1
|
Cole J. Self-consistent signal transduction analysis for modeling context-specific signaling cascades and perturbations. NPJ Syst Biol Appl 2024; 10:78. [PMID: 39030258 PMCID: PMC11271576 DOI: 10.1038/s41540-024-00404-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 07/12/2024] [Indexed: 07/21/2024] Open
Abstract
Biological signal transduction networks are central to information processing and regulation of gene expression across all domains of life. Dysregulation is known to cause a wide array of diseases, including cancers. Here I introduce self-consistent signal transduction analysis, which utilizes genome-scale -omics data (specifically transcriptomics and/or proteomics) in order to predict the flow of information through these networks in an individualized manner. I apply the method to the study of endocrine therapy in breast cancer patients, and show that drugs that inhibit estrogen receptor α elicit a wide array of antitumoral effects, and that their most clinically-impactful ones are through the modulation of proliferative signals that control the genes GREB1, HK1, AKT1, MAPK1, AKT2, and NQO1. This method offers researchers a valuable tool in understanding how and why dysregulation occurs, and how perturbations to the network (such as targeted therapies) effect the network itself, and ultimately patient outcomes.
Collapse
|
2
|
Wang Y, Zhu W, Ma R, Tian Y, Chen X, Gao P. PIN1P1 is activated by CREB1 and promotes gastric cancer progression via interacting with YBX1 and upregulating PIN1. J Cell Mol Med 2024; 28:e18022. [PMID: 37929660 PMCID: PMC10805483 DOI: 10.1111/jcmm.18022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 10/05/2023] [Accepted: 10/22/2023] [Indexed: 11/07/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) play critical roles in the carcinogenesis and progression of cancers. However, the role and mechanism of the pseudogene lncRNA PIN1P1 in gastric carcinoma remain unclear. The expression and effects of lncRNA PIN1P1 in gastric cancer were investigated. The transcriptional regulation of CREB1 on PIN1P1 was determined by ChIP and luciferase assays. The mechanistic model of PIN1P1 in gastric cancer was further explored by RNA pull-down, RIP and western blot analysis. PIN1P1 was overexpressed in gastric cancer tissues, and upregulated PIN1P1 predicted poor prognosis in patients. CREB1 was directly combined with the promoter region of PIN1P1 to promote the transcription of PIN1P1. CREB1-mediated enhanced proliferation, migration and invasion could be partially reversed by downregulation of PIN1P1. Overexpressed PIN1P1 promoted the proliferation, migration and invasion of gastric cancer cells, whereas decreased PIN1P1 showed the opposite effects. PIN1P1 directly interacted with YBX1 and promoted YBX1 protein expression, leading to upregulation of PIN1, in which E2F1 may be involved. Silencing of YBX1 during PIN1P1 overexpression could partially rescue PIN1 upregulation. PIN1, the parental gene of PIN1P1, was elevated in gastric cancer tissues, and its upregulation was correlated with poor patient outcomes. PIN1 facilitated gastric cancer cell proliferation, migration and invasion. To sum up, CREB1-activated PIN1P1 could promote gastric cancer progression through YBX1 and upregulating PIN1, suggesting that it is a potential target for gastric cancer.
Collapse
Affiliation(s)
- Ya‐Wen Wang
- Department of PathologyQilu Hospital of Shandong UniversityJinanShandongChina
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical SciencesShandong UniversityJinanShandongChina
| | - Wen‐Jie Zhu
- Department of PathologyQilu Hospital of Shandong UniversityJinanShandongChina
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical SciencesShandong UniversityJinanShandongChina
| | - Ran‐Ran Ma
- Department of PathologyQilu Hospital of Shandong UniversityJinanShandongChina
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical SciencesShandong UniversityJinanShandongChina
| | - Ya‐Ru Tian
- Department of Radiation Oncology, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical ScienceJinanShandongChina
| | - Xu Chen
- Department of PathologyQilu Hospital of Shandong UniversityJinanShandongChina
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical SciencesShandong UniversityJinanShandongChina
| | - Peng Gao
- Department of PathologyQilu Hospital of Shandong UniversityJinanShandongChina
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical SciencesShandong UniversityJinanShandongChina
| |
Collapse
|
3
|
Hoang TV, Vo KTX, Rahman MM, Zhong R, Lee C, Ketudat Cairns JR, Ye ZH, Jeon JS. SPOTTED-LEAF7 targets the gene encoding β-galactosidase9, which functions in rice growth and stress responses. PLANT PHYSIOLOGY 2023; 193:1109-1125. [PMID: 37341542 PMCID: PMC10517187 DOI: 10.1093/plphys/kiad359] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/22/2023]
Abstract
β-Galactosidases (Bgals) remove terminal β-D-galactosyl residues from the nonreducing ends of β-D-galactosidases and oligosaccharides. Bgals are present in bacteria, fungi, animals, and plants and have various functions. Despite the many studies on the evolution of BGALs in plants, their functions remain obscure. Here, we identified rice (Oryza sativa) β-galactosidase9 (OsBGAL9) as a direct target of the heat stress-induced transcription factor SPOTTED-LEAF7 (OsSPL7), as demonstrated by protoplast transactivation analysis and yeast 1-hybrid and electrophoretic mobility shift assays. Knockout plants for OsBGAL9 (Osbgal9) showed short stature and growth retardation. Histochemical β-glucuronidase (GUS) analysis of transgenic lines harboring an OsBGAL9pro:GUS reporter construct revealed that OsBGAL9 is mainly expressed in internodes at the mature stage. OsBGAL9 expression was barely detectable in seedlings under normal conditions but increased in response to biotic and abiotic stresses. Ectopic expression of OsBGAL9 enhanced resistance to the rice pathogens Magnaporthe oryzae and Xanthomonas oryzae pv. oryzae, as well as tolerance to cold and heat stress, while Osbgal9 mutant plants showed the opposite phenotypes. OsBGAL9 localized to the cell wall, suggesting that OsBGAL9 and its plant putative orthologs likely evolved functions distinct from those of its closely related animal enzymes. Enzyme activity assays and analysis of the cell wall composition of OsBGAL9 overexpression and mutant plants indicated that OsBGAL9 has activity toward galactose residues of arabinogalactan proteins (AGPs). Our study clearly demonstrates a role for a member of the BGAL family in AGP processing during plant development and stress responses.
Collapse
Affiliation(s)
- Trung Viet Hoang
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Korea
| | - Kieu Thi Xuan Vo
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Korea
| | - Md Mizanor Rahman
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Korea
| | - Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Chanhui Lee
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Korea
| | - James R Ketudat Cairns
- School of Chemistry, Institute of Science, and Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Zheng-Hua Ye
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Jong-Seong Jeon
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Korea
| |
Collapse
|
4
|
Targeting prolyl isomerase Pin1 as a promising strategy to overcome resistance to cancer therapies. Pharmacol Res 2022; 184:106456. [PMID: 36116709 DOI: 10.1016/j.phrs.2022.106456] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 11/22/2022]
Abstract
The development of tumor therapeutic resistance is one of the important reasons for the failure of antitumor therapy. Starting with multiple targets and multiple signaling pathways is helpful in understanding the mechanism of tumor resistance. The overexpression of prolyl isomerase Pin1 is highly correlated with the malignancy of cancer, since Pin1 controls many oncogenes and tumor suppressors, as well as a variety of cancer-driving signaling pathways. Strikingly, numerous studies have shown that Pin1 is directly involved in therapeutic resistance. In this review, we mainly summarize the functions and mechanisms of Pin1 in therapeutic resistance of multifarious cancers, such as breast, liver, and pancreatic carcinomas. Furtherly, from the perspective of Pin1-driven cancer signaling pathways including Raf/MEK/ERK, PI3K/Akt, Wnt/β-catenin, NF-κB, as well as Pin1 inhibitors containing juglone, epigallocatechin-3-gallate (EGCG), all-trans retinoic acid (ATRA) and arsenic trioxide (ATO), it is better to demonstrate the important potential role and mechanism of Pin1 in resistance and sensitization to cancer therapies. It will provide new therapeutic approaches for clinical reversal and prevention of tumor resistance by employing synergistic administration of Pin1 inhibitors and chemotherapeutics, implementing combination therapy of Pin1-related cancer signaling pathway inhibitors and Pin1 inhibitors, and exploiting novel Pin1-specific inhibitors.
