1
|
Ramón Roth I, Kats P, Fiebig T, Routier F, Fedorov R, Dirr L, Führing JI. Identification and characterization of the functional tetrameric UDP-glucose pyrophosphorylase from Klebsiella pneumoniae. mBio 2025; 16:e0207124. [PMID: 39704542 PMCID: PMC11796359 DOI: 10.1128/mbio.02071-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024] Open
Abstract
In all kingdoms of life, the enzyme uridine diphosphate-glucose pyrophosphorylase (UGP) occupies a central role in metabolism, as its reaction product uridine diphosphate-glucose (UDP-Glc) is involved in various crucial cellular processes. Pathogens, including fungi, parasites, and bacteria, depend on UGP for the synthesis of virulence factors; in particular, various bacterial species utilize UDP-Glc and its derivatives for the synthesis of lipopolysaccharides, capsular polysaccharides, and biofilm exopolysaccharides. UGPs have, therefore, gained attention as anti-bacterial drug target candidates, prompting us to study their structure-function relationships to provide a basis for the rational development of specific inhibitors. UGP function is tied to its oligomeric state, and the majority of bacterial homologs have been described as tetramers encoded by the galU gene. Uniquely, enterobacterial species harbor a second gene, galF, encoding a protein with high homology to UGP, whose function is somewhat controversial. Here, we show that the galF gene of the opportunistic pathogen Klebsiella pneumoniae encodes a dimeric protein that has lost UGP activity, likely due to a combination of active site mutations and an inability to tetramerize, whereas the functional K. pneumoniae UGP, encoded by galU, is an active tetramer. Our AlphaFold-assisted structure-function relationship studies underline that tetramerization is essential for bacterial UGP function and is facilitated by a common mechanism utilizing conserved key residues. Targeting the respective molecular interfaces, which are absent in human UGP, could provide a means of selectively inhibiting the bacterial virulence factor UGP and potentially rendering pathogenic species avirulent.IMPORTANCEThe enzyme uridine diphosphate-glucose pyrophosphorylase (UGP) is important for the virulence of bacterial pathogens and, therefore, a potential drug target. In this study, we identify the gene encoding the functional UGP in Klebsiella pneumoniae, a bacterium notoriously causing severe antibiotic-resistant infections in humans, and reveal structural and functional features that may aid in the development of new antibiotics.
Collapse
Affiliation(s)
- Isabel Ramón Roth
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Pavel Kats
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Timm Fiebig
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Françoise Routier
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Roman Fedorov
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
- Division for Structural Biochemistry, Hannover Medical School, Hannover, Germany
| | - Larissa Dirr
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast, Southport, Australia
| | - Jana I. Führing
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| |
Collapse
|
2
|
Cifuente JO, Colleoni C, Kalscheuer R, Guerin ME. Architecture, Function, Regulation, and Evolution of α-Glucans Metabolic Enzymes in Prokaryotes. Chem Rev 2024; 124:4863-4934. [PMID: 38606812 PMCID: PMC11046441 DOI: 10.1021/acs.chemrev.3c00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Bacteria have acquired sophisticated mechanisms for assembling and disassembling polysaccharides of different chemistry. α-d-Glucose homopolysaccharides, so-called α-glucans, are the most widespread polymers in nature being key components of microorganisms. Glycogen functions as an intracellular energy storage while some bacteria also produce extracellular assorted α-glucans. The classical bacterial glycogen metabolic pathway comprises the action of ADP-glucose pyrophosphorylase and glycogen synthase, whereas extracellular α-glucans are mostly related to peripheral enzymes dependent on sucrose. An alternative pathway of glycogen biosynthesis, operating via a maltose 1-phosphate polymerizing enzyme, displays an essential wiring with the trehalose metabolism to interconvert disaccharides into polysaccharides. Furthermore, some bacteria show a connection of intracellular glycogen metabolism with the genesis of extracellular capsular α-glucans, revealing a relationship between the storage and structural function of these compounds. Altogether, the current picture shows that bacteria have evolved an intricate α-glucan metabolism that ultimately relies on the evolution of a specific enzymatic machinery. The structural landscape of these enzymes exposes a limited number of core catalytic folds handling many different chemical reactions. In this Review, we present a rationale to explain how the chemical diversity of α-glucans emerged from these systems, highlighting the underlying structural evolution of the enzymes driving α-glucan bacterial metabolism.
Collapse
Affiliation(s)
- Javier O. Cifuente
- Instituto
Biofisika (UPV/EHU, CSIC), University of
the Basque Country, E-48940 Leioa, Spain
| | - Christophe Colleoni
- University
of Lille, CNRS, UMR8576-UGSF -Unité de Glycobiologie Structurale
et Fonctionnelle, F-59000 Lille, France
| | - Rainer Kalscheuer
- Institute
of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Dusseldorf, Germany
| | - Marcelo E. Guerin
- Structural
Glycobiology Laboratory, Department of Structural and Molecular Biology, Molecular Biology Institute of Barcelona (IBMB), Spanish
National Research Council (CSIC), Barcelona Science Park, c/Baldiri Reixac 4-8, Tower R, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
3
|
Dirr L, Cleeves S, Ramón Roth I, Li L, Fiebig T, Ve T, Häussler S, Braun A, von Itzstein M, Führing JI. Tetramerization is essential for the enzymatic function of the Pseudomonas aeruginosa virulence factor UDP-glucose pyrophosphorylase. mBio 2024; 15:e0211423. [PMID: 38470050 PMCID: PMC11005391 DOI: 10.1128/mbio.02114-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/20/2024] [Indexed: 03/13/2024] Open
Abstract
Multidrug-resistant bacteria such as the opportunistic pathogen Pseudomonas aeruginosa, which causes life-threatening infections especially in immunocompromised individuals and cystic fibrosis patients, pose an increasing threat to public health. In the search for new treatment options, P. aeruginosa uridine diphosphate-glucose pyrophosphorylase (PaUGP) has been proposed as a novel drug target because it is required for the biosynthesis of important virulence factors and linked to pathogenicity in animal models. Here, we show that UGP-deficient P. aeruginosa exhibits severely reduced virulence against human lung tissue and cells, emphasizing the enzyme's suitability as a drug target. To establish a basis for the development of selective PaUGP inhibitors, we solved the product-bound crystal structure of tetrameric PaUGP and conducted a comprehensive structure-function analysis, identifying key residues at two different molecular interfaces that are essential for tetramer integrity and catalytic activity and demonstrating that tetramerization is pivotal for PaUGP function. Importantly, we show that part of the PaUGP oligomerization interface is uniquely conserved across bacterial UGPs but does not exist in the human enzyme, therefore representing an allosteric site that may be targeted to selectively inhibit bacterial UGPs.IMPORTANCEInfections with the opportunistic bacterial pathogen Pseudomonas aeruginosa are becoming increasingly difficult to treat due to multidrug resistance. Here, we show that the enzyme uridine diphosphate-glucose pyrophosphorylase (UGP) is involved in P. aeruginosa virulence toward human lung tissue and cells, making it a potential target for the development of new antibacterial drugs. Our exploration of P. aeruginosa (Pa)UGP structure-function relationships reveals that the activity of PaUGP depends on the formation of a tetrameric enzyme complex. We found that a molecular interface involved in tetramer formation is conserved in all bacterial UGPs but not in the human enzyme, and therefore hypothesize that it provides an ideal point of attack to selectively inhibit bacterial UGPs and exploit them as drug targets.
