1
|
Chen S, Ye J, Lin Y, Chen W, Huang S, Yang Q, Qian H, Gao S, Hua C. Crucial Roles of RSAD2/viperin in Immunomodulation, Mitochondrial Metabolism and Autoimmune Diseases. Inflammation 2025; 48:520-540. [PMID: 38909344 DOI: 10.1007/s10753-024-02076-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/22/2024] [Accepted: 06/03/2024] [Indexed: 06/24/2024]
Abstract
Autoimmune diseases are typically characterized by aberrant activation of immune system that leads to excessive inflammatory reactions and tissue damage. Nevertheless, precise targeted and efficient therapies are limited. Thus, studies into novel therapeutic targets for the management of autoimmune diseases are urgently needed. Radical S-adenosyl methionine domain-containing 2 (RSAD2) is an interferon-stimulated gene (ISG) renowned for the antiviral properties of the protein it encodes, named viperin. An increasing number of studies have underscored the new roles of RSAD2/viperin in immunomodulation and mitochondrial metabolism. Previous studies have shown that there is a complex interplay between RSAD2/vipeirn and mitochondria and that binding of the iron-sulfur (Fe-S) cluster is necessary for the involvement of viperin in mitochondrial metabolism. Viperin influences the proliferation and development of immune cells as well as inflammation via different signaling pathways. However, the function of RSAD2/viperin varies in different studies and a comprehensive overview of this emerging theme is lacking. This review will describe the characteristics of RSAD2/viperin, decipher its function in immunometabolic processes, and clarify the crosstalk between RSAD2/viperin and mitochondria. Furthermore, we emphasize the crucial roles of RSAD2 in autoimmune diseases and its potential application value.
Collapse
Affiliation(s)
- Siyan Chen
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Jiani Ye
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Yinfang Lin
- School of the 1st Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Wenxiu Chen
- School of the 1st Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Shenghao Huang
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Qianru Yang
- School of the 1st Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Hengrong Qian
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Sheng Gao
- Laboratory Animal Center, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China.
| | - Chunyan Hua
- School of Basic Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China.
| |
Collapse
|
2
|
Wang J, Yang X, Zhang Y, Jiang X, Li Y, Cui J, Liao Y. Single-cell analysis with childhood and adult systemic lupus erythematosus. Autoimmunity 2024; 57:2281228. [PMID: 38347676 DOI: 10.1080/08916934.2023.2281228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 11/05/2023] [Indexed: 02/15/2024]
Abstract
Patients with systemic lupus erythematosus (SLE), a heterogeneous and chronic autoimmune disease, exhibit unique changes in the complex composition and transcriptional signatures of peripheral blood mononuclear cells (PBMCs). While the mechanism of pathogenesis for both childhood-onset SLE (cSLE) and adult-onset SLE (aSLE) remains unclear, cSLE patients are considered more unpredictable and dangerous than aSLE patients. In this study, we analysed single-cell RNA sequencing data (scRNA-seq) to profile the PBMC clusters of cSLE/aSLE patients and matched healthy donors and compared the PBMC composition and transcriptional variations between the two groups. Our analysis revealed that the PBMC composition and transcriptional variations in cSLE patients were similar to those in aSLE patients. Comparative single-cell transcriptome analysis between healthy donors and SLE patients revealed IFITM3, ISG15, IFI16 and LY6E as potential therapeutic targets for both aSLE and cSLE patients. Additionally, we observed that the percentage of pre-B cells (CD34-) was increased in cSLE patients, while the percentage of neutrophil cells was upregulated in aSLE patients. Notably, we found decreased expression of TPM2 in cSLE patients, and similarly, TMEM150B, IQSEC2, CHN2, LRP8 and USP46 were significantly downregulated in neutrophil cells from aSLE patients. Overall, our study highlights the differences in complex PBMC composition and transcriptional profiles between cSLE and aSLE patients, providing potential biomarkers that could aid in diagnosing SLE.
Collapse
Affiliation(s)
- Jing Wang
- Department of Nephrology and Rheumatology, Kunming Children's Hospital, Kunming, China, People's Republic of China
| | - Xiran Yang
- Department of Nephrology and Rheumatology, Kunming Children's Hospital, Kunming, China, People's Republic of China
| | - Yanhua Zhang
- Department of Nephrology and Rheumatology, Kunming Children's Hospital, Kunming, China, People's Republic of China
| | - Xuemei Jiang
- Department of Nephrology and Rheumatology, Kunming Children's Hospital, Kunming, China, People's Republic of China
| | - Yanfang Li
- Department of Nephrology and Rheumatology, Kunming Children's Hospital, Kunming, China, People's Republic of China
| | - Jingjing Cui
- Department of Nephrology and Rheumatology, Kunming Children's Hospital, Kunming, China, People's Republic of China
| | - Yabin Liao
- Department of Nephrology and Rheumatology, Kunming Children's Hospital, Kunming, China, People's Republic of China
| |
Collapse
|
3
|
Bulusu SN, Mariaselvam CM, Shah S, Kommoju V, Kavadichanda C, Harichandrakumar KT, Thabah M, Negi VS. Type I interferon gene expression signature as a marker to predict response to cyclophosphamide based treatment in proliferative lupus nephritis. Lupus 2024; 33:1069-1081. [PMID: 39033304 DOI: 10.1177/09612033241266779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
OBJECTIVES To assess the longitudinal effect of cyclophosphamide (CYC) treatment on type-I interferon (IFN) signature in proliferative lupus nephritis (LN) and its role in predicting treatment response. METHODS Fifty-four biopsy proven proliferative LN patients scheduled to receive high-dose (HD) or low-dose (LD) CYC were recruited and followed up for six months. At six months, patients were classified as clinical responders (CR) or non-responders (NR) to treatment, using the EULAR/EDTA criteria. An IFN-gene based score (IGS) was developed from the mean log-transformed gene expression of MX1, OAS1, IFIT1, OASL, IFIT4, LY6E, IRF7 at baseline, three and six months. Longitudinal changes of IGS within and between groups were assessed and ΔIGS, which is the difference in IGS between baseline and three months was calculated. Independent predictors of non-response were identified and an ROC analysis was performed to evaluate their utility to predict NR. RESULTS There was a dynamic change in IGS within the HD, LD, CR, and NR groups. Compared to baseline, there was a significant decrease in IGS at three months in HD and LD groups (HD group: 2.01 to 1.14, p = .001; LD group = 2.01 to 0.81, p < .001), followed by a significant increase from three to six months in LD group (LD: 0.81 to 1.51, p = .03; HD: 1.14 to 1.54, p = .300). A decrease in IGS from baseline to three months was seen in both CR (2.13 to 0.79, p < .001) and NR groups (1.83 to 1.27, p = .046), and a significant increase from three to six months was observed only in the CR group (CR: 0.79 to 1.57, p = .006; NR: 1.27 to 1.46, p = 1). ΔIGS (baseline to three months) was higher in CR compared to NR group (-1.339 vs -0.563, p = .017). ROC analysis showed that the model comprising of 0.81 fold decrease in IGS from baseline to three months, endocapillary hypercellularity and interstitial inflammation on renal histopathology predicted non-response with a sensitivity of 83.3% and specificity of 71.4%. CONCLUSION In proliferative LN, treated with HD or LD-CYC, combined model comprising of decrease in IGS score by 0.81 fold from baseline to three months, along with important histopathological features such as endocapillary hypercellularity and interstitial inflammation had better predictive capability for non-response.
Collapse
Affiliation(s)
- Sree Nethra Bulusu
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Christina Mary Mariaselvam
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Sanket Shah
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Vallayyachari Kommoju
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Chengappa Kavadichanda
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | | | - Molly Thabah
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Vir Singh Negi
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| |
Collapse
|
4
|
Kim A, Choi SJ, Song GG, Kim JH, Jung JH. Characterization of virus-mediated autoimmunity and the consequences for pathological process in patients with systemic lupus erythematosus. Clin Rheumatol 2023; 42:2799-2809. [PMID: 37369873 DOI: 10.1007/s10067-023-06597-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 04/01/2023] [Accepted: 04/07/2023] [Indexed: 06/29/2023]
Abstract
INTRODUCTION/OBJECTIVES This study aimed to identify differentially expressed genes (DEGs) of systemic lupus erythematosus (SLE) using gene expression-based computational methodologies to analyze disease-immune interactions, which affect the development and progression of SLE. METHOD Twenty-six patients with SLE and 46 healthy controls were selected from the Gene Expression Omnibus (GEO) database. The significantly enriched immune and virus-related gene lists were computed and visualized by using the DEGs from the gene set enrichment analysis (GSEA). Quantification of 38 immune cells was performed in determining the impact of immune cells on the virus mediated immunity in SLE by using ImmQuant algorithm. RESULTS Thirty-nine upregulated and 57 downregulated were identified in SLE patient compared to the healthy controls. Upregulated genes were significantly implicated in Gene Ontology gene sets as cytokine mediated signaling, secretion, and exocytosis in immune response pathways in 26 female SLE patients. In addition, these genes were enriched in hepatitis C, influenza A, measles, Epstein-Barr virus, and herpes simplex virus 1 infection in Kyoto Encyclopedia of Genes and Genomes pathways. Especially, FCGR1A, IRF7, OAS2, CAMP, MX1, OAS3, OAS1, DEFA3, ISG15, and RSAD2 were involved in virus mediated SLE mechanism, and the expression for OAS1, OAS2, and IRF7 was closely associated with the quantities of colony forming unit-monocyte and colony forming unit-granulocyte. CONCLUSIONS Identifying virus-mediated SLE genes and quantifies of immune cells were used to understand the pathological process and perform early diagnosis of female SLE, and will lead to clinical tools for treating SLE in patients. Key Points • Using gene expression-based computational methodologies, the 57 immune and viral genes were significantly upregulated in 26 SLE patients. • The identified three key viral genes such as OAS1, OAS2, and IF7 were closely associated with colony-forming unit-monocytes and colony-forming unit-granulocytes, which affect the virus mediated immunity in SLE. • The viral genes and quantifies of immune cells are useful in understanding pathogenesis of SLE, and this will provide clinical strategies of potential treatment choices in SLE patients.
Collapse
Affiliation(s)
- Ahreum Kim
- Department of Education and Training, CHA Bundang Medical Center, Seongnam, Republic of Korea
| | - Sung Jae Choi
- Department of Medicine, Korea University College of Medicine, Seoul, Republic of Korea
- Division of Rheumatology, Department of Internal Medicine, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Gwan Gyu Song
- Department of Medicine, Korea University College of Medicine, Seoul, Republic of Korea
- Division of Rheumatology, Department of Internal Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Joo-Hang Kim
- Department of Education and Training, CHA Bundang Medical Center, Seongnam, Republic of Korea.
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea.
| | - Jae Hyun Jung
- Department of Medicine, Korea University College of Medicine, Seoul, Republic of Korea.