Collapse
|
5
|
Asghari A, Wall K, Gill M, Vecchio ND, Allahbakhsh F, Wu J, Deng N, Zheng WJ, Wu H, Umetani M, Maroufy V. A novel group of genes that cause endocrine resistance in breast cancer identified by dynamic gene expression analysis. Oncotarget 2022; 13:600-613. [PMID: 35401937 PMCID: PMC8986262 DOI: 10.18632/oncotarget.28225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/25/2022] [Indexed: 11/25/2022] Open
Abstract
Breast cancer (BC) is the most common type of cancer diagnosed in women. Among female cancer deaths, BC is the second leading cause of death worldwide. For estrogen receptor-positive (ER-positive) breast cancers, endocrine therapy is an effective therapeutic approach. However, in many cases, an ER-positive tumor becomes unresponsive to endocrine therapy, and tumor regrowth occurs after treatment. While some genetic mutations contribute to resistance in some patients, the underlying causes of resistance to endocrine therapy are mostly undetermined. In this study, we utilized a recently developed statistical approach to investigate the dynamic behavior of gene expression during the development of endocrine resistance and identified a novel group of genes whose time course expression significantly change during cell modelling of endocrine resistant BC development. Expression of a subset of these genes was also differentially expressed in microarray analysis of endocrine-resistant and endocrine-sensitive tumor samples. Surprisingly, a subset of those genes was also differentially genes expressed in triple-negative breast cancer (TNBC) as compared with ER-positive BC. The findings suggest shared genetic mechanisms may underlie the development of endocrine resistant BC and TNBC. Our findings identify 34 novel genes for further study as potential therapeutic targets for treatment of endocrine-resistant BC and TNBC.
Collapse
Affiliation(s)
- Arvand Asghari
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
- These authors contributed equally to this work
| | - Katherine Wall
- Department of Biostatistics and Data Science, School of Public Health, UTHealth, Houston, TX 77030, USA
- These authors contributed equally to this work
| | - Michael Gill
- Department of Biostatistics and Data Science, School of Public Health, UTHealth, Houston, TX 77030, USA
| | - Natascha Del Vecchio
- Chicago Center for HIV Elimination, University of Chicago, Chicago, IL 60637, USA
| | - Farnaz Allahbakhsh
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Jacky Wu
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Nan Deng
- Clinical Cancer Prevention Department, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - W. Jim Zheng
- School of Biomedical Informatics, UTHealth, Houston, TX 77030, USA
| | - Hulin Wu
- Department of Biostatistics and Data Science, School of Public Health, UTHealth, Houston, TX 77030, USA
| | - Michihisa Umetani
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
- Health Research Institute, University of Houston, Houston, TX 77204, USA
| | - Vahed Maroufy
- Department of Biostatistics and Data Science, School of Public Health, UTHealth, Houston, TX 77030, USA
| |
Collapse
|
6
|
Kumar S, Tchounwou PB. Arsenic trioxide reduces the expression of E2F1, cyclin E, and phosphorylation of PI3K signaling molecules in acute leukemia cells. ENVIRONMENTAL TOXICOLOGY 2021; 36:1785-1792. [PMID: 34042274 PMCID: PMC8453914 DOI: 10.1002/tox.23299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/29/2021] [Accepted: 05/18/2021] [Indexed: 05/16/2023]
Abstract
Arsenic trioxide (ATO) has been used for the treatment of acute promyelocytic leukemia (APL). Although ATO modulates cell cycle progression and apoptosis in APL cells, its exact mechanism of action remains elusive. In this research, we investigated its effects on E2F1, cyclin E, p53, pRb, and PI3K signaling molecules by western blotting, immunocytochemistry and/or confocal imaging. We found that ATO inhibited the proliferation of APL cells through down-regulation of E2F1 and cyclin E expression, and stimulation of pRb. It also reduced the interaction of pRb and E2F1with binding to the E2F1 promoter, by stimulating pRb association. ATO also effected the phosphorylation of pRb at S608 and T373 residues and association of E2F1, pRb, and p53, simultaneously. However, in p53-knockdown NB4 cells, ATO did not significantly reduce E2F1 and cyclin E expression. Our findings demonstrate that ATO inhibits APL cell growth through reduced expression of E2F1, cyclin E, and stimulation of pRb. It also effected both interaction and association of E2F1, pRb, and p53 by phosphorylation of pRb at T373 and S608 residues and reduced phosphorylation of PI3K signaling molecules. This novel mode of action of ATO in APL cells may be useful for designing new APL drugs.
Collapse
Affiliation(s)
- Sanjay Kumar
- Cellomics and Toxicogenomics Research LaboratoryNIH/NIMHD‐RCMI Center for Environmental Health, College of Science, Engineering and Technology, Jackson State UniversityJacksonMississippi
- Department of life Sciences, School of Earth, Biological, and Environmental SciencesCentral UniversityGayaSouth BiharIndia
| | - Paul B. Tchounwou
- Cellomics and Toxicogenomics Research LaboratoryNIH/NIMHD‐RCMI Center for Environmental Health, College of Science, Engineering and Technology, Jackson State UniversityJacksonMississippi
| |
Collapse
|
7
|
Yu JH, Im CY, Min SH. Function of PIN1 in Cancer Development and Its Inhibitors as Cancer Therapeutics. Front Cell Dev Biol 2020; 8:120. [PMID: 32258027 PMCID: PMC7089927 DOI: 10.3389/fcell.2020.00120] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/11/2020] [Indexed: 12/15/2022] Open
Abstract
Peptidyl-prolyl isomerase (PIN1) specifically binds and isomerizes the phosphorylated serine/threonine-proline (pSer/Thr-Pro) motif, which results in the alteration of protein structure, function, and stability. The altered structure and function of these phosphorylated proteins regulated by PIN1 are closely related to cancer development. PIN1 is highly expressed in human cancers and promotes cancer as well as cancer stem cells by breaking the balance of oncogenes and tumor suppressors. In this review, we discuss the roles of PIN1 in cancer and PIN1-targeted small-molecule compounds.
Collapse
Affiliation(s)
- Ji Hoon Yu
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, South Korea
| | - Chun Young Im
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, South Korea
| | - Sang-Hyun Min
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, South Korea
| |
Collapse
|
8
|
E2F1/IGF-1R Loop Contributes to BRAF Inhibitor Resistance in Melanoma. J Invest Dermatol 2019; 140:1295-1299.e1. [PMID: 31705876 DOI: 10.1016/j.jid.2019.09.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 09/24/2019] [Accepted: 09/30/2019] [Indexed: 01/24/2023]
|
9
|
Prolyl isomerase Pin1: a promoter of cancer and a target for therapy. Cell Death Dis 2018; 9:883. [PMID: 30158600 PMCID: PMC6115400 DOI: 10.1038/s41419-018-0844-y] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/15/2018] [Accepted: 06/27/2018] [Indexed: 12/15/2022]
Abstract
Pin1 is the only known peptidyl-prolyl cis–trans isomerase (PPIase) that specifically recognizes and isomerizes the phosphorylated Serine/Threonine-Proline (pSer/Thr-Pro) motif. The Pin1-mediated structural transformation posttranslationally regulates the biofunctions of multiple proteins. Pin1 is involved in many cellular processes, the aberrance of which lead to both degenerative and neoplastic diseases. Pin1 is highly expressed in the majority of cancers and its deficiency significantly suppresses cancer progression. According to the ground-breaking summaries by Hanahan D and Weinberg RA, the hallmarks of cancer comprise ten biological capabilities. Multiple researches illuminated that Pin1 contributes to these aberrant behaviors of cancer via promoting various cancer-driving pathways. This review summarized the detailed mechanisms of Pin1 in different cancer capabilities and certain Pin1-targeted small-molecule compounds that exhibit anticancer activities, expecting to facilitate anticancer therapies by targeting Pin1.
