in patients with syndromic phenotypes. RESULTS The most common ophthalmic finding was ptosis (35%). Refractive error was common (myopia in 20%, hyperopia in 12%). Other findings included strabismus (12%) and amblyopia (16%). DISCUSSION We describe a novel ZMIZ1 variant associated with NEDDFSA and previously undescribed ocular features. Our literature review summarizes the ophthalmic findings in this seldom encountered disorder, thus providing clear and concise data for clinicians and improving patient care.
Collapse
Affiliation(s)
- Eileen Javidi
- Department of Ophthalmology, Université de Montréal, Montreal, Québec, Canada
- Department of Ophthalmology, Centre Hospitalier Universitaire Sainte-Justine, Montreal, Québec, Canada
| | - Simon Javidi
- Department of Ophthalmology, Université de Montréal, Montreal, Québec, Canada
- Department of Ophthalmology, Centre Hospitalier Universitaire Sainte-Justine, Montreal, Québec, Canada
| | - Fares Antaki
- Department of Ophthalmology, Université de Montréal, Montreal, Québec, Canada
- Department of Ophthalmology, Centre Hospitalier Universitaire Sainte-Justine, Montreal, Québec, Canada
| | - Philippe M Campeau
- Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine and Université de Montréal, Montreal, Québec, Canada
| | - Luis H Ospina
- Department of Ophthalmology, Université de Montréal, Montreal, Québec, Canada
- Department of Ophthalmology, Centre Hospitalier Universitaire Sainte-Justine, Montreal, Québec, Canada
| |
Collapse
|
5
|
Mayfield JM, Hitefield NL, Czajewski I, Vanhye L, Holden L, Morava E, van Aalten DMF, Wells L. O-GlcNAc transferase congenital disorder of glycosylation (OGT-CDG): Potential mechanistic targets revealed by evaluating the OGT interactome. J Biol Chem 2024; 300:107599. [PMID: 39059494 PMCID: PMC11381892 DOI: 10.1016/j.jbc.2024.107599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
O-GlcNAc transferase (OGT) is the sole enzyme responsible for the post-translational modification of O-GlcNAc on thousands of target nucleocytoplasmic proteins. To date, nine variants of OGT that segregate with OGT Congenital Disorder of Glycosylation (OGT-CDG) have been reported and characterized. Numerous additional variants have been associated with OGT-CDG, some of which are currently undergoing investigation. This disorder primarily presents with global developmental delay and intellectual disability (ID), alongside other variable neurological features and subtle facial dysmorphisms in patients. Several hypotheses aim to explain the etiology of OGT-CDG, with a prominent hypothesis attributing the pathophysiology of OGT-CDG to mutations segregating with this disorder disrupting the OGT interactome. The OGT interactome consists of thousands of proteins, including substrates as well as interactors that require noncatalytic functions of OGT. A key aim in the field is to identify which interactors and substrates contribute to the primarily neural-specific phenotype of OGT-CDG. In this review, we will discuss the heterogenous phenotypic features of OGT-CDG seen clinically, the variable biochemical effects of mutations associated with OGT-CDG, and the use of animal models to understand this disorder. Furthermore, we will discuss how previously identified OGT interactors causal for ID provide mechanistic targets for investigation that could explain the dysregulated gene expression seen in OGT-CDG models. Identifying shared or unique altered pathways impacted in OGT-CDG patients will provide a better understanding of the disorder as well as potential therapeutic targets.
Collapse
Affiliation(s)
- Johnathan M Mayfield
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Naomi L Hitefield
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | | | - Lotte Vanhye
- Department of Clinical Genomics and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Laura Holden
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Eva Morava
- Department of Clinical Genomics and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Daan M F van Aalten
- School of Life Sciences, University of Dundee, Dundee, UK; Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| | - Lance Wells
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
6
|
Córdova-Fletes C, Rivera H, Domínguez-Quezada MG, Aguayo-Orozco TA, Garza-González E, Núñez-García LA, Mercado-Silvae FM, Rosales-Reynoso MA, Barros-Núñez P. Whole-Genome Sequencing Reveals a Novel Pathogenic GRIN2B Variant in a Patient with Neurodevelopmental Disorder and an inv(6)(p24p11.2)pat. Cytogenet Genome Res 2024; 164:92-102. [PMID: 38934155 DOI: 10.1159/000539975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024] Open
Abstract
INTRODUCTION Neurodevelopmental disorders (NDDs) are diverse and can be explained by either genomic aberrations or single nucleotide variants. Most likely due to methodological approaches and/or disadvantages, the concurrence of both genetic events in a single patient has hardly been reported and even more rarely the pathogenic variant has been regarded as the cause of the phenotype when a chromosomal alteration is initially identified. CASE PRESENTATION Here, we describe a NDD patient with a 6p nonpathogenic paracentric inversion paternally transmitted and a de novo pathogenic variant in the GRIN2B gene. Molecular-cytogenetic studies characterized the familial 6p inversion and revealed a paternal 9q inversion not transmitted to the patient. Subsequent whole-genome sequencing in the patient-father dyad corroborated the previous findings, discarded inversions-related cryptic genomic rearrangements as causative of the patient's phenotype, and unveiled a novel heterozygous GRIN2B variant (p.(Ser570Pro)) only in the proband. In addition, Sanger sequencing ruled out such a variant in her mother and thereby confirmed its de novo origin. Due to predicted disturbances in the local secondary structure, this variant may alter the ion channel function of the M1 transmembrane domain. Other pathogenic variants in GRIN2B have been related to the autosomal dominant neurodevelopmental disorder MRD6 (intellectual developmental disorder, autosomal dominant 6, with or without seizures), which presents with a high variability ranging from mild intellectual disability (ID) without seizures to a more severe encephalopathy. In comparison, our patient's clinical manifestations include, among others, mild ID and brain anomalies previously documented in subjects with MRD6. CONCLUSION Occasionally, gross chromosomal abnormalities can be coincidental findings rather than a prime cause of a clinical phenotype (even though they appear to be the causal agent). In brief, this case underscores the importance of comprehensive genomic analysis in unraveling the wide-ranging genetic causes of NDDs and may bring new insights into the MRD6 variability.
Collapse
Affiliation(s)
- Carlos Córdova-Fletes
- Laboratorio de Citogenómica y Microarreglos, Departamento de Bioquímica, Facultad de Medicina, Universidad Autonoma de Nuevo León, Monterrey, Mexico
- Department of Obstetrics and Gynecology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Horacio Rivera
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Ma Guadalupe Domínguez-Quezada
- Laboratorio de Citogenética, División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Mexico
| | - Thania Alejandra Aguayo-Orozco
- Laboratorio de Citogenética, División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Mexico
| | - Elvira Garza-González
- Laboratorio de Citogenómica y Microarreglos, Departamento de Bioquímica, Facultad de Medicina, Universidad Autonoma de Nuevo León, Monterrey, Mexico
| | - Luis A Núñez-García
- Laboratorio de Citogenómica y Microarreglos, Departamento de Bioquímica, Facultad de Medicina, Universidad Autonoma de Nuevo León, Monterrey, Mexico
| | - Francisco Miguel Mercado-Silvae
- Hospital de Pediatría, Unidad Médica de Alta Especialidad, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Mexico
| | - Mónica Alejandra Rosales-Reynoso
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Mexico
| | - Patricio Barros-Núñez
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| |
Collapse
|
7
|
Liu Z, Ding S, Xu G, Fang C. Case Report: Identification of a novel PRR12 variant in a Chinese boy with developmental delay and short stature. Front Pediatr 2024; 12:1367131. [PMID: 38798311 PMCID: PMC11119739 DOI: 10.3389/fped.2024.1367131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Proline Rich 12 (PRR12) protein is primarily expressed in the brain and localized in the nucleus. The variants in the PRR12 gene were reported to be related to neuroocular syndrome. Patients with PRR12 gene presented with intellectual disability (ID), neuropsychiatric disorders, some congenital anomalies, and with or without eye abnormalities. Here, we report an 11-year-old boy with a novel PRR12 variant c.1549_1568del, p.(Pro517Alafs*35). He was the first PRR12 deficiency patient in China and presented with ID, short stature, and mild scoliosis. He could not concentrate on his studies and was diagnosed with attention deficit hyperactivity disorder (ADHD). The insulin-like growth factor 1 (IGH-1) was low in our patient, which may be the cause of his short stature. Patients with neuroocular syndrome are rare, and further exploration is needed to understand the reason for neurodevelopmental abnormalities caused by PRR12 variants. Our study further expands on the PRR12 variants and presents a new case involving PPR12 variants.