Collapse
Affiliation(s)
- Larissa Dirr
- Institute for Glycomics, Gold Coast Campus, Griffith University, Gold Coast, Queensland, Australia
| | - Sven Cleeves
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Isabel Ramón Roth
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Linghui Li
- Institute for Glycomics, Gold Coast Campus, Griffith University, Gold Coast, Queensland, Australia
| | - Timm Fiebig
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Thomas Ve
- Institute for Glycomics, Gold Coast Campus, Griffith University, Gold Coast, Queensland, Australia
| | - Susanne Häussler
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Molecular Bacteriology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
- Department of Clinical Microbiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Armin Braun
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Mark von Itzstein
- Institute for Glycomics, Gold Coast Campus, Griffith University, Gold Coast, Queensland, Australia
| | - Jana I. Führing
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| |
Collapse
|
4
|
Ortiz-Soto ME, Baier M, Brenner D, Timm M, Seibel J. Single-mutations at the galactose-binding site of enzymes GalK, GalU, and LgtC enable the efficient synthesis of UDP-6-azido-6-deoxy-d-galactose and azido-functionalized Gb3 analogs. Glycobiology 2023; 33:651-660. [PMID: 37283491 DOI: 10.1093/glycob/cwad045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/08/2023] Open
Abstract
Lysosomal accumulation of the glycosphingolipid globotriaosylceramide Gb3 is linked to the deficient activity of the α-galactosidase A in the Anderson-Fabry disease and an elevated level of deacylated Gb3 is a hallmark of this condition. Localization of Gb3 in the plasma membrane is critical for studying how the membrane organization and its dynamics are affected in this genetic disorder. Gb3 analogs containing a terminal 6-azido-functionalized galactose in its head group globotriose (αGal1, 4βGal1, and 4Glc) are attractive chemical reporters for bioimaging, as the azido-group may act as a chemical tag for bio-orthogonal click chemistry. We report here the production of azido-Gb3 analogs employing mutants of galactokinase, UTP-glucose-1-phosphate uridylyltransferase, and α-1,4-galactosyltransferase LgtC, which participate in the synthesis of the sugar motif globotriose. Variants of enzymes galactokinase/UTP-glucose-1-phosphate uridylyltransferase generate UDP-6-azido-6-deoxy-d-galactose, which is the galactosyl-donor used by LgtC for transferring the terminal galactose moiety to lactosyl-acceptors. Residues at the galactose-binding site of the 3 enzymes were modified to facilitate the accommodation of azido-functionalized substrates and variants outperforming the wild-type enzymes were characterized. Synthesis of 6-azido-6-deoxy-d-galactose-1-phosphate, UDP-6-azido-6-deoxy-d-galactose, and azido-Gb3 analogs by variants GalK-E37S, GalU-D133V, and LgtC-Q187S, respectively, is 3-6-fold that of their wild-type counterparts. Coupled reactions with these variants permit the production of the pricy, unnatural galactosyl-donor UDP-6-azido-6-deoxy-d-galactose with ~90% conversion yields, and products azido-globotriose and lyso-AzGb3 with substrate conversion of up to 70%. AzGb3 analogs could serve as precursors for the synthesis of other tagged glycosphingolipids of the globo-series.
Collapse
Affiliation(s)
- Maria E Ortiz-Soto
- Institut für Organische Chemie, Julius-Maximilians-Universität, Am Hubland, 97074 Würzburg, Germany
| | - Makarius Baier
- Institut für Organische Chemie, Julius-Maximilians-Universität, Am Hubland, 97074 Würzburg, Germany
| | - Daniela Brenner
- Institut für Organische Chemie, Julius-Maximilians-Universität, Am Hubland, 97074 Würzburg, Germany
| | - Malte Timm
- Institut für Organische Chemie, Julius-Maximilians-Universität, Am Hubland, 97074 Würzburg, Germany
| | - Jürgen Seibel
- Institut für Organische Chemie, Julius-Maximilians-Universität, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
5
|
Han X, D'Angelo C, Otamendi A, Cifuente JO, de Astigarraga E, Ochoa-Lizarralde B, Grininger M, Routier FH, Guerin ME, Fuehring J, Etxebeste O, Connell SR. CryoEM analysis of the essential native UDP-glucose pyrophosphorylase from Aspergillus nidulans reveals key conformations for activity regulation and function. mBio 2023; 14:e0041423. [PMID: 37409813 PMCID: PMC10470519 DOI: 10.1128/mbio.00414-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/31/2023] [Indexed: 07/07/2023] Open
Abstract
Invasive aspergillosis is one of the most serious clinical invasive fungal infections, resulting in a high case fatality rate among immunocompromised patients. The disease is caused by saprophytic molds in the genus Aspergillus, including Aspergillus fumigatus, the most significant pathogenic species. The fungal cell wall, an essential structure mainly composed of glucan, chitin, galactomannan, and galactosaminogalactan, represents an important target for the development of antifungal drugs. UDP (uridine diphosphate)-glucose pyrophosphorylase (UGP) is a central enzyme in the metabolism of carbohydrates that catalyzes the biosynthesis of UDP-glucose, a key precursor of fungal cell wall polysaccharides. Here, we demonstrate that the function of UGP is vital for Aspergillus nidulans (AnUGP). To understand the molecular basis of AnUGP function, we describe a cryoEM structure (global resolution of 3.5 Å for the locally refined subunit and 4 Å for the octameric complex) of a native AnUGP. The structure reveals an octameric architecture with each subunit comprising an N-terminal α-helical domain, a central catalytic glycosyltransferase A-like (GT-A-like) domain, and a C-terminal (CT) left-handed β-helix oligomerization domain. AnUGP displays unprecedented conformational variability between the CT oligomerization domain and the central GT-A-like catalytic domain. In combination with activity measurements and bioinformatics analysis, we unveil the molecular mechanism of substrate recognition and specificity for AnUGP. Altogether, our study not only contributes to understanding the molecular mechanism of catalysis/regulation of an important class of enzymes but also provides the genetic, biochemical, and structural groundwork for the future exploitation of UGP as a potential antifungal target. IMPORTANCE Fungi cause diverse diseases in humans, ranging from allergic syndromes to life-threatening invasive diseases, together affecting more than a billion people worldwide. Increasing drug resistance in Aspergillus species represents an emerging global health threat, making the design of antifungals with novel mechanisms of action a worldwide priority. The cryoEM structure of UDP (uridine diphosphate)-glucose pyrophosphorylase (UGP) from the filamentous fungus Aspergillus nidulans reveals an octameric architecture displaying unprecedented conformational variability between the C-terminal oligomerization domain and the central glycosyltransferase A-like catalytic domain in the individual protomers. While the active site and oligomerization interfaces are more highly conserved, these dynamic interfaces include motifs restricted to specific clades of filamentous fungi. Functional study of these motifs could lead to the definition of new targets for antifungals inhibiting UGP activity and, thus, the architecture of the cell wall of filamentous fungal pathogens.
Collapse
Affiliation(s)
- Xu Han
- Structural Biology of Cellular Machines Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Bizkaia, Spain
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Cecilia D'Angelo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Structural Glycobiology Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Bizkaia, Spain
| | - Ainara Otamendi
- Laboratory of Biology, Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country, UPV/EHU, San Sebastian, Spain
| | - Javier O. Cifuente
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Structural Glycobiology Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Bizkaia, Spain
| | - Elisa de Astigarraga
- Structural Biology of Cellular Machines Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Bizkaia, Spain
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Borja Ochoa-Lizarralde
- Structural Biology of Cellular Machines Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Bizkaia, Spain
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Martin Grininger
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | | | - Marcelo E. Guerin
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Structural Glycobiology Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Bizkaia, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Jana Fuehring
- Institute for Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Oier Etxebeste
- Laboratory of Biology, Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country, UPV/EHU, San Sebastian, Spain
| | - Sean R. Connell
- Structural Biology of Cellular Machines Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Bizkaia, Spain
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
6
|
Li H, Ji T, Sun Q, Chen Y, Xu W, Huang C. Structural insights into selective inhibition of leishmanial GDP-mannose pyrophosphorylase. Cell Discov 2022; 8:83. [PMID: 36038534 PMCID: PMC9424295 DOI: 10.1038/s41421-022-00424-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/23/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Hang Li
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Tuo Ji
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Qi Sun
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi, China
| | - Yao Chen
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Weiya Xu
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| | - Chengdong Huang
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
7
|
Effects of Magnesium, Pyrophosphate and Phosphonates on Pyrophosphorolytic Reaction of UDP-Glucose Pyrophosphorylase. PLANTS 2022; 11:plants11121611. [PMID: 35736762 PMCID: PMC9230926 DOI: 10.3390/plants11121611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/05/2022] [Accepted: 06/14/2022] [Indexed: 12/03/2022]
Abstract
UDP-glucose pyrophosphorylase (UGPase) carries a freely reversible reaction, using glucose-1-P and UTP to produce UDP-glucose (UDPG) and pyrophosphate (PPi), with UDPG being essential for glycosylation reactions in all organisms including, e.g., synthesis of sucrose, cellulose and glycoproteins. In the present study, we found that free magnesium (Mg2+) had profound effects on the reverse reaction of purified barley UGPase, and was absolutely required for its activity, with an apparent Km of 0.13 mM. More detailed analyses with varied concentrations of MgPPi allowed us to conclude that it is the MgPPi complex which serves as true substrate for UGPase in its reverse reaction, with an apparent Km of 0.06 mM. Free PPi was an inhibitor in this reaction. Given the key role of PPi in the UGPase reaction, we have also tested possible effects of phosphonates, which are analogs of PPi and phosphate (Pi). Clodronate and etidronate (PPi analogs) had little or no effect on UGPase activity, whereas fosetyl-Al (Pi analog), a known fungicide, acted as effective near-competitive inhibitor versus PPi, with Ki of 0.15 mM. The data are discussed with respect to the role of magnesium in the UGPase reaction and elucidating the use of inhibitors in studies on cellular function of UGPase and related enzymes.
