1
|
Haowen Y, Yuhan Y, Yuanyuan L, Xibin M, Yuxin W, Lingyun X, Dong Y, Min L, Genshen Z, Minna W. Inhibitor of differentiation-2 protein ameliorates complete Freund's adjuvant-induced arthritis and inhibits STAT3 phosphorylation in the synovium. Immunol Lett 2025; 275:107008. [PMID: 40194667 DOI: 10.1016/j.imlet.2025.107008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/19/2025] [Accepted: 03/31/2025] [Indexed: 04/09/2025]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease causing joint inflammation, dysfunction, and deformity, along with systemic inflammatory manifestations. Inhibitor of differentiation-2 (ID2) is a transcription factor containing a helix-loop-helix (HLH) structure. Studies suggest that ID2 regulates innate and adaptive immunity and inhibits the differentiation of osteoclasts. However, the effects and underlying molecular mechanisms of ID2 on rheumatoid arthritis (RA) remain unclear. In the present study, we found that exogenous supplementation of human recombinant ID2 (hID2) protein significantly reduced paw swelling and arthritis index scores in adjuvant-induced arthritis (AIA) rats, and improved ankle joint pathology. Analysis of pro-inflammatory factor levels in peripheral blood mononuclear cells and synovial tissues indicated that hID2 attenuated inflammatory responses in AIA rats. Furthermore, RNA sequencing demonstrated that hID2 down-regulated the JAK-STAT pathway, and the phosphorylation of its key molecule, Signal Transducer and Activator of Transcription 3 (STAT3), was inhibited in synovial tissues. Additionally, the expression of chemokine-related genes was noticeably down-regulated in synovial tissues, though further investigation is needed to understand the underlying mechanisms. Overall, these findings suggest that hID2 effectively attenuated the inflammatory response and joint destruction in AIA rats, highlighting the potential of hID2 as a therapeutic agent for the treatment of RA.
Collapse
Affiliation(s)
- Yang Haowen
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Yao Yuhan
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Liang Yuanyuan
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Ma Xibin
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Wang Yuxin
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Xu Lingyun
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Yan Dong
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Li Min
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Zhong Genshen
- College of Biological and Chemical Engineering, Changsha University, Changsha, 410022, Hunan, China.
| | - Wu Minna
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China; College of Biological and Chemical Engineering, Changsha University, Changsha, 410022, Hunan, China.
| |
Collapse
|
2
|
Hellman U, Lejon K, Do L, Geijer M, Baraliakos X, Witte T, Forsblad-d'Elia H. Immunological biomarkers in patients with radiographic axial spondyloarthritis, an exploratory longitudinal Swedish study. Mod Rheumatol 2024; 35:134-143. [PMID: 38706167 DOI: 10.1093/mr/roae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/09/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024]
Abstract
OBJECTIVES There is a need for more specific biomarkers to diagnose and predict disease course in patients with axial spondyloarthritis (axSpA). This study aimed to study immunological plasma biomarkers at different time-points in radiographic (r)-axSpA patients overall and stratified by sex and compare these biomarker patterns in r-axSpA patients concerning disease phenotypes and disease activity. METHODS Plasma samples were analysed from r-axSpA patients at and prior (Pre-Backbone) inclusion in the Backbone study. Interferon gamma, interleukin-10, -17A, -17F, -22, -23, -6, MCP-1, TNF-α, VEGF-A, MIF, IgA anti-CD74, zonulin, ESR, hsCRP, white blood cell count, and blood lipids were measured. RESULTS Biomarker pattern discriminated significantly between r-axSpA patients in Backbone and Pre-Backbone compared with controls. When stratifying by sex, it was possible to discriminate between male and female r-axSpA patients in Backbone vs controls and between male r-axSpA patients in pre-Backbone and controls. In Backbone, markers with high discriminative capacity were MIF, IgA anti-CD74, and MCP-1. In Pre-Backbone, IL-6, TNF-α, MIF, triglycerides, cholesterol, IL-10, and zonulin displayed high discriminative capacity. CONCLUSION Based on their temporal pattern and mutual relationship, we suggest studying MIF, IgA anti-CD74, and MCP-1 in depth, at more time points, to further elucidate disease-driving mechanisms in this complex disease.