Collapse
Affiliation(s)
- Zhengxia Liu
- Department of Neurology, Women and Children’s Hospital Affiliated to Ningbo University, Ningbo, Zhejiang, China
| | - Shuxia Ding
- Department of Endocrinology, Women and Children’s Hospital Affiliated to Ningbo University, Ningbo, Zhejiang, China
| | - Guangwei Xu
- Department of Pediatric Orthopedic, Women and Children’s Hospital Affiliated to Ningbo University, Ningbo, Zhejiang, China
| | - Chunyan Fang
- Department of Neurology, Women and Children’s Hospital Affiliated to Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
8
|
Muscò A, Martini D, Digregorio M, Broccoli V, Andreazzoli M. Shedding a Light on Dark Genes: A Comparative Expression Study of PRR12 Orthologues during Zebrafish Development. Genes (Basel) 2024; 15:492. [PMID: 38674426 PMCID: PMC11050278 DOI: 10.3390/genes15040492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Haploinsufficiency of the PRR12 gene is implicated in a human neuro-ocular syndrome. Although identified as a nuclear protein highly expressed in the embryonic mouse brain, PRR12 molecular function remains elusive. This study explores the spatio-temporal expression of zebrafish PRR12 co-orthologs, prr12a and prr12b, as a first step to elucidate their function. In silico analysis reveals high evolutionary conservation in the DNA-interacting domains for both orthologs, with significant syntenic conservation observed for the prr12b locus. In situ hybridization and RT-qPCR analyses on zebrafish embryos and larvae reveal distinct expression patterns: prr12a is expressed early in zygotic development, mainly in the central nervous system, while prr12b expression initiates during gastrulation, localizing later to dopaminergic telencephalic and diencephalic cell clusters. Both transcripts are enriched in the ganglion cell and inner neural layers of the 72 hpf retina, with prr12b widely distributed in the ciliary marginal zone. In the adult brain, prr12a and prr12b are found in the cerebellum, amygdala and ventral telencephalon, which represent the main areas affected in autistic patients. Overall, this study suggests PRR12's potential involvement in eye and brain development, laying the groundwork for further investigations into PRR12-related neurobehavioral disorders.
Collapse
Affiliation(s)
- Alessia Muscò
- Cell and Developmental Biology Unit, University of Pisa, 56126 Pisa, Italy (D.M.)
| | - Davide Martini
- Cell and Developmental Biology Unit, University of Pisa, 56126 Pisa, Italy (D.M.)
| | - Matteo Digregorio
- Cell and Developmental Biology Unit, University of Pisa, 56126 Pisa, Italy (D.M.)
| | - Vania Broccoli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
- CNR Institute of Neuroscience, 20132 Milan, Italy
| | | |
Collapse
|
9
|
K. C. R, Tiemroth AS, Thurmon AN, Meadows SM, Galazo MJ. Zmiz1 is a novel regulator of brain development associated with autism and intellectual disability. Front Psychiatry 2024; 15:1375492. [PMID: 38686122 PMCID: PMC11057416 DOI: 10.3389/fpsyt.2024.1375492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/26/2024] [Indexed: 05/02/2024] Open
Abstract
Neurodevelopmental disorders (NDDs) are a class of pathologies arising from perturbations in brain circuit formation and maturation with complex etiological triggers often classified as environmental and genetic. Neuropsychiatric conditions such as autism spectrum disorders (ASD), intellectual disability (ID), and attention deficit hyperactivity disorders (ADHD) are common NDDs characterized by their hereditary underpinnings and inherent heterogeneity. Genetic risk factors for NDDs are increasingly being identified in non-coding regions and proteins bound to them, including transcriptional regulators and chromatin remodelers. Importantly, de novo mutations are emerging as important contributors to NDDs and neuropsychiatric disorders. Recently, de novo mutations in transcriptional co-factor Zmiz1 or its regulatory regions have been identified in unrelated patients with syndromic ID and ASD. However, the role of Zmiz1 in brain development is unknown. Here, using publicly available databases and a Zmiz1 mutant mouse model, we reveal that Zmiz1 is highly expressed during embryonic brain development in mice and humans, and though broadly expressed across the brain, Zmiz1 is enriched in areas prominently impacted in ID and ASD such as cortex, hippocampus, and cerebellum. We investigated the relationship between Zmiz1 structure and pathogenicity of protein variants, the epigenetic marks associated with Zmiz1 regulation, and protein interactions and signaling pathways regulated by Zmiz1. Our analysis reveals that Zmiz1 regulates multiple developmental processes, including neurogenesis, neuron connectivity, and synaptic signaling. This work paves the way for future studies on the functions of Zmiz1 and highlights the importance of combining analysis of mouse models and human data.
Collapse
Affiliation(s)
- Rajan K. C.
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, United States
| | - Alina S. Tiemroth
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
| | - Abbigail N. Thurmon
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, United States
| | - Stryder M. Meadows
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, United States
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
| | - Maria J. Galazo
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, United States
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
| |
Collapse
|
10
|
Allou L, Mundlos S. Disruption of regulatory domains and novel transcripts as disease-causing mechanisms. Bioessays 2023; 45:e2300010. [PMID: 37381881 DOI: 10.1002/bies.202300010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/24/2023] [Accepted: 06/06/2023] [Indexed: 06/30/2023]
Abstract
Deletions, duplications, insertions, inversions, and translocations, collectively called structural variations (SVs), affect more base pairs of the genome than any other sequence variant. The recent technological advancements in genome sequencing have enabled the discovery of tens of thousands of SVs per human genome. These SVs primarily affect non-coding DNA sequences, but the difficulties in interpreting their impact limit our understanding of human disease etiology. The functional annotation of non-coding DNA sequences and methodologies to characterize their three-dimensional (3D) organization in the nucleus have greatly expanded our understanding of the basic mechanisms underlying gene regulation, thereby improving the interpretation of SVs for their pathogenic impact. Here, we discuss the various mechanisms by which SVs can result in altered gene regulation and how these mechanisms can result in rare genetic disorders. Beyond changing gene expression, SVs can produce novel gene-intergenic fusion transcripts at the SV breakpoints.