Collapse
|
10
|
Lan YY, Chang FH, Tsai JH, Chang Y. Epstein-Barr virus Rta promotes invasion of bystander tumor cells through paracrine of matrix metalloproteinase 9. Biochem Biophys Res Commun 2018; 503:2160-2166. [PMID: 30082032 DOI: 10.1016/j.bbrc.2018.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 08/01/2018] [Indexed: 10/28/2022]
Abstract
Clinical studies suggest a positive association between malignant progression of nasopharyngeal carcinoma (NPC) and Rta, a transcription factor of Epstein-Barr virus (EBV). However, Rta induces cellular senescence in vitro. To provide an underlying mechanism integrating these clues, we adapted a concept of senescence-associated secretory phenotype (SASP), based on which senescent cells facilitate tumor progression through paracrine. First, Rta-expressing NPC cells themselves show reduced invasiveness but promote invasion of Rta-negative tumor cells through secreted factors. Secretion of matrix metalloproteinase 9 (MMP9), an SASP protein, is increased by Rta, which requires the C-terminus of Rta and Rta-induced activation of E2F. Furthermore, the Rta-induced, paracrine-mediated pro-invasive effect is blocked upon knockdown of MMP9 expression or treatment with an MMP9 inhibitor. This study not only indicates that Rta can contribute to NPC progression through paracrine but also supports that MMP9 is a potential therapeutic target to prevent NPC metastasis.
Collapse
Affiliation(s)
- Yu-Yan Lan
- Department of Physical Therapy, Shu-Zen Junior College of Medicine and Management, Kaohsiung, 821, Taiwan; National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, 704, Taiwan
| | - Fang-Hsin Chang
- Department of Microbiology and Immunology, Medical College, National Cheng Kung University, Tainan, 701, Taiwan; National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, 704, Taiwan
| | - Jen-Hao Tsai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, 704, Taiwan
| | - Yao Chang
- Department of Microbiology and Immunology, Medical College, National Cheng Kung University, Tainan, 701, Taiwan; National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, 704, Taiwan.
| |
Collapse
|
11
|
Role of the CYP3A4-mediated 11,12-epoxyeicosatrienoic acid pathway in the development of tamoxifen-resistant breast cancer. Oncotarget 2017; 8:71054-71069. [PMID: 29050342 PMCID: PMC5642617 DOI: 10.18632/oncotarget.20329] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 06/27/2017] [Indexed: 11/25/2022] Open
Abstract
Epoxyeicosatrienoic acid (EET) production via cytochrome P450 (CYP) epoxygenases closely correlates with the progression of breast cancer. However, its role in the development of chemoresistant breast cancers has yet to be elucidated. Here, we found that CYP3A4 expression and its epoxy-product, 11,12-epoxyeicosatrienoic acid (11,12-EET) was enhanced in tamoxifen (TAM)-resistant MCF-7 (TAMR-MCF-7) breast cancer cells compared to control MCF-7 cells. Treatment of TAMR-MCF-7 cells with ketoconazole and azamulin (selective CYP3A4 inhibitors) or 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EEZE, an EET antagonist) inhibited cellular proliferation and recovered the sensitivity to 4-hydroxytamoxifen. Chick chorioallantoic membrane and trans-well migration analyses revealed that the enhanced angiogenic, tumorigenic, and migration intensities of TAMR-MCF-7 cells were also significantly suppressed by ketoconazole and 14,15-EEZE. We previously reported that Pin1, a peptidyl prolyl isomerase, is a crucial regulator for higher angiogenesis and epithelial-mesenchymal transition characteristics of TAMR-MCF-7 cells. EET inhibition suppressed E2F1-dependent Pin1 gene transcription, and Pin1 silencing also blocked cell proliferation, angiogenesis, and migration of TAMR-MCF-7 cells. Our findings suggest that the CYP3A4-mediated EET pathway represents a potential therapeutic target for the treatment of tamoxifen-resistant breast cancer.
Collapse
|
12
|
Islam R, Yoon WJ, Ryoo HM. Pin1, the Master Orchestrator of Bone Cell Differentiation. J Cell Physiol 2017; 232:2339-2347. [PMID: 27225727 DOI: 10.1002/jcp.25442] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 05/24/2016] [Indexed: 12/25/2022]
Abstract
Pin1 is an enzyme that specifically recognizes the peptide bond between phosphorylated serine or threonine (pS/pT-P) and proline. This recognition causes a conformational change of its substrate, which further regulates downstream signaling. Pin1-/- mice show developmental bone defects and reduced mineralization. Pin1 targets RUNX2 (Runt-Related Transcription Factor 2), SMAD1/5, and β-catenin in the FGF, BMP, and WNT pathways, respectively. Pin1 has multiple roles in the crosstalk between different anabolic bone signaling pathways. For example, it controls different aspects of osteoblastogenesis and increases the transcriptional activity of Runx2, both directly and indirectly. Pin1 also influences osteoclastogenesis at different stages by targeting PU.1 (Purine-rich nucleic acid binding protein 1), C-FOS, and DC-STAMP. The phenotype of Pin1-/- mice has led to the recent identification of multiple roles of Pin1 in different molecular pathways in bone cells. These roles suggest that Pin1 can be utilized as an efficient drug target in congenital and acquired bone diseases. J. Cell. Physiol. 232: 2339-2347, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rabia Islam
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Won-Joon Yoon
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Hyun-Mo Ryoo
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
13
|
Pan J, Zhou S, Xiang R, Zhao Z, Liu S, Ding N, Gong S, Lin Y, Li X, Bai X, Li F, Zhao AZ. An Ω-3 fatty acid desaturase-expressing gene attenuates prostate cancer proliferation by cell cycle regulation. Oncol Lett 2017; 13:3717-3721. [PMID: 28521474 DOI: 10.3892/ol.2017.5880] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 10/25/2016] [Indexed: 12/20/2022] Open
Abstract
Previous studies have reported that Ω-6 and Ω-3 fatty acids have opposing effects on cancer development. Consuming high levels of long-chain Ω-3 polyunsaturated fatty acids (PUFAs) has been shown to reduce prostate cancer risk and increase chemotherapy sensitivity. The sdd17 gene encodes an Ω-3 fatty acid desaturase, which converts arachidonic acid into eicosapentaenoic acid (EPA). However, little is known regarding the function of the sdd17 gene in tumor cells in vitro. In the present study, prostate cancer cells were infected with the msdd17 gene, which allowed the endogenous production of Ω-3 PUFAs. The cells that expressed the msdd17 gene had high levels of long-chain Ω-3 PUFAs compared with the control cells. Expression of the msdd17 gene significantly inhibited prostate cancer cell proliferation. EPA exposure and msdd17 gene transfection each induced G2 cell cycle arrest and reduced E2F transcription factor 1 expression in prostate cancer cells. These results suggest that msdd17 gene transfection suppressed prostate cancer cell proliferation and induced G2 cell cycle arrest.
Collapse
Affiliation(s)
- Jinshun Pan
- Department of Biotherapy, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Sujin Zhou
- Collaborative Innovation Center for Cancer Medicine, The Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, P.R. China
| | - Rong Xiang
- The Center of Metabolic Disease Research, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Zhenggang Zhao
- Collaborative Innovation Center for Cancer Medicine, The Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, P.R. China
| | - Shanshan Liu
- The Center of Metabolic Disease Research, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Ning Ding
- The Center of Metabolic Disease Research, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Sijia Gong
- The Center of Metabolic Disease Research, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yan Lin
- The Center of Metabolic Disease Research, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xiaoxi Li
- The Center of Metabolic Disease Research, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xiaoming Bai
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Fanghong Li
- Collaborative Innovation Center for Cancer Medicine, The Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, P.R. China
| | - Allan Z Zhao
- Collaborative Innovation Center for Cancer Medicine, The Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|
14
|
Rustighi A, Zannini A, Campaner E, Ciani Y, Piazza S, Del Sal G. PIN1 in breast development and cancer: a clinical perspective. Cell Death Differ 2016; 24:200-211. [PMID: 27834957 DOI: 10.1038/cdd.2016.122] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 12/12/2022] Open
Abstract
Mammary gland development, various stages of mammary tumorigenesis and breast cancer progression have the peptidyl-prolyl cis/trans isomerase PIN1 at their centerpiece, in virtue of the ability of this unique enzyme to fine-tune the dynamic crosstalk between multiple molecular pathways. PIN1 exerts its action by inducing conformational and functional changes on key cellular proteins, following proline-directed phosphorylation. Through this post-phosphorylation signal transduction mechanism, PIN1 controls the extent and direction of the cellular response to a variety of inputs, in physiology and disease. This review discusses PIN1's roles in normal mammary development and cancerous progression, as well as the clinical impact of targeting this enzyme in breast cancer patients.