Collapse
|
8
|
Zhen N, Ye C, Shen Q, Zeng X, Wu Z, Guo Y, Cai Z, Pan D. Heterologous expression and biological characteristics of UGPases from Lactobacillus acidophilus. Appl Microbiol Biotechnol 2022; 106:2481-2491. [PMID: 35344091 DOI: 10.1007/s00253-022-11856-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 02/21/2022] [Accepted: 02/26/2022] [Indexed: 11/24/2022]
Abstract
Herein, two genes (LBA0625 and LBA1719) encoding UGPases (UDP-glucose pyrophosphorylase) in Lactobacillus acidophilus (L. acidophilus) were successfully transformed into Escherichia coli BL21 (DE3) to construct recombinant overexpressing strains (E-0625, E-1719) to investigate the biological characteristics of UGPase-0625 and UGPase-1719. The active sites, polysaccharide yield, and anti-freeze-drying stress of L. acidophilus ATCC4356 were also detected. UGPase-0625 and UGPase-1719 belong to the nucleotidyltransferase of stable hydrophilic proteins; contain 300 and 294 amino acids, respectively; and have 20 conserved active sites by prediction. Αlpha-helixes and random coils were the main secondary structures, which constituted the main skeleton of UGPases. The optimal mixture for the high catalytic activity of the two UGPases included 0.5 mM UDP-Glu (uridine diphosphate glucose) and Mg2+ at 37 °C, pH 10.0. By comparing the UGPase activities of the mutant strains with the original recombinant strains, A10, L130, and L263 were determined as the active sites of UGPase-0625 (P < 0.01) and A11, L130, and L263 were determined as the active sites of UGPase-1719 (P < 0.01). In addition, UGPase overexpression could increase the production of polysaccharides and the survival rates of recombinant bacteria after freeze-drying. This is the first study to determine the enzymatic properties, active sites, and structural simulation of UGPases from L. acidophilus, providing in-depth understanding of the biological characteristics of UGPases in lactic acid bacteria.Key points• We detected the biological characteristics of UGPases encoded by LBA0625 and LBA1719.• We identified UGPase-0625 and UGPase-1719 active sites.• UGPase overexpression elevates polysaccharide levels and post-freeze-drying survival.
Collapse
Affiliation(s)
- Ni Zhen
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Ningbo, 315211, China.,Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, 315800, China.,College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315800, China
| | - Congyan Ye
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Ningbo, 315211, China.,Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, 315800, China.,College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315800, China
| | - Qiyuan Shen
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Ningbo, 315211, China.,Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, 315800, China.,College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315800, China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Ningbo, 315211, China. .,Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, 315800, China. .,College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315800, China.
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Ningbo, 315211, China.,Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, 315800, China.,College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315800, China
| | - Yuxing Guo
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Ningbo, 315211, China.,School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210097, China
| | - Zhendong Cai
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Ningbo, 315211, China.,Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, 315800, China.,College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315800, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats To the Quality and Safety of Agro-Products, Ningbo, 315211, China.,Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, 315800, China.,College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315800, China
| |
Collapse
|
9
|
Sharma S, Sharma M, Ray P, Chakraborti A. Antimicrobial Susceptibility Pattern and Serotype Distribution of Streptococcus pneumoniae Isolates From a Hospital-Based Study in Chandigarh, North India. Cureus 2022; 14:e21437. [PMID: 35223224 PMCID: PMC8860682 DOI: 10.7759/cureus.21437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2022] [Indexed: 11/18/2022] Open
Abstract
Streptococcus pneumoniae (pneumococcus) causes significant infection-related morbidity and mortality worldwide. The genome plasticity of pneumococcus is an essential factor in antibiotic resistance, serotype switching, and the emergence of nonvaccine serotypes. Information regarding the serotype distribution as well as antimicrobial susceptibility in pneumococcus clinical isolates responsible for various infections in Northern India is limited. Here, we have explored the antibiotic resistance and serotype pattern associated with S. pneumoniae infections from both invasive and noninvasive sites of patients of all ages, visiting out-patient department of a tertiary care hospital (PGIMER, Chandigarh, India). This study was carried out on 68 S. pneumoniae isolates and the isolates exhibited the highest resistance (76.5%) to cotrimaxozole followed by resistance toward tetracycline (36.8%) and erythromycin (23.5%). All isolates showed vancomycin susceptibility and 86.8% of isolates showed sensitivity to chloramphenicol. Multidrug resistance was found in 32% (n=22) of the S. pneumoniae isolates showing resistance toward three different antibiotics. Serotype 19F was found to be the most prevalent serotype (39%) followed by serotypes 6A/B/C (19%) and 1 (12%). These data shed light on the latest trends in antibiotic susceptibility and prevalent serotype patterns of hospital-based S. pneumoniae isolates. This information can be helpful in designing future disease-preventive strategies.
Collapse
|
10
|
Wu CH, Rismondo J, Morgan RML, Shen Y, Loessner MJ, Larrouy-Maumus G, Freemont PS, Gründling A. Bacillus subtilis YngB contributes to wall teichoic acid glucosylation and glycolipid formation during anaerobic growth. J Biol Chem 2021; 296:100384. [PMID: 33556370 PMCID: PMC7961091 DOI: 10.1016/j.jbc.2021.100384] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/25/2021] [Accepted: 02/02/2021] [Indexed: 01/25/2023] Open
Abstract
UTP-glucose-1-phosphate uridylyltransferases are enzymes that produce UDP-glucose from UTP and glucose-1-phosphate. In Bacillus subtilis 168, UDP-glucose is required for the decoration of wall teichoic acid (WTA) with glucose residues and the formation of glucolipids. The B. subtilis UGPase GtaB is essential for UDP-glucose production under standard aerobic growth conditions, and gtaB mutants display severe growth and morphological defects. However, bioinformatics predictions indicate that two other UTP-glucose-1-phosphate uridylyltransferases are present in B. subtilis. Here, we investigated the function of one of them named YngB. The crystal structure of YngB revealed that the protein has the typical fold and all necessary active site features of a functional UGPase. Furthermore, UGPase activity could be demonstrated in vitro using UTP and glucose-1-phosphate as substrates. Expression of YngB from a synthetic promoter in a B. subtilis gtaB mutant resulted in the reintroduction of glucose residues on WTA and production of glycolipids, demonstrating that the enzyme can function as UGPase in vivo. When WT and mutant B. subtilis strains were grown under anaerobic conditions, YngB-dependent glycolipid production and glucose decorations on WTA could be detected, revealing that YngB is expressed from its native promoter under anaerobic condition. Based on these findings, along with the structure of the operon containing yngB and the transcription factor thought to be required for its expression, we propose that besides WTA, potentially other cell wall components might be decorated with glucose residues during oxygen-limited growth condition.
Collapse
Affiliation(s)
- Chih-Hung Wu
- Section of Molecular Microbiology and Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Jeanine Rismondo
- Section of Molecular Microbiology and Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Rhodri M L Morgan
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Yang Shen
- Institute of Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland
| | - Martin J Loessner
- Institute of Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland
| | - Gerald Larrouy-Maumus
- Department of Life Sciences, Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Paul S Freemont
- London Biofoundry, Imperial College Translation and Innovation Hub, White City Campus, London, United Kingdom; Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom; UK Dementia Research Institute Centre for Care Research and Technology, Imperial College London, London, United Kingdom.
| | - Angelika Gründling
- Section of Molecular Microbiology and Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom.
| |
Collapse
|
11
|
Mikkola S. Nucleotide Sugars in Chemistry and Biology. Molecules 2020; 25:E5755. [PMID: 33291296 PMCID: PMC7729866 DOI: 10.3390/molecules25235755] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022] Open
Abstract
Nucleotide sugars have essential roles in every living creature. They are the building blocks of the biosynthesis of carbohydrates and their conjugates. They are involved in processes that are targets for drug development, and their analogs are potential inhibitors of these processes. Drug development requires efficient methods for the synthesis of oligosaccharides and nucleotide sugar building blocks as well as of modified structures as potential inhibitors. It requires also understanding the details of biological and chemical processes as well as the reactivity and reactions under different conditions. This article addresses all these issues by giving a broad overview on nucleotide sugars in biological and chemical reactions. As the background for the topic, glycosylation reactions in mammalian and bacterial cells are briefly discussed. In the following sections, structures and biosynthetic routes for nucleotide sugars, as well as the mechanisms of action of nucleotide sugar-utilizing enzymes, are discussed. Chemical topics include the reactivity and chemical synthesis methods. Finally, the enzymatic in vitro synthesis of nucleotide sugars and the utilization of enzyme cascades in the synthesis of nucleotide sugars and oligosaccharides are briefly discussed.