Collapse
Affiliation(s)
- Lila Allou
- RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute for Medical and Human Genetics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Stefan Mundlos
- RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute for Medical and Human Genetics, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
11
|
Lomelí H. ZMIZ proteins: partners in transcriptional regulation and risk factors for human disease. J Mol Med (Berl) 2022; 100:973-983. [PMID: 35670836 DOI: 10.1007/s00109-022-02216-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/11/2022] [Accepted: 05/30/2022] [Indexed: 01/23/2023]
Abstract
Coregulator proteins interact with signal-dependent transcription factors to modify their transcriptional activity. ZMIZ1 and ZMIZ2 (zinc finger MIZ-type containing 1 and 2) are coregulators with nonredundant functions that share unique structural characteristics. Among other interacting domains, they possess a MIZ (Msx-interacting zinc finger) that relates them to members of the protein inhibitor of activated STAT (PIAS) family and provides them the capacity to function as SUMO E3 ligases. The ZMIZ proteins stimulate the activity of various signaling pathways, including the androgen receptor (AR), P53, SMAD3/4, WNT/β-catenin, and NOTCH1 pathways, and interact with the BAF chromatin remodeling complex. Due to their molecular versatility, ZMIZ proteins have pleiotropic effects and thus are important for embryonic development and for human diseases. Both have been widely associated with cancer, and ZMIZ1 has been very frequently identified as a risk allele for several autoimmune conditions and other disorders. Moreover, mutations in the coding region of the ZMIZ1 gene are responsible for a severe syndromic neurodevelopmental disability. Because the actions of coregulators are highly gene-specific, a better knowledge of the associations that exist between the function of the ZMIZ coregulators and human pathologies is expected to potentiate the use of ZMIZ1 and ZMIZ2 as new drug targets for diseases such as hormone-dependent cancers.
Collapse
Affiliation(s)
- Hilda Lomelí
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México.
| |
Collapse
|
12
|
Sun Y, Li H. Chimeric RNAs Discovered by RNA Sequencing and Their Roles in Cancer and Rare Genetic Diseases. Genes (Basel) 2022; 13:741. [PMID: 35627126 PMCID: PMC9140685 DOI: 10.3390/genes13050741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 12/30/2022] Open
Abstract
Chimeric RNAs are transcripts that are generated by gene fusion and intergenic splicing events, thus comprising nucleotide sequences from different parental genes. In the past, Northern blot analysis and RT-PCR were used to detect chimeric RNAs. However, they are low-throughput and can be time-consuming, labor-intensive, and cost-prohibitive. With the development of RNA-seq and transcriptome analyses over the past decade, the number of chimeric RNAs in cancer as well as in rare inherited diseases has dramatically increased. Chimeric RNAs may be potential diagnostic biomarkers when they are specifically expressed in cancerous cells and/or tissues. Some chimeric RNAs can also play a role in cell proliferation and cancer development, acting as tools for cancer prognosis, and revealing new insights into the cell origin of tumors. Due to their abilities to characterize a whole transcriptome with a high sequencing depth and intergenically identify spliced chimeric RNAs produced with the absence of chromosomal rearrangement, RNA sequencing has not only enhanced our ability to diagnose genetic diseases, but also provided us with a deeper understanding of these diseases. Here, we reviewed the mechanisms of chimeric RNA formation and the utility of RNA sequencing for discovering chimeric RNAs in several types of cancer and rare inherited diseases. We also discussed the diagnostic, prognostic, and therapeutic values of chimeric RNAs.
Collapse
Affiliation(s)
- Yunan Sun
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA;
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Hui Li
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA;
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
13
|
Lu G, Ma L, Xu P, Xian B, Wu L, Ding J, He X, Xia H, Ding W, Yang Z, Peng Q. A de Novo ZMIZ1 Pathogenic Variant for Neurodevelopmental Disorder With Dysmorphic Facies and Distal Skeletal Anomalies. Front Genet 2022; 13:840577. [PMID: 35432459 PMCID: PMC9008544 DOI: 10.3389/fgene.2022.840577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/22/2022] [Indexed: 12/30/2022] Open
Abstract
Background: Neurodevelopmental disorder with dysmorphic facies and distal skeletal anomalies (NEDDFSA) is a rare syndromic disorder characterized by global neurodevelopmental delay, early-onset hypotonia, poor overall growth, poor speech/language ability, and additional common phenotypes such as eye anomalies, joint hypermobility, and skeletal anomalies of the hands and feet. NEDDFSA is caused by heterozygous pathogenic variants in the ZMIZ1 gene on chromosome 10q22.3 with autosomal dominant (AD) mode of inheritance. All the 32 reported cases with variants in ZMIZ1 gene had a genetic background in Caucasian, Hispanic, North African, and Southeastern Asian. Until now, there are no reports of Chinese patients with ZMIZ1 pathogenic variants. Methods: A 5-year-old girl was found to have the characteristic phenotypes of NEDDFSA. Array-Comparative Genomic Hybridization (array-CGH) and whole exome sequencing (WES) were applied for the trio of this female patient. Sanger sequencing was used to verify the selected variants. A comprehensive molecular analysis was carried out by protein structure prediction, evolutionary conservation, motif scanning, tissue-specific expression, and protein interaction network to elucidate pathogenicity of the identified ZMIZ1 variants. Results: The karyotype was 46, XX with no micro-chromosomal abnormalities identified by array-CGH. There were 20 variants detected in the female patient by WES. A de novo heterozygous missense variant (c.2330G > A, p.Gly777Glu, G777E) was identified in the exon 20 of ZMIZ1. No variants of ZMIZ1 were identified in the non-consanguineous parents and her healthy elder sister. It was predicted that G777E was pathogenic and detrimental to the spatial conformation of the MIZ/SP-RING zinc finger domain of ZMIZ1. Conclusion: Thus far, only four scientific articles reported deleterious variants in ZMIZ1 and most of the cases were from Western countries. This is the first report about a Chinese patient with ZMIZ1 variant. It will broaden the current knowledge of ZMIZ1 variants and variable clinical presentations for clinicians and genetic counselors.
