1
|
Rutowicz K, Lüthi J, de Groot R, Holtackers R, Yakimovich Y, Pazmiño DM, Gandrillon O, Pelkmans L, Baroux C. Multiscale chromatin dynamics and high entropy in plant iPSC ancestors. J Cell Sci 2024; 137:jcs261703. [PMID: 38738286 PMCID: PMC11234377 DOI: 10.1242/jcs.261703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/29/2024] [Indexed: 05/14/2024] Open
Abstract
Plant protoplasts provide starting material for of inducing pluripotent cell masses that are competent for tissue regeneration in vitro, analogous to animal induced pluripotent stem cells (iPSCs). Dedifferentiation is associated with large-scale chromatin reorganisation and massive transcriptome reprogramming, characterised by stochastic gene expression. How this cellular variability reflects on chromatin organisation in individual cells and what factors influence chromatin transitions during culturing are largely unknown. Here, we used high-throughput imaging and a custom supervised image analysis protocol extracting over 100 chromatin features of cultured protoplasts. The analysis revealed rapid, multiscale dynamics of chromatin patterns with a trajectory that strongly depended on nutrient availability. Decreased abundance in H1 (linker histones) is hallmark of chromatin transitions. We measured a high heterogeneity of chromatin patterns indicating intrinsic entropy as a hallmark of the initial cultures. We further measured an entropy decline over time, and an antagonistic influence by external and intrinsic factors, such as phytohormones and epigenetic modifiers, respectively. Collectively, our study benchmarks an approach to understand the variability and evolution of chromatin patterns underlying plant cell reprogramming in vitro.
Collapse
Affiliation(s)
- Kinga Rutowicz
- Plant Developmental Genetics, Institute of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland
| | - Joel Lüthi
- Department of Molecular Life Sciences, University of Zurich, 8050 Zurich, Switzerland
| | - Reinoud de Groot
- Department of Molecular Life Sciences, University of Zurich, 8050 Zurich, Switzerland
| | - René Holtackers
- Department of Molecular Life Sciences, University of Zurich, 8050 Zurich, Switzerland
| | - Yauhen Yakimovich
- Department of Molecular Life Sciences, University of Zurich, 8050 Zurich, Switzerland
| | - Diana M. Pazmiño
- Plant Developmental Genetics, Institute of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland
| | - Olivier Gandrillon
- Laboratory of Biology and Modeling of the Cell, University of Lyon, ENS de Lyon,69342 Lyon, France
| | - Lucas Pelkmans
- Department of Molecular Life Sciences, University of Zurich, 8050 Zurich, Switzerland
| | - Célia Baroux
- Plant Developmental Genetics, Institute of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland
| |
Collapse
|
2
|
Badhan S, Ball AS, Mantri N. First Report of CRISPR/Cas9 Mediated DNA-Free Editing of 4CL and RVE7 Genes in Chickpea Protoplasts. Int J Mol Sci 2021; 22:E396. [PMID: 33401455 PMCID: PMC7795094 DOI: 10.3390/ijms22010396] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/13/2022] Open
Abstract
The current genome editing system Clustered Regularly Interspaced Short Palindromic Repeats Cas9 (CRISPR/Cas9) has already confirmed its proficiency, adaptability, and simplicity in several plant-based applications. Together with the availability of a vast amount of genome data and transcriptome data, CRISPR/Cas9 presents a massive opportunity for plant breeders and researchers. The successful delivery of ribonucleoproteins (RNPs), which are composed of Cas9 enzyme and a synthetically designed single guide RNA (sgRNA) and are used in combination with various transformation methods or lately available novel nanoparticle-based delivery approaches, allows targeted mutagenesis in plants species. Even though this editing technique is limitless, it has still not been employed in many plant species to date. Chickpea is the second most crucial winter grain crop cultivated worldwide; there are currently no reports on CRISPR/Cas9 gene editing in chickpea. Here, we selected the 4-coumarate ligase (4CL) and Reveille 7 (RVE7) genes, both associated with drought tolerance for CRISPR/Cas9 editing in chickpea protoplast. The 4CL represents a key enzyme involved in phenylpropanoid metabolism in the lignin biosynthesis pathway. It regulates the accumulation of lignin under stress conditions in several plants. The RVE7 is a MYB transcription factor which is part of regulating circadian rhythm in plants. The knockout of these selected genes in the chickpea protoplast using DNA-free CRISPR/Cas9 editing represents a novel approach for achieving targeted mutagenesis in chickpea. Results showed high-efficiency editing was achieved for RVE7 gene in vivo compared to the 4CL gene. This study will help unravel the role of these genes under drought stress and understand the complex drought stress mechanism pathways. This is the first study in chickpea protoplast utilizing CRISPR/Cas9 DNA free gene editing of drought tolerance associated genes.
