1
|
Yazdanpanah E, Pazoki A, Dadfar S, Nemati MH, Sajad Siadati SM, Tarahomi M, Orooji N, Haghmorad D, Oksenych V. Interleukin-27 and Autoimmune Disorders: A Compressive Review of Immunological Functions. Biomolecules 2024; 14:1489. [PMID: 39766196 PMCID: PMC11672993 DOI: 10.3390/biom14121489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Autoimmune disorders (ADs) pose significant health and economic burdens globally, characterized by the body's immune system mistakenly attacking its own tissues. While the precise mechanisms driving their development remain elusive, a combination of genetic predisposition(s) and environmental triggers is implicated. Interleukin-27 (IL-27), among numerous cytokines involved, has emerged as a key regulator, exhibiting dual roles in immune modulation. This review delves into the molecular structure and signaling mechanisms of IL-27, highlighting its diverse effects on various immune cells. Additionally, it explores the involvement of IL-27 in autoimmune diseases, such as multiple sclerosis (MS) and rheumatoid arthritis (RA), offering insights into its potential therapeutic implications. Moreover, its involvement in autoimmune diseases like type 1 diabetes (T1D), inflammatory bowel disease (IBD), myasthenia gravis (MG), Sjögren's syndrome (SS), and Guillain-Barré syndrome (GBS) is multifaceted, with potential diagnostic and therapeutic implications across these conditions. Further research is essential to fully understand IL-27's mechanisms of action and therapeutic potential in autoimmune diseases.
Collapse
Affiliation(s)
- Esmaeil Yazdanpanah
- Student Research Committee, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Alireza Pazoki
- Student Research Committee, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Sepehr Dadfar
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Mohammad Hosein Nemati
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | | | - Mahdieh Tarahomi
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Niloufar Orooji
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Dariush Haghmorad
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Valentyn Oksenych
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7028 Trondheim, Norway
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden
| |
Collapse
|
2
|
Huang J, Li X, Zhu Q, Wang M, Xie Z, Zhao T. Imbalance of Th17 cells, Treg cells and associated cytokines in patients with systemic lupus erythematosus: a meta-analysis. Front Immunol 2024; 15:1425847. [PMID: 39086480 PMCID: PMC11288813 DOI: 10.3389/fimmu.2024.1425847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Objective This article aims to investigate the changes of T helper 17 (Th17) cells, regulatory T (Treg) cells and their associated cytokines in patients with systemic lupus erythematosus (SLE). Methods Multiple databases were investigated to identify articles that explored Th17 cells, Treg cells and relevant cytokines in SLE patients. A random effects model was used for calculating pooled standardized mean differences. Stata version 15.0 was utilized to conduct the meta-analysis. Results The levels of Th17 cells, IL-17, IL-6, IL-21 and IL-10 were higher in SLE patients than in healthy controls (HCs), but the TGF-β levels were lower. The percentage of Treg cells was lower than HCs in SLE individuals older than 33. Among studies that had 93% or lower females, the percentage of Th17 cells was greater in patients than in HCs. However, the percentage of Treg cells was lower when the proportion of females was less than 90%. Patients with lupus nephritis or active SLE had an increased proportion of Th17 cells and a decreased proportion of Treg cells. Conclusions The increased level of Th17 cells and related cytokines could be the main reason for the elevated Th17/Treg ratio in SLE. The percentages of Th17 and Treg cells were associated with gender, age, disease activity and kidney function. Furthermore, the reduced proportions of Treg cells may primarily result in a rise in the Th17/Treg ratio in older or active SLE patients. Systematic Review Registration https://www.crd.york.ac.uk/prospero, identifier CRD42023454937.
Collapse
Affiliation(s)
- Jinge Huang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Xiaolong Li
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qingmiao Zhu
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Meijiao Wang
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhijun Xie
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ting Zhao
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
3
|
Dong K, Wu XN, Liu YQ, Yang L, Liu C, Wang HP, Gao ZW. The roles of adenosine signaling in systemic lupus erythematosus. Heliyon 2024; 10:e29848. [PMID: 38699049 PMCID: PMC11064148 DOI: 10.1016/j.heliyon.2024.e29848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 05/05/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease with multiple etiological factors. Immune disorder contributes to SLE development and is an important clinical manifestation of SLE patients. Immune dysfunction is characterized by abnormal of B cells, T cells, monocyte-macrophages and dendritic cells (DCs), in both quantity and quality. Adenosine is a critical factor for human immune homeostasis, which acts as an immunosuppressive signal and can prevent the hyperactivity of human immune system. Adenosine levels are significant decreased in serum from SLE patients. Adenosine level is regulated by the CD39, CD73 and adenosine deaminase (ADA). CD39/CD73/ADA catalyzed the cascade enzymatic reaction, which contained the adenosine generation and degradation. Adenosine affects the function of various immune cells via bind to the adenosine receptors, which are expressed on the cell surface. This review aims to export the changes of immune cells and adenosine signal pathway in SLE, as well as the effect of adenosine signal pathway in SLE development.
Collapse
Affiliation(s)
- Ke Dong
- Department of Clinical Diagnose, Tangdu Hospital, Airforce Medical University, Xi'an, Shannxi Province, China
| | - Xia-nan Wu
- Department of Clinical Diagnose, Tangdu Hospital, Airforce Medical University, Xi'an, Shannxi Province, China
| | - Ying-qi Liu
- No. 4 Company, School of Basic Medical Sciences, Air Force Medical University, Xi'an, Shannxi Province, China
| | - Lan Yang
- Department of Clinical Diagnose, Tangdu Hospital, Airforce Medical University, Xi'an, Shannxi Province, China
| | - Chong Liu
- Department of Clinical Diagnose, Tangdu Hospital, Airforce Medical University, Xi'an, Shannxi Province, China
| | - Hui-ping Wang
- Department of Clinical Diagnose, Tangdu Hospital, Airforce Medical University, Xi'an, Shannxi Province, China
| | - Zhao-wei Gao
- Department of Clinical Diagnose, Tangdu Hospital, Airforce Medical University, Xi'an, Shannxi Province, China
| |
Collapse
|
4
|
Jiang LJ, Rong ZH, Zhang HF. The changes of Treg and Th17 cells relate to serum 25(OH)D in patients with initial-onset childhood systemic lupus erythematosus. Front Pediatr 2023; 11:1228112. [PMID: 37681199 PMCID: PMC10482030 DOI: 10.3389/fped.2023.1228112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/07/2023] [Indexed: 09/09/2023] Open
Abstract
Background T helper 17 (Th17) cells and regulatory T cells (Treg) are known to play a crucial role in the pathogenesis of systemic lupus erythematosus (SLE). Improving the balance between Treg and Th17 cells can be a promising new therapeutic target in SLE patients. Vitamin D has a significant impact on the immune inflammatory process and the immune cells involved in this process. The purpose of this study is to investigate the relationship between Th17, Treg, cytokines, and serum 25 hydroxyvitamin D [25(OH)D] in patients with initial-onset childhood SLE. Methods A total of 82 children aged <18 years with initial-onset SLE were included, as well as 60 healthy subjects during the same period at the Pediatrics Department of the Second Hospital of Hebei Medical University. The chemiluminescence method was performed to detect serum 25(OH)D levels. Flow cytometry was used to evaluate Treg and Th17 cells. An enzyme-linked immunosorbent assay kit was used to evaluate plasma interleukin (IL)-23, IL-17, IL-10, IL-6, and tumor necrosis factor alpha (TNF-α) concentrations. Result The serum 25(OH)D levels in patients with initial-onset childhood SLE were significantly lower than those in the healthy controls. The proportion of lupus nephritis (LN) was higher in the vitamin D insufficiency group (71.4%) compared with the vitamin D sufficiency group (30.3%) (p < 0.05). The SLE disease activity index (SLEDAI) was higher in the vitamin D insufficiency group (median = 14) than that in the vitamin D sufficiency group (median = 9) (p < 0.05).The 25(OH)D level was positively correlated with the Treg ratio (r = 0.337, p = 0.002), and it was negatively correlated with the Th17 cell ratio (r = -0.370, p = 0.001). The serum 25(OH)D level had a negative correlation with IL-23 (r = -0.589, p < 0.001), IL-17(r = -0.351, p = 0.001), TNF-α (r = -0.283, p = 0.01), IL-6 (r = -0.392, p < 0.001), and IL-10 (r = -0.313, p = 0.004) levels. Conclusion The serum 25(OH)D levels decreased in patients with initial-onset childhood SLE. There was a negative correlation between the serum 25(OH)D levels and SLEDAI. The serum 25(OH)D levels in patients with initial-onset childhood SLE were negatively correlated with the Th17 ratio and related cytokines, while positively correlated with the Treg ratio.