Collapse
Affiliation(s)
- Urban Hellman
- Department of Public Health and Clinical Medicine, Rheumatology, Umeå University, Umeå, Sweden
- Department of Clinical Microbiology, Infection and Immunology, Umeå University, Umeå, Sweden
| | - Kristina Lejon
- Department of Clinical Microbiology, Infection and Immunology, Umeå University, Umeå, Sweden
| | - Lan Do
- Department of Public Health and Clinical Medicine, Rheumatology, Umeå University, Umeå, Sweden
| | - Mats Geijer
- Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Radiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
- Faculty of Medicine, Lund University, Lund, Sweden
| | | | - Torsten Witte
- Department of Rheumatology and Clinical Immunology, Medical School Hannover, Hannover, Germany
| | - Helena Forsblad-d'Elia
- Department of Public Health and Clinical Medicine, Rheumatology, Umeå University, Umeå, Sweden
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
3
|
Mohammad Piri S, Amin Habibi M, Shool S, Khazaeli Najafabadi M, Ahmadpour S, Alemi F, Aria Nejadghaderi S, Shokri P, Abdi M, Asghari N, Amir Asef-Agah S, Tavakolpour S. Role of T follicular helper cells in autoimmune rheumatic Diseases: A systematic review on immunopathogenesis and response to treatment. Hum Immunol 2024; 85:110838. [PMID: 38970880 DOI: 10.1016/j.humimm.2024.110838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/09/2024] [Accepted: 06/28/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND T follicular helper (Tfh) cells are a subdivision of T helper cells involved in antigen-specific B cell immunity. Tfh cells play an essential role in the interaction of T cells/B cells in the germinal centers (GC), and dysregulation of Tfh actions can offer pathogenic autoantibody formation and lead to the development of autoimmune diseases. This study seeks to evaluate changes in Tfh frequency and its related cytokines in autoimmune disease, its association with disease phase, severity, prognosis, and the effect of immunosuppressive treatment on the Tfh population. METHOD The study adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 Statement. Electronic databases, including PubMed, Scopus, Web of Science, and Embase, were systematically searched for potentially eligible studies up to January 1, 2024. RESULTS We identified 4998 articles in the initial search, from which 1686 similar titles were removed. A total of 3312 articles were initially screened, and 3051 articles were excluded by title/abstract screening. A total of 261 studies were considered for full-text assessment, and 205 articles were excluded by reason. Finally, a total of 56 studies were included in our review. CONCLUSION The population of Tfh cells is generally higher in autoimmune diseases versus Health control. Moreover, the number of Tfh cells is associated with the disease severity and can be considered for determining the prognosis of studies. Also, peripheral blood circulating Tfh (cTfh) cells are an available sample that can be used as an indicator for diagnosing diseases.
Collapse
Affiliation(s)
- Seyed Mohammad Piri
- Department of Pathology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Amin Habibi
- Department of Neurosurgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sina Shool
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | - Sajjad Ahmadpour
- Patient Safety Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Fakhroddin Alemi
- School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Seyed Aria Nejadghaderi
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Pourya Shokri
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohtaram Abdi
- Student Research Committe, Faculty of Medicine, North Khorasan University of Medical Sciences, Bonjnurd, Iran.
| | - Negin Asghari
- Student Research Committe, Faculty of Medicine, North Khorasan University of Medical Sciences, Bonjnurd, Iran.