Collapse
Affiliation(s)
| | | | - Nitin Mantri
- The Pangenomics Lab, School of Science, RMIT University, Melbourne 3000, Australia; (S.B.); (A.S.B.)
| |
Collapse
|
3
|
Pasternak T, Lystvan K, Betekhtin A, Hasterok R. From Single Cell to Plants: Mesophyll Protoplasts as a Versatile System for Investigating Plant Cell Reprogramming. Int J Mol Sci 2020; 21:E4195. [PMID: 32545519 PMCID: PMC7348876 DOI: 10.3390/ijms21124195] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/07/2020] [Accepted: 06/10/2020] [Indexed: 01/24/2023] Open
Abstract
Plants are sessile organisms that have a remarkable developmental plasticity, which ensures their optimal adaptation to environmental stresses. Plant cell totipotency is an extreme example of such plasticity, whereby somatic cells have the potential to form plants via direct shoot organogenesis or somatic embryogenesis in response to various exogenous and/or endogenous signals. Protoplasts provide one of the most suitable systems for investigating molecular mechanisms of totipotency, because they are effectively single cell populations. In this review, we consider the current state of knowledge of the mechanisms that induce cell proliferation from individual, differentiated somatic plant cells. We highlight initial explant metabolic status, ploidy level and isolation procedure as determinants of successful cell reprogramming. We also discuss the importance of auxin signalling and its interaction with stress-regulated pathways in governing cell cycle induction and further stages of plant cell totipotency.
Collapse
Affiliation(s)
- Taras Pasternak
- Institute of Biology II/Molecular Plant Physiology, Centre for BioSystems Analysis, BIOSS Centre for Biological Signalling Studies University of Freiburg, 79104 Freiburg, Germany
| | - Kateryna Lystvan
- Institute of Cell Biology and Genetic Engineering of the National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine;
| | - Alexander Betekhtin
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-032 Katowice, Poland;
| | - Robert Hasterok
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-032 Katowice, Poland;
| |
Collapse
|
4
|
Brandt KM, Gunn H, Moretti N, Zemetra RS. A Streamlined Protocol for Wheat ( Triticum aestivum) Protoplast Isolation and Transformation With CRISPR-Cas Ribonucleoprotein Complexes. FRONTIERS IN PLANT SCIENCE 2020; 11:769. [PMID: 32587597 PMCID: PMC7298111 DOI: 10.3389/fpls.2020.00769] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/14/2020] [Indexed: 05/03/2023]
Abstract
The genetic engineering method CRISPR has been touted as an efficient, inexpensive, easily used, and targeted genetic modification technology that is widely suggested as having the potential to solve many of the problems facing agriculture now and in the future. Like all new technologies, however, it is not without challenges. One of the most difficult challenges to anticipate and detect is gene targets that are inaccessible due to the chromatin state at their specific location. There is currently no way to predict this during the process of designing a sgRNA target, and the only way to detect this issue before spending time and resources on full transformations is to test the cleavage ability of the sgRNA in vivo. In wheat, this is possible using protoplast isolation and PEG transformation with Cas9 ribonucleoprotein complexes. Therefore, we have developed a streamlined protocol for testing the accessibility of sgRNA targets in wheat. The first steps involve digesting wheat leaf tissue in an enzymatic solution and then isolating viable protoplasts using filters and a sucrose gradient. The protoplasts are then transformed using Cas9 ribonucleoprotein complexes via PEG-mediated transformation. DNA is isolated from the CRISPR-Cas-edited protoplasts and PCR is performed to amplify the gene target region. The PCR product is then used to assess the editing efficiency of the chosen sgRNA using Sanger sequencing. This simplified protocol for the isolation and transformation of wheat protoplast cells using Cas9 ribonucleoprotein complexes streamlines CRISPR transformation projects by allowing for a fast and easy test of sgRNA accessibility in vivo.