Collapse
Affiliation(s)
| | | | - Hui-feng Zhang
- Department of Pediatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
5
|
Pasdaran A, Hassani B, Tavakoli A, Kozuharova E, Hamedi A. A Review of the Potential Benefits of Herbal Medicines, Small Molecules of Natural Sources, and Supplements for Health Promotion in Lupus Conditions. Life (Basel) 2023; 13:1589. [PMID: 37511964 PMCID: PMC10416186 DOI: 10.3390/life13071589] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The Latin word lupus, meaning wolf, was in the medical literature prior to the 1200s to describe skin lesions that devour flesh, and the resources available to physicians to help people were limited. The present text reviews the ethnobotanical and pharmacological aspects of medicinal plants and purified molecules from natural sources with efficacy against lupus conditions. Among these molecules are artemisinin and its derivatives, antroquinonol, baicalin, curcumin, emodin, mangiferin, salvianolic acid A, triptolide, the total glycosides of paeony (TGP), and other supplements such as fatty acids and vitamins. In addition, medicinal plants, herbal remedies, mushrooms, and fungi that have been investigated for their effects on different lupus conditions through clinical trials, in vivo, in vitro, or in silico studies are reviewed. A special emphasis was placed on clinical trials, active phytochemicals, and their mechanisms of action. This review can be helpful for researchers in designing new goal-oriented studies. It can also help practitioners gain insight into recent updates on supplements that might help patients suffering from lupus conditions.
Collapse
Affiliation(s)
- Ardalan Pasdaran
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran;
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Bahareh Hassani
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran;
| | - Ali Tavakoli
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran;
| | - Ekaterina Kozuharova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 1431 Sofia, Bulgaria;
| | - Azadeh Hamedi
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran;
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| |
Collapse
|
6
|
Touil H, Mounts K, De Jager PL. Differential impact of environmental factors on systemic and localized autoimmunity. Front Immunol 2023; 14:1147447. [PMID: 37283765 PMCID: PMC10239830 DOI: 10.3389/fimmu.2023.1147447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/08/2023] [Indexed: 06/08/2023] Open
Abstract
The influence of environmental factors on the development of autoimmune disease is being broadly investigated to better understand the multifactorial nature of autoimmune pathogenesis and to identify potential areas of intervention. Areas of particular interest include the influence of lifestyle, nutrition, and vitamin deficiencies on autoimmunity and chronic inflammation. In this review, we discuss how particular lifestyles and dietary patterns may contribute to or modulate autoimmunity. We explored this concept through a spectrum of several autoimmune diseases including Multiple Sclerosis (MS), Systemic Lupus Erythematosus (SLE) and Alopecia Areata (AA) affecting the central nervous system, whole body, and the hair follicles, respectively. A clear commonality between the autoimmune conditions of interest here is low Vitamin D, a well-researched hormone in the context of autoimmunity with pleiotropic immunomodulatory and anti-inflammatory effects. While low levels are often correlated with disease activity and progression in MS and AA, the relationship is less clear in SLE. Despite strong associations with autoimmunity, we lack conclusive evidence which elucidates its role in contributing to pathogenesis or simply as a result of chronic inflammation. In a similar vein, other vitamins impacting the development and course of these diseases are explored in this review, and overall diet and lifestyle. Recent work exploring the effects of dietary interventions on MS showed that a balanced diet was linked to improvement in clinical parameters, comorbid conditions, and overall quality of life for patients. In patients with MS, SLE and AA, certain diets and supplements are linked to lower incidence and improved symptoms. Conversely, obesity during adolescence was linked with higher incidence of MS while in SLE it was associated with organ damage. Autoimmunity is thought to emerge from the complex interplay between environmental factors and genetic background. Although the scope of this review focuses on environmental factors, it is imperative to elaborate the interaction between genetic susceptibility and environment due to the multifactorial origin of these disease. Here, we offer a comprehensive review about the influence of recent environmental and lifestyle factors on these autoimmune diseases and potential translation into therapeutic interventions.
Collapse
Affiliation(s)
- Hanane Touil
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
| | - Kristin Mounts
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
| | - Philip Lawrence De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
- Columbia Multiple Sclerosis Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
7
|
Dysregulated balance in Th17/Treg axis of Pristane-induced lupus mouse model, are mesenchymal stem cells therapeutic? Int Immunopharmacol 2023; 117:109699. [PMID: 36867923 DOI: 10.1016/j.intimp.2023.109699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 03/05/2023]
Abstract
BACKGROUND Despite advances in general and targeted immunosuppressive therapies, limiting all mainstay treatment options in refractory systemic lupus erythematosus (SLE) cases has necessitated the development of new therapeutic strategies. Mesenchymal stem cells (MSCs) have recently emerged with unique properties, including a solid propensity to reduce inflammation, exert immunomodulatory effects, and repair injured tissues. METHODS An animal model of acquired SLE mice was induced via intraperitoneal immunization with Pristane and affirmed by measuring specific biomarkers. Bone marrow (BM) MSCs were isolated from healthy BALB/c mice and cultured in vitro, then were identified and confirmed by flow cytometry and cytodifferentiation. Systemic MSCs transplantation was performed and then several parameters were analyzed and compared, including specific cytokines (IL-17, IL-4, IFN-ɣ, TGF-β) at the serum level, the percentage of Th cell subsets (Treg/Th17, Th1/Th2) in splenocytes, and also the relief of lupus nephritis, respectively by enzyme-linked immunosorbent assay (ELISA), flow cytometry analysis and by hematoxylin & eosin staining and also immunofluorescence assessment. Experiments were carried out with different initiation treatment time points (early and late stages of disease). Analysis of variance (ANOVA) followed by post hoc Tukey's test was used for multiple comparisons. RESULTS The rate of proteinuria, anti-double-stranded deoxyribonucleic acid (anti-dsDNA) antibodies, and serum creatinine levels decreased with BM-MSCs transplantation. These results were associated with attenuated lupus renal pathology in terms of reducing IgG and C3 deposition and lymphocyte infiltration. Our findings suggested that TGF-β (associated with lupus microenvironment) can contribute to MSC-based immunotherapy by modulating the population of TCD4+ cell subsets. Obtained results indicated that MSCs-based cytotherapy could negatively affect the progression of induced SLE by recovering the function of Treg cells, suppressing Th1, Th2, and Th17 lymphocyte function, and downregulating their pro-inflammatory cytokines. CONCLUSION MSC-based immunotherapy showed a delayed effect on the progression of acquired SLE in a lupus microenvironment-dependent manner. Allogenic MSCs transplantation revealed the ability to re-establish the balance of Th17/Treg, Th1/Th2 and restore the plasma cytokines network in a pattern dependent on disease conditions. The conflicting results of early versus advanced therapy suggest that MSCs may produce different effects depending on when they are administered and their activation status.