- Division of Rheumatology, Department of Internal Medicine, Korea University Ansan Hospital, Ansan, Republic of Korea.
| |
Collapse
|
5
|
Zhong Y, Zhang W, Liu D, Zeng Z, Liao S, Cai W, Liu J, Li L, Hong X, Tang D, Dai Y. Screening biomarkers for Sjogren's Syndrome by computer analysis and evaluating the expression correlations with the levels of immune cells. Front Immunol 2023; 14:1023248. [PMID: 37383223 PMCID: PMC10294232 DOI: 10.3389/fimmu.2023.1023248] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 05/30/2023] [Indexed: 06/30/2023] Open
Abstract
Background Sjögren's syndrome (SS) is a systemic autoimmune disease that affects about 0.04-0.1% of the general population. SS diagnosis depends on symptoms, clinical signs, autoimmune serology, and even invasive histopathological examination. This study explored biomarkers for SS diagnosis. Methods We downloaded three datasets of SS patients' and healthy pepole's whole blood (GSE51092, GSE66795, and GSE140161) from the Gene Expression Omnibus (GEO) database. We used machine learning algorithm to mine possible diagnostic biomarkers for SS patients. Additionally, we assessed the biomarkers' diagnostic value using the receiver operating characteristic (ROC) curve. Moreover, we confirmed the expression of the biomarkers through the reverse transcription quantitative polymerase chain reaction (RT-qPCR) using our own Chinese cohort. Eventually, the proportions of 22 immune cells in SS patients were calculated by CIBERSORT, and connections between the expression of the biomarkers and immune cell ratios were studied. Results We obtained 43 DEGs that were mainly involved in immune-related pathways. Next, 11 candidate biomarkers were selected and validated by the validation cohort data set. Besides, the area under curves (AUC) of XAF1, STAT1, IFI27, HES4, TTC21A, and OTOF in the discovery and validation datasets were 0.903 and 0.877, respectively. Subsequently, eight genes, including HES4, IFI27, LY6E, OTOF, STAT1, TTC21A, XAF1, and ZCCHC2, were selected as prospective biomarkers and verified by RT-qPCR. Finally, we revealed the most relevant immune cells with the expression of HES4, IFI27, LY6E, OTOF, TTC21A, XAF1, and ZCCHC2. Conclusion In this paper, we identified seven key biomarkers that have potential value for diagnosing Chinese SS patients.
Collapse
Affiliation(s)
- Yafang Zhong
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, China
| | - Wei Zhang
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, China
- South China Hospital, Health Science Center, Shenzhen University, Shenzhen, China
- Innovative Markers Department, Fapon Biotech Inc., Dongguan, China
| | - Dongzhou Liu
- Department of Rheumatology and Immunology, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Zhipeng Zeng
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, China
| | - Shengyou Liao
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, China
| | - Wanxia Cai
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, China
| | - Jiayi Liu
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, China
| | - Lian Li
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, China
| | - Xiaoping Hong
- Department of Rheumatology and Immunology, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Donge Tang
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, China
| | - Yong Dai
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, China
| |
Collapse
|
6
|
Rodríguez-Carrio J, Burska A, Conaghan PG, Dik WA, Biesen R, Eloranta ML, Cavalli G, Visser M, Boumpas DT, Bertsias G, Wahren-Herlenius M, Rehwinkel J, Frémond ML, Crow MK, Ronnblom L, Vital E, Versnel M. Association between type I interferon pathway activation and clinical outcomes in rheumatic and musculoskeletal diseases: a systematic literature review informing EULAR points to consider. RMD Open 2023; 9:e002864. [PMID: 36882218 PMCID: PMC10008483 DOI: 10.1136/rmdopen-2022-002864] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/13/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Type I interferons (IFN-I) contribute to a broad range of rheumatic and musculoskeletal diseases (RMDs). Compelling evidence suggests that the measurement of IFN-I pathway activation may have clinical value. Although several IFN-I pathway assays have been proposed, the exact clinical applications are unclear. We summarise the evidence on the potential clinical utility of assays measuring IFN-I pathway activation. METHODS A systematic literature review was conducted across three databases to evaluate the use of IFN-I assays in diagnosis and monitor disease activity, prognosis, response to treatment and responsiveness to change in several RMDs. RESULTS Of 366 screened, 276 studies were selected that reported the use of assays reflecting IFN-I pathway activation for disease diagnosis (n=188), assessment of disease activity (n=122), prognosis (n=20), response to treatment (n=23) and assay responsiveness (n=59). Immunoassays, quantitative PCR (qPCR) and microarrays were reported most frequently, while systemic lupus erythematosus (SLE), rheumatoid arthritis, myositis, systemic sclerosis and primary Sjögren's syndrome were the most studied RMDs. The literature demonstrated significant heterogeneity in techniques, analytical conditions, risk of bias and application in diseases. Inadequate study designs and technical heterogeneity were the main limitations. IFN-I pathway activation was associated with disease activity and flare occurrence in SLE, but their incremental value was uncertain. IFN-I pathway activation may predict response to IFN-I targeting therapies and may predict response to different treatments. CONCLUSIONS Evidence indicates potential clinical value of assays measuring IFN-I pathway activation in several RMDs, but assay harmonisation and clinical validation are urged. This review informs the EULAR points to consider for the measurement and reporting of IFN-I pathway assays.
Collapse
Affiliation(s)
- Javier Rodríguez-Carrio
- Area of Immunology, University of Oviedo, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Asturias, Spain
| | - Agata Burska
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds & NIHR Leeds Biomedical Research Centre, Leeds, UK
| | - P G Conaghan
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds & NIHR Leeds Biomedical Research Centre, Leeds, UK
| | - Willem A Dik
- Laboratory Medical Immunology, department of Immunology, Erasmus MC University Medical Center Rotterdam, The Netherlands
| | - Robert Biesen
- Department of Rheumatology, Charité University Medicine Berlin, Berlin, Germany
| | - Maija-Leena Eloranta
- Department of Medical Sciences, Rheumatology, Uppsala University, Uppsala, Sweden
| | - Giulio Cavalli
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, Vita-Salute San Raffaele University, Milan, Italy
| | - Marianne Visser
- EULAR, PARE Patient Research Partners, Amsterdam, The Netherlands
| | - Dimitrios T Boumpas
- Department of Internal Medicine, University of Crete, Medical School, Heraklion, Greece
| | - George Bertsias
- Department of Rheumatology-Clinical Immunology, University of Crete, Medical School, Heraklion, Greece
| | - Marie Wahren-Herlenius
- Karolinska Institutet, Division of Rheumatology, Stockholm, Sweden
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Norway
| | - Jan Rehwinkel
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, UK
| | - Marie-Louise Frémond
- Université de Paris Cité, Hôpital Necker-Enfants Malades, Immuno-Hématologie et Rhumatologie pédiatriques, Paris, France
| | - Mary K Crow
- Hospital for Special Surgery, Weill Cornell Medical College, Mary Kirkland Center for Lupus Research, New York, USA
| | - Lars Ronnblom
- Department of Medical Sciences, Rheumatology, Uppsala University, Uppsala, Sweden
| | - Ed Vital
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds & NIHR Leeds Biomedical Research Centre, Leeds, UK
| | - Marjan Versnel
- Department of Immunology, Erasmus MC University Medical Center Rotterdam, The Netherlands
| |
Collapse
|
7
|
Wang L, Yang Z, Yu H, Lin W, Wu R, Yang H, Yang K. Predicting diagnostic gene expression profiles associated with immune infiltration in patients with lupus nephritis. Front Immunol 2022; 13:839197. [PMID: 36532018 PMCID: PMC9755505 DOI: 10.3389/fimmu.2022.839197] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 11/09/2022] [Indexed: 12/03/2022] Open
Abstract
Objective To identify potential diagnostic markers of lupus nephritis (LN) based on bioinformatics and machine learning and to explore the significance of immune cell infiltration in this pathology. Methods Seven LN gene expression datasets were downloaded from the GEO database, and the larger sample size was used as the training group to obtain differential genes (DEGs) between LN and healthy controls, and to perform gene function, disease ontology (DO), and gene set enrichment analyses (GSEA). Two machine learning algorithms, least absolute shrinkage and selection operator (LASSO) and support vector machine-recursive feature elimination (SVM-RFE), were applied to identify candidate biomarkers. The diagnostic value of LN diagnostic gene biomarkers was further evaluated in the area under the ROC curve observed in the validation dataset. CIBERSORT was used to analyze 22 immune cell fractions from LN patients and to analyze their correlation with diagnostic markers. Results Thirty and twenty-one DEGs were screened in kidney tissue and peripheral blood, respectively. Both of which covered macrophages and interferons. The disease enrichment analysis of DEGs in kidney tissues showed that they were mainly involved in immune and renal diseases, and in peripheral blood it was mainly enriched in cardiovascular system, bone marrow, and oral cavity. The machine learning algorithm combined with external dataset validation revealed that C1QA(AUC = 0.741), C1QB(AUC = 0.758), MX1(AUC = 0.865), RORC(AUC = 0.911), CD177(AUC = 0.855), DEFA4(AUC= 0.843)and HERC5(AUC = 0.880) had high diagnostic value and could be used as diagnostic biomarkers of LN. Compared to controls, pathways such as cell adhesion molecule cam, and systemic lupus erythematosus were activated in kidney tissues; cell cycle, cytoplasmic DNA sensing pathways, NOD-like receptor signaling pathways, proteasome, and RIG-1-like receptors were activated in peripheral blood. Immune cell infiltration analysis showed that diagnostic markers in kidney tissue were associated with T cells CD8 and Dendritic cells resting, and in blood were associated with T cells CD4 memory resting, suggesting that CD4 T cells, CD8 T cells and dendritic cells are closely related to the development and progression of LN. Conclusion C1QA, C1QB, MX1, RORC, CD177, DEFA4 and HERC5 could be used as new candidate molecular markers for LN. It may provide new insights into the diagnosis and molecular treatment of LN in the future.
Collapse
Affiliation(s)
- Lin Wang
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhihua Yang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hangxing Yu
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wei Lin
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ruoxi Wu
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongtao Yang
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Kang Yang
- Nephrology Department, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, China
| |
Collapse
|
8
|
Li Y, Ma C, Liao S, Qi S, Meng S, Cai W, Dai W, Cao R, Dong X, Krämer BK, Yun C, Hocher B, Hong X, Liu D, Tang D, He J, Yin L, Dai Y. Combined proteomics and single cell RNA-sequencing analysis to identify biomarkers of disease diagnosis and disease exacerbation for systemic lupus erythematosus. Front Immunol 2022; 13:969509. [PMID: 36524113 PMCID: PMC9746895 DOI: 10.3389/fimmu.2022.969509] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/15/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction Systemic lupus erythematosus (SLE) is a chronic autoimmune disease for which there is no cure. Effective diagnosis and precise assessment of disease exacerbation remains a major challenge. Methods We performed peripheral blood mononuclear cell (PBMC) proteomics of a discovery cohort, including patients with active SLE and inactive SLE, patients with rheumatoid arthritis (RA), and healthy controls (HC). Then, we performed a machine learning pipeline to identify biomarker combinations. The biomarker combinations were further validated using enzyme-linked immunosorbent assays (ELISAs) in another cohort. Single-cell RNA sequencing (scRNA-seq) data from active SLE, inactive SLE, and HC PBMC samples further elucidated the potential immune cellular sources of each of these PBMC biomarkers. Results Screening of the PBMC proteome identified 1023, 168, and 124 proteins that were significantly different between SLE vs. HC, SLE vs. RA, and active SLE vs. inactive SLE, respectively. The machine learning pipeline identified two biomarker combinations that accurately distinguished patients with SLE from controls and discriminated between active and inactive SLE. The validated results of ELISAs for two biomarker combinations were in line with the discovery cohort results. Among them, the six-protein combination (IFIT3, MX1, TOMM40, STAT1, STAT2, and OAS3) exhibited good performance for SLE disease diagnosis, with AUC of 0.723 and 0.815 for distinguishing SLE from HC and RA, respectively. Nine-protein combination (PHACTR2, GOT2, L-selectin, CMC4, MAP2K1, CMPK2, ECPAS, SRA1, and STAT2) showed a robust performance in assessing disease exacerbation (AUC=0.990). Further, the potential immune cellular sources of nine PBMC biomarkers, which had the consistent changes with the proteomics data, were elucidated by PBMC scRNAseq. Discussion Unbiased proteomic quantification and experimental validation of PBMC samples from two cohorts of patients with SLE were identified as biomarker combinations for diagnosis and activity monitoring. Furthermore, the immune cell subtype origin of the biomarkers in the transcript expression level was determined using PBMC scRNAseq. These findings present valuable PBMC biomarkers associated with SLE and may reveal potential therapeutic targets.