| | - Seyed Amir Asef-Agah
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | |
Collapse
|
4
|
Lin X, Kang K, Chen P, Zeng Z, Li G, Xiong W, Yi M, Xiang B. Regulatory mechanisms of PD-1/PD-L1 in cancers. Mol Cancer 2024; 23:108. [PMID: 38762484 PMCID: PMC11102195 DOI: 10.1186/s12943-024-02023-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/10/2024] [Indexed: 05/20/2024] Open
Abstract
Immune evasion contributes to cancer growth and progression. Cancer cells have the ability to activate different immune checkpoint pathways that harbor immunosuppressive functions. The programmed death protein 1 (PD-1) and programmed cell death ligands (PD-Ls) are considered to be the major immune checkpoint molecules. The interaction of PD-1 and PD-L1 negatively regulates adaptive immune response mainly by inhibiting the activity of effector T cells while enhancing the function of immunosuppressive regulatory T cells (Tregs), largely contributing to the maintenance of immune homeostasis that prevents dysregulated immunity and harmful immune responses. However, cancer cells exploit the PD-1/PD-L1 axis to cause immune escape in cancer development and progression. Blockade of PD-1/PD-L1 by neutralizing antibodies restores T cells activity and enhances anti-tumor immunity, achieving remarkable success in cancer therapy. Therefore, the regulatory mechanisms of PD-1/PD-L1 in cancers have attracted an increasing attention. This article aims to provide a comprehensive review of the roles of the PD-1/PD-L1 signaling in human autoimmune diseases and cancers. We summarize all aspects of regulatory mechanisms underlying the expression and activity of PD-1 and PD-L1 in cancers, including genetic, epigenetic, post-transcriptional and post-translational regulatory mechanisms. In addition, we further summarize the progress in clinical research on the antitumor effects of targeting PD-1/PD-L1 antibodies alone and in combination with other therapeutic approaches, providing new strategies for finding new tumor markers and developing combined therapeutic approaches.
Collapse
Affiliation(s)
- Xin Lin
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Kuan Kang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Pan Chen
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Mei Yi
- Department of Dermotology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- FuRong Laboratory, Changsha, 410078, Hunan, China.
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China.
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
5
|
Zhang T, Dong S, Zhai Y, Naatz L, Zhou Z, Chen M. Diphtheria toxin-derived, anti-PD-1 immunotoxin, a potent and practical tool to selectively deplete PD-1 + cells. Protein Sci 2023; 32:e4741. [PMID: 37515422 PMCID: PMC10443333 DOI: 10.1002/pro.4741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 07/30/2023]
Abstract
Programmed death-1 (PD-1), an immune checkpoint receptor, is expressed on activated lymphocytes, macrophages, and some types of tumor cells. While PD-1+ cells have been implicated in outcomes of cancer immunity, autoimmunity, and chronic infections, the exact roles of these cells in various physiological and pathological processes remain elusive. Molecules that target and deplete PD-1+ cells would be instrumental in defining the roles unambiguously. Previously, an immunotoxin has been generated for the depletion of PD-1+ cells though its usage is impeded by its low production yield. Thus, a more practical molecular tool is desired to deplete PD-1+ cells and to examine functions of these cells. We designed and generated a novel anti-PD1 diphtheria immunotoxin, termed PD-1 DIT, targeting PD-1+ cells. PD-1 DIT is comprised of two single chain variable fragments (scFv) derived from an anti-PD-1 antibody, coupled with the catalytic and translocation domains of the diphtheria toxin. PD-1 DIT was produced using a yeast expression system that has been engineered to efficiently produce protein toxins. The yield of PD-1 DIT reached 1-2 mg/L culture, which is 10 times higher than the previously reported immunotoxin. Flow cytometry and confocal microscopy analyses confirmed that PD-1 DIT specifically binds to and enters PD-1+ cells. The binding avidities between PD-1 DIT and two PD-1+ cell lines are approximately 25 nM. Moreover, PD-1 DIT demonstrated potent cytotoxicity toward PD-1+ cells, with a half maximal effective concentration (EC50 ) value of 1 nM. In vivo experiments further showed that PD-1 DIT effectively depleted PD-1+ cells and enabled mice inoculated with PD-1+ tumor cells to survive throughout the study. Our findings using PD-1 DIT revealed the critical role of pancreatic PD-1+ T cells in the development of type-1 diabetes (T1D). Additionally, we observed that PD-1 DIT treatment ameliorated relapsing-remitting experimental autoimmune encephalomyelitis (RR-EAE), a mouse model of relapsing-remitting multiple sclerosis (RR-MS). Lastly, we did not observe significant hepatotoxicity in mice treated with PD-1 DIT, which had been reported for other immunotoxins derived from the diphtheria toxin. With its remarkable selective and potent cytotoxicity toward PD-1+ cells, coupled with its high production yield, PD-1 DIT emerges as a powerful biotechnological tool for elucidating the physiological roles of PD-1+ cells. Furthermore, the potential of PD-1 DIT to be developed into a novel therapeutic agent becomes evident.