Collapse
|
8
|
Abdelhamid L, Alajoleen R, Kingsmore KM, Cabana-Puig X, Lu R, Zhu J, Testerman JC, Li Y, Ross AC, Cecere TE, Reilly CM, Grammer AC, Lipsky PE, Luo XM. Hypovitaminosis A Drives the Progression of Tubulointerstitial Lupus Nephritis through Potentiating Predisease Cellular Autoreactivity. Immunohorizons 2023; 7:17-29. [PMID: 36637518 PMCID: PMC10563393 DOI: 10.4049/immunohorizons.2200015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 12/12/2022] [Indexed: 01/14/2023] Open
Abstract
Vitamin A (VA) deficiency (VAD) is observed in both humans and mice with lupus nephritis. However, whether VAD is a driving factor for accelerated progression of lupus nephritis is unclear. In this study, we investigated the effect of VAD on the progression of lupus nephritis in a lupus-prone mouse model, MRL/lpr. We initiated VAD either during gestation or after weaning to reveal a potential time-dependent effect. We found exacerbated lupus nephritis at ∼15 wk of age with both types of VAD that provoked tubulointerstitial nephritis leading to renal failure. This was concomitant with significantly higher mortality in all VAD mice. Importantly, restoration of VA levels after weaning reversed VAD-induced mortality. These results suggest VAD-driven acceleration of tubulointerstitial lupus nephritis. Mechanistically, at the earlier time point of 7 wk of age and before the onset of clinical lupus nephritis, continued VAD (from gestation until postweaning) enhanced plasma cell activation and augmented their autoantibody production, while also increasing the expansion of T lymphocytes that could promote plasma cell autoreactivity. Moreover, continued VAD increased the renal infiltration of plasmacytoid dendritic cells. VAD initiated after weaning, in contrast, showed modest effects on autoantibodies and renal plasmacytoid dendritic cells that were not statistically significant. Remarkably, analysis of gene expression in human kidney revealed that the retinoic acid pathway was decreased in the tubulointerstitial region of lupus nephritis, supporting our findings in MRL/lpr mice. Future studies will elucidate the underlying mechanisms of how VAD modulates cellular functions to exacerbate tubulointerstitial lupus nephritis.
Collapse
Affiliation(s)
- Leila Abdelhamid
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
- Department of Microbiology, College of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Razan Alajoleen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | | | - Xavier Cabana-Puig
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Ran Lu
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Jing Zhu
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - James C. Testerman
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Yaqi Li
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA; and
| | - A. Catharine Ross
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA; and
| | - Thomas E. Cecere
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Christopher M. Reilly
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Blacksburg, VA
| | | | | | - Xin M. Luo
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| |
Collapse
|
9
|
Föh B, Buhre JS, Sina C, Ehlers M. Influence of nutrients and metabolites on the differentiation of plasma cells and implications for autoimmunity. Front Immunol 2022; 13:1004644. [PMID: 36466846 PMCID: PMC9716886 DOI: 10.3389/fimmu.2022.1004644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/04/2022] [Indexed: 09/10/2024] Open
Abstract
The modulation of inflammatory (auto)immune reactions by nutrients and gut bacterial metabolites is of great interest for potential preventive and therapeutic strategies. B cell-derived plasma cells are major players in inflammatory (auto)immune responses and can exhibit pro- or anti-inflammatory effects through (auto)antibody-dependent and -independent functions. Emerging evidence indicates a key role of nutrients and microbial metabolites in regulating the differentiation of plasma cells as well as their differentiation to pro- or anti-inflammatory phenotypes. These effects might be mediated indirectly by influencing other immune cells or directly through B cell-intrinsic mechanisms. Here, we provide an overview of nutrients and metabolites that influence B cell-intrinsic signaling pathways regulating B cell activation, plasma cell differentiation, and effector functions. Furthermore, we outline important inflammatory plasma cell phenotypes whose differentiation could be targeted by nutrients and microbial metabolites. Finally, we discuss possible implications for inflammatory (auto)immune conditions.
Collapse
Affiliation(s)
- Bandik Föh
- Department of Medicine I, University Hospital Schleswig-Holstein, Lübeck, Germany
- Institute of Nutritional Medicine, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Jana Sophia Buhre
- Institute of Nutritional Medicine, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Christian Sina
- Department of Medicine I, University Hospital Schleswig-Holstein, Lübeck, Germany
- Institute of Nutritional Medicine, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Marc Ehlers
- Institute of Nutritional Medicine, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
- Airway Research Center North, University of Lübeck, German Center for Lung Research Deutsches Zentrum für Lungenforschung (DZL), Lübeck, Germany
| |
Collapse
|
10
|
Mekky RY, Elemam NM, Eltahtawy O, Zeinelabdeen Y, Youness RA. Evaluating Risk: Benefit Ratio of Fat-Soluble Vitamin Supplementation to SARS-CoV-2-Infected Autoimmune and Cancer Patients: Do Vitamin-Drug Interactions Exist? Life (Basel) 2022; 12:1654. [PMID: 36295089 PMCID: PMC9604733 DOI: 10.3390/life12101654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022] Open
Abstract
COVID-19 is a recent pandemic that mandated the scientific society to provide effective evidence-based therapeutic approaches for the prevention and treatment for such a global threat, especially to those patients who hold a higher risk of infection and complications, such as patients with autoimmune diseases and cancer. Recent research has examined the role of various fat-soluble vitamins (vitamins A, D, E, and K) in reducing the severity of COVID-19 infection. Studies showed that deficiency in fat-soluble vitamins abrogates the immune system, thus rendering individuals more susceptible to COVID-19 infection. Moreover, another line of evidence showed that supplementation of fat-soluble vitamins during the course of infection enhances the viral clearance episode by promoting an adequate immune response. However, more thorough research is needed to define the adequate use of vitamin supplements in cancer and autoimmune patients infected with COVID-19. Moreover, it is crucial to highlight the vitamin-drug interactions of the COVID-19 therapeutic modalities and fat-soluble vitamins. With an emphasis on cancer and autoimmune patients, the current review aims to clarify the role of fat-soluble vitamins in SARS-CoV-2 infection and to estimate the risk-to-benefit ratio of a fat-soluble supplement administered to patients taking FDA-approved COVID-19 medications such as antivirals, anti-inflammatory, receptor blockers, and monoclonal antibodies.
Collapse
Affiliation(s)
- Radwa Y. Mekky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA University), Cairo 12622, Egypt
| | - Noha M. Elemam
- Sharjah Institute for Medical Research (SIMR), College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Omar Eltahtawy
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 12622, Egypt
| | - Yousra Zeinelabdeen
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 12622, Egypt
- Faculty of Medical Sciences, University Medical Center Groningen (UMCG), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Rana A. Youness
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 12622, Egypt
- Biology and Biochemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo 12622, Egypt
| |
Collapse
|
11
|
Yaigoub H, Fath N, Tirichen H, Wu C, Li R, Li Y. Bidirectional crosstalk between dysbiotic gut microbiota and systemic lupus erythematosus: What is new in therapeutic approaches? Clin Immunol 2022; 244:109109. [PMID: 36087683 DOI: 10.1016/j.clim.2022.109109] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/18/2022]
Abstract
Systemic lupus erythematosus is an autoimmune disease characterized by chronic inflammation and multiple organs damage. Its pathogenesis is complex and involves multiple factors including gut microbiota. Accumulating evidence indicates the interaction of microbial communities with the host immune system to maintain a state of homeostasis. Imbalances within the gut microbial composition and function may contribute to the development of many autoimmune diseases including SLE. In this review, we aim to highlight the dysregulation of commensal bacteria and their metabolites in the gastrointestinal tract and the resulting autoimmune responses in lupus and to decrypt the cross-link between the altered gut microbiota and the immune system in the SLE condition. We also provide new insights into targeting gut microbiota as a promising therapeutic approach to treat and manage SLE.