Collapse
Affiliation(s)
- Kali M. Brandt
- Wheat Breeding and Genetics, Crop and Soil Science, Oregon State University, Corvallis, OR, United States
| | | | | | | |
Collapse
|
5
|
Nadakuduti SS, Starker CG, Ko DK, Jayakody TB, Buell CR, Voytas DF, Douches DS. Evaluation of Methods to Assess in vivo Activity of Engineered Genome-Editing Nucleases in Protoplasts. FRONTIERS IN PLANT SCIENCE 2019; 10:110. [PMID: 30800139 PMCID: PMC6376315 DOI: 10.3389/fpls.2019.00110] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 01/23/2019] [Indexed: 06/01/2023]
Abstract
Genome-editing is being implemented in increasing number of plant species using engineered sequence specific nucleases (SSNs) such as Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated systems (CRISPR/Cas9), Transcription activator like effector nucleases (TALENs), and more recently CRISPR/Cas12a. As the tissue culture and regeneration procedures to generate gene-edited events are time consuming, large-scale screening methodologies that rapidly facilitate validation of genome-editing reagents are critical. Plant protoplast cells provide a rapid platform to validate genome-editing reagents. Protoplast transfection with plasmids expressing genome-editing reagents represents an efficient and cost-effective method to screen for in vivo activity of genome-editing constructs and resulting targeted mutagenesis. In this study, we compared three existing methods for detection of editing activity, the T7 endonuclease I assay (T7EI), PCR/restriction enzyme (PCR/RE) digestion, and amplicon-sequencing, with an alternative method which involves tagging a double-stranded oligodeoxynucleotide (dsODN) into the SSN-induced double stranded break and detection of on-target activity of gene-editing reagents by PCR and agarose gel electrophoresis. To validate these methods, multiple reagents including TALENs, CRISPR/Cas9 and Cas9 variants, eCas9(1.1) (enhanced specificity) and Cas9-HF1 (high-fidelity1) were engineered for targeted mutagenesis of Acetolactate synthase1 (ALS1), 5-Enolpyruvylshikimate- 3-phosphate synthase1 (EPSPS1) and their paralogs in potato. While all methods detected editing activity, the PCR detection of dsODN integration provided the most straightforward and easiest method to assess on-target activity of the SSN as well as a method for initial qualitative evaluation of the functionality of genome-editing constructs. Quantitative data on mutagenesis frequencies obtained by amplicon-sequencing of ALS1 revealed that the mutagenesis frequency of CRISPR/Cas9 reagents is better than TALENs. Context-based choice of method for evaluation of gene-editing reagents in protoplast systems, along with advantages and limitations associated with each method, are discussed.
Collapse
Affiliation(s)
- Satya Swathi Nadakuduti
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Colby G. Starker
- Department of Genetics, Cell Biology and Development and Center for Precision Plant Genomics, University of Minnesota, Saint Paul, MN, United States
| | - Dae Kwan Ko
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
| | - Thilani B. Jayakody
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - C. Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
- Plant Resilience Institute, Michigan State University, East Lansing, MI, United States
- Michigan State University AgBioResearch, Michigan State University, East Lansing, MI, United States
| | - Daniel F. Voytas
- Department of Genetics, Cell Biology and Development and Center for Precision Plant Genomics, University of Minnesota, Saint Paul, MN, United States
| | - David S. Douches
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
- Michigan State University AgBioResearch, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
6
|
Xu X, Xu X, Zhou Y, Zeng S, Kong W. Identification of protoplast-isolation responsive microRNAs in Citrus reticulata Blanco by high-throughput sequencing. PLoS One 2017; 12:e0183524. [PMID: 28829800 PMCID: PMC5567906 DOI: 10.1371/journal.pone.0183524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 08/04/2017] [Indexed: 01/21/2023] Open
Abstract
Protoplast isolation is a stress-inducing process, during which a variety of physiological and molecular alterations take place. Such stress response affects the expression of totipotency of cultured protoplasts. MicroRNAs (miRNAs) play important roles in plant growth, development and stress responses. However, the underlying mechanism of miRNAs involved in the protoplast totipotency remains unclear. In this study, high-throughput sequencing technology was used to sequence two populations of small RNA from calli and callus-derived protoplasts in Citrus reticulata Blanco. A total of 67 known miRNAs from 35 families and 277 novel miRNAs were identified. Among these miRNAs, 18 known miRNAs and 64 novel miRNAs were identified by differentially expressed miRNAs (DEMs) analysis. The expression patterns of the eight DEMs were verified by qRT-PCR. Target prediction showed most targets of the miRNAs were transcription factors. The expression levels of half targets showed a negative correlation to those of the miRNAs. Furthermore, the physiological analysis showed high levels of antioxidant activities in isolated protoplasts. In short, our results indicated that miRNAs may play important roles in protoplast-isolation response.