Collapse
Affiliation(s)
- Tianxiao Zhang
- Department of Molecular PharmaceuticsUniversity of UtahSalt Lake CityUtahUSA
| | - Shuyun Dong
- Department of Molecular PharmaceuticsUniversity of UtahSalt Lake CityUtahUSA
| | - Yujia Zhai
- Department of Molecular PharmaceuticsUniversity of UtahSalt Lake CityUtahUSA
| | - Lauren Naatz
- Department of Molecular PharmaceuticsUniversity of UtahSalt Lake CityUtahUSA
| | - Zemin Zhou
- Department of PathologyUniversity of UtahSalt Lake CityUtahUSA
| | - Mingnan Chen
- Department of Molecular PharmaceuticsUniversity of UtahSalt Lake CityUtahUSA
| |
Collapse
|
6
|
Ansari MA, Nadeem A, Attia SM, Bakheet SA, Alasmari AF, Alomar HA, Al-Mazroua HA, Alhamed AS, Shahid M, Alqinyah M, Assiri MA, Al-Hamamah MA, Alassmrry YA, Ahmad SF. Rituximab exerts its anti-arthritic effects via inhibiting NF-κB/GM-CSF/iNOS signaling in B cells in a mouse model of collagen-induced arthritis. Heliyon 2023; 9:e16673. [PMID: 37274671 PMCID: PMC10238934 DOI: 10.1016/j.heliyon.2023.e16673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/06/2023] Open
Abstract
Rheumatoidarthritis (RA) is an autoimmune disease characterized by uncontrolled joint inflammation and damage to bone and cartilage. B cells are known to play a crucial role in the pathogenesis and development of arthritis. Previous studies have found that B cells may be a potential target for treating RA. Rituximab, a monoclonal antibody targeting B cells, has induced long-term clinical responses in RA. Collagen-induced arthritis (CIA) mouse model is a widely studied autoimmune model of RA. CIA mouse model was used to investigate the effect of rituximab on the RA severity in the mice. Following induction of CIA, animals were treated with rituximab (250 mg/kg/week) intraperitoneally on the days 28, 35, 42, 49, 56, and 63 after collagen induction. We investigated the effect of rituximab on NF-κB p65, IκBα, GM-CSF, MCP-1, iNOS, TNF-α, and IL-6 cells in splenic CD19+ and CD45R+ B cells using flow cytometry. We also assessed the effect of rituximab on NF-κB p65, GM-CSF, IκBα, MCP-1, iNOS, TNF-α, and IL-6 at mRNA levels using RT-PCR analyses of knee tissues. Rituximab treatment significantly decreased CD19+NF-κB p65+, CD45R+NF-κB p65+, CD19+GM-CSF+, CD45R+GM-CSF+, CD19+MCP-1+, CD45R+MCP-1+, CD19+TNF-α+, CD45R+TNF-α+, CD19+iNOS+, CD45R+iNOS+, CD19+IL-6+, and CD45R+IL-6+, and increased CD45R+IκBα+ in spleen cells of CIA mice. We further observed that rituximab treatment downregulated NF-κB p65, GM-CSF, MCP-1, iNOS, TNF-α, and IL-6, whereas it upregulated IκBα, mRNA level. All these findings suggest that rituximab may be a novel therapeutic target for the treatment of RA.
Collapse
Affiliation(s)
- Mushtaq A. Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M. Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A. Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah F. Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hatun A. Alomar
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Haneen A. Al-Mazroua
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah S. Alhamed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mudassar Shahid
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Alqinyah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed A. Assiri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed A. Al-Hamamah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yasseen A. Alassmrry
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
7
|
Peyronnel C, Totoson P, Martin H, Demougeot C. Relevance of circulating markers of endothelial activation for cardiovascular risk assessment in rheumatoid arthritis: a narrative review. Life Sci 2023; 314:121264. [PMID: 36470540 DOI: 10.1016/j.lfs.2022.121264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/22/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Rheumatoid arthritis (RA) is associated with excessive cardiovascular mortality secondary to premature atherosclerosis, in which endothelial activation (EA) plays a central role. EA is characterized by loss of vascular integrity, expression of leucocyte adhesion molecules, transition from antithrombotic to prothrombotic phenotype, cytokines production, shedding of membrane microparticles and recruitment of endothelial progenitor cells. As EA is an early event in atherogenesis, circulating markers of EA are putative markers of vascular pathology and cardiovascular (CV) risk. After a presentation of biology of EA, the present review analyzed the available data regarding changes in EA markers in RA in link with the vascular pathology and CV events, discussed their relevance as biomarkers of CV risk and proposed future directions.