Collapse
Affiliation(s)
- Hasnaa Yaigoub
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Nada Fath
- Comparative Anatomy Unit, Department of Biological and Pharmacological Veterinary Sciences, Hassan II Agronomy and Veterinary Medicine Institute, Rabat-Instituts, Rabat, Morocco
| | - Hasna Tirichen
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Rongshan Li
- Department of Nephrology, The Fifth Hospital (Shanxi Provincial People's Hospital) of Shanxi Medical University, Taiyuan, China; Shanxi Provincial Key Laboratory of Kidney Disease, Taiyuan, China
| | - Yafeng Li
- Department of Nephrology, The Fifth Hospital (Shanxi Provincial People's Hospital) of Shanxi Medical University, Taiyuan, China; Shanxi Provincial Key Laboratory of Kidney Disease, Taiyuan, China; Academy of Microbial Ecology, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
12
|
Gürbüz M, Aktaç Ş. Understanding the role of vitamin A and its precursors in the immune system. NUTR CLIN METAB 2022. [DOI: 10.1016/j.nupar.2021.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Abdelhamid L, Luo XM. Diet and Hygiene in Modulating Autoimmunity During the Pandemic Era. Front Immunol 2022; 12:749774. [PMID: 35069526 PMCID: PMC8766844 DOI: 10.3389/fimmu.2021.749774] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022] Open
Abstract
The immune system is an efficiently toned machinery that discriminates between friends and foes for achieving both host defense and homeostasis. Deviation of immune recognition from foreign to self and/or long-lasting inflammatory responses results in the breakdown of tolerance. Meanwhile, educating the immune system and developing immunological memory are crucial for mounting defensive immune responses while protecting against autoimmunity. Still to elucidate is how diverse environmental factors could shape autoimmunity. The emergence of a world pandemic such as SARS-CoV-2 (COVID-19) not only threatens the more vulnerable individuals including those with autoimmune conditions but also promotes an unprecedented shift in people's dietary approaches while urging for extraordinary hygiene measures that likely contribute to the development or exacerbation of autoimmunity. Thus, there is an urgent need to understand how environmental factors modulate systemic autoimmunity to better mitigate the incidence and or severity of COVID-19 among the more vulnerable populations. Here, we discuss the effects of diet (macronutrients and micronutrients) and hygiene (the use of disinfectants) on autoimmunity with a focus on systemic lupus erythematosus.
Collapse
Affiliation(s)
- Leila Abdelhamid
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
- Department of Microbiology, College of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Xin M. Luo
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
14
|
Transcription Factor Activity Inference in Systemic Lupus Erythematosus. Life (Basel) 2021; 11:life11040299. [PMID: 33915751 PMCID: PMC8065841 DOI: 10.3390/life11040299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/29/2022] Open
Abstract
Background: Systemic Lupus Erythematosus (SLE) is a systemic autoimmune disease with diverse clinical manifestations. Although most of the SLE-associated loci are located in regulatory regions, there is a lack of global information about transcription factor (TFs) activities, the mode of regulation of the TFs, or the cell or sample-specific regulatory circuits. The aim of this work is to decipher TFs implicated in SLE. Methods: In order to decipher regulatory mechanisms in SLE, we have inferred TF activities from transcriptomic data for almost all human TFs, defined clusters of SLE patients based on the estimated TF activities and analyzed the differential activity patterns among SLE and healthy samples in two different cohorts. The Transcription Factor activity matrix was used to stratify SLE patients and define sets of TFs with statistically significant differential activity among the disease and control samples. Results: TF activities were able to identify two main subgroups of patients characterized by distinct neutrophil-to-lymphocyte ratio (NLR), with consistent patterns in two independent datasets—one from pediatric patients and other from adults. Furthermore, after contrasting all subgroups of patients and controls, we obtained a significant and robust list of 14 TFs implicated in the dysregulation of SLE by different mechanisms and pathways. Among them, well-known regulators of SLE, such as STAT or IRF, were found, but others suggest new pathways that might have important roles in SLE. Conclusions: These results provide a foundation to comprehend the regulatory mechanism underlying SLE and the established regulatory factors behind SLE heterogeneity that could be potential therapeutic targets.
Collapse
|
15
|
Ebrahimi N, Aslani S, Babaie F, Hemmatzadeh M, Hosseinzadeh R, Joneidi Z, Mehdizadeh Tourzani Z, Pakravan N, Mohammadi H. Recent findings on the Coronavirus disease 2019 (COVID-19); immunopathogenesis and immunotherapeutics. Int Immunopharmacol 2020; 89:107082. [PMID: 33068865 PMCID: PMC7547582 DOI: 10.1016/j.intimp.2020.107082] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/05/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
Severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2) is responsible for recent ongoing public health emergency in the world. Sharing structural and behavioral similarities with its ancestors [SARS and Middle East Respiratory Syndrome (MERS)], SARS-CoV-2 has lower fatality but faster transmission. We have gone through a long path to recognize SARS and MERS, therefore our knowledge regarding SARS-CoV-2 is not raw. Various responses of the immune system account for the wide spectrum of clinical manifestations in Coronavirus disease-2019 (COVID-19). Given the innate immune response as the front line of defense, it is immediately activated after the virus entry. Consequently, adaptive immune response is activated to eradicate the virus. However, this does not occur in every case and immune response is the main culprit causing the pathological manifestations of COVID-19. Lethal forms of the disease are correlated with inefficient and/or insufficient immune responses associated with cytokine storm. Current therapeutic approach for COVID-19 is in favor of suppressing extreme inflammatory responses, while maintaining the immune system alert and responsive against the virus. This could be contributing along with administration of antiviral drugs in such patients. Furthermore, supplementation with different compounds, such as vitamin D, has been tested to modulate the immune system responses. A thorough understanding of chronological events in COVID-19 contributing to the development of a highly efficient treatment has not figured out yet. This review focuses on the virus-immune system interaction as well as currently available and potential therapeutic approaches targeting immune system in the treatment of COVID-19 patients.
Collapse
Affiliation(s)
- Negin Ebrahimi
- Department of International Medicine, Faculty of Medicine, Health Sciences University, Istanbul, Turkey
| | - Saeed Aslani
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Babaie
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran; Department of Medical Genetics and Immunology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Hemmatzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramin Hosseinzadeh
- Department of Medical Genetics and Immunology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | | | | | - Nafiseh Pakravan
- Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| | - Hamed Mohammadi
- Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran; Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
16
|
Islam MA, Khandker SS, Kotyla PJ, Hassan R. Immunomodulatory Effects of Diet and Nutrients in Systemic Lupus Erythematosus (SLE): A Systematic Review. Front Immunol 2020; 11:1477. [PMID: 32793202 PMCID: PMC7387408 DOI: 10.3389/fimmu.2020.01477] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 06/05/2020] [Indexed: 12/16/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by multiple organ involvement, including the skin, joints, kidneys, lungs, central nervous system and the haematopoietic system, with a large number of complications. Despite years of study, the etiology of SLE remains unclear; thus, safe and specifically targeted therapies are lacking. In the last 20 years, researchers have explored the potential of nutritional factors on SLE and have suggested complementary treatment options through diet. This study systematically reviews and evaluates the clinical and preclinical scientific evidence of diet and dietary supplementation that either alleviate or exacerbate the symptoms of SLE. For this review, a systematic literature search was conducted using PubMed, Scopus and Google Scholar databases only for articles written in the English language. Based on the currently published literature, it was observed that a low-calorie and low-protein diet with high contents of fiber, polyunsaturated fatty acids, vitamins, minerals and polyphenols contain sufficient potential macronutrients and micronutrients to regulate the activity of the overall disease by modulating the inflammation and immune functions of SLE.