Collapse
Affiliation(s)
- Xiaoyong Xu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
- * E-mail: (XYX); (WWK)
| | - Xiaoling Xu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Yipeng Zhou
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Shaohua Zeng
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, PR China
| | - Weiwen Kong
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
- * E-mail: (XYX); (WWK)
| |
Collapse
|
7
|
Sugiyama M. Historical review of research on plant cell dedifferentiation. JOURNAL OF PLANT RESEARCH 2015; 128:349-59. [PMID: 25725626 DOI: 10.1007/s10265-015-0706-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/20/2015] [Indexed: 05/23/2023]
Abstract
Plant cell dedifferentiation has long attracted interest as a key process for understanding the plasticity of plant development. In early studies, typical examples of plant cell dedifferentiation were described as physiological and cytological changes associated with wound healing or regenerative development. Subsequently, plant tissue and cell culture techniques, in which exciting progress was achieved after discovery of the hormonal control of cell proliferation and organogenesis in vitro in the 1950s, have been used extensively to study dedifferentiation. The pioneer studies of plant tissue/cell culture led to the hypothesis that many mature plant cells retain totipotency and related dedifferentiation to the initial step of the expression of totipotency. Plant tissue/cell cultures have provided experimental systems not only for physiological analysis, but also for genetic and molecular biological analysis, of dedifferentiation. More recently, proteomic, transcriptomic, and epigenetic analyses have been applied to the study of plant cell dedifferentiation. All of these works have expanded our knowledge of plant cell dedifferentiation, and current research is contributing to unraveling the molecular mechanisms. The present article provides a brief overview of the history of research on plant cell dedifferentiation.
Collapse
Affiliation(s)
- Munetaka Sugiyama
- Botanical Gardens, Graduate School of Science, The University of Tokyo, 3-7-1 Hakusan, Bunkyo-ku, Tokyo, 112-0001, Japan,
| |
Collapse
|
8
|
Jiang F, Zhu J, Liu HL. Protoplasts: a useful research system for plant cell biology, especially dedifferentiation. PROTOPLASMA 2013; 250:1231-8. [PMID: 23719716 DOI: 10.1007/s00709-013-0513-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 05/16/2013] [Indexed: 05/03/2023]
Abstract
As protoplasts have the characteristics of no cell walls, rapid population growth, and synchronicity, they are useful tools for research in many fields, especially cellular biology (Table 1). This article is an overview that focuses on the application of protoplasts to investigate the mechanisms of dedifferentiation, including changes in hormone signals, epigenetic changes, and organelle distribution during the dedifferentiation process. The article also emphasizes the wide range of uses for protoplasts in studying protein positions and signaling during different stresses. The examples provided help to show that protoplast systems, for example the mesophyll protoplast system of Arabidopsis, represent promising tools for studying developmental biology. Meanwhile, specific analysis of protoplast, which comes from different tissue, has specific advantages and limitations (Table 2), and it can provide recommendations to use this system.