Collapse
Affiliation(s)
- Satu Mikkola
- Department of Chemistry, University of Turku, 20014 Turku, Finland
| |
Collapse
|
12
|
Gogoi P, Mordina P, Kanaujia SP. Exploiting the rationale behind substrate recognition by promiscuous thermophilic NDP-sugar pyrophosphorylase for expanding glycorandomization: an in silico study. J Biomol Struct Dyn 2020; 39:6099-6111. [PMID: 32692307 DOI: 10.1080/07391102.2020.1796795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The fundamental substrates for protein glycosylation are provided by a group of enzymes known as NDP-sugar pyrophosphorylases (NSPases) which utilize nucleotide triphosphate (NTP) and sugar 1-phosphate to catalyze the formation of nucleotide diphospho-sugar (NDP-sugar). The promiscuous nature of NSPases is often exploited during chemoenzymatic glycorandomization in the pursuit of novel therapeutics. However, till date, the number of inherently promiscuous NSPases reported and the rationale behind their promiscuity is meager. In this study, we have identified a set of NSPases from a hyperthermophilic archaeon Pyrococcus horikoshii OT3 to identify probable candidates for glycorandomization. We identified a set of NSPases that include both substrate-specific and substrate-promiscuous NSPases with a visible predominance of the latter group. The rationale behind the promiscuity (or specificity) vividly lies in the repertoire of amino acid residues that assemble the active site for recognition of the substrate moiety. Furthermore, the absence of a function-specific auxiliary domain promotes substrate promiscuity in NSPases. This study, thus, provides a novel set of thermophilic NSPases that can be employed for chemoenzymatic glycorandomization. More importantly, identification of the residues that render substrate promiscuity (or specificity) would assist in sequence-based rational engineering of NSPases for enhanced glycorandomization. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Prerana Gogoi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Prerana Mordina
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Shankar Prasad Kanaujia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
13
|
Cools F, Triki D, Geerts N, Delputte P, Fourches D, Cos P. In vitro and in vivo Evaluation of in silico Predicted Pneumococcal UDPG:PP Inhibitors. Front Microbiol 2020; 11:1596. [PMID: 32760374 PMCID: PMC7373766 DOI: 10.3389/fmicb.2020.01596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/18/2020] [Indexed: 11/25/2022] Open
Abstract
Pneumonia, of which Streptococcus pneumoniae is the most common causative agent, is considered one of the three top leading causes of death worldwide. As seen in other bacterial species, antimicrobial resistance is on the rise for this pathogen. Therefore, there is a pressing need for novel antimicrobial strategies to combat these infections. Recently, uridine diphosphate glucose pyrophosphorylase (UDPG:PP) has been put forward as a potential drug target worth investigating. Moreover, earlier research demonstrated that streptococci lacking a functional galU gene (encoding for UDPG:PP) were characterized by significantly reduced in vitro and in vivo virulence. Therefore, in this study we evaluated the anti-virulence activity of potential UDPG:PP inhibitors. They were selected in silico using a tailor-made streptococcal homology model, based on earlier listerial research. While the compounds didn’t affect bacterial growth, nor affected in vitro adhesion to and phagocytosis in macrophages, the amount of polysaccharide capsule was significantly reduced after co-incubation with these inhibitors. Moreover, co-incubation proved to have a positive effect on survival in an in vivo Galleria mellonella larval infection model. Therefore, rather than targeting bacterial survival directly, these compounds proved to have an effect on streptococcal virulence by lowering the amount of polysaccharide and thereby probably boosting recognition of this pathogen by the innate immune system. While the compounds need adaptation to broaden their activity to more streptococcal strains rather than being strain-specific, this study consolidates UDPG:PP as a potential novel drug target.
Collapse
Affiliation(s)
- Freya Cools
- Department of Pharmaceutical Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Dhoha Triki
- Department of Chemistry, Bioinformatics Research Center, North Carolina State University, Raleigh, NC, United States
| | - Nele Geerts
- Department of Pharmaceutical Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Peter Delputte
- Department of Pharmaceutical Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Denis Fourches
- Department of Chemistry, Bioinformatics Research Center, North Carolina State University, Raleigh, NC, United States
| | - Paul Cos
- Department of Pharmaceutical Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
14
|
Deng S, Yao C, Zhang X, Jia Z, Shan C, Luo X, Lin L. Involvement of UDP-glucose pyrophosphorylase from Verticillium dahliae in cell morphogenesis, stress responses, and host infection. Fungal Biol 2020; 124:648-660. [PMID: 32540188 DOI: 10.1016/j.funbio.2020.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 12/15/2019] [Accepted: 03/19/2020] [Indexed: 01/08/2023]
Abstract
UDP-glucose pyrophosphorylase (UGP, EC 2.7.7.9) is an essential enzyme involved in carbohydrate metabolism. In Saccharomyces cerevisiae and other fungi, the UGP gene is indispensable for normal cell development, polysaccharide synthesis, and stress response. However, the function of the UGP homolog in plant pathogenic fungi has been rarely explored during pathogenesis. In this study, we characterize a UGP homolog named VdUGP from Verticillium dahliae, a soil-borne fungus that causes plant vascular wilt. In comparison with wild-type strain V07DF2 and complementation strains, the VdUGP knocked down mutant 24C9 exhibited sensitivity to sodium dodecyl sulfate (perturbing membrane integrity) and high sodium chloride concentration (high osmotic pressure stress). More than 25 % of the conidia of the mutant developed into short and swollen hypha and formed hyperbranching and compact colonies. The mutant exhibited decreased virulence on cotton and tobacco seedlings. Further investigation determined that the germination of the mutant spores was significantly delayed compared with the wild-type strain on the host roots. RNA-seq analysis revealed that a considerable number of genes encoding secreted proteins and carbohydrate-active enzymes were significantly downregulated in the mutant at an early stage of infection compared with those of the wild-type strain. RNA-seq data indicated that mutation affected many Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways both in the pathogen and in the inoculated plants at the infection stage. These alterations of the mutant in cultural phenotypes, virulence, and gene expression profiles clearly indicated that VdUGP played important roles in fungal cell morphogenesis, stress responses, and host infection.
Collapse
Affiliation(s)
- Sheng Deng
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Zhongling street NO.50, Nanjing, 210014, China.
| | - Chuanfei Yao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Zhongling street NO.50, Nanjing, 210014, China; College of Life Science, Nanjing Normal University, Nanjing, 210046, China.
| | - Xin Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Zhongling street NO.50, Nanjing, 210014, China.
| | - Zhaozhao Jia
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Zhongling street NO.50, Nanjing, 210014, China.
| | - Chenyang Shan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Zhongling street NO.50, Nanjing, 210014, China; Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xiaoyu Luo
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Zhongling street NO.50, Nanjing, 210014, China; Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Ling Lin
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Zhongling street NO.50, Nanjing, 210014, China.
| |
Collapse
|
15
|
Kumpf A, Partzsch A, Pollender A, Bento I, Tischler D. Two Homologous Enzymes of the GalU Family in Rhodococcus opacus 1CP- RoGalU1 and RoGalU2. Int J Mol Sci 2019; 20:ijms20225809. [PMID: 31752319 PMCID: PMC6888414 DOI: 10.3390/ijms20225809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 01/15/2023] Open
Abstract
Uridine-5’-diphosphate (UDP)-glucose is reported as one of the most versatile building blocks within the metabolism of pro- and eukaryotes. The activated sugar moiety is formed by the enzyme UDP-glucose pyrophosphorylase (GalU). Two homologous enzymes (designated as RoGalU1 and RoGalU2) are encoded by most Rhodococcus strains, known for their capability to degrade numerous compounds, but also to synthesize natural products such as trehalose comprising biosurfactants. To evaluate their functionality respective genes of a trehalose biosurfactant producing model organism—Rhodococcus opacus 1CP—were cloned and expressed, proteins produced (yield up to 47 mg per L broth) and initially biochemically characterized. In the case of RoGalU2, the Vmax was determined to be 177 U mg−1 (uridine-5’-triphosphate (UTP)) and Km to be 0.51 mM (UTP), respectively. Like other GalUs this enzyme seems to be rather specific for the substrates UTP and glucose 1-phosphate, as it accepts only dTTP and galactose 1-phoshate in addition, but both with solely 2% residual activity. In comparison to other bacterial GalU enzymes the RoGalU2 was found to be somewhat higher in activity (factor 1.8) even at elevated temperatures. However, RoGalU1 was not obtained in an active form thus it remains enigmatic if this enzyme participates in metabolism.
Collapse
Affiliation(s)
- Antje Kumpf
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany; (A.P.); (A.P.)
- EMBL Hamburg, Notkestr. 85, 22607 Hamburg, Germany;
- Microbial Biotechnology, Faculty of Biology & Biotechnology, Ruhr University Bochum, Universitätsstr. 150, 44780 Bochum, Germany
- Correspondence: (A.K.); (D.T.); Tel.: +49-234-32-22082 (A.K.); +49-234-32-22656 (D.T.)
| | - Anett Partzsch
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany; (A.P.); (A.P.)
| | - André Pollender
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany; (A.P.); (A.P.)
| | - Isabel Bento
- EMBL Hamburg, Notkestr. 85, 22607 Hamburg, Germany;
| | - Dirk Tischler
- Microbial Biotechnology, Faculty of Biology & Biotechnology, Ruhr University Bochum, Universitätsstr. 150, 44780 Bochum, Germany
- Correspondence: (A.K.); (D.T.); Tel.: +49-234-32-22082 (A.K.); +49-234-32-22656 (D.T.)
| |
Collapse
|
16
|
Gibbs ME, Lountos GT, Gumpena R, Waugh DS. Crystal structure of UDP-glucose pyrophosphorylase from Yersinia pestis, a potential therapeutic target against plague. Acta Crystallogr F Struct Biol Commun 2019; 75:608-615. [PMID: 31475928 PMCID: PMC6718147 DOI: 10.1107/s2053230x19011154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/09/2019] [Indexed: 11/10/2022] Open
Abstract
Yersinia pestis, the causative agent of bubonic plague, is one of the most lethal pathogens in recorded human history. Today, the concern is the possible misuse of Y. pestis as an agent in bioweapons and bioterrorism. Current therapies for the treatment of plague include the use of a small number of antibiotics, but clinical cases of antibiotic resistance have been reported in some areas of the world. Therefore, the discovery of new drugs is required to combat potential Y. pestis infection. Here, the crystal structure of the Y. pestis UDP-glucose pyrophosphorylase (UGP), a metabolic enzyme implicated in the survival of Y. pestis in mouse macrophages, is described at 2.17 Å resolution. The structure provides a foundation that may enable the rational design of inhibitors and open new avenues for the development of antiplague therapeutics.