Collapse
Affiliation(s)
- Md Asiful Islam
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Shahad Saif Khandker
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Dhaka, Bangladesh
| | - Przemysław J Kotyla
- Department of Internal Medicine, Rheumatology and Clinical Immunology, Medical Faculty in Katowice, Medical University of Silesia, Katowice, Poland
| | - Rosline Hassan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
17
|
Olson WJ, Jakic B, Hermann‐Kleiter N. Regulation of the germinal center response by nuclear receptors and implications for autoimmune diseases. FEBS J 2020; 287:2866-2890. [PMID: 32246891 PMCID: PMC7497069 DOI: 10.1111/febs.15312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/15/2020] [Accepted: 03/26/2020] [Indexed: 01/09/2023]
Abstract
The immune system plays an essential role in protecting the host from infectious diseases and cancer. Notably, B and T lymphocytes from the adaptive arm of the immune system can co-operate to form long-lived antibody responses and are therefore the main target in vaccination approaches. Nevertheless, protective immune responses must be tightly regulated to avoid hyper-responsiveness and responses against self that can result in autoimmunity. Nuclear receptors (NRs) are perfectly adapted to rapidly alter transcriptional cellular responses to altered environmental settings. Their functional role is associated with both immune deficiencies and autoimmunity. Despite extensive linking of nuclear receptor function with specific CD4 T helper subsets, research on the functional roles and mechanisms of specific NRs in CD4 follicular T helper cells (Tfh) and germinal center (GC) B cells during the germinal center reaction is just emerging. We review recent advances in our understanding of NR regulation in specific cell types of the GC response and discuss their implications for autoimmune diseases such as systemic lupus erythematosus (SLE).
Collapse
Affiliation(s)
- William J. Olson
- Translational Cell GeneticsDepartment of Pharmacology and GeneticsMedical University of InnsbruckAustria
| | - Bojana Jakic
- Translational Cell GeneticsDepartment of Pharmacology and GeneticsMedical University of InnsbruckAustria
- Department of Immunology, Genetics and PathologyUppsala UniversitySweden
| | - Natascha Hermann‐Kleiter
- Translational Cell GeneticsDepartment of Pharmacology and GeneticsMedical University of InnsbruckAustria
| |
Collapse
|
18
|
Yao G, Qi J, Liang J, Shi B, Chen W, Li W, Tang X, Wang D, Lu L, Chen W, Shi S, Hou Y, Sun L. Mesenchymal stem cell transplantation alleviates experimental Sjögren's syndrome through IFN-β/IL-27 signaling axis. Am J Cancer Res 2019; 9:8253-8265. [PMID: 31754394 PMCID: PMC6857067 DOI: 10.7150/thno.37351] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/01/2019] [Indexed: 12/19/2022] Open
Abstract
Rationale: Although mesenchymal stem cell (MSC) transplantation has been proved to be an effective therapeutic approach to treat experimental Sjögren's syndrome (SS), the detailed underlying mechanisms remains unknown. IL-27 has diverse influences on the regulation of T cell differentiation and was involved in SS through modulating immune response. Here we aimed to explore whether IL-27-mediated regulation of immune cells was responsible for the beneficial effects of MSC transplantation on SS. Methods: The SS-like symptoms were evaluated in IL-27 deficient and recombinant IL-27-treated NOD mice. The MSCs were infused into NOD mice via the tail vein. The histological features of submandibular glands, saliva flow rate and serum IL-27 were examined. The effects of MSCs on the IL-27 production and Th17/Treg cell in SS patients and mice in vitro and in vivo were determined for the mechanistic study. Results: This study showed that SS patients had decreased IL-27 level and increased ratio of Th17/Treg cells. Consistently, exacerbated SS-like symptoms were observed in IL-27 deficient NOD mice, along with increased ratio of Th17/Treg cells. Importantly, MSC transplantation alleviated SS-like symptoms by elevating the level of IL-27 to restore Th17/Treg balance in NOD mice. Mechanistically, MSC-secreted interferon-β (IFN-β) promote dendritic cells to produce IL-27. Conclusions: Thus, we have revealed a previously unrecognized function of MSC-mediated IL-27 production by DCs in suppressing SS-like syndrome, which provided evidences for clinical application of MSC in patients with SS.
Collapse
|
19
|
Zhang Q, Yin X, Wang H, Wu X, Li X, Li Y, Zhang X, Fu C, Li H, Qiu Y. Fecal Metabolomics and Potential Biomarkers for Systemic Lupus Erythematosus. Front Immunol 2019; 10:976. [PMID: 31130958 PMCID: PMC6509220 DOI: 10.3389/fimmu.2019.00976] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/16/2019] [Indexed: 01/03/2023] Open
Abstract
The role of metabolomics in autoimmune diseases has been a rapidly expanding area in researches over the last decade, while its pathophysiologic impact on systemic lupus erythematosus (SLE) remains poorly elucidated. In this study, we analyzed the metabolic profiling of fecal samples from SLE patients and healthy controls based on ultra-high-performance liquid chromatography equipped with mass spectrometry for exploring the potential biomarkers of SLE. The results showed that 23 differential metabolites and 5 perturbed pathways were identified between the two groups, including aminoacyl-tRNA biosynthesis, thiamine metabolism, nitrogen metabolism, tryptophan metabolism, and cyanoamino acid metabolism. In addition, logistic regression and ROC analysis were used to establish a diagnostic model for distinguishing SLE patients from healthy controls. The combined model of fecal PG 27:2 and proline achieved an area under the ROC curve of 0.846, and had a good diagnostic efficacy. In the present study, we analyzed the correlations between fecal metabolic perturbations and SLE pathogenesis. In summary, we firstly illustrate the comprehensive metabolic profiles of feces in SLE patients, suggesting that the fecal metabolites could be used as the potential non-invasive biomarkers for SLE.
Collapse
Affiliation(s)
- Qiong Zhang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaofeng Yin
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haifang Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xing Wu
- Longsee Biomedical Corporation, Guangzhou, China
| | - Xin Li
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yao Li
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaohe Zhang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chen Fu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haixia Li
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yurong Qiu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Huayin Medical Laboratory Center Co., Ltd., Guangzhou, China
| |
Collapse
|
20
|
Leonard MM, Bai Y, Serena G, Nickerson KP, Camhi S, Sturgeon C, Yan S, Fiorentino MR, Katz A, Nath B, Richter J, Sleeman M, Gurer C, Fasano A. RNA sequencing of intestinal mucosa reveals novel pathways functionally linked to celiac disease pathogenesis. PLoS One 2019; 14:e0215132. [PMID: 30998704 PMCID: PMC6472737 DOI: 10.1371/journal.pone.0215132] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 03/27/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND & AIMS The early steps in the pathophysiology of celiac disease (CD) leading to loss of tolerance to gluten are poorly described. Our aim was to use RNA sequencing of duodenal biopsies in patients with active CD, CD in remission, and non-CD controls to gain insight into CD pathophysiology, identify additional genetic signatures linked to CD, and possibly uncover targets for future therapeutic agents. METHODS We performed whole transcriptome shotgun sequencing of intestinal biopsies in subjects with active and remission CD and non-CD controls. We also performed functional pathway analysis of differentially expressed genes to identify statistically significant pathways that are up or down regulated in subjects with active CD compared to remission CD. RESULTS We identified the upregulation of novel genes including IL12R, ITGAM and IGSF4 involved in the immune response machinery and cell adhesion process in the mucosa of subjects with active CD compared to those in remission. We identified a unique signature of genes, related to innate immunity, perturbed exclusively in CD irrespective of disease status. Finally, we highlight novel pathways of interest that may contribute to the early steps of CD pathogenesis and its comorbidities such as the spliceosome, pathways related to the innate immune response, and pathways related to autoimmunity. CONCLUSIONS Our study confirmed previous findings based on GWAS and immunological studies pertinent to CD pathogenesis and describes novel genes and pathways that with further validation may be found to contribute to the early steps in the pathogenesis of CD, ongoing inflammation, and comorbidities associated with CD.