Collapse
Affiliation(s)
- Célian Peyronnel
- PEPITE EA 4267, Université de Franche-Comté, F-25000 Besançon, France
| | - Perle Totoson
- PEPITE EA 4267, Université de Franche-Comté, F-25000 Besançon, France
| | - Hélène Martin
- PEPITE EA 4267, Université de Franche-Comté, F-25000 Besançon, France
| | - Céline Demougeot
- PEPITE EA 4267, Université de Franche-Comté, F-25000 Besançon, France.
| |
Collapse
|
8
|
Dei Zotti F, Moriconi C, Qiu A, Miller A, Hudson KE. Distinct CD4+ T cell signature in ANA-positive young adult patients. Front Immunol 2022; 13:972127. [PMCID: PMC9608560 DOI: 10.3389/fimmu.2022.972127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022] Open
Abstract
Failure of immune tolerance can lead to autoantibody production resulting in autoimmune diseases, a broad spectrum of organ-specific or systemic disorders. Immune tolerance mechanisms regulate autoreactive T and B cells, yet some lymphocytes escape and promote autoantibody production. CD4+ T cell dysregulation, characterized by decreased or impaired regulatory cells (Tregs) and/or accumulation of memory and effector T cells such as TH17, plays a crucial role in the pathogenesis of these diseases. Antinuclear antibody (ANAs) testing is used as a first step for the diagnosis of autoimmune disorders, although most ANA-positive individuals do not have nor will develop an autoimmune disease. Studying the differences of T cell compartment among healthy blood donors, ANA-negative patients and ANA-positive patients, in which loss of tolerance have not led to autoimmunity, may improve our understanding on how tolerance mechanisms fail. Herein, we report that ANA-positive patients exhibit a distinct distribution of T cell subsets: significantly reduced frequencies of recent thymic emigrants (RTE) and naïve T cells, and significantly increased frequencies of central memory T cells, TH2 and TH17 cells; modulations within the T cell compartment are most profound within the 18-40 year age range. Moreover, CD4+ T cells in ANA-positive patients are metabolically active, as determined by a significant increase in mTORC1 and mTORC2 signals, compared to ANA-negative patients and healthy blood donors. No significant impairment of Treg numbers or pro-inflammatory cytokine production was observed. These results identify a unique T cell signature associated with autoantibody production in the absence of autoimmune disease.
Collapse
|
9
|
Huang Y, Lin S, Zhan F, Xiao L, Zhan Y, Wang R. OX40-Fc Fusion Protein Alleviates PD-1-Fc-Aggravated Rheumatoid Arthritis by Inhibiting Inflammatory Response. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:6244175. [PMID: 35222687 PMCID: PMC8872694 DOI: 10.1155/2022/6244175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/27/2022] [Accepted: 02/04/2022] [Indexed: 12/17/2022]
Abstract
BACKGROUND Researches have confirmed that the abnormal signals of OX40 and PD-1 lead to the changes of T cell biological behavior, thus participating the immunopathological process of RA. However, the pathogenesis of RA immunopathological process has not been clarified yet. METHODS 30 DBA/1 mice were randomly divided into 5 groups (6 mice per group): control group, collagen-induced arthritis (CIA) group, PD-1-Fc/CIA group, OX40-Fc/CIA group, and PD-1-Fc + OX40-Fc/CIA group. The pathological changes in mice joints were observed by H&E staining. The proportion of CD4+ T, CD8+ T, CD28+, and CD19+ cells in peripheral blood mononuclear cells (PBMCs) was detected by flow cytometry. Serum inflammatory factors (CRP, IL-2, IL-4, IL-1β, INF-γ) and bone metabolism-related genes (CTX-I, TRACP-5b, BALP) were detected by ELISA assay. Western blotting was applied to measure the NF-κB signaling pathway-related protein (p-IKKβ, p-IκBα, p50) expression in synovial tissue of mice joint. RESULTS Compared with the control group, CIA mice showed significant increases in arthritis score and pathological score. In the CIA group, a marked decrease was identified in the proportion of CD8+ T, CD19+, and CD68+ cells. Additionally, the CIA group was associated with upregulation of secretion of inflammatory factors in serum and expression of bone metabolism-related genes and NF-κB pathway-related proteins. Compared with the CIA group, the same indexes above showed a further aggravation in the PD-1-Fc group while all indexes improved in the OX40-Fc group. Besides, OX40-Fc fusion protein slowed down significantly the further deterioration of CIA mouse pathological process caused by PD-1-Fc fusion protein. CONCLUSION OX40-Fc fusion protein alleviates PD-1-Fc-aggravated RA by inhibiting inflammatory response. This research provides biological markers with clinical significance for diagnosis and prognosis of RA, as well as offers theoretical and experimental foundation to the new targets for immune intervention.