Collapse
Affiliation(s)
- Alessandra Rustighi
- National Laboratory CIB (LNCIB), Area Science Park, Padriciano 99, Trieste 34149, Italy
| | - Alessandro Zannini
- National Laboratory CIB (LNCIB), Area Science Park, Padriciano 99, Trieste 34149, Italy.,Department of Life Sciences, University of Trieste, via Weiss 2, Trieste 34128, Italy
| | - Elena Campaner
- National Laboratory CIB (LNCIB), Area Science Park, Padriciano 99, Trieste 34149, Italy.,Department of Life Sciences, University of Trieste, via Weiss 2, Trieste 34128, Italy
| | - Yari Ciani
- National Laboratory CIB (LNCIB), Area Science Park, Padriciano 99, Trieste 34149, Italy
| | - Silvano Piazza
- National Laboratory CIB (LNCIB), Area Science Park, Padriciano 99, Trieste 34149, Italy.,Bioinformatics Core Facility, Centre for Integrative Biology, CIBIO, University of Trento, Via Sommarive 18, 38123, Povo, Trento, Italy
| | - Giannino Del Sal
- National Laboratory CIB (LNCIB), Area Science Park, Padriciano 99, Trieste 34149, Italy.,Department of Life Sciences, University of Trieste, via Weiss 2, Trieste 34128, Italy
| |
Collapse
|
15
|
Cyclooxygenase-2 induced β1-integrin expression in NSCLC and promoted cell invasion via the EP1/MAPK/E2F-1/FoxC2 signal pathway. Sci Rep 2016; 6:33823. [PMID: 27654511 PMCID: PMC5031967 DOI: 10.1038/srep33823] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 09/02/2016] [Indexed: 12/28/2022] Open
Abstract
Cyclooxygenase-2 (COX-2) has been implicated in cell invasion in non-small-cell lung cancer (NSCLC). However, the mechanism is unclear. The present study investigated the effect of COX-2 on β1-integrin expression and cell invasion in NSCLC. COX-2 and β1-integrin were co-expressed in NSCLC tissues. COX-2 overexpression or Prostaglandin E2 (PGE2) treatment increased β1-integrin expression in NSCLC cell lines. β1-integrin silencing suppressed COX-2-mediated tumour growth and cancer cell invasion in vivo and in vitro. Prostaglandin E Receptor EP1 transfection or treatment with EP1 agonist mimicked the effect of PGE2 treatment. EP1 siRNA blocked PGE2-mediated β1-integrin expression. EP1 agonist treatment promoted Erk1/2, p38 phosphorylation and E2F-1 expression. MEK1/2 and p38 inhibitors suppressed EP1-mediated β1-integrin expression. E2F-1 silencing suppressed EP1-mediated FoxC2 and β1-integrin upregulation. ChIP and Luciferase Reporter assays identified that EP1 agonist treatment induced E2F-1 binding to FoxC2 promotor directly and improved FoxC2 transcription. FoxC2 siRNA suppressed β1-integrin expression and EP1-mediated cell invasion. Immunohistochemistry showed E2F-1, FoxC2, and EP1R were all highly expressed in the NSCLC cases. This study suggested that COX-2 upregulates β1-integrin expression and cell invasion in NSCLC by activating the MAPK/E2F-1 signalling pathway. Targeting the COX-2/EP1/PKC/MAPK/E2F-1/FoxC2/β1-integrin pathway might represent a new therapeutic strategy for the prevention and treatment of this cancer.
Collapse
|
16
|
An in vitro model for the development of acquired tamoxifen resistance. Cell Biol Toxicol 2016; 32:563-581. [DOI: 10.1007/s10565-016-9355-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 07/15/2016] [Indexed: 01/10/2023]
|
17
|
Légaré S, Cavallone L, Mamo A, Chabot C, Sirois I, Magliocco A, Klimowicz A, Tonin PN, Buchanan M, Keilty D, Hassan S, Laperrière D, Mader S, Aleynikova O, Basik M. The Estrogen Receptor Cofactor SPEN Functions as a Tumor Suppressor and Candidate Biomarker of Drug Responsiveness in Hormone-Dependent Breast Cancers. Cancer Res 2015; 75:4351-63. [PMID: 26297734 DOI: 10.1158/0008-5472.can-14-3475] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 07/10/2015] [Indexed: 11/16/2022]
Abstract
The treatment of breast cancer has benefitted tremendously from the generation of estrogen receptor-α (ERα)-targeted therapies, but disease relapse continues to pose a challenge due to intrinsic or acquired drug resistance. In an effort to delineate potential predictive biomarkers of therapy responsiveness, multiple groups have identified several uncharacterized cofactors and interacting partners of ERα, including Split Ends (SPEN), a transcriptional corepressor. Here, we demonstrate a role for SPEN in ERα-expressing breast cancers. SPEN nonsense mutations were detectable in the ERα-expressing breast cancer cell line T47D and corresponded to undetectable protein levels. Further analysis of 101 primary breast tumors revealed that 23% displayed loss of heterozygosity at the SPEN locus and that 3% to 4% harbored somatically acquired mutations. A combination of in vitro and in vivo functional assays with microarray-based pathway analyses showed that SPEN functions as a tumor suppressor to regulate cell proliferation, tumor growth, and survival. We also found that SPEN binds ERα in a ligand-independent manner and negatively regulates the transcription of ERα targets. Moreover, we demonstrate that SPEN overexpression sensitizes hormone receptor-positive breast cancer cells to the apoptotic effects of tamoxifen, but has no effect on responsiveness to fulvestrant. Consistent with these findings, two independent datasets revealed that high SPEN protein and RNA expression in ERα-positive breast tumors predicted favorable outcome in patients treated with tamoxifen alone. Together, our data suggest that SPEN is a novel tumor-suppressor gene that may be clinically useful as a predictive biomarker of tamoxifen response in ERα-positive breast cancers.
Collapse
Affiliation(s)
- Stéphanie Légaré
- Department of Surgery and Oncology, McGill University, Montréal, Québec, Canada. Department of Oncology and Surgery, Lady Davis Institute for Medical Research, Montréal, Québec, Canada
| | - Luca Cavallone
- Department of Oncology and Surgery, Lady Davis Institute for Medical Research, Montréal, Québec, Canada
| | - Aline Mamo
- Department of Oncology and Surgery, Lady Davis Institute for Medical Research, Montréal, Québec, Canada
| | - Catherine Chabot
- Department of Oncology and Surgery, Lady Davis Institute for Medical Research, Montréal, Québec, Canada
| | - Isabelle Sirois
- Department of Surgery and Oncology, McGill University, Montréal, Québec, Canada. Department of Oncology and Surgery, Lady Davis Institute for Medical Research, Montréal, Québec, Canada
| | - Anthony Magliocco
- Department of Pathology, University of Calgary, Calgary, Alberta, Canada
| | | | - Patricia N Tonin
- Department of Human Genetics, McGill University and The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada. Department of Medicine, McGill University and The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Marguerite Buchanan
- Department of Oncology and Surgery, Lady Davis Institute for Medical Research, Montréal, Québec, Canada
| | - Dana Keilty
- Department of Surgery and Oncology, McGill University, Montréal, Québec, Canada. Department of Oncology and Surgery, Lady Davis Institute for Medical Research, Montréal, Québec, Canada
| | - Saima Hassan
- Department of Surgery and Oncology, McGill University, Montréal, Québec, Canada. Department of Oncology and Surgery, Lady Davis Institute for Medical Research, Montréal, Québec, Canada
| | - David Laperrière
- Institut de recherche en immunologie et cancérologie, IRIC, Montréal, Québec, Canada
| | - Sylvie Mader
- Institut de recherche en immunologie et cancérologie, IRIC, Montréal, Québec, Canada. Department de Biochimie, Université de Montréal, Montréal, Québec, Canada
| | - Olga Aleynikova
- Department of Pathology, Jewish General Hospital, Montréal, Quebec, Canada
| | - Mark Basik
- Department of Surgery and Oncology, McGill University, Montréal, Québec, Canada. Department of Oncology and Surgery, Lady Davis Institute for Medical Research, Montréal, Québec, Canada.