Collapse
Affiliation(s)
- Morgan E. Gibbs
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - George T. Lountos
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Rajesh Gumpena
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - David S. Waugh
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| |
Collapse
|
17
|
Dhaked DK, Bala Divya M, Guruprasad L. A structural and functional perspective on the enzymes of Mycobacterium tuberculosis involved in the L-rhamnose biosynthesis pathway. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 145:52-64. [PMID: 30550737 DOI: 10.1016/j.pbiomolbio.2018.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 11/12/2018] [Accepted: 12/06/2018] [Indexed: 11/19/2022]
Abstract
Tuberculosis is one of the leading causes of death from bacterial infections. The multi-drug resistant strain has warranted the development of new drug molecules which can inhibit the growth of Mycobacterium tuberculosis (M.tb). Most of the known drugs inhibit the enzymes in the cell wall biosynthesis pathway. One such pathway is L-rhamnose, which involves four druggable enzymes RmlA, B, C and D. The 3D structure analyses of these protein models (RmlA, B and D) and crystal structure (RmlC) has been carried out. Multiple sequence alignments of homologs from distant species of 32 taxa and analyses of available structures were performed in order to study the conservation of sequence and structural motifs, and catalytically important residues. Based on these results and reported mechanism in other organisms, we have predicted putative catalytic mechanism of M.tb enzymes involved in the L-rhamnose biosynthesis pathway.
Collapse
Affiliation(s)
- Devendra K Dhaked
- School of Chemistry, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - M Bala Divya
- School of Chemistry, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Lalitha Guruprasad
- School of Chemistry, University of Hyderabad, Hyderabad, Telangana, 500046, India.
| |
Collapse
|
18
|
Kuenemann MA, Spears PA, Orndorff PE, Fourches D. In silicoPredicted Glucose-1-phosphate Uridylyltransferase (GalU) Inhibitors Block a Key Pathway Required forListeriaVirulence. Mol Inform 2018. [DOI: 10.1002/minf.201800004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Melaine A. Kuenemann
- Department of Chemistry, Bioinformatics Research Center; North Carolina State University; Raleigh, NC USA
| | - Patricia A. Spears
- Department of Population Health and Pathobiology, College of Veterinary Medicine; North Carolina State University; Raleigh, NC USA
| | - Paul E. Orndorff
- Department of Population Health and Pathobiology, College of Veterinary Medicine; North Carolina State University; Raleigh, NC USA
| | - Denis Fourches
- Department of Chemistry, Bioinformatics Research Center; North Carolina State University; Raleigh, NC USA
| |
Collapse
|
19
|
Baumgartner J, Lee J, Halavaty AS, Minasov G, Anderson WF, Kuhn ML. Structure of the Bacillus anthracis dTDP-L-rhamnose-biosynthetic enzyme glucose-1-phosphate thymidylyltransferase (RfbA). Acta Crystallogr F Struct Biol Commun 2017; 73:621-628. [PMID: 29095156 PMCID: PMC5683032 DOI: 10.1107/s2053230x17015357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/22/2017] [Indexed: 11/10/2022] Open
Abstract
L-Rhamnose is a ubiquitous bacterial cell-wall component. The biosynthetic pathway for its precursor dTDP-L-rhamnose is not present in humans, which makes the enzymes of the pathway potential drug targets. In this study, the three-dimensional structure of the first protein of this pathway, glucose-1-phosphate thymidylyltransferase (RfbA), from Bacillus anthracis was determined. In other organisms this enzyme is referred to as RmlA. RfbA was co-crystallized with the products of the enzymatic reaction, dTDP-α-D-glucose and pyrophosphate, and its structure was determined at 2.3 Å resolution. This is the first reported thymidylyltransferase structure from a Gram-positive bacterium. RfbA shares overall structural characteristics with known RmlA homologs. However, RfbA exhibits a shorter sequence at its C-terminus, which results in the absence of three α-helices involved in allosteric site formation. Consequently, RfbA was observed to exhibit a quaternary structure that is unique among currently reported glucose-1-phosphate thymidylyltransferase bacterial homologs. These structural analyses suggest that RfbA may not be allosterically regulated in some organisms and is structurally distinct from other RmlA homologs.
Collapse
Affiliation(s)
- Jackson Baumgartner
- Department of Chemistry and Biochemistry, San Francisco State University, USA
| | - Jesi Lee
- Department of Chemistry and Biochemistry, San Francisco State University, USA
| | - Andrei S. Halavaty
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, USA
- Center for Structural Genomics of Infectious Diseases (CSGID), USA
| | - George Minasov
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, USA
- Center for Structural Genomics of Infectious Diseases (CSGID), USA
| | - Wayne F. Anderson
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, USA
- Center for Structural Genomics of Infectious Diseases (CSGID), USA
| | - Misty L. Kuhn
- Department of Chemistry and Biochemistry, San Francisco State University, USA
| |
Collapse
|
20
|
Benini S, Toccafondi M, Rejzek M, Musiani F, Wagstaff BA, Wuerges J, Cianci M, Field RA. Glucose-1-phosphate uridylyltransferase from Erwinia amylovora: Activity, structure and substrate specificity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1348-1357. [PMID: 28844747 DOI: 10.1016/j.bbapap.2017.08.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 08/05/2017] [Accepted: 08/09/2017] [Indexed: 10/19/2022]
Abstract
Erwinia amylovora, a Gram-negative plant pathogen, is the causal agent of Fire Blight, a contagious necrotic disease affecting plants belonging to the Rosaceae family, including apple and pear. E. amylovora is highly virulent and capable of rapid dissemination in orchards; effective control methods are still lacking. One of its most important pathogenicity factors is the exopolysaccharide amylovoran. Amylovoran is a branched polymer made by the repetition of units mainly composed of galactose, with some residues of glucose, glucuronic acid and pyruvate. E. amylovora glucose-1-phosphate uridylyltransferase (UDP-glucose pyrophosphorylase, EC 2.7.7.9) has a key role in amylovoran biosynthesis. This enzyme catalyses the production of UDP-glucose from glucose-1-phosphate and UTP, which the epimerase GalE converts into UDP-galactose, the main building block of amylovoran. We determined EaGalU kinetic parameters and substrate specificity with a range of sugar 1-phosphates. At time point 120min the enzyme catalysed conversion of the sugar 1-phosphate into the corresponding UDP-sugar reached 74% for N-acetyl-α-d-glucosamine 1-phosphate, 28% for α-d-galactose 1-phosphate, 0% for α-d-galactosamine 1-phosphate, 100% for α-d-xylose 1-phosphate, 100% for α-d-glucosamine 1-phosphate, 70% for α-d-mannose 1-phosphate, and 0% for α-d-galacturonic acid 1-phosphate. To explain our results we obtained the crystal structure of EaGalU and augmented our study by docking the different sugar 1-phosphates into EaGalU active site, providing both reliable models for substrate binding and enzyme specificity, and a rationale that explains the different activity of EaGalU on the sugar 1-phosphates used. These data demonstrate EaGalU potential as a biocatalyst for biotechnological purposes, as an alternative to the enzyme from Escherichia coli, besides playing an important role in E. amylovora pathogenicity.