Collapse
Affiliation(s)
- Yanyan Huang
- Department of Rheumatism and Immunity, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan 570311, China
| | - Shudian Lin
- Department of Rheumatism and Immunity, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan 570311, China
| | - Feng Zhan
- Department of Rheumatism and Immunity, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan 570311, China
| | - Lu Xiao
- Department of Rheumatism and Immunity, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan 570311, China
| | - Yuwei Zhan
- Department of Rheumatism and Immunity, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan 570311, China
| | - Ru Wang
- Department of Rheumatism and Immunity, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan 570311, China
| |
Collapse
|
10
|
Hart AP, Laufer TM. A review of signaling and transcriptional control in T follicular helper cell differentiation. J Leukoc Biol 2022; 111:173-195. [PMID: 33866600 DOI: 10.1002/jlb.1ri0121-066r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
T follicular helper (Tfh) cells are a critical component of adaptive immunity and assist in optimal Ab-mediated defense. Multiple effector functions of Tfh support germinal center B cell survival, Ab class switching, and plasma cell maturation. In the past 2 decades, the phenotype and functional characteristics of GC Tfh have been clarified allowing for robust studies of the Th subset including activation signals and environmental cues controlling Tfh differentiation and migration during an immune response. A unique, 2-step differentiation process of Tfh has been proposed but the mechanisms underlying transition between unstable Tfh precursors and functional mature Tfh remain elusive. Likewise, newly identified transcriptional regulators of Tfh development have not yet been incorporated into our understanding of how these cells might function in disease. Here, we review the signals and downstream transcription factors that shape Tfh differentiation including what is known about the epigenetic processes that maintain Tfh identity. It is proposed that further evaluation of the stepwise differentiation pattern of Tfh will yield greater insights into how these cells become dysregulated in autoimmunity.
Collapse
Affiliation(s)
- Andrew P Hart
- Division of Rheumatology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Terri M Laufer
- Division of Rheumatology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Division of Rheumatology, Department of Medicine, Corporal Michael C. Crescenz VA Medical Center, Philadelphia, PA, 19104, USA
| |
Collapse
|
11
|
Singh S, Anshita D, Ravichandiran V. MCP-1: Function, regulation, and involvement in disease. Int Immunopharmacol 2021; 101:107598. [PMID: 34233864 PMCID: PMC8135227 DOI: 10.1016/j.intimp.2021.107598] [Citation(s) in RCA: 444] [Impact Index Per Article: 111.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/25/2021] [Accepted: 03/17/2021] [Indexed: 02/08/2023]
Abstract
MCP-1 (Monocyte chemoattractant protein-1), also known as Chemokine (CC-motif) ligand 2 (CCL2), is from family of CC chemokines. It has a vital role in the process of inflammation, where it attracts or enhances the expression of other inflammatory factors/cells. It leads to the advancement of many disorders by this main mechanism of migration and infiltration of inflammatory cells like monocytes/macrophages and other cytokines at the site of inflammation. MCP-1 has been inculpated in the pathogenesis of numerous disease conditions either directly or indirectly like novel corona virus, cancers, neuroinflammatory diseases, rheumatoid arthritis, cardiovascular diseases. The elevated MCP-1 level has been observed in COVID-19 patients and proven to be a biomarker associated with the extremity of disease along with IP-10. This review will focus on involvement and role of MCP-1 in various pathological conditions.