| |
Collapse
|
18
|
Wang JZ, Liu BG, Zhang Y. Pin1-based diagnostic and therapeutic strategies for breast cancer. Pharmacol Res 2014; 93:28-35. [PMID: 25553719 DOI: 10.1016/j.phrs.2014.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 12/19/2014] [Accepted: 12/19/2014] [Indexed: 01/12/2023]
Abstract
Pin1 is the only known cis-to-trans isomerase that recognizes the phosphorylated pThr/pSer-Pro motifs in many signaling molecules, playing unique roles in the pathogenesis of breast cancer. First, Pin1 is prevalently over-expressed in kinds of breast cancer cell lines and tissues, such as MDA-MB-231 cell, MCF-7 cell, Her2+, ERα+, and basal-like breast cancer subtypes. Second, Pin1 amplifies many oncogenic signaling pathways, inhibits multiple tumor suppressors, promotes the angiogenesis and metastasis of breast cancer cells, and enhances the resistance of breast cancer cells to anti-tumor medicines. Third, inhibiting Pin1 blocks most of these detrimental effects in a great number of breast cancer cell lines. These findings suggest Pin1 as a promising diagnostic biomarker as well as an efficient therapeutic target for breast cancer. It is strongly expected that a Pin1-positive subtype of breast cancers should be extremely concerned and that the therapeutic efficacy of Pin1 inhibitors on breast cancer patients should be evaluated as soon as possible. Nonetheless, Pin1-based therapeutic strategies for breast cancer still deserve some debates. Hence, we give the predictions of several important issues, such as application precondition, side effects, and personalized medication, when Pin1 inhibitors are used in the breast cancer therapy. These proposals are meaningful for the further development of Pin1-based diagnostic and therapeutic strategies in order to conquer breast cancer.
Collapse
Affiliation(s)
- Jing-Zhang Wang
- Department of Medical Technology, Affiliated Hospital, College of Medicine, Hebei University of Engineering, Handan 056002, PR China.
| | - Bao-Guo Liu
- Department of Medical Technology, Affiliated Hospital, College of Medicine, Hebei University of Engineering, Handan 056002, PR China
| | - Yong Zhang
- Department of Medical Technology, Affiliated Hospital, College of Medicine, Hebei University of Engineering, Handan 056002, PR China
| |
Collapse
|
19
|
E2F activators signal and maintain centrosome amplification in breast cancer cells. Mol Cell Biol 2014; 34:2581-99. [PMID: 24797070 DOI: 10.1128/mcb.01688-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Centrosomes ensure accurate chromosome segregation by directing spindle bipolarity. Loss of centrosome regulation results in centrosome amplification, multipolar mitosis and aneuploidy. Since centrosome amplification is common in premalignant lesions and breast tumors, it is proposed to play a central role in breast tumorigenesis, a hypothesis that remains to be tested. The coordination between the cell and centrosome cycles is of paramount importance to maintain normal centrosome numbers, and the E2Fs may be responsible for regulating these cycles. However, the role of E2F activators in centrosome amplification is unclear. Because E2Fs are deregulated in Her2(+) cells displaying centrosome amplification, we addressed whether they signal this abnormal process. Knockdown of E2F1 or E2F3 in Her2(+) cells decreased centrosome amplification without significantly affecting cell cycle progression, whereas the overexpression of E2F1, E2F2, or E2F3 increased centrosome amplification in MCF10A mammary epithelial cells. Our results revealed that E2Fs affect the expression of proteins, including Nek2 and Plk4, known to influence the cell/centrosome cycles and mitosis. Downregulation of E2F3 resulted in cell death and delays/blocks in cytokinesis, which was reversed by Nek2 overexpression. Nek2 overexpression enhanced centrosome amplification in Her2(+) breast cancer cells silenced for E2F3, revealing a role for the E2F activators in maintaining centrosome amplification in part through Nek2.
Collapse
|
20
|
Ko JC, Chiu HC, Syu JJ, Chen CY, Jian YT, Huang YJ, Wo TY, Jian YJ, Chang PY, Wang TJ, Lin YW. Down-regulation of MSH2 expression by Hsp90 inhibition enhances cytotoxicity affected by tamoxifen in human lung cancer cells. Biochem Biophys Res Commun 2014; 456:506-12. [PMID: 25490383 DOI: 10.1016/j.bbrc.2014.11.116] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 11/28/2014] [Indexed: 01/22/2023]
Abstract
The anti-estrogen tamoxifen has been used worldwide as an adjuvant hormone therapeutic agent in the treatment of breast cancer. However, the molecular mechanism of tamoxifen-induced cytotoxicity in non-small cell lung cancer (NSCLC) cells has not been identified. Human MutS homolog 2 (MSH2), a crucial element of the highly conserved DNA mismatch repair system, and expression of MSH2 have been down-regulated by Hsp90 function inhibition in human lung cancer. Therefore, in this study, we examined whether MSH2 plays a role in the tamoxifen and Hsp90 inhibitor-induced cytotoxic effect on NSCLC cells. The results showed that treatment with tamoxifen increased MSH2 mRNA and protein levels. The combination treatment with PI3K inhibitors (LY294002 or wortmannin) or knockdown AKT expression by specific small interfering RNA could decrease tamoxifen-induced MSH2 expression. Both knocking down MSH2 expression and co-treatment of PI3K inhibitors enhanced the cytotoxicity and cell growth inhibition of tamoxifen. Compared to a single agent alone, tamoxifen combined with an Hsp90 inhibitor resulted in cytotoxicity and cell growth inhibition synergistically in NSCLC cells, accompanied with reduced MSH2 expression. These findings may have implications for the rational design of future drug regimens incorporating tamoxifen and Hsp90 inhibitors for the treatment of NSCLC.
Collapse
Affiliation(s)
- Jen-Chung Ko
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Taiwan
| | - Hsien-Chun Chiu
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Jhan-Jhang Syu
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Chien-Yu Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Yun-Ting Jian
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Yi-Jhen Huang
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Ting-Yu Wo
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Yi-Jun Jian
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Po-Yuan Chang
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Tai-Jing Wang
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Yun-Wei Lin
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan.
| |
Collapse
|
21
|
KONG HENG, LIU CHUNLI, ZHU TING, HUANG ZONGHAI, YANG LIUCHENG, LI QIANG. Effects of an adenoviral vector containing a suicide gene fusion on growth characteristics of breast cancer cells. Mol Med Rep 2014; 10:3227-32. [DOI: 10.3892/mmr.2014.2631] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 07/22/2014] [Indexed: 11/06/2022] Open
|
22
|
Abstract
Proline-directed phosphorylation is a posttranslational modification that is instrumental in regulating signaling from the plasma membrane to the nucleus, and its dysregulation contributes to cancer development. Protein interacting with never in mitosis A1 (Pin1), which is overexpressed in many types of cancer, isomerizes specific phosphorylated Ser/Thr-Pro bonds in many substrate proteins, including glycolytic enzyme, protein kinases, protein phosphatases, methyltransferase, lipid kinase, ubiquitin E3 ligase, DNA endonuclease, RNA polymerase, and transcription activators and regulators. This Pin1-mediated isomerization alters the structures and activities of these proteins, thereby regulating cell metabolism, cell mobility, cell cycle progression, cell proliferation, cell survival, apoptosis and tumor development.
Collapse
Affiliation(s)
- Zhimin Lu
- 1] Brain Tumor Center and Department of Neuro-Oncology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA [2] Department of Molecular and Cellular Oncology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA [3] Cancer Biology Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
23
|
Ko JC, Chiu HC, Syu JJ, Jian YJ, Chen CY, Jian YT, Huang YJ, Wo TY, Lin YW. Tamoxifen enhances erlotinib-induced cytotoxicity through down-regulating AKT-mediated thymidine phosphorylase expression in human non-small-cell lung cancer cells. Biochem Pharmacol 2014; 88:119-27. [DOI: 10.1016/j.bcp.2014.01.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/10/2014] [Accepted: 01/10/2014] [Indexed: 12/12/2022]
|
24
|
Secreto F, Manske M, Price-Troska T, Ziesmer S, Hodge LS, Ansell SM, Cerhan JR, Novak AJ. B-cell activating factor-receptor specific activation of tumor necrosis factor receptor associated factor 6 and the phosphatidyl inositol 3-kinase pathway in lymphoma B cells. Leuk Lymphoma 2014; 55:1884-92. [PMID: 24206092 DOI: 10.3109/10428194.2013.862619] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
B-cell activating factor-receptor (BAFF-R) is the primary BAFF receptor that is responsible for promoting B-cell development and survival. Malignant B-cells exploit the BAFF/BAFF-R system, and high serum BAFF levels or genetic alterations in BAFF receptors have been found in B-cell cancers. BAFF signaling impacts pro-survival pathways. However, other than nuclear factor-κB2 (NF-κB2), little is known about the specific pathways activated by individual BAFF receptors. Using a novel BAFF-R expression model we have demonstrated that activation of BAFF-R, independent of transmembrane activator and cytophilin ligand interactor (TACI) and B-cell maturation antigen (BCMA), can induce phosphorylation of Akt and glycogen synthase kinase 3β (GSK3β). Expression of an activated form of BAFF-R also enhanced a pro-survival gene expression pattern, including the novel BAFF-regulated gene Pin1, whose expression was phosphatidyl inositol 3-kinase (PI3K)-dependent. Additionally, we showed that TRAF6 is essential for mediating BAFF-R dependent activation of Akt. Together these data describe a novel role for TRAF6 in BAFF-R-specific activation of the PI3K pathway and provide evidence suggesting a new role for Pin1 in BAFF-R signaling.