Collapse
Affiliation(s)
- Stefano Benini
- Bioorganic Chemistry and Bio-Crystallography laboratory (B2Cl), Faculty of Science and Technology, Free University of Bolzano, 39100 Bolzano, Italy.
| | - Mirco Toccafondi
- Bioorganic Chemistry and Bio-Crystallography laboratory (B2Cl), Faculty of Science and Technology, Free University of Bolzano, 39100 Bolzano, Italy
| | - Martin Rejzek
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Francesco Musiani
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Viale G. Fanin 40, Bologna 40127, Italy
| | - Ben A Wagstaff
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Jochen Wuerges
- Bioorganic Chemistry and Bio-Crystallography laboratory (B2Cl), Faculty of Science and Technology, Free University of Bolzano, 39100 Bolzano, Italy
| | - Michele Cianci
- Department of Agricultural, Food and Environmental Sciences, Universita' Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; Hamburg Outstation, Notkestrasse 85, 22607 Hamburg, Germany
| | - Robert A Field
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
21
|
Ebrecht AC, Orlof AM, Sasoni N, Figueroa CM, Iglesias AA, Ballicora MA. On the Ancestral UDP-Glucose Pyrophosphorylase Activity of GalF from Escherichia coli. Front Microbiol 2015; 6:1253. [PMID: 26617591 PMCID: PMC4643126 DOI: 10.3389/fmicb.2015.01253] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/28/2015] [Indexed: 11/13/2022] Open
Abstract
In bacteria, UDP-glucose is a central intermediate in carbohydrate metabolism. The enzyme responsible for its synthesis is encoded by the galU gene and its deletion generates cells unable to ferment galactose. In some bacteria, there is a second gene, galF, encoding for a protein with high sequence identity to GalU. However, the role of GalF has been contradictory regarding its catalytic capability and not well understood. In this work we show that GalF derives from a catalytic (UDP-glucose pyrophosphorylase) ancestor, but its activity is very low compared to GalU. We demonstrated that GalF has some residual UDP-glucose pyrophosphorylase activity by in vitro and in vivo experiments in which the phenotype of a galU (-) strain was reverted by the over-expression of GalF and its mutant. To demonstrate its evolutionary path of "enzyme inactivation" we enhanced the catalysis by mutagenesis and showed the importance of the quaternary structure. This study provides important information to understand the structural and functional evolutionary origin of the protein GalF in enteric bacteria.
Collapse
Affiliation(s)
- Ana C Ebrecht
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas - Centro Científico Tecnológico CONICET Santa Fe Santa Fe, Argentina ; Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago IL, USA
| | - Agnieszka M Orlof
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago IL, USA
| | - Natalia Sasoni
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas - Centro Científico Tecnológico CONICET Santa Fe Santa Fe, Argentina
| | - Carlos M Figueroa
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas - Centro Científico Tecnológico CONICET Santa Fe Santa Fe, Argentina
| | - Alberto A Iglesias
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas - Centro Científico Tecnológico CONICET Santa Fe Santa Fe, Argentina
| | - Miguel A Ballicora
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago IL, USA
| |
Collapse
|
22
|
Arrivault S, Guenther M, Fry SC, Fuenfgeld MMFF, Veyel D, Mettler-Altmann T, Stitt M, Lunn JE. Synthesis and Use of Stable-Isotope-Labeled Internal Standards for Quantification of Phosphorylated Metabolites by LC–MS/MS. Anal Chem 2015; 87:6896-904. [DOI: 10.1021/acs.analchem.5b01387] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Stéphanie Arrivault
- Max Planck Institute
of Molecular Plant Physiology, Am Muehlenberg
1, 14476 Potsdam-Golm, Germany
| | - Manuela Guenther
- Max Planck Institute
of Molecular Plant Physiology, Am Muehlenberg
1, 14476 Potsdam-Golm, Germany
| | - Stephen C. Fry
- The
Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences,
School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF U.K
| | | | - Daniel Veyel
- Max Planck Institute
of Molecular Plant Physiology, Am Muehlenberg
1, 14476 Potsdam-Golm, Germany
| | - Tabea Mettler-Altmann
- Max Planck Institute
of Molecular Plant Physiology, Am Muehlenberg
1, 14476 Potsdam-Golm, Germany
| | - Mark Stitt
- Max Planck Institute
of Molecular Plant Physiology, Am Muehlenberg
1, 14476 Potsdam-Golm, Germany
| | - John E. Lunn
- Max Planck Institute
of Molecular Plant Physiology, Am Muehlenberg
1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
23
|
Hill BL, Wong J, May BM, Huerta FB, Manley TE, Sullivan PRF, Olsen KW, Ballicora MA. Conserved residues of the Pro103-Arg115 loop are involved in triggering the allosteric response of the Escherichia coli ADP-glucose pyrophosphorylase. Protein Sci 2015; 24:714-28. [PMID: 25620658 DOI: 10.1002/pro.2644] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/16/2015] [Accepted: 01/20/2015] [Indexed: 11/09/2022]
Abstract
The synthesis of glycogen in bacteria and starch in plants is allosterically controlled by the production of ADP-glucose by ADP-glucose pyrophosphorylase. Using computational studies, site-directed mutagenesis, and kinetic characterization, we found a critical region for transmitting the allosteric signal in the Escherichia coli ADP-glucose pyrophosphorylase. Molecular dynamics simulations and structural comparisons with other ADP-glucose pyrophosphorylases provided information to hypothesize that a Pro103-Arg115 loop is part of an activation path. It had strongly correlated movements with regions of the enzyme associated with regulation and ATP binding, and a network analysis showed that the optimal network pathways linking ATP and the activator binding Lys39 mainly involved residues of this loop. This hypothesis was biochemically tested by mutagenesis. We found that several alanine mutants of the Pro103-Arg115 loop had altered activation profiles for fructose-1,6-bisphosphate. Mutants P103A, Q106A, R107A, W113A, Y114A, and R115A had the most altered kinetic profiles, primarily characterized by a lack of response to fructose-1,6-bisphosphate. This loop is a distinct insertional element present only in allosterically regulated sugar nucleotide pyrophosphorylases that could have been acquired to build a triggering mechanism to link proto-allosteric and catalytic sites.
Collapse
Affiliation(s)
- Benjamin L Hill
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1068 W Sheridan Road, Chicago, Illinois
| | | | | | | | | | | | | | | |
Collapse
|
24
|
The galU gene of Xanthomonas campestris pv. campestris is involved in bacterial attachment, cell motility, polysaccharide synthesis, virulence, and tolerance to various stresses. Arch Microbiol 2014; 196:729-38. [DOI: 10.1007/s00203-014-1012-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 06/11/2014] [Accepted: 07/04/2014] [Indexed: 12/12/2022]
|
25
|
CugP is a novel ubiquitous non-GalU-type bacterial UDP-glucose pyrophosphorylase found in cyanobacteria. J Bacteriol 2014; 196:2348-54. [PMID: 24727225 DOI: 10.1128/jb.01591-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
UDP-glucose pyrophosphorylase synthesizes UDP-glucose from UTP and glucose 1-phosphate and exists in almost all species. Most bacteria possess a GalU-type UDP-glucose pyrophosphorylase, whereas many cyanobacteria species do not. In certain cyanobacteria, UDP-glucose is used as a substrate for synthesis of exopolysaccharide cellulose in spite of the absence of GalU-type UDP-glucose pyrophosphorylase. Therefore, there should be an uncharacterized UDP-glucose pyrophosphorylase in cyanobacteria. Here, we show that all cyanobacteria possess a non-GalU-type bacterial UDP-glucose pyrophosphorylase, i.e., CugP, a novel family in the nucleotide triphosphate transferase superfamily. The expressed recombinant Synechocystis sp. strain PCC 6803 CugP had pyrophosphorylase activity that was highly specific for UTP and glucose 1-phosphate. The fact that the CugP gene cannot be deleted completely in Synechocystis sp. PCC 6803 suggests its central role as the substrate supplier for galactolipid synthesis. Galactolipids are major constituents of the photosynthetic thylakoid membrane and important for photosynthetic activity. Based on phylogenetic analysis, this CugP-type UDP-glucose pyrophosphorylase may have recently been horizontally transferred to certain noncyanobacteria.
Collapse
|
26
|
Kawano Y, Sekine M, Ihara M. Identification and characterization of UDP-glucose pyrophosphorylase in cyanobacteria Anabaena sp. PCC 7120. J Biosci Bioeng 2013; 117:531-8. [PMID: 24231376 DOI: 10.1016/j.jbiosc.2013.10.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 10/15/2013] [Accepted: 10/17/2013] [Indexed: 10/26/2022]
Abstract
Exopolysaccharides produced by photosynthetic cyanobacteria have received considerable attention in recent years for their potential applications in the production of renewable biofuels. Particularly, cyanobacterial cellulose is one of the most promising products because it is extracellularly secreted as a non-crystalline form, which can be easily harvested from the media and converted into glucose units. In cyanobacteria, the production of UDP-glucose, the cellulose precursor, is a key step in the cellulose synthesis pathway. UDP-glucose is synthesized from UTP and glucose-1-phosphate (Glc-1P) by UDP-glucose pyrophosphorylase (UGPase), but this pathway in cyanobacteria has not been well characterized. Therefore, to elucidate the overall cellulose biosynthesis pathway in cyanobacteria, we studied the putative UGPase All3274 and seven other putative NDP-sugar pyrophosphorylases (NSPases), All4645, Alr2825, Alr4491, Alr0188, Alr3400, Alr2361, and Alr3921 of Anabaena sp. PCC 7120. Assays using the purified recombinant proteins revealed that All3274 exhibited UGPase activity, All4645, Alr2825, Alr4491, Alr0188, and Alr3921 exhibited pyrophosphorylase activities on ADP-glucose, CDP-glucose, dTDP-glucose, GDP-mannose, and UDP-N-acetylglucosamine, respectively. Further characterization of All3274 revealed that the kcat for UDP-glucose formation was one or two orders lower than those of other known UGPases. The activity and dimerization tendency of All3274 increased at higher enzyme concentrations, implying catalytic activation by dimerization. However, most interestingly, All3274 dimerization was inhibited by UTP and Glc-1P, but not by UDP-glucose. This study presents the first in vitro characterization of a cyanobacterial UGPase, and provides insights into biotechnological attempts to utilize the photosynthetic production of cellulose from cyanobacteria.