Collapse
Affiliation(s)
- Yixi Li
- Institute of Nephrology and Blood Purification, the First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China,Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Jinan University, Shenzhen, China
| | - Chiyu Ma
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Jinan University, Shenzhen, China
| | - Shengyou Liao
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Jinan University, Shenzhen, China
| | - Suwen Qi
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Jinan University, Shenzhen, China
| | - Shuhui Meng
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Jinan University, Shenzhen, China
| | - Wanxia Cai
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Jinan University, Shenzhen, China
| | - Weier Dai
- College of Natural Science, University of Texas at Austin, Austin, TX, United States
| | - Rui Cao
- Institute of Nephrology and Blood Purification, the First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Xiangnan Dong
- Institute of Nephrology and Blood Purification, the First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Bernhard K. Krämer
- Fifth Department of Medicine, University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Chen Yun
- Department of Nephrology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Berthold Hocher
- Fifth Department of Medicine, University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany,Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China,Reproductive and Genetic Hospital of China International Trust and Investment Corporation (CITIC)-Xiangya, Changsha, China,Institute of Medical Diagnostics (IMD), Berlin, Germany
| | - Xiaoping Hong
- Department of Rheumatology and Immunology, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Jinan University, Shenzhen, China
| | - Dongzhou Liu
- Department of Rheumatology and Immunology, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Jinan University, Shenzhen, China
| | - Donge Tang
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Jinan University, Shenzhen, China,*Correspondence: Yong Dai, ; Lianghong Yin, ; Jingquan He, ; Donge Tang,
| | - Jingquan He
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Jinan University, Shenzhen, China,*Correspondence: Yong Dai, ; Lianghong Yin, ; Jingquan He, ; Donge Tang,
| | - Lianghong Yin
- Institute of Nephrology and Blood Purification, the First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China,Guangzhou Enttxs Medical Products Co., Ltd, Guangzhou, Guangzhou, China,*Correspondence: Yong Dai, ; Lianghong Yin, ; Jingquan He, ; Donge Tang,
| | - Yong Dai
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Jinan University, Shenzhen, China,*Correspondence: Yong Dai, ; Lianghong Yin, ; Jingquan He, ; Donge Tang,
| |
Collapse
|
9
|
Meng XW, Cheng ZL, Lu ZY, Tan YN, Jia XY, Zhang M. MX2: Identification and systematic mechanistic analysis of a novel immune-related biomarker for systemic lupus erythematosus. Front Immunol 2022; 13:978851. [PMID: 36059547 PMCID: PMC9433551 DOI: 10.3389/fimmu.2022.978851] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/01/2022] [Indexed: 11/26/2022] Open
Abstract
Background Systemic lupus erythematosus (SLE) is an autoimmune disease that involves multiple organs. However, the current SLE-related biomarkers still lack sufficient sensitivity, specificity and predictive power for clinical application. Thus, it is significant to explore new immune-related biomarkers for SLE diagnosis and development. Methods We obtained seven SLE gene expression profile microarrays (GSE121239/11907/81622/65391/100163/45291/49454) from the GEO database. First, differentially expressed genes (DEGs) were screened using GEO2R, and SLE biomarkers were screened by performing WGCNA, Random Forest, SVM-REF, correlation with SLEDAI and differential gene analysis. Receiver operating characteristic curves (ROCs) and AUC values were used to determine the clinical value. The expression level of the biomarker was verified by RT‒qPCR. Subsequently, functional enrichment analysis was utilized to identify biomarker-associated pathways. ssGSEA, CIBERSORT, xCell and ImmuCellAI algorithms were applied to calculate the sample immune cell infiltration abundance. Single-cell data were analyzed for gene expression specificity in immune cells. Finally, the transcriptional regulatory network of the biomarker was constructed, and the corresponding therapeutic drugs were predicted. Results Multiple algorithms were screened together for a unique marker gene, MX2, and expression analysis of multiple datasets revealed that MX2 was highly expressed in SLE compared to the normal group (all P < 0.05), with the same trend validated by RT‒qPCR (P = 0.026). Functional enrichment analysis identified the main pathway of MX2 promotion in SLE as the NOD-like receptor signaling pathway (NES=2.492, P < 0.001, etc.). Immuno-infiltration analysis showed that MX2 was closely associated with neutrophils, and single-cell and transcriptomic data revealed that MX2 was specifically expressed in neutrophils. The NOD-like receptor signaling pathway was also remarkably correlated with neutrophils (r >0.3, P < 0.001, etc.). Most of the MX2-related interacting proteins were associated with SLE, and potential transcription factors of MX2 and its related genes were also significantly associated with the immune response. Conclusion Our study found that MX2 can serve as an immune-related biomarker for predicting the diagnosis and disease activity of SLE. It activates the NOD-like receptor signaling pathway and promotes neutrophil infiltration to aggravate SLE.
Collapse
Affiliation(s)
- Xiang-Wen Meng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Zhi-Luo Cheng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Zhi-Yuan Lu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Ya-Nan Tan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xiao-Yi Jia
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
- *Correspondence: Xiao-Yi Jia, ; Min Zhang,
| | - Min Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- *Correspondence: Xiao-Yi Jia, ; Min Zhang,
| |
Collapse
|
10
|
Li Z, Wang Z, Sun T, Liu S, Ding S, Sun L. Identifying key genes in CD4+ T cells of systemic lupus erythematosus by integrated bioinformatics analysis. Front Genet 2022; 13:941221. [PMID: 36046235 PMCID: PMC9420982 DOI: 10.3389/fgene.2022.941221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by excessive activation of T and B lymphocytes and breakdown of immune tolerance to autoantigens. Despite several mechanisms including the genetic alterations and inflammatory responses have been reported, the overall signature genes in CD4+ T cells and how they affect the pathological process of SLE remain to be elucidated. This study aimed to identify the crucial genes, potential biological processes and pathways underlying SLE pathogenesis by integrated bioinformatics. The gene expression profiles of isolated peripheral CD4+ T cells from SLE patients with different disease activity and healthy controls (GSE97263) were analyzed, and 14 co-expression modules were identified using weighted gene co-expression network analysis (WGCNA). Some of these modules showed significantly positive or negative correlations with SLE disease activity, and primarily enriched in the regulation of type I interferon and immune responses. Next, combining time course sequencing (TCseq) with differentially expressed gene (DEG) analysis, crucial genes in lupus CD4+ T cells were revealed, including some interferon signature genes (ISGs). Among these genes, we identified 4 upregulated genes (PLSCR1, IFI35, BATF2 and CLDN5) and 2 downregulated genes (GDF7 and DERL3) as newfound key genes. The elevated genes showed close relationship with the SLE disease activity. In general, our study identified 6 novel biomarkers in CD4+ T cells that might contribute to the diagnosis and treatment of SLE.
Collapse
Affiliation(s)
- Zutong Li
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhilong Wang
- Department of Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Tian Sun
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Shanshan Liu
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Shuai Ding
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- *Correspondence: Lingyun Sun, ; Shuai Ding,
| | - Lingyun Sun
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- *Correspondence: Lingyun Sun, ; Shuai Ding,
| |
Collapse
|
11
|
Shen M, Duan C, Xie C, Wang H, Li Z, Li B, Wang T. Identification of key interferon-stimulated genes for indicating the condition of patients with systemic lupus erythematosus. Front Immunol 2022; 13:962393. [PMID: 35967341 PMCID: PMC9365928 DOI: 10.3389/fimmu.2022.962393] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with highly heterogeneous clinical symptoms and severity. There is complex pathogenesis of SLE, one of which is IFNs overproduction and downstream IFN-stimulated genes (ISGs) upregulation. Identifying the key ISGs differentially expressed in peripheral blood mononuclear cells (PBMCs) of patients with SLE and healthy people could help to further understand the role of the IFN pathway in SLE and discover potential diagnostic biomarkers.The differentially expressed ISGs (DEISG) in PBMCs of SLE patients and healthy persons were screened from two datasets of the Gene Expression Omnibus (GEO) database. A total of 67 DEISGs, including 6 long noncoding RNAs (lncRNAs) and 61 messenger RNAs (mRNAs) were identified by the “DESeq2” R package. According to Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, those DEISGs were mainly concentrated in the response to virus and immune system processes. Protein-protein interaction (PPI) network showed that most of these DEISGs could interact strongly with each other. Then, IFIT1, RSAD2, IFIT3, USP18, ISG15, OASL, MX1, OAS2, OAS3, and IFI44 were considered to be hub ISGs in SLE by “MCODE” and “Cytohubba” plugins of Cytoscape, Moreover, the results of expression correlation suggested that 3 lncRNAs (NRIR, FAM225A, and LY6E-DT) were closely related to the IFN pathway.The lncRNA NRIR and mRNAs (RSAD2, USP18, IFI44, and ISG15) were selected as candidate ISGs for verification. RT-qPCR results showed that PBMCs from SLE patients had substantially higher expression levels of 5 ISGs compared to healthy controls (HCs). Additionally, statistical analyses revealed that the expression levels of these ISGs were strongly associated to various clinical symptoms, including thrombocytopenia and facial erythema, as well as laboratory indications, including the white blood cell (WBC) count and levels of autoantibodies. The Receiver Operating Characteristic (ROC) curve demonstrated that the IFI44, USP18, RSAD2, and IFN score had good diagnostic capabilities of SLE.According to our study, SLE was associated with ISGs including NRIR, RSAD2, USP18, IFI44, and ISG15, which may contribute to the future diagnosis and new personalized targeted therapies.
Collapse
Affiliation(s)
- Mengjia Shen
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Congcong Duan
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Changhao Xie
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Hongtao Wang
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Zhijun Li
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Baiqing Li
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Tao Wang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
- *Correspondence: Tao Wang,
| |
Collapse
|
12
|
Zorn-Pauly L, von Stuckrad ASL, Klotsche J, Rose T, Kallinich T, Enghard P, Ostendorf L, Burns M, Doerner T, Meisel C, Schneider U, Unterwalder N, Burmester G, Hiepe F, Alexander T, Biesen R. Evaluation of SIGLEC1 in the diagnosis of suspected systemic lupus erythematosus. Rheumatology (Oxford) 2021; 61:3396-3400. [PMID: 34849605 DOI: 10.1093/rheumatology/keab875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/13/2021] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To evaluate and compare the diagnostic accuracy of SIGLEC1, a surrogate marker of type I IFN, with established biomarkers in an inception cohort of systemic lupus erythematosus (SLE). METHODS SIGLEC1 was analyzed by flow cytometry in 232 patients referred to our institution with suspected SLE between October 2015 and September 2020. RESULTS SLE was confirmed in 76 of 232 patients (32.8%) according to the 2019 EULAR/ACR classification criteria and their SIGLEC1 values were significantly higher compared with patients without SLE (p< 0.0001). A sensitivity of 98.7%, a specificity of 82.1%, a negative predictive value (NPV) of 99.2% and a positive predictive value (PPV) of 72.8% were calculated for SIGLEC1. Adjusted to the highest reported prevalence of SLE, the NPV and PPV were > 99.9% and 0.1%, respectively. Using ROC analysis and Delong testing, the area under the curve (AUC) for SIGLEC1 (AUC = 0.95) was significantly higher than for ANA (AUC = 0.88, p= 0.031), C3 (AUC = 0.83, p= 0.001) and C4 (AUC = 0.83, p= 0.002) but not for anti-dsDNA antibodies (AUC = 0.90, p= 0.163). CONCLUSION IFN-I pathway activation is detectable in almost all newly diagnosed SLE patients. Thus, a negative test result for SIGLEC1 is powerful to exclude SLE in suspected cases.