Collapse
Affiliation(s)
- Frank Secreto
- Division of Hematology, Mayo Clinic , Rochester, MN , USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Lv L, Zhang J, Zhang L, Xue G, Wang P, Meng Q, Liang W. Essential role of Pin1 via STAT3 signalling and mitochondria-dependent pathways in restenosis in type 2 diabetes. J Cell Mol Med 2013; 17:989-1005. [PMID: 23750710 PMCID: PMC3780535 DOI: 10.1111/jcmm.12082] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 04/17/2013] [Indexed: 12/19/2022] Open
Abstract
Type 2 diabetes (T2D) is associated with accelerated restenosis rates after angioplasty. We have previously proved that Pin1 played an important role in vascular smooth muscle cell (VSMC) cycle and apoptosis. But neither the role of Pin1 in restenosis by T2D, nor the molecular mechanism of Pin1 in these processes has been elucidated. A mouse model of T2D was generated by the combination of high-fat diet (HFD) and streptozotocin (STZ) injections. Both Immunohistochemistry and Western blot revealed that Pin1 expression was up-regulated in the arterial wall in T2D mice and in VSMCs in culture conditions mimicking T2D. Next, increased activity of Pin1 was observed in neointimal hyperplasia after arterial injury in T2D mice. Further analysis confirmed that 10% serum of T2D mice and Pin1-forced expression stimulated proliferation, inhibited apoptosis, enhanced cell cycle progression and migration of VSMCs, whereas Pin1 knockdown resulted in the converse effects. We demonstrated that STAT3 signalling and mitochondria-dependent pathways played critical roles in the involvement of Pin1 in cell cycle regulation and apoptosis of VSMCs in T2D. In addition, VEGF expression was stimulated by Pin1, which unveiled part of the mechanism of Pin1 in regulating VSMC migration in T2D. Finally, the administration of juglone via pluronic gel onto injured common femoral artery resulted in a significant inhibition of the neointima/media ratio. Our findings demonstrated the vital effect of Pin1 on the VSMC proliferation, cell cycle progression, apoptosis and migration that underlie neointima formation in T2D and implicated Pin1 as a potential therapeutic target to prevent restenosis in T2D.
Collapse
Affiliation(s)
- Lei Lv
- Department of Vascular Surgery, Renji Hospital, Shanghai Jiaotong University, College of Medicine, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
26
|
Ghosh A, Saminathan H, Kanthasamy A, Anantharam V, Jin H, Sondarva G, Harischandra DS, Qian Z, Rana A, Kanthasamy AG. The peptidyl-prolyl isomerase Pin1 up-regulation and proapoptotic function in dopaminergic neurons: relevance to the pathogenesis of Parkinson disease. J Biol Chem 2013; 288:21955-71. [PMID: 23754278 DOI: 10.1074/jbc.m112.444224] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Parkinson disease (PD) is a chronic neurodegenerative disease characterized by a slow and progressive degeneration of dopaminergic neurons in substantia nigra. The pathophysiological mechanisms underlying PD remain unclear. Pin1, a major peptidyl-prolyl isomerase, has recently been associated with certain diseases. Notably, Ryo et al. (Ryo, A., Togo, T., Nakai, T., Hirai, A., Nishi, M., Yamaguchi, A., Suzuki, K., Hirayasu, Y., Kobayashi, H., Perrem, K., Liou, Y. C., and Aoki, I. (2006) J. Biol. Chem. 281, 4117-4125) implicated Pin1 in PD pathology. Therefore, we sought to systematically characterize the role of Pin1 in PD using cell culture and animal models. To our surprise we observed a dramatic up-regulation of Pin1 mRNA and protein levels in dopaminergic MN9D neuronal cells treated with the parkinsonian toxicant 1-methyl-4-phenylpyridinium (MPP(+)) as well as in the substantia nigra of the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model. Notably, a marked expression of Pin1 was also observed in the substantia nigra of human PD brains along with a high co-localization of Pin1 within dopaminergic neurons. In functional studies, siRNA-mediated knockdown of Pin1 almost completely prevented MPP(+)-induced caspase-3 activation and DNA fragmentation, indicating that Pin1 plays a proapoptotic role. Interestingly, multiple pharmacological Pin1 inhibitors, including juglone, attenuated MPP(+)-induced Pin1 up-regulation, α-synuclein aggregation, caspase-3 activation, and cell death. Furthermore, juglone treatment in the MPTP mouse model of PD suppressed Pin1 levels and improved locomotor deficits, dopamine depletion, and nigral dopaminergic neuronal loss. Collectively, our findings demonstrate for the first time that Pin1 is up-regulated in PD and has a pathophysiological role in the nigrostriatal dopaminergic system and suggest that modulation of Pin1 levels may be a useful translational therapeutic strategy in PD.
Collapse
Affiliation(s)
- Anamitra Ghosh
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Gusev Y, Riggins RB, Bhuvaneshwar K, Gauba R, Sheahan L, Clarke R, Madhavan S. In silico discovery of mitosis regulation networks associated with early distant metastases in estrogen receptor positive breast cancers. Cancer Inform 2013; 12:31-51. [PMID: 23470717 PMCID: PMC3579429 DOI: 10.4137/cin.s10329] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The aim of this study was to perform comparative analysis of multiple public datasets of gene expression in order to identify common genes as potential prognostic biomarkers. Additionally, the study sought to identify biological processes and pathways that are most significantly associated with early distant metastases (<5 years) in women with estrogen receptor-positive (ER+) breast tumors. Datasets from three published studies were selected for in silico analysis of gene expression profiles of ER+ breast cancer, using time to distant metastasis as the clinical endpoint. A subset of 44 differently expressed genes (DEGs) was found common to all three studies and characterized by mitotic checkpoint genes and pathways that regulate mitotic spindle and chromosome dynamics. DEG promoter regions were enriched with NFY binding sites. Analysis of miRNA target sites identified significant enrichment of miR-192, miR-193B, and miR-16-1 targets. Aberrant mitotic regulation could drive increased genomic instability leading to a progression towards an early onset metastatic phenotype. The relative importance of mitotic instability may reflect the clinical utility of mitotic poisons in metastatic breast cancer, including poisons such as the taxanes, epothilones, and vinca alkaloids.
Collapse
Affiliation(s)
- Yuriy Gusev
- Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington, DC, USA
| | - Rebecca B. Riggins
- Breast Cancer Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Krithika Bhuvaneshwar
- Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington, DC, USA
| | - Robinder Gauba
- Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington, DC, USA
| | | | - Robert Clarke
- Breast Cancer Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Subha Madhavan
- Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
28
|
Lucchetti C, Caligiuri I, Toffoli G, Giordano A, Rizzolio F. The prolyl isomerase Pin1 acts synergistically with CDK2 to regulate the basal activity of estrogen receptor α in breast cancer. PLoS One 2013; 8:e55355. [PMID: 23390529 PMCID: PMC3563590 DOI: 10.1371/journal.pone.0055355] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 12/27/2012] [Indexed: 12/22/2022] Open
Abstract
In hormone receptor-positive breast cancers, most tumors in the early stages of development depend on the activity of the estrogen receptor and its ligand, estradiol. Anti-estrogens, such as tamoxifen, have been used as the first line of therapy for over three decades due to the fact that they elicit cell cycle arrest. Unfortunately, after an initial period, most cells become resistant to hormonal therapy. Peptidylprolyl isomerase 1 (Pin1), a protein overexpressed in many tumor types including breast, has been demonstrated to modulate ERalpha activity and is involved in resistance to hormonal therapy. Here we show a new mechanism through which CDK2 drives an ERalpha-Pin1 interaction under hormone- and growth factor-free conditions. The PI3K/AKT pathway is necessary to activate CDK2, which phosphorylates ERalphaSer294, and mediates the binding between Pin1 and ERalpha. Site-directed mutagenesis demonstrated that ERalphaSer294 is essential for Pin1-ERalpha interaction and modulates ERalpha phosphorylation on Ser118 and Ser167, dimerization and activity. These results open up new drug treatment opportunities for breast cancer patients who are resistant to anti-estrogen therapy.