Collapse
Affiliation(s)
- Guanting Lu
- Deyang Key Laboratory of Tumor Molecular Research, Department of Pathology, Translational Medicine Research Center, Deyang People’s Hospital, Deyang, China
| | - Liya Ma
- Department of Child Healthcare, Shenzhen Baoan Women’s and Children’s Hospital, Jinan University, Shenzhen, China
| | - Pei Xu
- Deyang Key Laboratory of Tumor Molecular Research, Department of Pathology, Translational Medicine Research Center, Deyang People’s Hospital, Deyang, China
| | - Binqiang Xian
- Department of Child Healthcare, Shenzhen Baoan Women’s and Children’s Hospital, Jinan University, Shenzhen, China
| | - Lianying Wu
- Deyang Key Laboratory of Tumor Molecular Research, Department of Pathology, Translational Medicine Research Center, Deyang People’s Hospital, Deyang, China
| | - Jianying Ding
- Department of Child Healthcare, Shenzhen Baoan Women’s and Children’s Hospital, Jinan University, Shenzhen, China
| | - Xiaoyan He
- Deyang Key Laboratory of Tumor Molecular Research, Department of Pathology, Translational Medicine Research Center, Deyang People’s Hospital, Deyang, China
| | - Huiyun Xia
- Department of Child Healthcare, Shenzhen Baoan Women’s and Children’s Hospital, Jinan University, Shenzhen, China
| | - Wuwu Ding
- Deyang Key Laboratory of Tumor Molecular Research, Department of Pathology, Translational Medicine Research Center, Deyang People’s Hospital, Deyang, China
| | - Zhirong Yang
- Deyang Key Laboratory of Tumor Molecular Research, Department of Pathology, Translational Medicine Research Center, Deyang People’s Hospital, Deyang, China
- *Correspondence: Qiongling Peng, ; Zhirong Yang,
| | - Qiongling Peng
- Department of Child Healthcare, Shenzhen Baoan Women’s and Children’s Hospital, Jinan University, Shenzhen, China
- *Correspondence: Qiongling Peng, ; Zhirong Yang,
| |
Collapse
|
14
|
Genotype-Phenotype Correlations in Relation to Newly Emerging Monogenic Forms of Autism Spectrum Disorder and Associated Neurodevelopmental Disorders: The Importance of Phenotype Reevaluation after Pangenomic Results. J Clin Med 2021; 10:jcm10215060. [PMID: 34768579 PMCID: PMC8584959 DOI: 10.3390/jcm10215060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022] Open
Abstract
ASD genetic diagnosis has dramatically improved due to NGS technologies, and many new causative genes have been discovered. Consequently, new ASD phenotypes have emerged. An extensive exome sequencing study carried out by the Autism Sequencing Consortium (ASC) was published in February 2020. The study identified 102 genes which are de novo mutated in subjects affected by autism spectrum disorder (ASD) or similar neurodevelopmental disorders (NDDs). The majority of these genes was already known to be implicated in ASD or NDDs, whereas approximately 30 genes were considered “novel” as either they were not previously associated with ASD/NDDs or very little information about them was present in the literature. The aim of this work is to review the current literature since the publication of the ASC paper to see if new data mainly concerning genotype–phenotype correlations of the novel genes have been added to the existing one. We found new important clinical and molecular data for 6 of the 30 novel genes. Though the broad and overlapping neurodevelopmental phenotypes observed in most monogenic forms of NDDs make it difficult for the clinical geneticist to address gene-specific tests, knowledge of these new data can at least help to prioritize and interpret results of pangenomic tests to some extent. Indeed, for some of the new emerging genes analyzed in the present work, specific clinical features emerged that may help the clinical geneticist to make the final diagnosis by associating the genetic test results with the phenotype. The importance of this relatively new approach known as “reverse phenotyping” will be discussed.
Collapse
|
15
|
Dixon G, Pan H, Yang D, Rosen BP, Jashari T, Verma N, Pulecio J, Caspi I, Lee K, Stransky S, Glezer A, Liu C, Rivas M, Kumar R, Lan Y, Torregroza I, He C, Sidoli S, Evans T, Elemento O, Huangfu D. QSER1 protects DNA methylation valleys from de novo methylation. Science 2021; 372:eabd0875. [PMID: 33833093 PMCID: PMC8185639 DOI: 10.1126/science.abd0875] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 02/23/2021] [Indexed: 12/12/2022]
Abstract
DNA methylation is essential to mammalian development, and dysregulation can cause serious pathological conditions. Key enzymes responsible for deposition and removal of DNA methylation are known, but how they cooperate to regulate the methylation landscape remains a central question. Using a knockin DNA methylation reporter, we performed a genome-wide CRISPR-Cas9 screen in human embryonic stem cells to discover DNA methylation regulators. The top screen hit was an uncharacterized gene, QSER1, which proved to be a key guardian of bivalent promoters and poised enhancers of developmental genes, especially those residing in DNA methylation valleys (or canyons). We further demonstrate genetic and biochemical interactions of QSER1 and TET1, supporting their cooperation to safeguard transcriptional and developmental programs from DNMT3-mediated de novo methylation.
Collapse
Affiliation(s)
- Gary Dixon
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Heng Pan
- Department of Physiology and Biophysics, Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Dapeng Yang
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Bess P Rosen
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Therande Jashari
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Nipun Verma
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
- Weill Graduate School of Medical Sciences at Cornell University-The Rockefeller University-Sloan Kettering Institute Tri-Institutional M.D.-Ph.D. Program, New York, NY 10065, USA
| | - Julian Pulecio
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Inbal Caspi
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Kihyun Lee
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Stephanie Stransky
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Abigail Glezer
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Chang Liu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Marco Rivas
- Department of Chemistry, Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Ritu Kumar
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Yahui Lan
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ingrid Torregroza
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Olivier Elemento
- Department of Physiology and Biophysics, Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.
| | - Danwei Huangfu
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
16
|
Haploinsufficiency of PRR12 causes a spectrum of neurodevelopmental, eye, and multisystem abnormalities. Genet Med 2021; 23:1234-1245. [PMID: 33824499 DOI: 10.1038/s41436-021-01129-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 02/11/2021] [Accepted: 02/11/2021] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Proline Rich 12 (PRR12) is a gene of unknown function with suspected DNA-binding activity, expressed in developing mice and human brains. Predicted loss-of-function variants in this gene are extremely rare, indicating high intolerance of haploinsufficiency. METHODS Three individuals with intellectual disability and iris anomalies and truncating de novo PRR12 variants were described previously. We add 21 individuals with similar PRR12 variants identified via matchmaking platforms, bringing the total number to 24. RESULTS We observed 12 frameshift, 6 nonsense, 1 splice-site, and 2 missense variants and one patient with a gross deletion involving PRR12. Three individuals had additional genetic findings, possibly confounding the phenotype. All patients had developmental impairment. Variable structural eye defects were observed in 12/24 individuals (50%) including anophthalmia, microphthalmia, colobomas, optic nerve and iris abnormalities. Additional common features included hypotonia (61%), heart defects (52%), growth failure (54%), and kidney anomalies (35%). PrediXcan analysis showed that phecodes most strongly associated with reduced predicted PRR12 expression were enriched for eye- (7/30) and kidney- (4/30) phenotypes, such as wet macular degeneration and chronic kidney disease. CONCLUSION These findings support PRR12 haploinsufficiency as a cause for a novel disorder with a wide clinical spectrum marked chiefly by neurodevelopmental and eye abnormalities.
Collapse
|
17
|
Reis LM, Costakos D, Wheeler PG, Bardakjian T, Schneider A, Fung SSM, University of Washington Center for Mendelian Genomics, Semina EV. Dominant variants in PRR12 result in unilateral or bilateral complex microphthalmia. Clin Genet 2021; 99:437-442. [PMID: 33314030 PMCID: PMC8259391 DOI: 10.1111/cge.13897] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/04/2020] [Accepted: 12/10/2020] [Indexed: 11/25/2022]
Abstract
Complex microphthalmia is characterized by small eyes with additional abnormalities that may include anterior segment dysgenesis. While many genes are known, a genetic cause is identified in only 4-30% of microphthalmia, with the lowest rate in unilateral cases. We identified four novel pathogenic loss-of-function alleles in PRR12 in families affected by complex microphthalmia and/or Peters anomaly, including two de novo, the first dominantly transmitted allele, as well as the first splicing variant. The ocular phenotypes were isolated with no additional systemic features observed in two unrelated families. Remarkably, ocular phenotypes were asymmetric in all individuals and unilateral (with structurally normal contralateral eye) in three. There are only three previously reported PRR12 variants identified in probands with intellectual disability, neuropsychiatric disorders, and iris anomalies. While some overlap with previously reported cases is seen, nonsyndromic developmental ocular anomalies are a novel phenotype for this gene. Additional phenotypic expansions included short stature and normal development/cognition, each noted in two individuals in this cohort, as well as absence of neuropsychiatric disorders in all. This study identifies new associations for PRR12 disruption in humans and presents a genetic diagnosis resulting in unilateral ocular phenotypes in a significant proportion of cases.