Collapse
Affiliation(s)
- Yusuke Kawano
- Faculty of Agriculture, Shinshu University, 8304 Minamiminowa, Nagano 399-4511, Japan; Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Midori Sekine
- Faculty of Agriculture, Shinshu University, 8304 Minamiminowa, Nagano 399-4511, Japan
| | - Masaki Ihara
- Faculty of Agriculture, Shinshu University, 8304 Minamiminowa, Nagano 399-4511, Japan; JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
27
|
Kurnasov OV, Luk HJD, Roberts MF, Stec B. Structure of the inositol-1-phosphate cytidylyltransferase from Thermotoga maritima. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1808-17. [DOI: 10.1107/s0907444913015278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 06/02/2013] [Indexed: 11/10/2022]
|
28
|
Fang W, Du T, Raimi OG, Hurtado-Guerrero R, Urbaniak MD, Ibrahim AFM, Ferguson MAJ, Jin C, van Aalten DMF. Genetic and structural validation of Aspergillus fumigatus UDP-N-acetylglucosamine pyrophosphorylase as an antifungal target. Mol Microbiol 2013; 89:479-93. [PMID: 23750903 PMCID: PMC3888555 DOI: 10.1111/mmi.12290] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2013] [Indexed: 01/05/2023]
Abstract
The sugar nucleotide UDP-N-acetylglucosamine (UDP-GlcNAc) is an essential metabolite in both prokaryotes and eukaryotes. In fungi, it is the precursor for the synthesis of chitin, an essential component of the fungal cell wall. UDP-N-acetylglucosamine pyrophosphorylase (UAP) is the final enzyme in eukaryotic UDP-GlcNAc biosynthesis, converting UTP and N-acetylglucosamine-1-phosphate (GlcNAc-1P) to UDP-GlcNAc. As such, this enzyme may provide an attractive target against pathogenic fungi. Here, we demonstrate that the fungal pathogen Aspergillus fumigatus possesses an active UAP (AfUAP1) that shows selectivity for GlcNAc-1P as the phosphosugar substrate. A conditional mutant, constructed by replacing the native promoter of the A. fumigatus uap1 gene with the Aspergillus nidulans alcA promoter, revealed that uap1 is essential for cell survival and important for cell wall synthesis and morphogenesis. The crystal structure of AfUAP1 was determined and revealed exploitable differences in the active site compared with the human enzyme. Thus AfUAP1 could represent a novel antifungal target and this work will assist the future discovery of small molecule inhibitors against this enzyme.
Collapse
Affiliation(s)
- Wenxia Fang
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
A Chimeric UDP-glucose pyrophosphorylase produced by protein engineering exhibits sensitivity to allosteric regulators. Int J Mol Sci 2013; 14:9703-21. [PMID: 23648478 PMCID: PMC3676807 DOI: 10.3390/ijms14059703] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/10/2013] [Accepted: 04/18/2013] [Indexed: 11/17/2022] Open
Abstract
In bacteria, glycogen or oligosaccharide accumulation involves glucose-1-phosphate partitioning into either ADP-glucose (ADP-Glc) or UDP-Glc. Their respective synthesis is catalyzed by allosterically regulated ADP-Glc pyrophosphorylase (EC 2.7.7.27, ADP-Glc PPase) or unregulated UDP-Glc PPase (EC 2.7.7.9). In this work, we characterized the UDP-Glc PPase from Streptococcus mutans. In addition, we constructed a chimeric protein by cutting the C-terminal domain of the ADP-Glc PPase from Escherichia coli and pasting it to the entire S. mutans UDP-Glc PPase. Both proteins were fully active as UDP-Glc PPases and their kinetic parameters were measured. The chimeric enzyme had a slightly higher affinity for substrates than the native S. mutans UDP-Glc PPase, but the maximal activity was four times lower. Interestingly, the chimeric protein was sensitive to regulation by pyruvate, 3-phosphoglyceric acid and fructose-1,6-bis-phosphate, which are known to be effectors of ADP-Glc PPases from different sources. The three compounds activated the chimeric enzyme up to three-fold, and increased the affinity for substrates. This chimeric protein is the first reported UDP-Glc PPase with allosteric regulatory properties. In addition, this is a pioneer work dealing with a chimeric enzyme constructed as a hybrid of two pyrophosphorylases with different specificity toward nucleoside-diphospho-glucose and our results turn to be relevant for a deeper understanding of the evolution of allosterism in this family of enzymes.
Collapse
|
30
|
Alphey MS, Pirrie L, Torrie LS, Boulkeroua WA, Gardiner M, Sarkar A, Maringer M, Oehlmann W, Brenk R, Scherman MS, McNeil M, Rejzek M, Field RA, Singh M, Gray D, Westwood NJ, Naismith JH. Allosteric competitive inhibitors of the glucose-1-phosphate thymidylyltransferase (RmlA) from Pseudomonas aeruginosa. ACS Chem Biol 2013; 8:387-96. [PMID: 23138692 DOI: 10.1021/cb300426u] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glucose-1-phosphate thymidylyltransferase (RmlA) catalyzes the condensation of glucose-1-phosphate (G1P) with deoxy-thymidine triphosphate (dTTP) to yield dTDP-d-glucose and pyrophosphate. This is the first step in the l-rhamnose biosynthetic pathway. l-Rhamnose is an important component of the cell wall of many microorganisms, including Mycobacterium tuberculosis and Pseudomonas aeruginosa. Here we describe the first nanomolar inhibitors of P. aeruginosa RmlA. These thymine analogues were identified by high-throughput screening and subsequently optimized by a combination of protein crystallography, in silico screening, and synthetic chemistry. Some of the inhibitors show inhibitory activity against M. tuberculosis. The inhibitors do not bind at the active site of RmlA but bind at a second site remote from the active site. Despite this, the compounds act as competitive inhibitors of G1P but with high cooperativity. This novel behavior was probed by structural analysis, which suggests that the inhibitors work by preventing RmlA from undergoing the conformational change key to its ordered bi-bi mechanism.
Collapse
Affiliation(s)
- Magnus S. Alphey
- Biomedical Sciences Research
Complex, University of St. Andrews, St.
Andrews KY16 9ST, U.K
| | - Lisa Pirrie
- Biomedical Sciences Research
Complex, University of St. Andrews, St.
Andrews KY16 9ST, U.K
- School of Chemistry, University of St. Andrews and EaStCHEM, St. Andrews
KY16 9ST, U.K
| | - Leah S. Torrie
- Biological
Chemistry and Drug
Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | | | - Mary Gardiner
- Biological
Chemistry and Drug
Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Aurijit Sarkar
- Biological
Chemistry and Drug
Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Marko Maringer
- mfd Diagnostics GmbH, Mikroforum Ring 5, 55234 Wendelsheim, Germany
| | - Wulf Oehlmann
- Lionex GmbH, Salzdahlumer Str. 196, 38126 Braunschweig, Germany
| | - Ruth Brenk
- Biological
Chemistry and Drug
Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Michael S. Scherman
- Department of Microbiology, Immunology
and Pathology, Colorado State University, 1682 Campus Delivery, Ft. Collins, Colorado 80523-1682, United
States
| | - Michael McNeil
- Department of Microbiology, Immunology
and Pathology, Colorado State University, 1682 Campus Delivery, Ft. Collins, Colorado 80523-1682, United
States
| | - Martin Rejzek
- Department of Biological
Chemistry, John Innes Centre, Norwich NR4
7UH, U.K
| | - Robert A. Field
- Department of Biological
Chemistry, John Innes Centre, Norwich NR4
7UH, U.K
| | - Mahavir Singh
- Lionex GmbH, Salzdahlumer Str. 196, 38126 Braunschweig, Germany
| | - David Gray
- Biological
Chemistry and Drug
Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Nicholas J. Westwood
- Biomedical Sciences Research
Complex, University of St. Andrews, St.
Andrews KY16 9ST, U.K
- School of Chemistry, University of St. Andrews and EaStCHEM, St. Andrews
KY16 9ST, U.K
| | - James H. Naismith
- Biomedical Sciences Research
Complex, University of St. Andrews, St.