Collapse
Affiliation(s)
- Chiara Lucchetti
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Isabella Caligiuri
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, United States of America
- Human Health Foundation, Terni and Spoleto (PG), Italy
- Department of Human Pathology and Oncology, University of Siena, Siena (SI), Italy
| | - Giuseppe Toffoli
- Division of Experimental and Clinical Pharmacology, Department of Molecular Biology and Translational Research, National Cancer Institute and Center for Molecular Biomedicine, Aviano (PN), Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, United States of America
- Human Health Foundation, Terni and Spoleto (PG), Italy
- Department of Human Pathology and Oncology, University of Siena, Siena (SI), Italy
- * E-mail: (AG); (FR)
| | - Flavio Rizzolio
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, United States of America
- Division of Experimental and Clinical Pharmacology, Department of Molecular Biology and Translational Research, National Cancer Institute and Center for Molecular Biomedicine, Aviano (PN), Italy
- * E-mail: (AG); (FR)
| |
Collapse
|
29
|
Ki SH, Lee JW, Lim SC, Hien TT, Im JH, Oh WK, Lee MY, Ji YH, Kim YG, Kang KW. Protective effect of nectandrin B, a potent AMPK activator on neointima formation: inhibition of Pin1 expression through AMPK activation. Br J Pharmacol 2013; 168:932-945. [PMID: 23004677 PMCID: PMC3631381 DOI: 10.1111/j.1476-5381.2012.02228.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 09/01/2012] [Accepted: 09/06/2012] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Neointima is considered a critical event in the development of vascular occlusive disease. Nectandrin B from nutmeg functions as a potent AMP-activated protein kinase (AMPK) activators. The present study addressed whether nectandrin B inhibits intimal hyperplasia in guide wire-injured arteries and examined its molecular mechanism. EXPERIMENTAL APPROACH Neointima was induced by guide wire injury in mouse femoral arteries. Cell proliferation and mechanism studies were performed in rat vascular smooth muscle cells (VSMC) culture model. KEY RESULTS Nectandrin B increased AMPK activity in VSMC. Nectandrin B inhibited the cell proliferation induced by PDGF and DNA synthesis. Moreover, treatment of nectandrin B suppressed neointima formation in femoral artery after guide wire injury. We have recently shown that Pin1 plays a critical role in VSMC proliferation and neointima formation. Nectandrin B potently blocked PDGF-induced Pin1 and cyclin D1 expression and nectandrin B's anti-proliferation effect was diminished in Pin1 overexpressed VSMC. PDGF-induced phosphorylation of ERK and Akt was marginally affected by nectandrin B. However, nectandrin B increased the levels of p53 and its downstream target p21 and, also reversibly decreased the expression of E2F1 and phosphorylated Rb in PDGF-treated VSMC. AMPK inhibition by dominant mutant form of adenovirus rescued nectandrin B-mediated down-regulation of Pin1 and E2F1. CONCLUSIONS AND IMPLICATIONS Nectandrin B inhibited VSMC proliferation and neointima formation via inhibition of E2F1-dependent Pin1 gene transcription, which is mediated through the activation of an AMPK/p53-triggered pathway.
Collapse
Affiliation(s)
- Sung Hwan Ki
- BK21 Project Team, College of Pharmacy, Chosun University, Gwangju, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Liu C, Peng W, Xu C, Lou Y, Zhang M, Wargo JA, Chen JQ, Li HS, Watowich SS, Yang Y, Tompers Frederick D, Cooper ZA, Mbofung RM, Whittington M, Flaherty KT, Woodman SE, Davies MA, Radvanyi LG, Overwijk WW, Lizée G, Hwu P. BRAF inhibition increases tumor infiltration by T cells and enhances the antitumor activity of adoptive immunotherapy in mice. Clin Cancer Res 2013. [PMID: 23204132 DOI: 10.1158/1078-0432.ccr-12-1626.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Treatment of melanoma patients with selective BRAF inhibitors results in objective clinical responses in the majority of patients with BRAF-mutant tumors. However, resistance to these inhibitors develops within a few months. In this study, we test the hypothesis that BRAF inhibition in combination with adoptive T-cell transfer (ACT) will be more effective at inducing long-term clinical regressions of BRAF-mutant tumors. EXPERIMENTAL DESIGN BRAF-mutated human melanoma tumor cell lines transduced to express gp100 and H-2D(b) to allow recognition by gp100-specific pmel-1 T cells were used as xenograft models to assess melanocyte differentiation antigen-independent enhancement of immune responses by BRAF inhibitor PLX4720. Luciferase-expressing pmel-1 T cells were generated to monitor T-cell migration in vivo. The expression of VEGF was determined by ELISA, protein array, and immunohistochemistry. Importantly, VEGF expression after BRAF inhibition was tested in a set of patient samples. RESULTS We found that administration of PLX4720 significantly increased tumor infiltration of adoptively transferred T cells in vivo and enhanced the antitumor activity of ACT. This increased T-cell infiltration was primarily mediated by the ability of PLX4720 to inhibit melanoma tumor cell production of VEGF by reducing the binding of c-myc to the VEGF promoter. Furthermore, analysis of human melanoma patient tumor biopsies before and during BRAF inhibitor treatment showed downregulation of VEGF consistent with the preclinical murine model. CONCLUSION These findings provide a strong rationale to evaluate the potential clinical application of combining BRAF inhibition with T-cell-based immunotherapy for the treatment of patients with melanoma.
Collapse
Affiliation(s)
- Chengwen Liu
- Departments of Melanoma Medical Oncology and Immunology, Center for Cancer Immunology Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Lee JE, Jeon IS, Han NE, Song HJ, Kim EG, Choi JW, Song KD, Lee HK, Choi JK. Ubiquilin 1 interacts with Orai1 to regulate calcium mobilization. Mol Cells 2013; 35:41-6. [PMID: 23307288 PMCID: PMC3887852 DOI: 10.1007/s10059-013-2268-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 10/30/2012] [Indexed: 01/09/2023] Open
Abstract
Store-operated calcium entry (SOCE) channels composed of Stim and Orai proteins play a critical role in diverse biological processes. Upon endoplasmic reticulum (ER)-mediated calcium (Ca(2+)) depletion, Stim proteins oligomerize with Orai to initiate Ca(2+) influx across the plasma membrane. The ubiquitin-like (UBL) and ubiquitin-associated (UBA) domains of ubiquilin 1 are involved in the degradation of presenilin and polyglutamine proteins. Through screening of Orai1 interaction partner(s) that might have an effect on SOCE, ubiquilin 1 was identified as a target of Orai1. However, the UBL and UBA domains of ubiquilin 1 were dispensable for this interaction. Additionally, ubiquilin 1 and Orai1 colocalized in the cytosolic compartment. Ubiquilin 1 increased the ubiquitination of Orai1, resulting in the formation of a high-molecular-weight form. MG132, a proteasome inhibitor, failed to block the degradation of Orai1, whereas bafilomycin A, a lysosome inhibitor, prevented Orai1 degradation. Confocal microscopy studies demonstrated that a fraction of Orai1 colocalized with ubiquilin 1 and the autophagosomal marker LC3. Because Orai1 is a constituent of SOCE, we determined the effect of ubiquilin 1 on Orai1-mediated Ca(2+) influx. As we expected, intracellular Ca(2+) mobilization, a process normally potentiated by Orai1, was downregulated by ubiquilin 1. Taken together, these findings suggest that ubiquilin 1 downregulates intracellular Ca(2+) mobilization and its downstream signaling by promoting the ubiquitination and lysosomal degradation of Orai1.