Collapse
Affiliation(s)
- Lydia Zorn-Pauly
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anne Sae Lim von Stuckrad
- Pediatric Pneumology, Immunology and Intensive Care Medicine, Charité University Medicine Berlin, Berlin, Germany
| | - Jens Klotsche
- German Rheumatism Research Center Berlin-a Leibniz Institute (DRFZ), Berlin, Germany
| | - Thomas Rose
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tilmann Kallinich
- Pediatric Pneumology, Immunology and Intensive Care Medicine, Charité University Medicine Berlin, Berlin, Germany.,German Rheumatism Research Center Berlin-a Leibniz Institute (DRFZ), Berlin, Germany
| | - Philipp Enghard
- Department of Nephrology and Intensive Care Medicine, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Lennard Ostendorf
- German Rheumatism Research Center Berlin-a Leibniz Institute (DRFZ), Berlin, Germany.,Department of Nephrology and Intensive Care Medicine, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Marie Burns
- German Rheumatism Research Center Berlin-a Leibniz Institute (DRFZ), Berlin, Germany
| | - Thomas Doerner
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christian Meisel
- Institute for Medical Immunology, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Udo Schneider
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nadine Unterwalder
- Institute for Medical Immunology, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Gerd Burmester
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Falk Hiepe
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tobias Alexander
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,German Rheumatism Research Center Berlin-a Leibniz Institute (DRFZ), Berlin, Germany
| | - Robert Biesen
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
13
|
Fan G, Liu J, Zhang Y, Guan X. LINC00473 exacerbates osteoarthritis development by promoting chondrocyte apoptosis and proinflammatory cytokine production through the miR-424-5p/LY6E axis. Exp Ther Med 2021; 22:1247. [PMID: 34539843 PMCID: PMC8438674 DOI: 10.3892/etm.2021.10682] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 05/28/2021] [Indexed: 12/18/2022] Open
Abstract
Osteoarthritis (OA) is a common degenerative joint disease that has been identified as one of the major health burdens in aging individuals. Long non-coding RNAs (lncRNAs) participate in the development of diverse diseases, including OA. Among them, lncRNA long intergenic non-protein coding RNA 473 (LINC00473) is one of the few upregulated lncRNAs. The present study aimed to explore the role of LINC00473 and its regulatory mechanism in OA development. Flow cytometry analyses and ELISA were carried out to detect chondrocyte apoptosis and the concentration of proinflammatory cytokines, respectively. The results suggested that LINC00473 knockdown significantly reduced chondrocyte apoptosis and the production of proinflammatory cytokines in IL-1β-stimulated C28/I2 cells compared with transfection with small interfering RNA-negative control (si-NC). Western blot analyses were performed to examine protein levels of apoptotic markers (caspase-3, Bax and Bcl-2) in C28/I2 cells. Subsequently, an OA rat model was established to explore the role of LINC00473 in vivo. The results indicated that, compared with the OA + adeno-associated virus si-NC group, LINC00473 knockdown significantly suppressed the degradation of chondrocyte extracellular matrix and the production of proinflammatory cytokines in OA model rats. Furthermore, bioinformatics analysis, luciferase reporter and RNA immunoprecipitation assays indicated that LINC00473 served as a microRNA (miR)-424-5p sponge in C28/I2 cells, and that lymphocyte antigen 6 locus E (LY6E) was the downstream target. In addition, the inhibitory effects of LINC00473 knockdown on chondrocyte apoptosis and the inflammatory response could be reversed by LY6E overexpression in IL-1β-stimulated C28/I2 cells. In summary, the findings indicated that LINC00473 contributed to OA progression by modulating the miR-424-5p/LY6E axis, which may serve as a potential therapeutic strategy for patients with OA.
Collapse
Affiliation(s)
- Guiyong Fan
- Department of Orthopedics, Suzhou Kowloon Hospital, Shanghai Jiangtong University School of Medicine, Suzhou, Jiangsu 215028, P.R. China
| | - Jinlian Liu
- Department of Orthopedics, Suzhou Kowloon Hospital, Shanghai Jiangtong University School of Medicine, Suzhou, Jiangsu 215028, P.R. China
| | - Yesong Zhang
- Department of Orthopedics, Suzhou Kowloon Hospital, Shanghai Jiangtong University School of Medicine, Suzhou, Jiangsu 215028, P.R. China
| | - Xinxian Guan
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, P.R. China
| |
Collapse
|
14
|
Juárez-Vicuña Y, Pérez-Ramos J, Adalid-Peralta L, Sánchez F, Martínez-Martínez LA, Ortiz-Segura MDC, Pichardo-Ontiveros E, Hernández-Díazcouder A, Amezcua-Guerra LM, Ramírez-Bello J, Sánchez-Muñoz F. Interferon Lambda 3/4 (IFNλ3/4) rs12979860 Polymorphisms Is Not Associated With Susceptibility to Systemic Lupus Erythematosus, Although It Regulates OASL Expression in Patients With SLE. Front Genet 2021; 12:647487. [PMID: 34149799 PMCID: PMC8206639 DOI: 10.3389/fgene.2021.647487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/21/2021] [Indexed: 12/13/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease with a complex etiology. Various genetic factors are associated with susceptibility to developing SLE and contribute to its onset and progression. Different single-nucleotide polymorphisms (SNPs) have been associated with SLE in several populations. The rs12979860 SNP in interferon lambda 3/4 (IFNλ3/4) is significantly associated with SLE susceptibility in patients negative for nephritis in Taiwanese people, and interferon-stimulated genes (ISGs) are differentially expressed in normal liver by the rs12979860 genotype. This study aimed to investigate whether rs12979860 is associated with the presence of SLE and lupus nephritis in Mexican individuals as well as with the expression of several ISGs in SLE patients. In total, 439 SLE patients and 358 healthy donors were genotyped for rs12979860 using real-time PCR, and allelic discrimination plots were constructed. Additionally, peripheral blood mononuclear cells (PBMCs) were isolated from the venous blood of SLE patients by centrifugation (n = 78). The mRNA levels of 2'-5'-oligoadenylate synthetase like (OASL), myxovirus resistance 1 (MX1), 2'5'-oligoadenylate synthetase 1 (OAS1), interferon-stimulated gene 15 (ISG15) and lymphocyte antigen 6 complex, locus E (LY6E) were determined using real-time PCR. The distributions of rs12979860 genotypes and allele frequencies were compared between SLE patients and healthy donors; case-control analysis revealed that rs12979860 was not associated with SLE susceptibility (OR 1.18, 95% CI 0.97-1.45, p = 0.08) or with the risk for lupus nephritis (OR 0.913, 95% CI 0.590-1.411, p = 0.682). However, OASL expression levels in PBMCs were significantly different between rs12979860 genotypes in SLE patients: median OASL mRNA levels were significantly higher in patients carrying the CC genotype (197.10, IQR 71.10-411.17) than in those with CT/TT genotypes (173.75, IQR 58.80-278.75, p = 0.016). Our results suggest that the SNP rs12979860 does not play a relevant role in susceptibility to SLE in Mexican individuals. However, IFNλ3/4 genotypes appear to be associated with OASL expression in PBMCs from patients with SLE.
Collapse
Affiliation(s)
- Yaneli Juárez-Vicuña
- Department of Immunology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Julia Pérez-Ramos
- Department of Biological Systems, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
| | - Laura Adalid-Peralta
- Unit for the Study of Neuroinflammation in Neurological Pathologies, Instituto de Investigaciones Biomédicas, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Fausto Sánchez
- Department of Agricultural and Animal Production, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
| | | | | | - Edgar Pichardo-Ontiveros
- Department of Nutrition Physiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | - Luis M. Amezcua-Guerra
- Department of Immunology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
- Department of Health Care, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
| | | | - Fausto Sánchez-Muñoz
- Department of Immunology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| |
Collapse
|
15
|
Chen YC, Figliozzi RW, Hsia SV. Pilot Analyses of Interferon Subtype Expression Profiles in Patients with Herpes Zoster or Postherpetic Neuralgia. Viral Immunol 2021; 34:437-447. [PMID: 33857386 DOI: 10.1089/vim.2020.0295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Postherpetic neuralgia (PHN) is a painful neuropathic complication resulting from herpes zoster (HZ). The pain manifests in peripheral nerves infected by herpesviruses, mostly from reactivation of latent varicella zoster virus. Mechanistic descriptions suggest that PHN develops because of disrupted immune system signaling and inflammation or peripheral nerve damage; however, the pathophysiology is not clear. It is difficult to predict/prevent PHN manifestations of HZ patients due to the lack of accurate diagnostics. In this study, sera from healthy controls, HZ patients, and PHN patients were subjected to an interferon (IFN) expression profile (IEP) study. The corresponding cDNAs were analyzed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) using primer pairs against a panel of 21 different IFN subtypes. The results showed that distinct IEPs were observed among HZ and PHN cohorts in comparison to the healthy controls. Together, this pilot study suggested that the IEP study may be used as a molecular tool for diagnosis of PHN and assist in designing new PHN therapeutic protocols.
Collapse
Affiliation(s)
- Yu-Chih Chen
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, Maryland, USA
| | - Robert W Figliozzi
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, Maryland, USA
| | - Shaochung V Hsia
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, Maryland, USA
| |
Collapse
|
16
|
Cao Y, Mi X, Wang Z, Zhang D, Tang W. Bioinformatic analysis reveals that the OAS family may play an important role in lupus nephritis. J Natl Med Assoc 2020; 112:567-577. [PMID: 32622555 DOI: 10.1016/j.jnma.2020.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/19/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Lupus nephritis (LN) is a common complication of systemic lupus erythematosus that presents a high risk of end-stage renal disease. However, the molecular mechanisms of LN remain unclear. The lack of understanding hinders the development of specific targeted therapy for this progressive disease. OBJECTIVES In the present study, we used bioinformatics analysis of gene expression profiles from the Gene Expression Omnibus to identify novel targets and potential biomarkers for LN. MATERIAL AND METHODS A GSE32591 dataset, which included 31 LN glomerular biopsy tissues and 14 living donors' glomerular tissues, was downloaded for further analysis. Differentially expressed genes in LN were analyzed by the limma package. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed for the differentially expressed genes by using the Disease Ontology Semantic and Enrichment and the clusterProfiler software. The protein-protein interaction (PPI) network was then formed using STRING online tool. RESULTS 440 genes, including 310 upregulated genes and 130 downregulated genes, were found as differentially expressed genes. GO and KEGG analyses revealed that immune response is significantly enriched in such genes. The PPI network showed that ISG15, MX1, OAS1, OAS2, and OAS3 were the hub genes enriched in LN. Along with literature review, the OAS family genes were revealed to be closely associated with LN progression. CONCLUSIONS our studies provided new insight into the molecular pathogenesis of LN. The OAS family may play an important role in LN and act as a novel molecular candidate for the further study of LN.