Collapse
Affiliation(s)
- Linda M Reis
- Department of Pediatrics, Children’s Research Institute, Medical College of Wisconsin and Children’s Wisconsin, Milwaukee, WI 53226, USA
| | - Deborah Costakos
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | - Tanya Bardakjian
- Einstein Medical Center Philadelphia 5501 Old York Rd, Levy 2 West Philadelphia, PA 19141, USA
| | - Adele Schneider
- Einstein Medical Center Philadelphia 5501 Old York Rd, Levy 2 West Philadelphia, PA 19141, USA
- Current position: Wills Eye Hospital, Department of Pediatric Ophthalmology and Ocular Genetics, 840 Walnut Street, Philadelphia, PA 19107, USA
| | - Simon S M Fung
- Department of Ophthalmology, University of California Los Angeles, Los Angeles, California, 90095, USA
| | | | - Elena V Semina
- Department of Pediatrics, Children’s Research Institute, Medical College of Wisconsin and Children’s Wisconsin, Milwaukee, WI 53226, USA
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
18
|
Cibis H, Biyanee A, Dörner W, Mootz HD, Klempnauer KH. Characterization of the zinc finger proteins ZMYM2 and ZMYM4 as novel B-MYB binding proteins. Sci Rep 2020; 10:8390. [PMID: 32439918 PMCID: PMC7242444 DOI: 10.1038/s41598-020-65443-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/28/2020] [Indexed: 11/09/2022] Open
Abstract
B-MYB, a highly conserved member of the MYB transcription factor family, is expressed ubiquitously in proliferating cells and plays key roles in important cell cycle-related processes, such as control of G2/M-phase transcription, cytokinesis, G1/S-phase progression and DNA-damage reponse. Deregulation of B-MYB function is characteristic of several types of tumor cells, underlining its oncogenic potential. To gain a better understanding of the functions of B-MYB we have employed affinity purification coupled to mass spectrometry to discover novel B-MYB interacting proteins. Here we have identified the zinc-finger proteins ZMYM2 and ZMYM4 as novel B-MYB binding proteins. ZMYM4 is a poorly studied protein whose initial characterization reported here shows that it is highly SUMOylated and that its interaction with B-MYB is stimulated upon induction of DNA damage. Unlike knockdown of B-MYB, which causes G2/M arrest and defective cytokinesis in HEK293 cells, knockdown of ZMYM2 or ZMYM4 have no obvious effects on the cell cycle of these cells. By contrast, knockdown of ZMYM2 strongly impaired the G1/S-phase progression of HepG2 cells, suggesting that ZMYM2, like B-MYB, is required for entry into S-phase in these cells. Overall, our work identifies two novel B-MYB binding partners with possible functions in the DNA-damage response and the G1/S-transition.
Collapse
Affiliation(s)
- Hannah Cibis
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, D-48149, Münster, Germany
| | - Abhiruchi Biyanee
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, D-48149, Münster, Germany
| | - Wolfgang Dörner
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, D-48149, Münster, Germany
| | - Henning D Mootz
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, D-48149, Münster, Germany
| | - Karl-Heinz Klempnauer
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, D-48149, Münster, Germany.
| |
Collapse
|
19
|
Latchman K, Calder M, Morel D, Rhodes L, Juusola J, Tekin M. Autosomal dominant inheritance in a recently described ZMIZ1-related neurodevelopmental disorder: Case report of siblings and an affected parent. Am J Med Genet A 2019; 182:548-552. [PMID: 31833199 DOI: 10.1002/ajmg.a.61446] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/18/2019] [Accepted: 11/26/2019] [Indexed: 11/08/2022]
Abstract
ZMIZ1, zinc finger MIZ-domain containing 1, has recently been described in association with syndromic intellectual disability in which the primary phenotypic features include intellectual disability/developmental delay, seizures, hearing loss, behavioral issues, failure to thrive, and various congenital malformations. Most reported cases have been found to result from de novo mutations except for one set of three siblings in which parental testing could not be performed. With informed consent from the family, we report on a father and his two sons demonstrating autosomal dominant inheritance of a novel pathogenic ZMIZ1 variant, c.1310delC (p.Pro437ArgfsX84), causing this recently described neurodevelopmental syndrome. While they all show syndromic findings along with short stature and intellectual disability, only one child had sensorineural hearing loss. Moreover, severity of intellectual disability and eyelid ptosis were variable among the affected members. Our report demonstrates that phenotypic features of ZMIZ1-related neurodevelopmental syndrome are variable even within the same family and that parental testing to identify a mildly affected parent is needed.
Collapse
Affiliation(s)
- Kumarie Latchman
- Division of Clinical and Translational Genetics, Department of Human Genetics, Miller School of Medicine, University of Miami, Coral Gables, Florida
| | - Madison Calder
- Miller School of Medicine, University of Miami, Coral Gables, Florida
| | - Dayna Morel
- Division of Clinical and Translational Genetics, Department of Human Genetics, Miller School of Medicine, University of Miami, Coral Gables, Florida
| | | | | | - Mustafa Tekin
- Division of Clinical and Translational Genetics, Department of Human Genetics, Miller School of Medicine, University of Miami, Coral Gables, Florida
| |
Collapse
|
20
|
Schluth-Bolard C, Diguet F, Chatron N, Rollat-Farnier PA, Bardel C, Afenjar A, Amblard F, Amiel J, Blesson S, Callier P, Capri Y, Collignon P, Cordier MP, Coubes C, Demeer B, Chaussenot A, Demurger F, Devillard F, Doco-Fenzy M, Dupont C, Dupont JM, Dupuis-Girod S, Faivre L, Gilbert-Dussardier B, Guerrot AM, Houlier M, Isidor B, Jaillard S, Joly-Hélas G, Kremer V, Lacombe D, Le Caignec C, Lebbar A, Lebrun M, Lesca G, Lespinasse J, Levy J, Malan V, Mathieu-Dramard M, Masson J, Masurel-Paulet A, Mignot C, Missirian C, Morice-Picard F, Moutton S, Nadeau G, Pebrel-Richard C, Odent S, Paquis-Flucklinger V, Pasquier L, Philip N, Plutino M, Pons L, Portnoï MF, Prieur F, Puechberty J, Putoux A, Rio M, Rooryck-Thambo C, Rossi M, Sarret C, Satre V, Siffroi JP, Till M, Touraine R, Toutain A, Toutain J, Valence S, Verloes A, Whalen S, Edery P, Tabet AC, Sanlaville D. Whole genome paired-end sequencing elucidates functional and phenotypic consequences of balanced chromosomal rearrangement in patients with developmental disorders. J Med Genet 2019; 56:526-535. [PMID: 30923172 DOI: 10.1136/jmedgenet-2018-105778] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/30/2019] [Accepted: 02/20/2019] [Indexed: 11/04/2022]
Abstract
BACKGROUND Balanced chromosomal rearrangements associated with abnormal phenotype are rare events, but may be challenging for genetic counselling, since molecular characterisation of breakpoints is not performed routinely. We used next-generation sequencing to characterise breakpoints of balanced chromosomal rearrangements at the molecular level in patients with intellectual disability and/or congenital anomalies. METHODS Breakpoints were characterised by a paired-end low depth whole genome sequencing (WGS) strategy and validated by Sanger sequencing. Expression study of disrupted and neighbouring genes was performed by RT-qPCR from blood or lymphoblastoid cell line RNA. RESULTS Among the 55 patients included (41 reciprocal translocations, 4 inversions, 2 insertions and 8 complex chromosomal rearrangements), we were able to detect 89% of chromosomal rearrangements (49/55). Molecular signatures at the breakpoints suggested that DNA breaks arose randomly and that there was no major influence of repeated elements. Non-homologous end-joining appeared as the main mechanism of repair (55% of rearrangements). A diagnosis could be established in 22/49 patients (44.8%), 15 by gene disruption (KANSL1, FOXP1, SPRED1, TLK2, MBD5, DMD, AUTS2, MEIS2, MEF2C, NRXN1, NFIX, SYNGAP1, GHR, ZMIZ1) and 7 by position effect (DLX5, MEF2C, BCL11B, SATB2, ZMIZ1). In addition, 16 new candidate genes were identified. Systematic gene expression studies further supported these results. We also showed the contribution of topologically associated domain maps to WGS data interpretation. CONCLUSION Paired-end WGS is a valid strategy and may be used for structural variation characterisation in a clinical setting.