Collapse
Affiliation(s)
- Fangwei Jiang
- School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | | | | |
Collapse
|
9
|
Benoit M, Layat E, Tourmente S, Probst AV. Heterochromatin dynamics during developmental transitions in Arabidopsis - a focus on ribosomal DNA loci. Gene 2013; 526:39-45. [PMID: 23410919 DOI: 10.1016/j.gene.2013.01.060] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/16/2013] [Accepted: 01/23/2013] [Indexed: 01/01/2023]
Abstract
The Arabidopsis chromosomes contain conspicuous heterochromatin domains comprising the repetitive 45S and 5S ribosomal DNA loci as well as centromeric and pericentromeric repeats that organize into chromocenters during interphase. During developmental phase transitions such as seed maturation, germination, seedling growth and flowering that require large-scale reprogramming of gene expression patterns, the organization of repetitive sequences into chromocenters dynamically changes. Here we illustrate recent studies that shed light on the heterochromatin dynamics in cotyledons, the first aerial tissues preformed in the embryo, and in true leaves. We will summarize available data for the 5S rDNA repeat loci, in particular their chromatin organization and expression dynamics during the first days of post-germination development, and discuss how the plant accommodates 5S rRNA transcription during large-scale chromatin reorganization events.
Collapse
Affiliation(s)
- Matthias Benoit
- Génétique, Reproduction et Développement, UMR CNRS 6293, Clermont Université, INSERM U1103, 24 Avenue des Landais, BP 80026, 63171 Aubière Cedex, France.
| | | | | | | |
Collapse
|
10
|
Qiao Z, Libault M. Unleashing the potential of the root hair cell as a single plant cell type model in root systems biology. FRONTIERS IN PLANT SCIENCE 2013; 4:484. [PMID: 24324480 PMCID: PMC3840615 DOI: 10.3389/fpls.2013.00484] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 11/07/2013] [Indexed: 05/17/2023]
Abstract
Plant root is an organ composed of multiple cell types with different functions. This multicellular complexity limits our understanding of root biology because -omics studies performed at the level of the entire root reflect the average responses of all cells composing the organ. To overcome this difficulty and allow a more comprehensive understanding of root cell biology, an approach is needed that would focus on one single cell type in the plant root. Because of its biological functions (i.e., uptake of water and various nutrients; primary site of infection by nitrogen-fixing bacteria in legumes), the root hair cell is an attractive single cell model to study root cell response to various stresses and treatments. To fully study their biology, we have recently optimized procedures in obtaining root hair cell samples. We culture the plants using an ultrasound aeroponic system maximizing root hair cell density on the entire root systems and allowing the homogeneous treatment of the root system. We then isolate the root hair cells in liquid nitrogen. Isolated root hair yields could be up to 800 to 1000~mg of plant cells from 60 root systems. Using soybean as a model, the purity of the root hair was assessed by comparing the expression level of genes previously identified as soybean root hair specific between preparations of isolated root hair cells and stripped roots, roots devoid in root hairs. Enlarging our tests to include other plant species, our results support the isolation of large quantities of highly purified root hair cells which is compatible with a systems biology approach.
Collapse
Affiliation(s)
| | - Marc Libault
- *Correspondence: Marc Libault, Department of Microbiology and Plant Biology, University of Oklahoma, 770 Van Vleet Oval, Norman, OK 73019, USA e-mail:
| |
Collapse
|
11
|
Transcriptome of protoplasts reprogrammed into stem cells in Physcomitrella patens. PLoS One 2012; 7:e35961. [PMID: 22545152 PMCID: PMC3335808 DOI: 10.1371/journal.pone.0035961] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 03/26/2012] [Indexed: 11/22/2022] Open
Abstract
Background Differentiated plant cells can retain the capacity to be reprogrammed into pluripotent stem cells during regeneration. This capacity is associated with both cell cycle reactivation and acquisition of specific cellular characters. However, the molecular mechanisms underlying the reprogramming of protoplasts into stem cells remain largely unknown. Protoplasts of the moss Physcomitrella patens easily regenerate into protonema and therefore provide an ideal system to explore how differentiated cells can be reprogrammed to produce stem cells. Principal findings We obtained genome-wide digital gene expression tag profiles within the first three days of P. patens protoplast reprogramming. At four time-points during protoplast reprogramming, the transcript levels of 4827 genes changed more than four-fold and their expression correlated with the reprogramming phase. Gene ontology (GO) and pathway enrichment analysis of differentially expressed genes (DEGs) identified a set of significantly enriched GO terms and pathways, most of which were associated with photosynthesis, protein synthesis and stress responses. DEGs were grouped into six clusters that showed specific expression patterns using a K-means clustering algorithm. An investigation of function and expression patterns of genes identified a number of key candidate genes and pathways in early stages of protoplast reprogramming, which provided important clues to reveal the molecular mechanisms responsible for protoplast reprogramming. Conclusions We identified genes that show highly dynamic changes in expression during protoplast reprogramming into stem cells in P. patens. These genes are potential targets for further functional characterization and should be valuable for exploration of the mechanisms of stem cell reprogramming. In particular, our data provides evidence that protoplasts of P. patens are an ideal model system for elucidation of the molecular mechanisms underlying differentiated plant cell reprogramming.