Collapse
Affiliation(s)
- Maureen M. Leonard
- Mass General Hospital for Children and Division of Pediatric Gastroenterology and Nutrition, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Celiac Research and Treatment, Mucosal Immunology and Biology Research Center, Boston, Massachusetts, United States of America
- Celiac Research Program, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yu Bai
- Regeneron Pharmaceuticals, Tarrytown, New York, United States of America
| | - Gloria Serena
- Center for Celiac Research and Treatment, Mucosal Immunology and Biology Research Center, Boston, Massachusetts, United States of America
- Celiac Research Program, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kourtney P. Nickerson
- Center for Celiac Research and Treatment, Mucosal Immunology and Biology Research Center, Boston, Massachusetts, United States of America
| | - Stephanie Camhi
- Center for Celiac Research and Treatment, Mucosal Immunology and Biology Research Center, Boston, Massachusetts, United States of America
| | - Craig Sturgeon
- Graduate Program in Life Sciences, University of Maryland, Baltimore, Maryland, United States of America
| | - Shu Yan
- Center for Celiac Research and Treatment, Mucosal Immunology and Biology Research Center, Boston, Massachusetts, United States of America
| | - Maria R. Fiorentino
- Center for Celiac Research and Treatment, Mucosal Immunology and Biology Research Center, Boston, Massachusetts, United States of America
| | - Aubrey Katz
- Mass General Hospital for Children and Division of Pediatric Gastroenterology and Nutrition, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Barbara Nath
- Department of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - James Richter
- Department of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Matthew Sleeman
- Regeneron Pharmaceuticals, Tarrytown, New York, United States of America
| | - Cagan Gurer
- Regeneron Pharmaceuticals, Tarrytown, New York, United States of America
| | - Alessio Fasano
- Mass General Hospital for Children and Division of Pediatric Gastroenterology and Nutrition, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Celiac Research and Treatment, Mucosal Immunology and Biology Research Center, Boston, Massachusetts, United States of America
- Celiac Research Program, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
21
|
Li W, Deng C, Yang H, Wang G. The Regulatory T Cell in Active Systemic Lupus Erythematosus Patients: A Systemic Review and Meta-Analysis. Front Immunol 2019; 10:159. [PMID: 30833946 PMCID: PMC6387904 DOI: 10.3389/fimmu.2019.00159] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/17/2019] [Indexed: 12/29/2022] Open
Abstract
Background: Regulatory T cells (Tregs) researches in systemic lupus erythematosus (SLE) have floundered over the years, reports on the numbers and function of Tregs in SLE present quite contradictory results. We therefore conducted a meta-analysis to verify the changes of Tregs in active SLE. Methods: We systematically searched PubMed, Embase, and ISI web of knowledge databases for eligible articles. In total, 628 active SLE patients and 601 controls from 18 studies were included. Due to a high degree of heterogeneity, a random effects model was used to assess the mean differences in Treg percentages, absolute numbers, and suppression capacities of Tregs between active SLE and controls. Further, subgroup analysis was performed to identify potential sources of heterogeneity. Results: The pooled percentages of Tregs in active SLE patients were found to be lower than those in controls (−0.864 ± 0.308, p = 0.005), with great heterogeneity (I2 = 95.01). The discrepancy of published results might result from the following differences among studies: gating strategies for Tregs, diagnostic criteria for SLE, and thresholds of SLEDAI chosen to differentiate between active and inactive SLE. In active SLE, Tregs gated based on CD25 alone showed lower pooled frequency than those gated by Foxp3+ or CD127low/∅. The percentages of Tregs in active SLE was significantly lower than that in controls when the enrolled SLE patients were diagnosed according to the 1997 modified criteria, whereas they were comparable to controls when diagnosed by the 1982 criteria; the higher threshold of SLEDAI score used to define active SLE tended to achieve a lower percentage of Tregs. The pooled absolute numbers of Tregs in active SLE were significantly decreased compared to those in controls (−1.328 ± 0.374, p < 0.001), but seemed to be unaffected by gating strategies. Suppression capacities of Tregs from active SLE patients showed no abnormalities based on the limited pooled data. Longitudinal monitoring of active SLE showed a significant decrease in Treg percentage at remission. Conclusions: This study implies that loss of Tregs may play a role in the pathogenesis of active SLE and help clarify contradictory Treg results in SLE.
Collapse
Affiliation(s)
- Wenli Li
- Department of Rheumatology, China-Japan Friendship Hospital, Beijing, China
| | - Chuiwen Deng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hanbo Yang
- Department of Rheumatology, China-Japan Friendship Hospital, Beijing, China
| | - Guochun Wang
- Department of Rheumatology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
22
|
Zhu Y, Huang Y, Ming B, Wu X, Chen Y, Dong L. Regulatory T-cell levels in systemic lupus erythematosus patients: a meta-analysis. Lupus 2019; 28:445-454. [PMID: 30744525 DOI: 10.1177/0961203319828530] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background The contribution of regulatory T-cells (Tregs) to systemic lupus erythematosus (SLE) pathogenesis remains a matter of debate. The objective of this study was to quantify the association between peripheral blood Tregs and disease status in SLE patients. Method EMBASE and PubMed databases were searched using ‘systemic lupus erythematosus’ and ‘regulatory T-cells’ as relevant key terms. A meta-analysis of studies that examined the proportion of Tregs among peripheral blood mononuclear cells (PBMCs) and CD4+T-cells was performed using Stata software. Subgroup analysis was performed based on ethnic groups and Treg definition markers. Results The Treg/PBMC and Treg/CD4+T-cell ratios were significantly lower in SLE patients than in healthy controls (HCs), whereas patients with active and inactive SLE showed no difference in these indicators. A subgroup analysis indicated that Asian SLE patients had a substantially lower proportion of Tregs/PBMCs than HCs, but this difference was not seen for white and Latin American SLE patients. Patients defined by CD4+CD25+Foxp3+, CD4+CD25+ and CD4+Foxp3+ had a much lower Treg/PBMC ratio compared with HCs. Ethnic groups and choice of Treg definition markers had no influence on the proportion of Tregs/CD4+T-cells. Conclusion The proportion of Tregs among both PBMCs and CD4+T-cells was significantly decreased in SLE patients. Ethnic group and Treg definition markers may influence the proportion of Tregs among PBMCs. Further study of the correlation between SLE disease activity and the proportion of Tregs in peripheral blood is needed to determine the physiological role of this association.
Collapse
Affiliation(s)
- Y Zhu
- Department of Rheumatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Y Huang
- Department of Rheumatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - B Ming
- Department of Rheumatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - X Wu
- Department of Rheumatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Y Chen
- Department of Rheumatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - L Dong
- Department of Rheumatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
23
|
Zai K, Ishihara N, Oguchi H, Hirota M, Kishimura A, Mori T, Hase K, Katayama Y. Regulation of inflammatory response of macrophages and induction of regulatory T cells by using retinoic acid-loaded nanostructured lipid carrier. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:1-11. [PMID: 29943678 DOI: 10.1080/09205063.2018.1493671] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Immunomodulatory function of all-trans retinoic acid (ATRA) has been gathering much attention for the therapy of autoimmune diseases. ATRA is a chemically unstable molecule which requires proper formulation for targeted delivery. Here we examined nanostructured lipid carrier (NLC) for the formulation of ATRA. NLC is a representative nanoparticle formulation especially suited for oral delivery. We established the preparation procedures of ATRA-containing NLC (NLC-RA) which minimizes the degradation of ATRA during the preparation process. NLC-RA thus obtained was taken up by macrophages and induced anti-inflammatory response via suppressing NF-κB signaling as well as via enhancing the production of anti-inflammatory cytokines. Moreover, NLC-RA enhanced differentiation of naïve T cells to regulatory T cells in the co-culture system with dendritic cells. These results suggest that NLC-RA is a promising alternative therapy for the autoimmune diseases especially intestinal bowel disease.