Collapse
Affiliation(s)
- Caroline Schluth-Bolard
- Service de Génétique, Hospices Civils de Lyon, Bron, France.,INSERM U1028, CNRS UMR5292, UCBL1, GENDEV Team, Neurosciences Research Center of Lyon, Bron, France
| | - Flavie Diguet
- Service de Génétique, Hospices Civils de Lyon, Bron, France.,INSERM U1028, CNRS UMR5292, UCBL1, GENDEV Team, Neurosciences Research Center of Lyon, Bron, France
| | - Nicolas Chatron
- Service de Génétique, Hospices Civils de Lyon, Bron, France.,INSERM U1028, CNRS UMR5292, UCBL1, GENDEV Team, Neurosciences Research Center of Lyon, Bron, France
| | | | - Claire Bardel
- Cellule bioinformatique de la plateforme NGS, Hospices Civils de Lyon, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558, Lyon 1 University, Bron, France
| | - Alexandra Afenjar
- Département de génétique et embryologie médicale, Centre de référence des déficiences intellectuelles de causes rares, AP-HP, Hôpital Armand Trousseau, Paris, France.,GRC n°19, pathologies Congénitales du Cervelet-LeucoDystrophies, AP-HP, Hôpital Armand Trousseau, Sorbonne Université, Paris, France
| | - Florence Amblard
- Laboratoire de Génétique Chromosomique, Hôpital Couple Enfant, CHU Grenoble, Grenoble, France
| | - Jeanne Amiel
- Service de Génétique Médicale, Hôpital Necker-Enfants Malades, Paris, France
| | | | | | - Yline Capri
- Département de Génétique, Hôpital Robert Debré, Paris, France
| | | | | | - Christine Coubes
- Service de Génétique, Hôpital Arnaud de Villeneuve, Montpellier, France
| | - Benedicte Demeer
- Centre d'activité de génétique clinique, CLAD nord de France, CHU Amiens, Amiens, France
| | | | | | - Françoise Devillard
- Laboratoire de Génétique Chromosomique, Hôpital Couple Enfant, CHU Grenoble, Grenoble, France
| | | | - Céline Dupont
- Département de Génétique, Hôpital Robert Debré, Paris, France
| | - Jean-Michel Dupont
- Laboratoire de Cytogénétique Constitutionnelle, APHP-HUPC site Cochin, Paris, France
| | | | - Laurence Faivre
- Centre de référence anomalies du développement et syndromes malformatifs, FHU TRANSLAD et équipe GAD INSERM UMR1231, CHU Dijon-Bourgogne et Université de Bourgogne-Franche Comté, Dijon, France
| | | | | | - Marine Houlier
- Service de Génétique Médicale, Hôpital Necker-Enfants Malades, Paris, France
| | | | - Sylvie Jaillard
- Laboratoire de Cytogénétique et de Biologie Cellulaire, CHU Pontchaillou, Rennes, France
| | | | - Valérie Kremer
- Laboratoire de Cytogénétique, CHU Strasbourg, Strasbourg, France
| | - Didier Lacombe
- Service de Génétique Médicale, Hôpital Pellegrin, Université de Bordeaux, MRGM INSERM U1211, CHU Bordeaux, Bordeaux, France
| | | | - Aziza Lebbar
- Laboratoire de Cytogénétique Constitutionnelle, APHP-HUPC site Cochin, Paris, France
| | - Marine Lebrun
- Service de Génétique Clinique, Chromosomique et Moléculaire, CHU Hôpital Nord, Saint-Etienne, France
| | - Gaetan Lesca
- Service de Génétique, Hospices Civils de Lyon, Bron, France.,INSERM U1028, CNRS UMR5292, UCBL1, GENDEV Team, Neurosciences Research Center of Lyon, Bron, France
| | - James Lespinasse
- Laboratoire de Génétique Chromosomique, CH Général, Chambéry, France
| | - Jonathan Levy
- Département de Génétique, Hôpital Robert Debré, Paris, France
| | - Valérie Malan
- Service de Cytogénétique, Hôpital Necker Enfants Malades, Paris, France
| | | | - Julie Masson
- Service de Génétique, Hospices Civils de Lyon, Bron, France.,INSERM U1028, CNRS UMR5292, UCBL1, GENDEV Team, Neurosciences Research Center of Lyon, Bron, France
| | - Alice Masurel-Paulet
- Centre de référence anomalies du développement et syndromes malformatifs, FHU TRANSLAD et équipe GAD INSERM UMR1231, CHU Dijon-Bourgogne et Université de Bourgogne-Franche Comté, Dijon, France
| | - Cyril Mignot
- Département de Génétique; Centre de Référence Déficience Intellectuelle de Causes Rares, Groupe Hospitalier Pitié-Salpêtrière, APHP, Paris, France
| | - Chantal Missirian
- Laboratoire de Génétique Chromosomique, Département de Génétique Médicale, AP-HM, Marseille, France
| | - Fanny Morice-Picard
- Service de Génétique Médicale, Hôpital Pellegrin, Université de Bordeaux, MRGM INSERM U1211, CHU Bordeaux, Bordeaux, France
| | - Sébastien Moutton
- Service de Génétique Médicale, Hôpital Pellegrin, Université de Bordeaux, MRGM INSERM U1211, CHU Bordeaux, Bordeaux, France
| | - Gwenaël Nadeau
- Laboratoire de Génétique Chromosomique, CH Général, Chambéry, France.,Service de Cytogénétique, CH Valence, Valence, France
| | - Céline Pebrel-Richard
- Service de Cytogénétique Médicale, Hôpital Estaing, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Sylvie Odent
- Service de Génétique Clinique, CHU Rennes, Rennes, France.,CNRS, IGDR (Institut de Génétique et Développement de Rennes) UMR 6290, Université de Rennes, Rennes, France
| | | | | | - Nicole Philip
- Département de Génétique Médicale, Unité de Génétique Clinique, AP-HM, Marseille, France
| | | | - Linda Pons
- Service de Génétique, Hospices Civils de Lyon, Bron, France.,INSERM U1028, CNRS UMR5292, UCBL1, GENDEV Team, Neurosciences Research Center of Lyon, Bron, France
| | - Marie-France Portnoï
- Département de génétique et embryologie médicale, Centre de référence des déficiences intellectuelles de causes rares, AP-HP, Hôpital Armand Trousseau, Paris, France
| | - Fabienne Prieur
- Service de Génétique Clinique, Chromosomique et Moléculaire, CHU Hôpital Nord, Saint-Etienne, France
| | | | - Audrey Putoux
- Service de Génétique, Hospices Civils de Lyon, Bron, France.,INSERM U1028, CNRS UMR5292, UCBL1, GENDEV Team, Neurosciences Research Center of Lyon, Bron, France
| | - Marlène Rio
- Service de Génétique Médicale, Hôpital Necker-Enfants Malades, Paris, France
| | - Caroline Rooryck-Thambo
- Service de Génétique Médicale, Hôpital Pellegrin, Université de Bordeaux, MRGM INSERM U1211, CHU Bordeaux, Bordeaux, France
| | - Massimiliano Rossi
- Service de Génétique, Hospices Civils de Lyon, Bron, France.,INSERM U1028, CNRS UMR5292, UCBL1, GENDEV Team, Neurosciences Research Center of Lyon, Bron, France
| | - Catherine Sarret
- Service de Génétique Médicale, Hôpital Estaing, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Véronique Satre
- Laboratoire de Génétique Chromosomique, Hôpital Couple Enfant, CHU Grenoble, Grenoble, France.,Equipe Génétique, Epigénétique et Thérapies de l'Infertilité, IAB, INSERM 1209, CNRS UMR5309, Grenoble, France
| | - Jean-Pierre Siffroi
- Département de génétique et embryologie médicale, Centre de référence des déficiences intellectuelles de causes rares, AP-HP, Hôpital Armand Trousseau, Paris, France