Collapse
Affiliation(s)
- Yiling Cao
- Department of Nephrology, West China Hospital, Sichuan University, No.37, Guoxue Alley, Chengdu, Sichuan, China
| | - Xuhua Mi
- Department of Nephrology, West China Hospital, Sichuan University, No.37, Guoxue Alley, Chengdu, Sichuan, China
| | - Zheng Wang
- Department of Nephrology, West China Hospital, Sichuan University, No.37, Guoxue Alley, Chengdu, Sichuan, China
| | - Dongmei Zhang
- Department of Nephrology, West China Hospital, Sichuan University, No.37, Guoxue Alley, Chengdu, Sichuan, China
| | - Wanxin Tang
- Department of Nephrology, West China Hospital, Sichuan University, No.37, Guoxue Alley, Chengdu, Sichuan, China.
| |
Collapse
|
17
|
Demirkaya E, Sahin S, Romano M, Zhou Q, Aksentijevich I. New Horizons in the Genetic Etiology of Systemic Lupus Erythematosus and Lupus-Like Disease: Monogenic Lupus and Beyond. J Clin Med 2020; 9:E712. [PMID: 32151092 PMCID: PMC7141186 DOI: 10.3390/jcm9030712] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/12/2020] [Accepted: 02/21/2020] [Indexed: 02/05/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a clinically and genetically heterogeneous autoimmune disease. The etiology of lupus and the contribution of genetic, environmental, infectious and hormonal factors to this phenotype have yet to be elucidated. The most straightforward approach to unravel the molecular pathogenesis of lupus may rely on studies of patients who present with early-onset severe phenotypes. Typically, they have at least one of the following clinical features: childhood onset of severe disease (<5 years), parental consanguinity, and presence of family history for autoimmune diseases in a first-degree relative. These patients account for a small proportion of patients with lupus but they inform considerable knowledge about cellular pathways contributing to this inflammatory phenotype. In recent years with the aid of new sequencing technologies, novel or rare pathogenic variants have been reported in over 30 genes predisposing to SLE and SLE-like diseases. Future studies will likely discover many more genes with private variants associated to lupus-like phenotypes. In addition, genome-wide association studies (GWAS) have identified a number of common alleles (SNPs), which increase the risk of developing lupus in adult age. Discovery of a possible shared immune pathway in SLE patients, either with rare or common variants, can provide important clues to better understand this complex disorder, it's prognosis and can help guide new therapeutic approaches. The aim of this review is to summarize the current knowledge of the clinical presentation, genetic diagnosis and mechanisms of disease in patents with lupus and lupus-related phenotypes.
Collapse
Affiliation(s)
- Erkan Demirkaya
- Schulich School of Medicine & Dentistry, Department of Paediatrics, Division of Paediatric Rheumatology, University of Western Ontario, London, ON N6A 5W9, Canada;
| | - Sezgin Sahin
- Van Training and Research Hospital, Department of Paediatric Rheumatology, 65000 Van, Turkey;
| | - Micol Romano
- Schulich School of Medicine & Dentistry, Department of Paediatrics, Division of Paediatric Rheumatology, University of Western Ontario, London, ON N6A 5W9, Canada;
- Department of Pediatric Rheumatology, ASST-PINI-CTO, 20122 Milano, Italy
| | - Qing Zhou
- Life Sciences Institute, Zhejiang University, Hang Zhou 310058, China;
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, MD 20892, USA;
| |
Collapse
|
18
|
Harris VM, Koelsch KA, Kurien BT, Harley ITW, Wren JD, Harley JB, Scofield RH. Characterization of cxorf21 Provides Molecular Insight Into Female-Bias Immune Response in SLE Pathogenesis. Front Immunol 2019; 10:2160. [PMID: 31695690 PMCID: PMC6816314 DOI: 10.3389/fimmu.2019.02160] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/28/2019] [Indexed: 12/30/2022] Open
Abstract
Background: Ninety percent of systemic lupus erythematosus (SLE) patients are women. X chromosome-dosage increases susceptibility to SLE and primary Sjögren's syndrome (pSS). Chromosome X open reading frame 21 (CXorf21) escapes X-inactivation and is an SLE risk gene of previously unknown function. We undertook the present study to delineate the function of CXorf21 in the immune system as well as investigate a potential role in the sex bias of SLE and pSS. Methods: Western blot protein analysis, qPCR, BioPlex cytokine immunoassay, pHrodo™ assays, as well as in vitro CRISPR-Cas9 knockdown experiments were employed to delineate the role of CXorf21 in relevant immunocytes. Results: Expressed in monocytes and B cells, CXorf21 basal Mrna, and protein expression levels are elevated in female primary monocytes, B cells, and EBV-transformed B cells compared to male cells. We also found CXorf21 mRNA and protein expression is higher in both male and female cells from SLE patients compared to control subjects. TLR7 ligation increased CXorf21 protein expression and CXorf21 knockdown abrogated TLR7-driven increased IFNA1 mRNA expression, and reduced secretion of both TNF-alpha and IL-6 in healthy female monocytes. Similarly, we found increased pH in the lysosomes of CXorf21-deficient female monocytes. Conclusion: CXorf21 is more highly expressed in female compared to male cells and is involved in a sexually dimorphic response to TLR7 activation. In addition, CXorf21 expression regulates lysosomal pH in a sexually dimorphic manner. Thus, sexually dimorphic expression of CXorf21 skews cellular immune responses in manner consistent with expected properties of a mediator of the X chromosome dose risk in SLE and pSS.
Collapse
Affiliation(s)
- Valerie M. Harris
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Departments of Pathology and Medicine, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Kristi A. Koelsch
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Departments of Pathology and Medicine, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Biji T. Kurien
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Isaac T. W. Harley
- Division of Rheumatology, School of Medicine, University of Colorado, Aurora, CO, United States
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Jonathan D. Wren
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - John B. Harley
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- United States Department of Veterans Affairs Medical Center, Cincinnati, OH, United States
| | - R. Hal Scofield
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Departments of Pathology and Medicine, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Medical and Research Services, Oklahoma City Department of Veterans Affairs Health Care Center, Oklahoma City, OK, United States
| |
Collapse
|
19
|
Yuan Y, Ma H, Ye Z, Jing W, Jiang Z. Interferon-stimulated gene 15 expression in systemic lupus erythematosus : Diagnostic value and association with lymphocytopenia. Z Rheumatol 2019; 77:256-262. [PMID: 28204879 DOI: 10.1007/s00393-017-0274-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND The aim of this study was to (a) assess the relationship between interferon-stimulated gene 15 (ISG15) expression and clinical manifestations of systemic lupus erythematosus (SLE) and (b) investigate the diagnostic value of ISG15 in SLE. PATIENTS AND METHODS The study comprised 28 patients newly diagnosed with SLE, 10 patients with undifferentiated connective tissue disease, and 22 healthy volunteers. Of the SLE patients, 14 were chosen randomly to be followed up for 4 weeks. ISG15 expression in whole blood cells was determined by quantitative polymerase chain reaction. Clinical and laboratory parameters were recorded at baseline and after treatment. RESULTS The ISG15 mRNA level was higher in whole blood cell counts of SLE patients when compared with the disease control and healthy control groups. Moreover, it was correlated with SLE disease activity as assessed via the SLE disease activity index, serositis, and anemia at baseline. ISG15 expression correlated with lymphocytopenia in active SLE patients before treatment. On receiver operating characteristic curve analysis, the area under the curve for ISG15 expression was 0.826 (p = 0.000015). CONCLUSION ISG15 expression is relatively high in SLE patients and correlates with disease activity before treatment. ISG15 expression is higher in SLE patients with lymphocytopenia before treatment.
Collapse
Affiliation(s)
- Y Yuan
- Department of Rheumatology and Immunology, the First Hospital, Jilin University, 130021, Changchun, China
| | - H Ma
- Department of Rheumatology and Immunology, the First Hospital, Jilin University, 130021, Changchun, China
| | - Z Ye
- Department of Rheumatology and Immunology, the First Hospital, Jilin University, 130021, Changchun, China
| | - W Jing
- Department of Gerontology, the First Hospital, Jilin University, 130021, Changchun, China
| | - Z Jiang
- Department of Rheumatology and Immunology, the First Hospital, Jilin University, 130021, Changchun, China.
| |
Collapse
|
20
|
Xie S, Luo H, Zhang H, Zhu H, Zuo X, Liu S. Discovery of Key Genes in Dermatomyositis Based on the Gene Expression Omnibus Database. DNA Cell Biol 2018; 37:982-992. [PMID: 30383435 DOI: 10.1089/dna.2018.4256] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The aim of this study was to identify biomarkers of dermatomyositis (DM). The analysis was conducted by retrieving DM-related cDNA microarray data sets from public databases. Gene ontology, Kyoto encyclopedia of genes and genomes, and protein-protein interaction analyses were performed, together with quantitative PCR-based detection of biomarkers in muscle tissue after stimulation with serum from patients with DM or healthy controls. Our analysis of five microarray data sets identified 20 common differentially expressed genes that are closely associated with DM. PCR analysis showed that mRNAs of IFITM2, LY6E, DDX58, and IFI6 were expressed at significantly higher levels in the muscle tissue of patients with DM than in normal muscle tissues. These mRNAs were also upregulated in human skeletal muscle cells stimulated with the serum from patients with DM. The results of integrated analyses of the DM microarray data and the mRNA levels of genes showed significant differences between the muscle tissues of DM patients and controls, which could indicate key pathogenic genes and novel therapeutic targets for DM.
Collapse
Affiliation(s)
- Shuoshan Xie
- 1 Rheumatology Department, Xiangya Hospital, Central South University , Changsha, China
| | - Hui Luo
- 1 Rheumatology Department, Xiangya Hospital, Central South University , Changsha, China
| | - Huali Zhang
- 2 Department of Pathophysiology, Xiangya School of Medicine, Central South University , Changsha, China
| | - Honglin Zhu
- 1 Rheumatology Department, Xiangya Hospital, Central South University , Changsha, China
| | - Xiaoxia Zuo
- 1 Rheumatology Department, Xiangya Hospital, Central South University , Changsha, China
| | - Sijia Liu
- 1 Rheumatology Department, Xiangya Hospital, Central South University , Changsha, China
| |
Collapse
|
21
|
Alperin JM, Ortiz-Fernández L, Sawalha AH. Monogenic Lupus: A Developing Paradigm of Disease. Front Immunol 2018; 9:2496. [PMID: 30459768 PMCID: PMC6232876 DOI: 10.3389/fimmu.2018.02496] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 10/09/2018] [Indexed: 12/13/2022] Open
Abstract
Monogenic lupus is a form of systemic lupus erythematosus (SLE) that occurs in patients with a single gene defect. This rare variant of lupus generally presents with early onset severe disease, especially affecting the kidneys and central nervous system. To date, a significant number of genes have been implicated in monogenic lupus, providing valuable insights into a very complex disease process. Throughout this review, we will summarize the genes reported to be associated with monogenic lupus or lupus-like diseases, and the pathogenic mechanisms affected by the mutations involved upon inducing autoimmunity.