Collapse
Affiliation(s)
- Khadijah Zai
- a Department of Applied Chemistry, Faculty of Engineering , Kyushu University , Fukuoka , Japan
| | - Narumi Ishihara
- b Division of Biochemistry, Faculty of Pharmacy , Keio University , Tokyo , Japan
| | - Hiroyuki Oguchi
- b Division of Biochemistry, Faculty of Pharmacy , Keio University , Tokyo , Japan
| | - Masato Hirota
- b Division of Biochemistry, Faculty of Pharmacy , Keio University , Tokyo , Japan
| | - Akihiro Kishimura
- a Department of Applied Chemistry, Faculty of Engineering , Kyushu University , Fukuoka , Japan.,c Graduate School of Systems Life Sciences , Kyushu University , Fukuoka , Japan.,d Center for Future Chemistry, Kyushu University , Fukuoka , Japan.,e International Research Center for Molecular Systems, Kyushu University , Fukuoka , Japan
| | - Takeshi Mori
- a Department of Applied Chemistry, Faculty of Engineering , Kyushu University , Fukuoka , Japan.,c Graduate School of Systems Life Sciences , Kyushu University , Fukuoka , Japan.,d Center for Future Chemistry, Kyushu University , Fukuoka , Japan
| | - Koji Hase
- b Division of Biochemistry, Faculty of Pharmacy , Keio University , Tokyo , Japan.,f Division of Mucosal Barrierology , International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science the University of Tokyo , Tokyo Japan
| | - Yoshiki Katayama
- a Department of Applied Chemistry, Faculty of Engineering , Kyushu University , Fukuoka , Japan.,c Graduate School of Systems Life Sciences , Kyushu University , Fukuoka , Japan.,d Center for Future Chemistry, Kyushu University , Fukuoka , Japan.,e International Research Center for Molecular Systems, Kyushu University , Fukuoka , Japan.,g Centre for Advanced Medicine Innovation, Kyushu University , Fukuoka , Japan.,h Department of Biomedical Engineering , Chung Yuan Christian University , Chung Li , ROC , Taiwan
| |
Collapse
|
24
|
Vitamin A supplementation decreases disease activity index in patients with ulcerative colitis: A randomized controlled clinical trial. Complement Ther Med 2018; 41:215-219. [DOI: 10.1016/j.ctim.2018.09.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 09/26/2018] [Accepted: 09/26/2018] [Indexed: 01/12/2023] Open
|
25
|
Chen M, Chen X, Wan Q. Altered frequency of Th17 and Treg cells in new-onset systemic lupus erythematosus patients. Eur J Clin Invest 2018; 48:e13012. [PMID: 30079446 DOI: 10.1111/eci.13012] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 07/02/2018] [Accepted: 08/02/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND T helper 17 (Th17) and regulatory T (Treg) cells play an important role in pathogenesis of systemic lupus erythematosus (SLE). Their imbalance was reported in treated SLE patients, while very little is known about the relationship between Th17 and Treg cells in new-onset untreated SLE patients. AIM To assess the role of Th17/Treg cells in the pathogenesis of new-onset SLE. MATERIALS AND METHODS Thirty-nine new-onset SLE patients and 33 age-matched healthy adults were enrolled. We analysed Th17 and Treg cells in different level, including their frequencies in peripheral blood mononuclear cell, the expression of interleukin-17 A (IL-17A) and forkhead box P3 (FoxP3) proteins, the expression of retinoid-related orphan nuclear receptor γt (RORγt) and FoxP3 genes and plasma level of IL-17A. RESULTS The frequency of Th17 and Treg cells, the expression of IL-17A among Th17 cell, the plasma level of IL-17A, the expression of RORγt and FoxP3 genes were all significantly higher in SLE patients. Th17 cells were negatively correlated with Treg cells. We also found that plasma level of IL-17A was positively correlated with SLE disease activities index (SLEDAI) scores and an equation among the level of C3, IgA, IL-17A and SLEDAI scores. CONCLUSIONS Results indicate that Th17 and Treg cells take roles in the pathogenesis of SLE. Th17 cells might suppress the differentiation of Treg cells, and feedback effects might exist between them during SLE pathogenesis. The measure of plasma level of IL-17A may be useful for evaluation of disease activity in new-onset SLE patients.
Collapse
Affiliation(s)
- Min Chen
- Department of Rheumatology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Xiaoqi Chen
- Department of Rheumatology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Qianqian Wan
- Department of Rheumatology, Zhongnan Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
26
|
The Proportion of Regulatory T Cells in Patients with Systemic Lupus Erythematosus: A Meta-Analysis. J Immunol Res 2018; 2018:7103219. [PMID: 30255107 PMCID: PMC6140280 DOI: 10.1155/2018/7103219] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/21/2018] [Accepted: 07/31/2018] [Indexed: 12/04/2022] Open
Abstract
Background Accumulating evidence indicates that a deficiency in or dysfunction of regulatory T cells (Tregs) is involved in the pathogenesis of systemic lupus erythematosus (SLE). As different markers have been used to identify Tregs, recent studies on the proportions of Tregs in SLE patients have generated controversial results. To clarify the status of Tregs in such patients, we determined the proportions of Tregs present during development of the disease, with special consideration of controversial cellular markers. Methods We identified studies reporting the proportions of Tregs in SLE patients by searching relevant databases through March 2018. Using the PRISMA guidelines, we performed a random effects meta-analysis of the frequencies of Tregs defined in different ways. Inconsistency was evaluated using the I-squared index (I2), and publication bias was assessed by examining funnel plot asymmetry using the Begger and Egger tests. Results Forty-four studies involving 2779 participants were included in the meta-analysis. No significant difference in the proportions of Tregs was evident between 1772 patients and 1007 controls [−0.191, (−0.552, 0.362), p = 0.613, I2 = 95.7%]. We next conducted subanalyses based on individual definitions of Tregs. When the Treg definition included “FOXP3-positive” cells, the proportions did not differ between SLE patients and controls [−0.042, (−0.548, 0.632), p = 0.889, I2 = 96.6%]; this was the case when Tregs were defined as either “CD25low/−FOXP3+” or “CD25high/+FOXP3+” cells. SLE patients had lower proportions of Tregs that were “single CD25-positive” [−1.428, (−1.982, −0.873), p < 0.001, I2 = 93.4%] and “CD127-negative” [−1.093, (−2.002, −0.183), p = 0.018, I2 = 92.6%] compared to controls. Tregs defined as “CD25bright,” “CD25bright/highCD127low/−,” and “CD25highCD127low/−FOXP3+” did not differ in proportion between SLE patients and controls. Conclusions The Treg proportions varied by the cellular identification method used. The proportions of Tregs that were accurately identified and functionally validated fell among patients with SLE. Stricter definitions of Tregs are necessary when evaluating the status of such patients.