| | - Marianne Till
- Service de Génétique, Hospices Civils de Lyon, Bron, France
| | - Renaud Touraine
- Service de Génétique Clinique, Chromosomique et Moléculaire, CHU Hôpital Nord, Saint-Etienne, France
| | | | - Jérome Toutain
- Service de Génétique Médicale, Hôpital Pellegrin, Université de Bordeaux, MRGM INSERM U1211, CHU Bordeaux, Bordeaux, France
| | - Stéphanie Valence
- GRC n°19, pathologies Congénitales du Cervelet-LeucoDystrophies, AP-HP, Hôpital Armand Trousseau, Sorbonne Université, Paris, France.,Service de Neurologie Pédiatrique, Hôpital Armand Trousseau, APHP, GHUEP, Paris, France
| | - Alain Verloes
- Département de Génétique, Hôpital Robert Debré, Paris, France
| | - Sandra Whalen
- Département de génétique et embryologie médicale, Centre de référence des déficiences intellectuelles de causes rares, AP-HP, Hôpital Armand Trousseau, Paris, France
| | - Patrick Edery
- Service de Génétique, Hospices Civils de Lyon, Bron, France.,INSERM U1028, CNRS UMR5292, UCBL1, GENDEV Team, Neurosciences Research Center of Lyon, Bron, France
| | | | - Damien Sanlaville
- Service de Génétique, Hospices Civils de Lyon, Bron, France.,INSERM U1028, CNRS UMR5292, UCBL1, GENDEV Team, Neurosciences Research Center of Lyon, Bron, France
| |
Collapse
|
21
|
Carapito R, Ivanova EL, Morlon A, Meng L, Molitor A, Erdmann E, Kieffer B, Pichot A, Naegely L, Kolmer A, Paul N, Hanauer A, Tran Mau-Them F, Jean-Marçais N, Hiatt SM, Cooper GM, Tvrdik T, Muir AM, Dimartino C, Chopra M, Amiel J, Gordon CT, Dutreux F, Garde A, Thauvin-Robinet C, Wang X, Leduc MS, Phillips M, Crawford HP, Kukolich MK, Hunt D, Harrison V, Kharbanda M, Smigiel R, Gold N, Hung CY, Viskochil DH, Dugan SL, Bayrak-Toydemir P, Joly-Helas G, Guerrot AM, Schluth-Bolard C, Rio M, Wentzensen IM, McWalter K, Schnur RE, Lewis AM, Lalani SR, Mensah-Bonsu N, Céraline J, Sun Z, Ploski R, Bacino CA, Mefford HC, Faivre L, Bodamer O, Chelly J, Isidor B, Bahram S, Isidor B, Bahram S. ZMIZ1 Variants Cause a Syndromic Neurodevelopmental Disorder. Am J Hum Genet 2019; 104:319-330. [PMID: 30639322 DOI: 10.1016/j.ajhg.2018.12.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 12/10/2018] [Indexed: 12/01/2022] Open
Abstract
ZMIZ1 is a coactivator of several transcription factors, including p53, the androgen receptor, and NOTCH1. Here, we report 19 subjects with intellectual disability and developmental delay carrying variants in ZMIZ1. The associated features include growth failure, feeding difficulties, microcephaly, facial dysmorphism, and various other congenital malformations. Of these 19, 14 unrelated subjects carried de novo heterozygous single-nucleotide variants (SNVs) or single-base insertions/deletions, 3 siblings harbored a heterozygous single-base insertion, and 2 subjects had a balanced translocation disrupting ZMIZ1 or involving a regulatory region of ZMIZ1. In total, we identified 13 point mutations that affect key protein regions, including a SUMO acceptor site, a central disordered alanine-rich motif, a proline-rich domain, and a transactivation domain. All identified variants were absent from all available exome and genome databases. In vitro, ZMIZ1 showed impaired coactivation of the androgen receptor. In vivo, overexpression of ZMIZ1 mutant alleles in developing mouse brains using in utero electroporation resulted in abnormal pyramidal neuron morphology, polarization, and positioning, underscoring the importance of ZMIZ1 in neural development and supporting mutations in ZMIZ1 as the cause of a rare neurodevelopmental syndrome.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Bertrand Isidor
- Service de Génétique Médicale, Hôpital Hôtel-Dieu, CHU de Nantes, 44093 Nantes, France
| | - Seiamak Bahram
- Laboratoire d'ImmunoRhumatologie Moléculaire, plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), LabEx TRANSPLANTEX, Université de Strasbourg, 4 rue Kirschleger, 67085 Strasbourg, France; Service d'Immunologie Biologique, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, 1 place de l'Hôpital, 67091 Strasbourg, France.
| |
Collapse
|
22
|
Aristidou C, Theodosiou A, Bak M, Mehrjouy MM, Constantinou E, Alexandrou A, Papaevripidou I, Christophidou-Anastasiadou V, Skordis N, Kitsiou-Tzeli S, Tommerup N, Sismani C. Position effect, cryptic complexity, and direct gene disruption as disease mechanisms in de novo apparently balanced translocation cases. PLoS One 2018; 13:e0205298. [PMID: 30289920 PMCID: PMC6173455 DOI: 10.1371/journal.pone.0205298] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/21/2018] [Indexed: 12/03/2022] Open
Abstract
The majority of apparently balanced translocation (ABT) carriers are phenotypically normal. However, several mechanisms were proposed to underlie phenotypes in affected ABT cases. In the current study, whole-genome mate-pair sequencing (WG-MPS) followed by Sanger sequencing was applied to further characterize de novo ABTs in three affected individuals. WG-MPS precisely mapped all ABT breakpoints and revealed three possible underlying molecular mechanisms. Firstly, in a t(X;1) carrier with hearing loss, a highly skewed X-inactivation pattern was observed and the der(X) breakpoint mapped ~87kb upstream an X-linked deafness gene namely POU3F4, thus suggesting an underlying long-range position effect mechanism. Secondly, cryptic complexity and a chromothripsis rearrangement was identified in a t(6;7;8;12) carrier with intellectual disability. Two translocations and a heterozygous deletion disrupted SOX5; a dominant nervous system development gene previously reported in similar patients. Finally, a direct gene disruption mechanism was proposed in a t(4;9) carrier with dysmorphic facial features and speech delay. In this case, the der(9) breakpoint directly disrupted NFIB, a gene involved in lung maturation and development of the pons with important functions in main speech processes. To conclude, in contrast to familial ABT cases with identical rearrangements and discordant phenotypes, where translocations are considered coincidental, translocations seem to be associated with phenotype presentation in affected de novo ABT cases. In addition, this study highlights the importance of investigating both coding and non-coding regions to decipher the underlying pathogenic mechanisms in these patients, and supports the potential introduction of low coverage WG-MPS in the clinical investigation of de novo ABTs.