Collapse
Affiliation(s)
- Jessie M Alperin
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Lourdes Ortiz-Fernández
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Amr H Sawalha
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States.,Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
22
|
Kessal K, Liang H, Rabut G, Daull P, Garrigue JS, Docquier M, Melik Parsadaniantz S, Baudouin C, Brignole-Baudouin F. Conjunctival Inflammatory Gene Expression Profiling in Dry Eye Disease: Correlations With HLA-DRA and HLA-DRB1. Front Immunol 2018; 9:2271. [PMID: 30374345 PMCID: PMC6196257 DOI: 10.3389/fimmu.2018.02271] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/12/2018] [Indexed: 01/24/2023] Open
Abstract
Purpose: In several multicenter clinical trials, HLA-DR was found to be a potential biomarker of dry eye disease (DED)'s severity and prognosis. Given the fact that HLA-DR receptor is a heterodimer consisting in an alpha and a beta chain, we intended to investigate the correlation of inflammatory targets with the corresponding transcripts, HLA-DRA and HLA-DRB1, to characterize specific targets closely related to HLA-DR expressed in conjunctival cells from patients suffering from DED of various etiologies. Methods: A prospective study was conducted in 88 patients with different forms of DED. Ocular symptom scores, ocular-staining grades, tear breakup time (TBUT) and Schirmer test were evaluated. Superficial conjunctival cells were collected by impression cytology and total RNAs were extracted for analyses using the new NanoString® nCounter technology based on an inflammatory human code set containing 249 inflammatory genes. Results: Two hundred transcripts were reliably detected in conjunctival specimens at various levels ranging from 1 to 222,546 RNA copies. Overall, from the 88 samples, 21 target genes showed a highly significant correlation (R > 0.8) with HLA-DRA and HLA-DRB1, HLA-DRA and B1 presenting the highest correlation (R = 0.9). These selected targets belonged to eight family groups, namely interferon and interferon-stimulated genes, tumor necrosis factor superfamily and related factors, Toll-like receptors and related factors, complement system factors, chemokines/cytokines, the RIPK enzyme family, and transduction signals such as the STAT and MAPK families. Conclusions: We have identified a profile of 21 transcripts correlated with HLA-DR expression, suggesting closely regulated signaling pathways and possible direct or indirect interactions between them. The NanoString® nCounter technology in conjunctival imprints could constitute a reliable tool in the future for wider screening of inflammatory biomarkers in DED, usable in very small samples. Broader combinations of biomarkers associated with HLA-DR could be analyzed to develop new diagnostic approaches, identify tighter pathophysiological gene signatures and personalize DED therapies more efficiently.
Collapse
Affiliation(s)
- Karima Kessal
- Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, Paris, France.,Department of Ophthalmology III, Quinze-Vingts National Ophthalmology Hospital, Paris, France.,Quinze-Vingts National Ophthalmology Hospital, DHU Sight Restore, INSERM-DGOS CIC 1423, Paris, France
| | - Hong Liang
- Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, Paris, France.,Department of Ophthalmology III, Quinze-Vingts National Ophthalmology Hospital, Paris, France.,Quinze-Vingts National Ophthalmology Hospital, DHU Sight Restore, INSERM-DGOS CIC 1423, Paris, France
| | - Ghislaine Rabut
- Department of Ophthalmology III, Quinze-Vingts National Ophthalmology Hospital, Paris, France.,Quinze-Vingts National Ophthalmology Hospital, DHU Sight Restore, INSERM-DGOS CIC 1423, Paris, France
| | | | | | - Mylene Docquier
- iGE3 Genomics Platform University of Geneva, Geneva, Switzerland
| | | | - Christophe Baudouin
- Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, Paris, France.,Department of Ophthalmology III, Quinze-Vingts National Ophthalmology Hospital, Paris, France.,Quinze-Vingts National Ophthalmology Hospital, DHU Sight Restore, INSERM-DGOS CIC 1423, Paris, France.,Department of Ophthalmology, Ambroise Paré Hospital, APHP, University of Versailles Saint-Quentin en Yvelines, Boulogne-Billancourt, France
| | - Françoise Brignole-Baudouin
- Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, Paris, France.,Quinze-Vingts National Ophthalmology Hospital, DHU Sight Restore, INSERM-DGOS CIC 1423, Paris, France.,Sorbonne Paris Cité Université Paris Descartes, Faculté de Pharmacie de Paris, Paris, France
| |
Collapse
|
23
|
Higher activation of the interferon-gamma signaling pathway in systemic lupus erythematosus patients with a high type I IFN score: relation to disease activity. Clin Rheumatol 2018; 37:2675-2684. [DOI: 10.1007/s10067-018-4138-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/11/2018] [Accepted: 04/20/2018] [Indexed: 12/21/2022]
|
24
|
El-Sherbiny YM, Psarras A, Md Yusof MY, Hensor EMA, Tooze R, Doody G, Mohamed AAA, McGonagle D, Wittmann M, Emery P, Vital EM. A novel two-score system for interferon status segregates autoimmune diseases and correlates with clinical features. Sci Rep 2018; 8:5793. [PMID: 29643425 PMCID: PMC5895784 DOI: 10.1038/s41598-018-24198-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/23/2018] [Indexed: 11/10/2022] Open
Abstract
Measurement of type I interferon (IFN-I) has potential to diagnose and stratify autoimmune diseases, but existing results have been inconsistent. Interferon-stimulated-gene (ISG) based methods may be affected by the modularity of the ISG transcriptome, cell-specific expression, response to IFN-subtypes and bimodality of expression. We developed and clinically validated a 2-score system (IFN-Score-A and -B) using Factor Analysis of 31 ISGs measured by TaqMan selected from 3-IFN-annotated modules. We evaluated these scores using in-vitro IFN stimulation as well as in sorted cells then clinically validated in a cohort of 328 autoimmune disease patients and healthy controls. ISGs varied in response to IFN-subtypes and both scores varied between cell subsets. IFN-Score-A differentiated Systemic Lupus Erythematosus (SLE) from both Rheumatoid Arthritis (RA) and Healthy Controls (HC) (both p < 0.001), while IFN-Score-B differentiated SLE and RA from HC (both p < 0.001). In SLE, both scores were associated with cutaneous and hematological (all p < 0.05) but not musculoskeletal disease activity. Comparing with bimodal (IFN-high/low) classification, significant differences in IFN-scores were found between diagnostic groups within the IFN-high group. Our continuous 2-score system is more clinically relevant than a simple bimodal classification of IFN status. This system should allow improvement in diagnosis, stratification, and therapy in IFN-mediated autoimmunity.
Collapse
Affiliation(s)
- Y M El-Sherbiny
- National Institute of Health Research Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - A Psarras
- National Institute of Health Research Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - M Y Md Yusof
- National Institute of Health Research Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - E M A Hensor
- National Institute of Health Research Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - R Tooze
- Experimental Haematology, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - G Doody
- Experimental Haematology, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - A A A Mohamed
- National Institute of Health Research Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
- Department of Rheumatology and Rehabilitation, Faculty of Medicine, Assiut University, Asyut, Egypt
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - D McGonagle
- National Institute of Health Research Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - M Wittmann
- National Institute of Health Research Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - P Emery
- National Institute of Health Research Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - E M Vital
- National Institute of Health Research Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK.
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK.
| |
Collapse
|
25
|
Shimizu Y, Yasuda S, Kimura T, Nishio S, Kono M, Ohmura K, Shimamura S, Kono M, Fujieda Y, Kato M, Oku K, Bohgaki T, Fukasawa Y, Tanaka S, Atsumi T. Interferon-inducible Mx1 protein is highly expressed in renal tissues from treatment-naïve lupus nephritis, but not in those under immunosuppressive treatment. Mod Rheumatol 2017; 28:661-669. [PMID: 29189089 DOI: 10.1080/14397595.2017.1404711] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES The aim of this study was to clarify the consequences of Mx1, one of the IFN-inducible proteins, in the peripheral blood as well as in renal tissues in patients with systemic lupus erythematosus (SLE). PATIENTS AND METHODS Mx1 protein concentrations in (PBMCs) from 18 SLE patients mostly in their stable disease status, 11 IgA nephropathy (IgAN) patients, 5 ANCA-associated vasculitis (AAV) patients and 16 healthy controls were measured using enzyme-linked immunosorbent assay (ELISA). Mx1 expression in renal specimens from 18 patients with lupus nephritis (LN), 18 with IgAN and 10 with AAV were evaluated using immunohistochemistry. RESULTS Mx1 protein concentrations in lysates of PBMCs were significantly higher in SLE patients compared with those in other three groups. Mx1-positive area in renal tissues was significantly dominant in both glomeruli and renal tubules of LN compared with other renal diseases. Renal Mx1 protein levels were lower in LN after immunosuppressive treatment, compared with those from immunosuppressant-naïve patients. CONCLUSION Mx1 levels were upregulated in lupus peripheral blood even when their disease activities were stable. On the other hand, Mx1 was highly expressed in kidneys from patients with LN before treatment, which was decreased after immunosuppressive treatment. These results suggest that Mx1 is a potential marker for the diagnosis of SLE in the peripheral blood and also for the activity of lupus nephritis in the kidney.
Collapse
Affiliation(s)
- Yuka Shimizu
- a Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine , Hokkaido University , Sapporo , Japan
| | - Shinsuke Yasuda
- a Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine , Hokkaido University , Sapporo , Japan
| | - Taichi Kimura
- b Department of Translational Pathology, Faculty of Medicine , Hokkaido University , Sapporo , Japan.,c Department of Pathology , Hokkaido Medical Center , Sapporo , Japan
| | - Saori Nishio
- a Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine , Hokkaido University , Sapporo , Japan
| | - Michihiro Kono
- a Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine , Hokkaido University , Sapporo , Japan
| | - Kazumasa Ohmura
- a Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine , Hokkaido University , Sapporo , Japan
| | - Sanae Shimamura
- a Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine , Hokkaido University , Sapporo , Japan
| | - Michihito Kono
- a Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine , Hokkaido University , Sapporo , Japan
| | - Yuichiro Fujieda
- a Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine , Hokkaido University , Sapporo , Japan
| | - Masaru Kato
- a Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine , Hokkaido University , Sapporo , Japan
| | - Kenji Oku
- a Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine , Hokkaido University , Sapporo , Japan
| | - Toshiyuki Bohgaki
- a Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine , Hokkaido University , Sapporo , Japan
| | - Yuichiro Fukasawa
- d Department of Pathology , Sapporo City General Hospital , Sapporo , Japan
| | - Shinya Tanaka
- b Department of Translational Pathology, Faculty of Medicine , Hokkaido University , Sapporo , Japan.,e Department of Cancer Pathology, Faculty of Medicine , Hokkaido University , Sapporo , Japan
| | - Tatsuya Atsumi
- a Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine , Hokkaido University , Sapporo , Japan
| |
Collapse
|
26
|
Tumor Necrosis Factor-Like Weak Inducer of Apoptosis Activates Type I Interferon Signals in Lupus Nephritis. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4927376. [PMID: 29333443 PMCID: PMC5733219 DOI: 10.1155/2017/4927376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/22/2017] [Accepted: 11/02/2017] [Indexed: 11/17/2022]
Abstract
Type I interferon (IFN) plays a central role in pathogenesis of systemic lupus erythematosus (SLE); tumor necrosis factor-like weak inducer of apoptosis (TWEAK) has been associated with a pathogenic role in lupus nephritis (LN). Thus we investigated whether TWEAK could induce the activation of type I IFN pathway in LN. We examined this in patient-derived peripheral blood mononuclear cells (PBMCs) as well as MRL/lpr mice, a murine LN model. Relative to the control cohorts, MRL/lpr mice showed severe histological changes, high index levels of renal damage, and elevated expression of type I IFN-inducible genes. After shRNA suppression of TWEAK, we observed that renal damage was significantly attenuated and expression of type I IFN-inducible genes was reduced in MRL/lpr mice. In parallel, siRNA of TWEAK also significantly reduced the expression of type I IFN-inducible genes in PBMCs relative to control transfections. In PBMCs, TWEAK stimulation also led to expression of type I IFN-inducible genes. Our results illustrate a novel regulatory role of TWEAK, in which its activity positively regulates type I IFN pathway in LN based on preclinical models. Our findings suggest TWEAK could act as a critical target in preventing renal damage in patients with LN.