Andrews KY16 9ST, U.K
| |
Collapse
|
31
|
Führing J, Damerow S, Fedorov R, Schneider J, Münster-Kühnel AK, Gerardy-Schahn R. Octamerization is essential for enzymatic function of human UDP-glucose pyrophosphorylase. Glycobiology 2012; 23:426-37. [PMID: 23254995 DOI: 10.1093/glycob/cws217] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Uridine diphosphate-glucose pyrophosphorylase (UGP) occupies a central position in carbohydrate metabolism in all kingdoms of life, since its product uridine diphosphate-glucose (UDP-glucose) is essential in a number of anabolic and catabolic pathways and is a precursor for other sugar nucleotides. Its significance as a virulence factor in protists and bacteria has given momentum to the search for species-specific inhibitors. These attempts are, however, hampered by high structural conservation of the active site architecture. A feature that discriminates UGPs of different species is the quaternary organization. While UGPs in protists are monomers, di- and tetrameric forms exist in bacteria, and crystal structures obtained for the enzyme from yeast and human identified octameric UGPs. These octamers are formed by contacts between highly conserved amino acids in the C-terminal β-helix. Still under debate is the question whether octamerization is required for the functionality of the human enzyme. Here, we used single amino acid replacements in the C-terminal β-helix to interrogate the impact of highly conserved residues on octamer formation and functional activity of human UGP (hUGP). Replacements were guided by the sequence of Arabidopsis thaliana UGP, known to be active as a monomer. Correlating the data obtained in blue native PAGE, size exclusion chromatography and enzymatic activity testing, we prove that the octamer is the active enzyme form. This new insight into structure-function relationships in hUGP does not only improve the understanding of the catalysis of this important enzyme, but in addition broadens the basis for studies aimed at designing drugs that selectively inhibit UGPs from pathogens.
Collapse
Affiliation(s)
- Jana Führing
- Institute for Cellular Chemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Singh S, Phillips GN, Thorson JS. The structural biology of enzymes involved in natural product glycosylation. Nat Prod Rep 2012; 29:1201-37. [PMID: 22688446 DOI: 10.1039/c2np20039b] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The glycosylation of microbial natural products often dramatically influences the biological and/or pharmacological activities of the parental metabolite. Over the past decade, crystal structures of several enzymes involved in the biosynthesis and attachment of novel sugars found appended to natural products have emerged. In many cases, these studies have paved the way to a better understanding of the corresponding enzyme mechanism of action and have served as a starting point for engineering variant enzymes to facilitate to production of differentially-glycosylated natural products. This review specifically summarizes the structural studies of bacterial enzymes involved in biosynthesis of novel sugar nucleotides.
Collapse
Affiliation(s)
- Shanteri Singh
- Laboratory for Biosynthetic Chemistry, Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | | | | |
Collapse
|
33
|
Ghai R, Falconer RJ, Collins BM. Applications of isothermal titration calorimetry in pure and applied research--survey of the literature from 2010. J Mol Recognit 2012; 25:32-52. [PMID: 22213449 DOI: 10.1002/jmr.1167] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Isothermal titration calorimetry (ITC) is a biophysical technique for measuring the formation and dissociation of molecular complexes and has become an invaluable tool in many branches of science from cell biology to food chemistry. By measuring the heat absorbed or released during bond formation, ITC provides accurate, rapid, and label-free measurement of the thermodynamics of molecular interactions. In this review, we survey the recent literature reporting the use of ITC and have highlighted a number of interesting studies that provide a flavour of the diverse systems to which ITC can be applied. These include measurements of protein-protein and protein-membrane interactions required for macromolecular assembly, analysis of enzyme kinetics, experimental validation of molecular dynamics simulations, and even in manufacturing applications such as food science. Some highlights include studies of the biological complex formed by Staphylococcus aureus enterotoxin C3 and the murine T-cell receptor, the mechanism of membrane association of the Parkinson's disease-associated protein α-synuclein, and the role of non-specific tannin-protein interactions in the quality of different beverages. Recent developments in automation are overcoming limitations on throughput imposed by previous manual procedures and promise to greatly extend usefulness of ITC in the future. We also attempt to impart some practical advice for getting the most out of ITC data for those researchers less familiar with the method.
Collapse
Affiliation(s)
- Rajesh Ghai
- Institute for Molecular Bioscience (IMB), University of Queensland, St. Lucia, Queensland, 4072, Australia
| | | | | |
Collapse
|
34
|
Abstract
Plant pyrophosphorylases that are capable of producing UDP-sugars, key precursors for glycosylation reactions, include UDP-glucose pyrophosphorylases (A- and B-type), UDP-sugar pyrophosphorylase and UDP-N-acetylglucosamine pyrophosphorylase. Although not sharing significant homology at the amino acid sequence level, the proteins share a common structural blueprint. Their structures are characterized by the presence of the Rossmann fold in the central (catalytic) domain linked to enzyme-specific N-terminal and C-terminal domains, which may play regulatory functions. Molecular mobility between these domains plays an important role in substrate binding and catalysis. Evolutionary relationships and the role of (de)oligomerization as a regulatory mechanism are discussed.
Collapse
|
35
|
Crystal structure of Archaeoglobus fulgidus CTP:inositol-1-phosphate cytidylyltransferase, a key enzyme for di-myo-inositol-phosphate synthesis in (hyper)thermophiles. J Bacteriol 2011; 193:2177-85. [PMID: 21378188 DOI: 10.1128/jb.01543-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many Archaea and Bacteria isolated from hot, marine environments accumulate di-myo-inositol-phosphate (DIP), primarily in response to heat stress. The biosynthesis of this compatible solute involves the activation of inositol to CDP-inositol via the action of a recently discovered CTP:inositol-1-phosphate cytidylyltransferase (IPCT) activity. In most cases, IPCT is part of a bifunctional enzyme comprising two domains: a cytoplasmic domain with IPCT activity and a membrane domain catalyzing the synthesis of di-myo-inositol-1,3'-phosphate-1'-phosphate from CDP-inositol and L-myo-inositol phosphate. Herein, we describe the first X-ray structure of the IPCT domain of the bifunctional enzyme from the hyperthermophilic archaeon Archaeoglobus fulgidus DSMZ 7324. The structure of the enzyme in the apo form was solved to a 1.9-Å resolution. The enzyme exhibited apparent K(m) values of 0.9 and 0.6 mM for inositol-1-phosphate and CTP, respectively. The optimal temperature for catalysis was in the range 90 to 95°C, and the V(max) determined at 90°C was 62.9 μmol · min(-1) · mg of protein(-1). The structure of IPCT is composed of a central seven-stranded mixed β-sheet, of which six β-strands are parallel, surrounded by six α-helices, a fold reminiscent of the dinucleotide-binding Rossmann fold. The enzyme shares structural homology with other pyrophosphorylases showing the canonical motif G-X-G-T-(R/S)-X(4)-P-K. CTP, L-myo-inositol-1-phosphate, and CDP-inositol were docked into the catalytic site, which provided insights into the binding mode and high specificity of the enzyme for CTP. This work is an important step toward the final goal of understanding the full catalytic route for DIP synthesis in the native, bifunctional enzyme.
Collapse
|
36
|
Dickmanns A, Damerow S, Neumann P, Schulz EC, Lamerz AC, Routier FH, Ficner R. Structural basis for the broad substrate range of the UDP-sugar pyrophosphorylase from Leishmania major. J Mol Biol 2010; 405:461-78. [PMID: 21073876 DOI: 10.1016/j.jmb.2010.10.057] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 10/28/2010] [Accepted: 10/28/2010] [Indexed: 10/18/2022]
Abstract
Nucleotide sugars and the enzymes that are responsible for their synthesis are indispensable for the production of complex carbohydrates and, thus, for elaboration of a protective cellular coat for many organisms such as the protozoan parasite Leishmania. These activated sugars are synthesized de novo or derived from salvaged monosaccharides. In addition to UDP-glucose (UDP-Glc) pyrophosphorylase, which catalyzes the formation of UDP-Glc from substrates UTP and glucose-1-phosphate, Leishmania major and plants express a UDP-sugar pyrophosphorylase (USP) that exhibits broad substrate specificity in vitro. The enzyme, likely involved in monosaccharide salvage, preferentially generates UDP-Glc and UDP-galactose, but it may also activate other hexose- or pentose-1-phosphates such as galacturonic acid-1-phosphate or arabinose-1-phosphate. In order to gain insight into structural features governing the differences in substrate specificity, we determined the crystal structure of the L. major USP in the APO-, UTP-, and UDP-sugar-bound conformations. The overall tripartite structure of USP exhibits a significant structural homology to other nucleotidyldiphosphate-glucose pyrophosphorylases. The obtained USP structures reveal the structural rearrangements occurring during the stepwise binding process of the substrates. Moreover, the different product complexes explain the broad substrate specificity of USP, which is enabled by structural changes in the sugar binding region of the active site.
Collapse
Affiliation(s)
- Achim Dickmanns
- Institut für Mikrobiologie und Genetik & GZMB, Georg-August-Universität Göttingen, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|