Collapse
Affiliation(s)
| | | | | | | | | | - Jae-Woon Choi
- Division of Biochemistry, Division of Surgery, College of Medicine, Chungbuk National University, Cheongju 361-763,
Korea
| | - Ki-Duk Song
- Genomic Informatics Center, Hankyong National University, Ansung 456-749,
Korea
| | - Hak-Kyo Lee
- Genomic Informatics Center, Hankyong National University, Ansung 456-749,
Korea
| | | |
Collapse
|
32
|
Pin1 interacts with the Epstein-Barr virus DNA polymerase catalytic subunit and regulates viral DNA replication. J Virol 2012; 87:2120-7. [PMID: 23221557 DOI: 10.1128/jvi.02634-12] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) protein is known as a regulator which recognizes phosphorylated Ser/Thr-Pro motifs and increases the rate of cis and trans amide isomer interconversion, thereby altering the conformation of its substrates. We found that Pin1 knockdown using short hairpin RNA (shRNA) technology resulted in strong suppression of productive Epstein-Barr virus (EBV) DNA replication. We further identified the EBV DNA polymerase catalytic subunit, BALF5, as a Pin1 substrate in glutathione S-transferase (GST) pulldown and immunoprecipitation assays. Lambda protein phosphatase treatment abolished the binding of BALF5 to Pin1, and mutation analysis of BALF5 revealed that replacement of the Thr178 residue by Ala (BALF5 T178A) disrupted the interaction with Pin1. To further test the effects of Pin1 in the context of virus infection, we constructed a BALF5-deficient recombinant virus. Exogenous supply of wild-type BALF5 in HEK293 cells with knockout recombinant EBV allowed efficient synthesis of viral genome DNA, but BALF5 T178A could not provide support as efficiently as wild-type BALF5. In conclusion, we found that EBV DNA polymerase BALF5 subunit interacts with Pin1 through BALF5 Thr178 in a phosphorylation-dependent manner. Pin1 might modulate EBV DNA polymerase conformation for efficient, productive viral DNA replication.
Collapse
|
33
|
Liu C, Peng W, Xu C, Lou Y, Zhang M, Wargo JA, Chen JQ, Li HS, Watowich SS, Yang Y, Tompers Frederick D, Cooper ZA, Mbofung RM, Whittington M, Flaherty KT, Woodman SE, Davies MA, Radvanyi LG, Overwijk WW, Lizée G, Hwu P. BRAF inhibition increases tumor infiltration by T cells and enhances the antitumor activity of adoptive immunotherapy in mice. Clin Cancer Res 2012. [PMID: 23204132 DOI: 10.1158/1078-0432.ccr-12-1626] [Citation(s) in RCA: 319] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE Treatment of melanoma patients with selective BRAF inhibitors results in objective clinical responses in the majority of patients with BRAF-mutant tumors. However, resistance to these inhibitors develops within a few months. In this study, we test the hypothesis that BRAF inhibition in combination with adoptive T-cell transfer (ACT) will be more effective at inducing long-term clinical regressions of BRAF-mutant tumors. EXPERIMENTAL DESIGN BRAF-mutated human melanoma tumor cell lines transduced to express gp100 and H-2D(b) to allow recognition by gp100-specific pmel-1 T cells were used as xenograft models to assess melanocyte differentiation antigen-independent enhancement of immune responses by BRAF inhibitor PLX4720. Luciferase-expressing pmel-1 T cells were generated to monitor T-cell migration in vivo. The expression of VEGF was determined by ELISA, protein array, and immunohistochemistry. Importantly, VEGF expression after BRAF inhibition was tested in a set of patient samples. RESULTS We found that administration of PLX4720 significantly increased tumor infiltration of adoptively transferred T cells in vivo and enhanced the antitumor activity of ACT. This increased T-cell infiltration was primarily mediated by the ability of PLX4720 to inhibit melanoma tumor cell production of VEGF by reducing the binding of c-myc to the VEGF promoter. Furthermore, analysis of human melanoma patient tumor biopsies before and during BRAF inhibitor treatment showed downregulation of VEGF consistent with the preclinical murine model. CONCLUSION These findings provide a strong rationale to evaluate the potential clinical application of combining BRAF inhibition with T-cell-based immunotherapy for the treatment of patients with melanoma.
Collapse
Affiliation(s)
- Chengwen Liu
- Departments of Melanoma Medical Oncology and Immunology, Center for Cancer Immunology Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kim JA, Kim MR, Kim O, Phuong NTT, Yun J, Yoon J, Oh WK, Bae K, Kang KW. Amurensin G inhibits angiogenesis and tumor growth of tamoxifen-resistant breast cancer via Pin1 inhibition. Food Chem Toxicol 2012; 50:3625-34. [PMID: 22842120 DOI: 10.1016/j.fct.2012.07.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 07/16/2012] [Accepted: 07/18/2012] [Indexed: 02/07/2023]
Abstract
Acquired resistance to tamoxifen (TAM) is a serious therapeutic problem among estrogen-receptor-positive breast cancer patients. We have previously reported that TAM-resistant MCF-7 (TAMR-MCF-7) cells have elevated angiogenic potential via Pin1-dependent vascular endothelial growth factor (VEGF) production. Vitis amurensis grape consumed as wine and fruit contains several resveratrol-like stilbenes or oligostilbenes. In this study, we screened for the most active compound to inhibit VEGF production from V. amurensis. Among the tested compounds, amurensin G most potently suppressed VEGF production in TAMR-MCF-7 cells. The enhanced VEGF gene transcription in TAMR-MCF-7 cells was suppressed by amurensin G. Molecular analyses using reporter genes with hypoxia response elements and activator protein-1 (AP-1) elements, and western blots revealed that the activities and the nuclear levels of hypoxia inducible factor-1 (HIF-1)α and AP-1 in TAMR-MCF-7 cells were decreased by amurensin G. Moreover, amurensin G concentration-dependently inhibited protein expression and gene transcription of Pin1 in TAMR-MCF-7 cells, which was dependent on E2F1 inhibition. Chick chorioallantoic membrane assays confirmed that amurensin G had significant antiangiogenic and antitumor growth effects in TMAR-MCF-7 cells. These results demonstrate for the first time that amurensin G may have therapeutic potential for TAM-resistant breast cancer through blocking of Pin1-mediated VEGF gene transcription.
Collapse
Affiliation(s)
- Jung-Ae Kim
- College of Pharmacy, Yeungnam University, Daegu 712-749, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Li M, Li Y, Li H, Wu G. Improvement of paper mulberry tolerance to abiotic stresses by ectopic expression of tall fescue FaDREB1. TREE PHYSIOLOGY 2012; 32:104-13. [PMID: 22170439 DOI: 10.1093/treephys/tpr124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Dehydration-responsive element binding/C-repeat-binding factors (DREB/CBF) control the activity of multiple stress response genes and therefore represent attractive targets for genetic improvement of abiotic stress tolerance. Paper mulberry (Broussonetia papyrifera L. Vent) is well known for its bark fibers and high levels of chalcone and flavonoid derivatives. Transgenic paper mulberry plants expressing a tall fescue (Festuca arundinacea Schreb.) FaDREB1 gene under the control of CaMV 35S were produced to examine the potential utility of FaDREB1 to increase the tolerance of paper mulberry plants to abiotic stress. The overexpressing FaDREB1 plants showed higher salt and drought tolerance than the wild-type plants (WT). After 13 days of withholding water, or 15 days in the presence of 250 mM NaCl, all the WT plants died, while the over-expressing FaDREB1 plants survived. The FaDREB1 plants had higher leaf water and leaf chlorophyll contents, accumulated more proline and soluble sugars, and had less ion leakage (which reflects membrane damage) than the WT plants had under high salt- and water-deficient conditions. The 35S promoter-driven expression of FaDREB1 did not cause growth retardation under normal growth conditions. Therefore, improved tolerance to multiple environmental stresses in paper mulberry might be achieved via genetic engineering through the ectopic expression of an FaDREB1 gene.
Collapse
Affiliation(s)
- Meiru Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China
| | | | | | | |
Collapse
|
36
|
Endocrine Therapy in the Preoperative Setting and Strategies to Overcome Resistance. CURRENT BREAST CANCER REPORTS 2011. [DOI: 10.1007/s12609-011-0056-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|