Collapse
|
27
|
Abdelhamid L, Luo XM. Retinoic Acid, Leaky Gut, and Autoimmune Diseases. Nutrients 2018; 10:E1016. [PMID: 30081517 PMCID: PMC6115935 DOI: 10.3390/nu10081016] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/25/2018] [Accepted: 07/25/2018] [Indexed: 12/19/2022] Open
Abstract
A leaky gut has been observed in a number of autoimmune diseases including type 1 diabetes, multiple sclerosis, inflammatory bowel disease, and systemic lupus erythematosus. Previous studies from our laboratory have shown that lupus mice also bear a leaky gut and that the intestinal barrier function can be enhanced by gut colonization of probiotics such as Lactobacillus spp. Retinoic acid (RA) can increase the relative abundance of Lactobacillus spp. in the gut. Interestingly, RA has also been shown to strengthen the barrier function of epithelial cells in vitro and in the absence of probiotic bacteria. These reports bring up an interesting question of whether RA exerts protective effects on the intestinal barrier directly or through regulating the microbiota colonization. In this review, we will discuss the roles of RA in immunomodulation, recent literature on the involvement of a leaky gut in different autoimmune diseases, and how RA shapes the outcomes of these diseases.
Collapse
Affiliation(s)
- Leila Abdelhamid
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Xin M Luo
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
28
|
Vincze K, Kolonics-Farkas A, Bohacs A, Müller V. Peripheral CD4+ T-cell changes in connective tissue diseases. Cytokine Growth Factor Rev 2018; 43:16-24. [PMID: 29853252 DOI: 10.1016/j.cytogfr.2018.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/10/2018] [Accepted: 05/16/2018] [Indexed: 10/16/2022]
Abstract
Connective tissue diseases (CTDs) are all characterized by changes in the adaptive immune system. In the last few decades several CD4 + T lymphocytes and their products have been associated with the development, progression, organ involvement, or therapeutic response of different CTDs. The T helper (Th) T-cell subsets are easy to measure in the peripheral blood, however changes are difficult to interpret. This review summarizes data about Th1/Th2/Th17 and regulatory T-cell (Treg) changes in the most common CTDs. Concordance and divergence of data might help in the better understanding of the common processes of these different systemic autoimmune disorders and might give future clues for differences in disease behavior and treatment response.
Collapse
Affiliation(s)
- Krisztina Vincze
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | | | - Aniko Bohacs
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Veronika Müller
- Department of Pulmonology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
29
|
Qiao YC, Pan YH, Ling W, Tian F, Chen YL, Zhang XX, Zhao HL. The Yin and Yang of regulatory T cell and therapy progress in autoimmune disease. Autoimmun Rev 2017; 16:1058-1070. [PMID: 28778708 DOI: 10.1016/j.autrev.2017.08.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 07/13/2017] [Indexed: 12/13/2022]
Abstract
Autoimmune diseases (ADs) are primarily mediated by the failure of immunological self-tolerance. Regulatory T cells (Tregs) play a critical role in the maintenance of induced tolerance to peripheral self-antigens, suppressing immoderate immune responses deleterious to the host and preventing the AD development. Tregs and suppressive cytokines are homeostatic with effective cells plus pro-inflammatory cytokines in healthy hosts which is defined as "Yang", and ADs are usually induced in case of disturbed homeostasis, which is defined as "Yin". Indeed, the Yin-Yang balance could explain the pathogenic mechanism of ADs. Tregs not only suppress CD4+ and CD8+ T cells but also can suppress other immune cells such as B cell, natural killer cell, DC and other antigen-presenting cell through cell-cell contact or secreting suppressive cytokines. In Tregs, Foxp3 as an intracellular protein displays a more specific marker than currently used other cell-surface markers (such as CD25, CD40L, CTLA-4, ICOS and GITR) in defining the naturally occurring CD4+ Tregs. Though the precise mechanism for the opposite effects of Tregs has not been fully elucidated, the importance of Tregs in ADs has been proved to be associated with kinds of immunocytes. At present, the surface marker, frequency and function of Tregs existed conflicts and hence the Tregs therapy in ADs faces challenges. Though some success has been achieved with Tregs therapy in few ADs both in murine models and humans, more effort should paid to meet the future challenges. This review summarizes the progress and discusses the phenotypic, numeric and functional abnormalities of Tregs and is the first time to systematically review the progress of Tregs therapy in kinds of ADs.
Collapse
Affiliation(s)
- Yong-Chao Qiao
- Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin 541004, China; Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Yan-Hong Pan
- Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin 541004, China; Department of Immunology, Faculty of Basic Medicine, Guilin Medical University, Guilin 541004, China
| | - Wei Ling
- Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin 541004, China
| | - Fang Tian
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Yin-Ling Chen
- Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin 541004, China
| | - Xiao-Xi Zhang
- Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin 541004, China
| | - Hai-Lu Zhao
- Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin 541004, China; Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China; Department of Immunology, Faculty of Basic Medicine, Guilin Medical University, Guilin 541004, China.
| |
Collapse
|
30
|
Tselios K, Sarantopoulos A, Gkougkourelas I, Boura P. T Regulatory Cells in Systemic Lupus Erythematosus: Current Knowledge and Future Prospects. Lupus 2017. [DOI: 10.5772/intechopen.68479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
31
|
Pereira LMS, Gomes STM, Ishak R, Vallinoto ACR. Regulatory T Cell and Forkhead Box Protein 3 as Modulators of Immune Homeostasis. Front Immunol 2017; 8:605. [PMID: 28603524 PMCID: PMC5445144 DOI: 10.3389/fimmu.2017.00605] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 05/08/2017] [Indexed: 12/15/2022] Open
Abstract
The transcription factor forkhead box protein 3 (FOXP3) is an essential molecular marker of regulatory T cell (Treg) development in different microenvironments. Tregs are cells specialized in the suppression of inadequate immune responses and the maintenance of homeostatic tolerance. Studies have addressed and elucidated the role played by FOXP3 and Treg in countless autoimmune and infectious diseases as well as in more specific cases, such as cancer. Within this context, the present article reviews aspects of the immunoregulatory profile of FOXP3 and Treg in the management of immune homeostasis, including issues relating to pathology as well as immune tolerance.
Collapse
Affiliation(s)
- Leonn Mendes Soares Pereira
- Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil.,Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Samara Tatielle Monteiro Gomes
- Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil.,Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Ricardo Ishak
- Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | | |
Collapse
|
32
|
Abstract
AbstractSystemic lupus erythematosus (SLE) is a chronic inflammatory and autoimmune disease characterised by multiple organ involvement and a large number of complications. SLE management remains complicated owing to the biological heterogeneity between patients and the lack of safe and specific targeted therapies. There is evidence that dietary factors can contribute to the geoepidemiology of autoimmune diseases such as SLE. Thus, diet therapy could be a promising approach in SLE owing to both its potential prophylactic effects, without the side effects of classical pharmacology, and its contribution to reducing co-morbidities and improving quality of life in patients with SLE. However, the question arises as to whether nutrients could ameliorate or exacerbate SLE and how they could modulate inflammation and immune function at a molecular level. The present review summarises preclinical and clinical experiences to provide the reader with an update of the positive and negative aspects of macro- and micronutrients and other nutritional factors, including dietary phenols, on SLE, focusing on the mechanisms of action involved.
Collapse
|
33
|
Erkelens MN, Mebius RE. Retinoic Acid and Immune Homeostasis: A Balancing Act. Trends Immunol 2017; 38:168-180. [PMID: 28094101 DOI: 10.1016/j.it.2016.12.006] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/14/2016] [Accepted: 12/17/2016] [Indexed: 12/20/2022]
Abstract
In the immune system, the vitamin A metabolite retinoic acid (RA) is known for its role in inducing gut-homing molecules in T and B cells, inducing regulatory T cells (Tregs), and promoting tolerance. However, it was suggested that RA can have a broad spectrum of effector functions depending on the local microenvironment. Under specific conditions, RA can also promote an inflammatory environment. We discuss the dual role of RA in immune responses and how this might be regulated. Furthermore, we focus on the role of RA in autoimmune diseases and whether RA might be used as a therapeutic agent.
Collapse
Affiliation(s)
- Martje N Erkelens
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Reina E Mebius
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|