Collapse
Affiliation(s)
- Constantia Aristidou
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Athina Theodosiou
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Mads Bak
- Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N., Denmark
| | - Mana M. Mehrjouy
- Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N., Denmark
| | - Efthymia Constantinou
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Angelos Alexandrou
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Ioannis Papaevripidou
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | | | - Nicos Skordis
- Division of Pediatric Endocrinology, Paedi Center for Specialized Pediatrics, Nicosia, Cyprus
- St George’s University of London Medical School at the University of Nicosia, Nicosia, Cyprus
| | - Sophia Kitsiou-Tzeli
- Department of Medical Genetics, Medical School, University of Athens, Athens, Greece
| | - Niels Tommerup
- Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N., Denmark
| | - Carolina Sismani
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- * E-mail:
| |
Collapse
|
23
|
Liu Y, Liang Y, Cicek AE, Li Z, Li J, Muhle RA, Krenzer M, Mei Y, Wang Y, Knoblauch N, Morrison J, Zhao S, Jiang Y, Geller E, Ionita-Laza I, Wu J, Xia K, Noonan JP, Sun ZS, He X. A Statistical Framework for Mapping Risk Genes from De Novo Mutations in Whole-Genome-Sequencing Studies. Am J Hum Genet 2018; 102:1031-1047. [PMID: 29754769 PMCID: PMC5992125 DOI: 10.1016/j.ajhg.2018.03.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 03/22/2018] [Indexed: 10/16/2022] Open
Abstract
Analysis of de novo mutations (DNMs) from sequencing data of nuclear families has identified risk genes for many complex diseases, including multiple neurodevelopmental and psychiatric disorders. Most of these efforts have focused on mutations in protein-coding sequences. Evidence from genome-wide association studies (GWASs) strongly suggests that variants important to human diseases often lie in non-coding regions. Extending DNM-based approaches to non-coding sequences is challenging, however, because the functional significance of non-coding mutations is difficult to predict. We propose a statistical framework for analyzing DNMs from whole-genome sequencing (WGS) data. This method, TADA-Annotations (TADA-A), is a major advance of the TADA method we developed earlier for DNM analysis in coding regions. TADA-A is able to incorporate many functional annotations such as conservation and enhancer marks, to learn from data which annotations are informative of pathogenic mutations, and to combine both coding and non-coding mutations at the gene level to detect risk genes. It also supports meta-analysis of multiple DNM studies, while adjusting for study-specific technical effects. We applied TADA-A to WGS data of ∼300 autism-affected family trios across five studies and discovered several autism risk genes. The software is freely available for all research uses.
Collapse
Affiliation(s)
- Yuwen Liu
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Yanyu Liang
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15123, USA
| | - A Ercument Cicek
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15123, USA; Computer Engineering Department, Bilkent University, Ankara 06800, Turkey
| | - Zhongshan Li
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Jinchen Li
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
| | | | - Martina Krenzer
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Yue Mei
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100000, China
| | - Yan Wang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100000, China
| | - Nicholas Knoblauch
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Jean Morrison
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Siming Zhao
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Yi Jiang
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Evan Geller
- Department of Genetics, Yale School of Medicine, New Haven, CT 06520, USA; Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | | | - Jinyu Wu
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100000, China; Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Kun Xia
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - James P Noonan
- Department of Genetics, Yale School of Medicine, New Haven, CT 06520, USA; Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA
| | - Zhong Sheng Sun
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100000, China; Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Xin He
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
24
|
Leduc MS, Mcguire M, Madan-Khetarpal S, Ortiz D, Hayflick S, Keller K, Eng CM, Yang Y, Bi W. De novo apparent loss-of-function mutations in PRR12 in three patients with intellectual disability and iris abnormalities. Hum Genet 2018; 137:257-264. [PMID: 29556724 DOI: 10.1007/s00439-018-1877-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 02/25/2018] [Indexed: 11/24/2022]
Abstract
PRR12 encodes a proline-rich protein nuclear factor suspected to be involved in neural development. Its nuclear expression in fetal brains and in the vision system supports its role in brain and eye development more specifically. However, its function and potential role in human disease has not been determined. Recently, a de novo t(10;19) (q22.3;q13.33) translocation disrupting the PRR12 gene was detected in a girl with intellectual disability and neuropsychiatric alterations. Here we report on three unrelated patients with heterozygous de novo apparent loss-of-function mutations in PRR12 detected by clinical whole exome sequencing: c.1918G>T (p.Glu640*), c.4502_4505delTGCC (p.Leu1501Argfs*146) and c.903_909dup (p.Pro304Thrfs*46). All three patients had global developmental delay, intellectual disability, eye and vision abnormalities, dysmorphic features, and neuropsychiatric problems. Eye abnormalities were consistent among the three patients and consisted of stellate iris pattern and iris coloboma. Additional variable clinical features included hypotonia, skeletal abnormalities, sleeping problems, and behavioral issues such as autism and anxiety. In summary, we propose that haploinsufficiency of PRR12 is associated with this novel multisystem neurodevelopmental disorder.
Collapse
Affiliation(s)
- Magalie S Leduc
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Baylor Genetics Laboratories, Houston, TX, USA
| | - Marianne Mcguire
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA
| | | | - Damara Ortiz
- Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, PA, USA
| | - Susan Hayflick
- Department of Molecular and Medical Genetics, Oregon Health and Sciences University, Portland, OR, USA
| | - Kory Keller
- Department of Molecular and Medical Genetics, Oregon Health and Sciences University, Portland, OR, USA
| | - Christine M Eng
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Baylor Genetics Laboratories, Houston, TX, USA
| | - Yaping Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Baylor Genetics Laboratories, Houston, TX, USA
| | - Weimin Bi
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA. .,Baylor Genetics Laboratories, Houston, TX, USA.
| |
Collapse
|
25
|
The contribution of 7q33 copy number variations for intellectual disability. Neurogenetics 2017; 19:27-40. [PMID: 29260337 DOI: 10.1007/s10048-017-0533-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 11/28/2017] [Accepted: 11/29/2017] [Indexed: 12/25/2022]
Abstract
Copy number variations (CNVs) at the 7q33 cytoband are very rarely described in the literature, and almost all of the cases comprise large deletions affecting more than just the q33 segment. We report seven patients (two families with two siblings and their affected mother and one unrelated patient) with neurodevelopmental delay associated with CNVs in 7q33 alone. All the patients presented mild to moderate intellectual disability (ID), dysmorphic features, and a behavioral phenotype characterized by aggressiveness and disinhibition. One family presents a small duplication in cis affecting CALD1 and AGBL3 genes, while the other four patients carry two larger deletions encompassing EXOC4, CALD1, AGBL3, and CNOT4. This work helps to refine the phenotype and narrow the minimal critical region involved in 7q33 CNVs. Comparison with similar cases and functional studies should help us clarify the relevance of the deleted genes for ID and behavioral alterations.
Collapse
|