Collapse
|
12
|
Tan F, Zhang K, Mujahid H, Verma DPS, Peng Z. Differential Histone Modification and Protein Expression Associated with Cell Wall Removal and Regeneration in Rice (Oryza sativa). J Proteome Res 2010; 10:551-63. [DOI: 10.1021/pr100748e] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Feng Tan
- Department of Biochemistry and Molecular Biology, Mississippi State University, Starkville, Mississippi 39762, United States, Department of Biochemistry, School of Medicine, Loma Linda University, Loma Linda, California 92350, United States, and Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210, United States
| | - Kangling Zhang
- Department of Biochemistry and Molecular Biology, Mississippi State University, Starkville, Mississippi 39762, United States, Department of Biochemistry, School of Medicine, Loma Linda University, Loma Linda, California 92350, United States, and Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210, United States
| | - Hana Mujahid
- Department of Biochemistry and Molecular Biology, Mississippi State University, Starkville, Mississippi 39762, United States, Department of Biochemistry, School of Medicine, Loma Linda University, Loma Linda, California 92350, United States, and Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210, United States
| | - Desh Pal S. Verma
- Department of Biochemistry and Molecular Biology, Mississippi State University, Starkville, Mississippi 39762, United States, Department of Biochemistry, School of Medicine, Loma Linda University, Loma Linda, California 92350, United States, and Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210, United States
| | - Zhaohua Peng
- Department of Biochemistry and Molecular Biology, Mississippi State University, Starkville, Mississippi 39762, United States, Department of Biochemistry, School of Medicine, Loma Linda University, Loma Linda, California 92350, United States, and Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
13
|
Ondrej V, Navrátilová B, Protivánková I, Piterková J, Sedlárová M, Luhová L, Lebeda A. Recondensation level of repetitive sequences in the plant protoplast nucleus is limited by oxidative stress. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:2395-401. [PMID: 20363868 PMCID: PMC2877892 DOI: 10.1093/jxb/erq067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 02/04/2010] [Accepted: 03/04/2010] [Indexed: 05/18/2023]
Abstract
Protoplast cultures are remarkable examples of plant cell dedifferentiation. The state of dedifferentiation is evidenced by changes in cell morphology, genome organization, as well as by the capability of protoplasts to differentiate into multiple types of cells (depending on the type of the stimulus applied). The first change in the genome structure is connected with large-scale chromatin decondensation, affecting chromocentres involving various types of these repetitive sequences. This paper describes not only the de- and recondensation of satellite DNA type I and 5S rDNA repetitive sequences, but it also compares the recondensation level of chromatin with the levels of oxidative stress which were decreased by using an antioxidant, as well as the capabilities of the antioxidative systems within protoplasts, during the first 72 h of their culture. It is demonstrated that the treatment of protoplasts with ascorbic acid not only decreased the level of oxidative stress but also positively stimulated the expression of the ascorbate peroxidase and catalase. It also led to a greater recondensation of the chromatin (when compared to the untreated protoplasts); in addition, it supported cell proliferation. It is concluded that large-scale genome relaxation is more directly connected with oxidative stress than with large changes in the expression of genes; and further, that its recondensation is related to the start of (as well as the level of) protection by the antioxidative systems.
Collapse
Affiliation(s)
- Vladan Ondrej
- Department of Botany, Faculty of Science, Palacký University, Slechtitelů 11, Olomouc 783 71, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|