Collapse
|
27
|
Petrackova A, Smrzova A, Gajdos P, Schubertova M, Schneiderova P, Kromer P, Snasel V, Skacelova M, Mrazek F, Zadrazil J, Horak P, Kriegova E. Serum protein pattern associated with organ damage and lupus nephritis in systemic lupus erythematosus revealed by PEA immunoassay. Clin Proteomics 2017; 14:32. [PMID: 29026368 PMCID: PMC5627398 DOI: 10.1186/s12014-017-9167-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 09/18/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is a remarkably heterogeneous autoimmune disease. Despite tremendous efforts, our knowledge of serum protein patterns in severe SLE phenotypes is still limited. We investigated the serum protein pattern of SLE, with special emphasis on irreversible organ damage and active lupus nephritis (LN) as assessed by renal Systemic Lupus Erythematosus Disease Activity Index. METHODS We used proximity extension immunoassay (PEA, Proseek Multiplex, Olink) to assess the serum levels of ninety-two inflammation-related proteins in Czech patients with SLE (n = 75) and age-matched healthy control subjects (n = 23). Subgroup analysis was carried out on the basis of organ damage (with/without, 42/33) and biopsy-proven LN (with/without, 27/48; active LN, n = 13; inactive LN, n = 14). RESULTS Of thirty deregulated proteins between SLE and the healthy controls (Pcorr < 0.05), the top upregulated proteins in SLE were sirtuin 2, interleukin 18 (IL18), and caspase 8 (Pcorr < 0.0006). Of these, sirtuin 2 and caspase 8 had not yet been reported with SLE. Elevated levels of IL8, CCL2/MCP1, CCL11, and MMP10 (Pcorr < 0.05) were detected in patients with organ damage for which the serum levels of CCL11 and MMP10 were particularly informative in organ damage prediction. Comparing patients based on LN, elevated levels of CSF1, sIL15RA, sCD40, sCX3CL1, caspase 8, sIL18R1, bNGF, and GDNF (Pcorr < 0.05) were detected in active LN. Except GDNF, all LN-associated markers showed usefulness in prediction of active renal disease. CONCLUSIONS This highly sensitive PEA analysis identified the serum pattern of SLE, organ damage, and active LN, with many novel candidate proteins detected. Their exact role and suitability as biomarkers in SLE deserve further investigation.
Collapse
Affiliation(s)
- Anna Petrackova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| | - Andrea Smrzova
- Department of Internal Medicine III - Nephrology, Rheumatology and Endocrinology, Faculty of Medicine and Dentistry, University Hospital, Palacky University, Olomouc, Czech Republic
| | - Petr Gajdos
- Department of Computer Science, Faculty of Electrical Engineering and Computer Science, Technical University of Ostrava, Ostrava, Czech Republic
| | - Marketa Schubertova
- Department of Internal Medicine III - Nephrology, Rheumatology and Endocrinology, Faculty of Medicine and Dentistry, University Hospital, Palacky University, Olomouc, Czech Republic
| | - Petra Schneiderova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| | - Pavel Kromer
- Department of Computer Science, Faculty of Electrical Engineering and Computer Science, Technical University of Ostrava, Ostrava, Czech Republic
| | - Vaclav Snasel
- Department of Computer Science, Faculty of Electrical Engineering and Computer Science, Technical University of Ostrava, Ostrava, Czech Republic
| | - Martina Skacelova
- Department of Internal Medicine III - Nephrology, Rheumatology and Endocrinology, Faculty of Medicine and Dentistry, University Hospital, Palacky University, Olomouc, Czech Republic
| | - Frantisek Mrazek
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| | - Josef Zadrazil
- Department of Internal Medicine III - Nephrology, Rheumatology and Endocrinology, Faculty of Medicine and Dentistry, University Hospital, Palacky University, Olomouc, Czech Republic
| | - Pavel Horak
- Department of Internal Medicine III - Nephrology, Rheumatology and Endocrinology, Faculty of Medicine and Dentistry, University Hospital, Palacky University, Olomouc, Czech Republic
| | - Eva Kriegova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| |
Collapse
|
28
|
Zharkova O, Celhar T, Cravens PD, Satterthwaite AB, Fairhurst AM, Davis LS. Pathways leading to an immunological disease: systemic lupus erythematosus. Rheumatology (Oxford) 2017; 56:i55-i66. [PMID: 28375453 PMCID: PMC5410978 DOI: 10.1093/rheumatology/kew427] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Indexed: 12/25/2022] Open
Abstract
SLE is a chronic autoimmune disease caused by perturbations of the immune system. The clinical presentation is heterogeneous, largely because of the multiple genetic and environmental factors that contribute to disease initiation and progression. Over the last 60 years, there have been a number of significant leaps in our understanding of the immunological mechanisms driving disease processes. We now know that multiple leucocyte subsets, together with inflammatory cytokines, chemokines and regulatory mediators that are normally involved in host protection from invading pathogens, contribute to the inflammatory events leading to tissue destruction and organ failure. In this broad overview, we discuss the main pathways involved in SLE and highlight new findings. We describe the immunological changes that characterize this form of autoimmunity. The major leucocytes that are essential for disease progression are discussed, together with key mediators that propagate the immune response and drive the inflammatory response in SLE.
Collapse
Affiliation(s)
- Olga Zharkova
- Singapore Immunology Network, 8A Biomedical Grove, Immunos.,School of Biological Sciences, Nanyang Technological University, Singapore
| | - Teja Celhar
- Singapore Immunology Network, 8A Biomedical Grove, Immunos
| | | | - Anne B Satterthwaite
- Department of Immunology.,The Rheumatic Diseases Division, Department of Internal Medicine, UT Southwestern Medical Center at Dallas, TX, USA
| | - Anna-Marie Fairhurst
- Singapore Immunology Network, 8A Biomedical Grove, Immunos.,School of Biological Sciences, Nanyang Technological University, Singapore.,Department of Immunology
| | - Laurie S Davis
- The Rheumatic Diseases Division, Department of Internal Medicine, UT Southwestern Medical Center at Dallas, TX, USA
| |
Collapse
|
29
|
Wong YY, Johnson B, Friedrich TC, Trepanier LA. Hepatic expression profiles in retroviral infection: relevance to drug hypersensitivity risk. Pharmacol Res Perspect 2017; 5:e00312. [PMID: 28603631 PMCID: PMC5464341 DOI: 10.1002/prp2.312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 03/13/2017] [Indexed: 12/11/2022] Open
Abstract
HIV‐infected patients show a markedly increased risk of delayed hypersensitivity (HS) reactions to potentiated sulfonamide antibiotics (trimethoprim/sulfamethoxazole or TMP/SMX). Some studies have suggested altered SMX biotransformation in HIV infection, but hepatic biotransformation pathways have not been evaluated directly. Systemic lupus erythematosus (SLE) is another chronic inflammatory disease with a higher incidence of sulfonamide HS, but it is unclear whether retroviral infection and SLE share risk factors for drug HS. We hypothesized that retroviral infection would lead to dysregulation of hepatic pathways of SMX biotransformation, as well as pathway alterations in common with SLE that could contribute to drug HS risk. We characterized hepatic expression profiles and enzymatic activities in an SIV‐infected macaque model of retroviral infection, and found no evidence for dysregulation of sulfonamide drug biotransformation pathways. Specifically, NAT1,NAT2,CYP2C8,CYP2C9,CYB5R3,MARC1/2, and glutathione‐related genes (GCLC,GCLM,GSS,GSTM1, and GSTP1) were not differentially expressed in drug naïve SIVmac239‐infected male macaques compared to age‐matched controls, and activities for SMX N‐acetylation and SMX hydroxylamine reduction were not different. However, multiple genes that are reportedly over‐expressed in SLE patients were also up‐regulated in retroviral infection, to include enhanced immunoproteasomal processing and presentation of antigens as well as up‐regulation of gene clusters that may be permissive to autoimmunity. These findings support the hypothesis that pathways downstream from drug biotransformation may be primarily important in drug HS risk in HIV infection.
Collapse
Affiliation(s)
- Yat Yee Wong
- Department of Medical Sciences School of Veterinary Medicine Madison Wisconsin
| | - Brian Johnson
- Molecular and Environmental Toxicology Center School of Medicine and Public Health University of Wisconsin-Madison Madison Wisconsin
| | - Thomas C Friedrich
- Department of Pathobiological Sciences School of Veterinary Medicine Madison Wisconsin.,AIDS Vaccine Research Laboratory Wisconsin National Primate Research Center Madison Wisconsin
| | - Lauren A Trepanier
- Department of Medical Sciences School of Veterinary Medicine Madison Wisconsin
| |
Collapse
|
30
|
Gupta P, Sharma A, Han J, Yang A, Bhomia M, Knollmann-Ritschel B, Puri RK, Maheshwari RK. Differential host gene responses from infection with neurovirulent and partially-neurovirulent strains of Venezuelan equine encephalitis virus. BMC Infect Dis 2017; 17:309. [PMID: 28446152 PMCID: PMC5405508 DOI: 10.1186/s12879-017-2355-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 03/28/2017] [Indexed: 12/21/2022] Open
Abstract
Background Venezuelan equine encephalitis virus (VEEV) is an alphavirus in the family Togaviridae. VEEV causes a bi-phasic illness in mice where primary replication in lymphoid organs is followed by entry into the central nervous system (CNS). The CNS phase of infection is marked by encephalitis and large scale neuronal death ultimately resulting in death. Molecular determinants of VEEV neurovirulence are not well understood. In this study, host gene expression response to highly neurovirulent VEEV (V3000 strain) infection was compared with that of a partially neurovirulent VEEV (V3034 strain) to identify host factors associated with VEEV neurovirulence. Methods Whole genome microarrays were performed to identify the significantly modulated genes. Microarray observations were classified into three categories i.e., genes that were similarly modulated against both V3000 and V3034 infections, and genes that were uniquely modulated in infection with V3034 or V3000. Histologic sections of spleen and brain were evaluated by hematoxylin and eosin stains from all the mice. Results V3000 infection induced a greater degree of pathology in both the spleen and brain tissue of infected mice compared to V3034 infection. Genes commonly modulated in the spleens after V3000 or V3034 infection were associated with innate immune responses, inflammation and antigen presentation, however, V3000 induced a gene response profile that suggests a stronger inflammatory and apoptotic response compared to V3034. In the brain, both the strains of VEEV induced an innate immune response reflected by an upregulation of the genes involved in antigen presentation, interferon response, and inflammation. Similar to the spleen, V3000 was found to induce a stronger inflammatory response than V3034 in terms of induction of pro-inflammatory genes and associated pathways. Ccl2, Ccl5, Ccl6, and Ly6 were uniquely upregulated in V3000 infected mouse brains and correlated with the extensive inflammation observed in the brain. Conclusion The common gene profile identified from V3000 and V3034 exposure can help in understanding a generalized host response to VEEV infection. Inflammatory genes that were uniquely identified in mouse brains with V3000 infection will help in better understanding the lethal neurovirulence of VEEV. Future studies are needed to explore the roles played by the genes identified in VEEV induced encephalitis. Electronic supplementary material The online version of this article (doi:10.1186/s12879-017-2355-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paridhi Gupta
- Department of Pathology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Anuj Sharma
- Department of Pathology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| | - Jing Han
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD, USA
| | - Amy Yang
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD, USA
| | - Manish Bhomia
- Department of Pathology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Barbara Knollmann-Ritschel
- Department of Pathology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Raj K Puri
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD, USA
| | - Radha K Maheshwari
- Department of Pathology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| |
Collapse
|
31
|
Yu J, Liang C, Liu SL. Interferon-inducible LY6E Protein Promotes HIV-1 Infection. J Biol Chem 2017; 292:4674-4685. [PMID: 28130445 DOI: 10.1074/jbc.m116.755819] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 01/24/2017] [Indexed: 11/06/2022] Open
Abstract
LY6E is a glycosylphosphatidylinositol-anchored, IFN-inducible protein that regulates T lymphocytes proliferation, differentiation, and development. Single-nucleotide polymorphism rs2572886 in the LY6 family protein locus has been shown to associate with accelerated progression to AIDS. In this study, we show that LY6E promotes HIV, type 1 (HIV-1) infection by enhancing viral entry and gene expression. Knockdown of LY6E in human peripheral blood mononuclear, SupT1, and THP-1 cells diminishes HIV-1 replication. Virion-cell and cell-cell fusion experiments revealed that LY6E promotes membrane fusion of the viral entry step. Interestingly, we find that LTR-driven HIV-1 gene expression is also enhanced by LY6E, suggesting additional roles of LY6E in HIV-1 replication. HIV-1 infection induces LY6E expression in human peripheral blood mononuclear cells, concomitant with increased production of type I IFN and some classical IFN-stimulated genes. Altogether, our results demonstrate that IFN-inducible LY6E promotes HIV-1 entry and replication and highlight a positive regulatory role of IFN-induced proteins in HIV-1 infection. Our work emphasizes the complexity of IFN-mediated signaling in HIV-host interaction and AIDS pathogenesis.
Collapse
Affiliation(s)
- Jingyou Yu
- From the Center for Retrovirus Research.,Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210
| | - Chen Liang
- the McGill AIDS Centre, Lady Davis Institute, Montreal, Quebec H3T 1E2, Canada, and.,the Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Shan-Lu Liu
- From the Center for Retrovirus Research, .,Center for Microbial Interface Biology, and
| |
Collapse
|
32
|
Luo S, Wang Y, Zhao M, Lu Q. The important roles of type I interferon and interferon-inducible genes in systemic lupus erythematosus. Int Immunopharmacol 2016; 40:542-549. [PMID: 27769023 DOI: 10.1016/j.intimp.2016.10.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/30/2016] [Accepted: 10/14/2016] [Indexed: 12/23/2022]
Abstract
Systemic lupus erythematosus (SLE) is a severe autoimmune disease that causes multiple-organ dysfunction mainly affecting women in their childbearing years. Type I IFN synthesis is usually triggered by viruses, and its production is tightly regulated and limited in time in health individuals. However, many patients with systemic autoimmune diseases including SLE have signs of aberrant production of type I interferon (IFN) and display an increased expression of IFN-inducible genes. Continuous type I IFNs derived from activated plasmacytoid dendritic cells (pDCs) by interferogenic immune complexes (ICs) and migration of these cells to tissues both break immune tolerance and promote an on-going autoimmune reaction in human body. By the means of detecting type I IFNs and IFN-inducible genes, it can help with diagnosis and evaluation of SLE in early stage and more efficiently. Anti-IFN-α monoclonal antibodies in SLE patients were recently reported and is now being investigated in phase II clinical trails. In this review, we focus on recent research progress in type I IFN and IFN-inducible genes. Possible mechanisms behind the dysregulated type I IFN system in SLE and how they contribute to the development of an autoimmune process, and act as a biomarker and therapeutic target will be reviewed.
Collapse
Affiliation(s)
- Shuaihantian Luo
- Department of Dermatology, Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenetics, Changsha, Hunan, China
| | - Yunuo Wang
- Department of Endocrinology, Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ming Zhao
- Department of Dermatology, Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenetics, Changsha, Hunan, China
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenetics, Changsha, Hunan, China.
| |
Collapse
|
33
|
Common Marker Genes Identified from Various Sample Types for Systemic Lupus Erythematosus. PLoS One 2016; 11:e0156234. [PMID: 27257790 PMCID: PMC4892593 DOI: 10.1371/journal.pone.0156234] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 05/11/2016] [Indexed: 12/26/2022] Open
Abstract
Objective Systemic lupus erythematosus (SLE) is a complex auto-immune disease. Gene expression studies have been conducted to identify SLE-related genes in various types of samples. It is unknown whether there are common marker genes significant for SLE but independent of sample types, which may have potentials for follow-up translational research. The aim of this study is to identify common marker genes across various sample types for SLE. Methods Based on four public microarray gene expression datasets for SLE covering three representative types of blood-born samples (monocyte; peripheral blood mononuclear cell, PBMC; whole blood), we utilized three statistics (fold-change, FC; t-test p value; false discovery rate adjusted p value) to scrutinize genes simultaneously regulated with SLE across various sample types. For common marker genes, we conducted the Gene Ontology enrichment analysis and Protein-Protein Interaction analysis to gain insights into their functions. Results We identified 10 common marker genes associated with SLE (IFI6, IFI27, IFI44L, OAS1, OAS2, EIF2AK2, PLSCR1, STAT1, RNASE2, and GSTO1). Significant up-regulation of IFI6, IFI27, and IFI44L with SLE was observed in all the studied sample types, though the FC was most striking in monocyte, compared with PBMC and whole blood (8.82–251.66 vs. 3.73–74.05 vs. 1.19–1.87). Eight of the above 10 genes, except RNASE2 and GSTO1, interact with each other and with known SLE susceptibility genes, participate in immune response, RNA and protein catabolism, and cell death. Conclusion Our data suggest that there exist common marker genes across various sample types for SLE. The 10 common marker genes, identified herein, deserve follow-up studies to dissert their potentials as diagnostic or therapeutic markers to predict SLE or treatment response.
Collapse
|
34
|
Feng X, Chen W, Xiao L, Gu F, Huang J, Tsao BP, Sun L. Artesunate inhibits type I interferon-induced production of macrophage migration inhibitory factor in patients with systemic lupus erythematosus. Lupus 2016; 26:62-72. [PMID: 27230555 DOI: 10.1177/0961203316651738] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 04/28/2016] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Macrophage migration inhibitory factor (MIF) is a key regulator of both atherosclerosis and systemic lupus erythematosus (SLE), yet factors leading to its overproduction remain unclear. To explore regulation of MIF in SLE, we studied effects and potential mechanisms of type I interferon (IFN) and artesunate (ART), an antimalarial agent extracted from Chinese herbs, on levels of MIF. METHODS Serum and peripheral blood cells from SLE patients and healthy controls were measured for MIF levels by ELISA and type I IFN-inducible gene expressions by real-time PCR, respectively, and assessed for associations by Spearman correlation. ART was added to human umbilical vein endothelial cell (HUVEC) cultures with or without prior IFNα-1b stimulation and to SLE peripheral blood mononuclear cell (PBMC) cultures. Protein levels of STATs and phosphorylated (p-) STATs in HUVECs were determined by Western blotting. RESULTS Serum MIF levels were elevated in SLE patients and positively associated with disease activity (r = 0.86, p < 0.0001), accumulated damage (r = 0.34, p < 0.05), and IFN scores in SLE PBMCs (r = 0.74, p = 0.0002). The addition of IFNα-1b promoted MIF production in a time- and dose-dependent manner in HUVEC cultures. ART could inhibit expressions of IFN-inducible genes (LY6E and ISG15) in both HUVEC and SLE PBMC cultures, and suppress MIF production and over-expression of p-STAT1, but not p-STAT3 or STAT5, induced by IFNα-1b stimulation. IFNγ-induced expression of p-STAT1 in HUVECs was not inhibited by ART. CONCLUSION MIF could be regulated by type I IFN in SLE patients. ART counteracts the effect of IFNα to inhibit MIF production by blocking STAT1 phosphorylation and thus may have therapeutic potential for SLE-associated atherosclerosis.
Collapse
Affiliation(s)
- X Feng
- Department of Rheumatology and Immunology, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - W Chen
- Department of Rheumatology and Immunology, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - L Xiao
- Department of Rheumatology and Immunology, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - F Gu
- Department of Rheumatology and Immunology, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - J Huang
- Department of Rheumatology and Immunology, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - B P Tsao
- Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - L Sun
- Department of Rheumatology and Immunology, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
35
|
Bröer S, Käufer C, Haist V, Li L, Gerhauser I, Anjum M, Bankstahl M, Baumgärtner W, Löscher W. Brain inflammation, neurodegeneration and seizure development following picornavirus infection markedly differ among virus and mouse strains and substrains. Exp Neurol 2016; 279:57-74. [PMID: 26892877 DOI: 10.1016/j.expneurol.2016.02.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/25/2016] [Accepted: 02/13/2016] [Indexed: 01/20/2023]
Abstract
Infections, particularly those caused by viruses, are among the main causes of acquired epilepsy, but the mechanisms causing epileptogenesis are only poorly understood. As a consequence, no treatment exists for preventing epilepsy in patients at risk. Animal models are useful to study epileptogenesis after virus-induced encephalitis and how to interfere with this process, but most viruses that cause encephalitis in rodents are associated with high mortality, so that the processes leading to epilepsy cannot be investigated. Recently, intracerebral infection with Theiler's murine encephalomyelitis virus (TMEV) in C57BL/6 (B6) mice was reported to induce early seizures and epilepsy and it was proposed that the TMEV mouse model represents the first virus infection-driven animal model of epilepsy. In the present study, we characterized this model in two B6 substrains and seizure-resistant SJL/J mice by using three TMEV (sub)strains (BeAn-1, BeAn-2, DA). The idea behind this approach was to study what is and what is not necessary for development of acute and late seizures after brain infection in mice. Receiver operating characteristic (ROC) curve analysis was used to determine which virus-induced brain alterations are associated with seizure development. In B6 mice infected with different TMEV virus (sub)strains, the severity of hippocampal neurodegeneration, amount of MAC3-positive microglia/macrophages, and expression of the interferon-inducible antiviral effector ISG15 were almost perfect at discriminating seizing from non-seizing B6 mice, whereas T-lymphocyte brain infiltration was not found to be a crucial factor. However, intense microglia/macrophage activation and some hippocampal damage were also observed in SJL/J mice. Overall, the TMEV model provides a unique platform to study virus and host factors in ictogenesis and epileptogenesis.
Collapse
Affiliation(s)
- Sonja Bröer
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Christopher Käufer
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hanover, Germany
| | - Verena Haist
- Department of Pathology, University of Veterinary Medicine, Germany
| | - Lin Li
- Center for Systems Neuroscience, Hanover, Germany; Department of Pathology, University of Veterinary Medicine, Germany
| | - Ingo Gerhauser
- Department of Pathology, University of Veterinary Medicine, Germany
| | - Muneeb Anjum
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hanover, Germany
| | - Marion Bankstahl
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hanover, Germany
| | - Wolfgang Baumgärtner
- Center for Systems Neuroscience, Hanover, Germany; Department of Pathology, University of Veterinary Medicine, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hanover, Germany.
| |
Collapse
|
36
|
Cytokines and MicroRNAs as Candidate Biomarkers for Systemic Lupus Erythematosus. Int J Mol Sci 2015; 16:24194-218. [PMID: 26473848 PMCID: PMC4632746 DOI: 10.3390/ijms161024194] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/10/2015] [Accepted: 09/25/2015] [Indexed: 12/18/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease, with varied course and symptoms. Its etiology is very complex and not clearly understood. There is growing evidence of the important role of cytokines in SLE pathogenesis, as well as their utility as biomarkers and targets in new therapies. Other potential new SLE biomarkers are microRNAs. Recently, over one hundred different microRNAs have been demonstrated to have a significant impact on the immune system. Various alterations in these microRNAs, associated with disease pathogenesis, have been described. They influence the signaling pathways and functions of immune response cells. Here, we aim to review the emerging new data on SLE etiology and pathogenesis.
Collapse
|