Collapse
Affiliation(s)
- Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Zandaha Road, Hajipur, Bihar, India.
| | - D Anshita
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Zandaha Road, Hajipur, Bihar, India
| | - V Ravichandiran
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Zandaha Road, Hajipur, Bihar, India
| |
Collapse
|
12
|
Lijuan W, Yuting Z, Chaoyang L, Ju Y. Neutrophil-lymphocyte, platelet-lymphocyte and lymphocyte-monocyte ratios may not be useful markers to assess disease activity in rheumatoid arthritis: A STROBE-compliant article. Medicine (Baltimore) 2021; 100:e27631. [PMID: 34766563 PMCID: PMC8589242 DOI: 10.1097/md.0000000000027631] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 10/08/2021] [Indexed: 01/05/2023] Open
Abstract
The associations among the neutrophil-lymphocyte ratio (NLR), platelet-lymphocyte ratio (PLR) and lymphocyte-monocyte ratio (LMR) and disease activity in rheumatoid arthritis remains unclear.To evaluate these indicators as potential markers of disease activity in patients with rheumatoid arthritis (RA).This cross-sectional study included 547 adult patients with RA. The patients were divided into two groups according to the disease activity score (DAS) system: remission and disease activity. Differences in the NLR, PLR and LMR of the two groups were assessed. Correlations were analyzed using Spearman analysis, and receiver operating characteristic (ROC) curves were used to identify the sensitivity, specificity, and optimal cutoff values to differentiate active RA patients from inactive RA patients.There was a statistically significant difference in the NLR (4.2 ± 3.2 vs 3.4 ± 2.4, P = .034) and PLR (222.3 ± 136.4 vs 176.9 ± 89.8, P = .006) between the two groups, but not for the LMR (3.0 ± 1.8 vs 3.4 ± 2.4, P = .115). In addition, the DAS28 and traditional inflammatory markers, including ESR and CRP, were weakly positively correlated with the NLR and PLR. Based on the ROC curves, the NLR (sensitivity 31.8%, specificity 77.8%) and PLR (sensitivity 57.3%, specificity 63.9%) were less valuable than the ESR (sensitivity 67.2%, specificity 91.7%) and CRP (sensitivity 76.2%, specificity 91.7%) for differentiating inactive RA patients from active RA patients due to low sensitivity and specificity and combining NLR or PLR also cannot significantly improved the diagnostic value of ESR and CRP.NLR, PLR and LMR may not be an useful independent diagnostic or complementary marker for disease activity in RA patients.
Collapse
Affiliation(s)
- Wang Lijuan
- Chengdu Medical College, Chengdu, China
- Department of Rheumatology, The First People's Hospital of Yibin, Yibin, China
| | - Zhou Yuting
- North Sichuan Medical College, Nanchong, China
- Department of Rheumatology, The First People's Hospital of Yibin, Yibin, China
| | - Liang Chaoyang
- Department of Rheumatology, The First People's Hospital of Yibin, Yibin, China
| | - Yang Ju
- Department of Rheumatology, The First People's Hospital of Yibin, Yibin, China
| |
Collapse
|
13
|
Anang DC, Balzaretti G, van Kampen A, de Vries N, Klarenbeek PL. The Germinal Center Milieu in Rheumatoid Arthritis: The Immunological Drummer or Dancer? Int J Mol Sci 2021; 22:10514. [PMID: 34638855 PMCID: PMC8508581 DOI: 10.3390/ijms221910514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 01/04/2023] Open
Abstract
Rheumatoid Arthritis (RA) is a chronic autoimmune disease characterized by joint inflammation, affecting approximately 1% of the general population. To alleviate symptoms and ameliorate joint damage, chronic use of immunosuppressives is needed. However, these treatments are only partially effective and may lead to unwanted side effects. Therefore, a more profound understanding of the pathophysiology might lead to more effective therapies, or better still, a cure. The presence of autoantibodies in RA indicates that B cells might have a pivotal role in the disease. This concept is further supported by the fact that a diverse antibody response to various arthritis-related epitopes is associated with arthritis development. In this context, attention has focused in recent years on the role of Germinal Centers (GCs) in RA. Since GCs act as the main anatomic location of somatic hypermutations, and, thus, contributing to the diversity and specificity of (auto) antibodies, it has been speculated that defects in germinal center reactions might be crucial in the initiation and maintenance of auto-immune events. In this paper, we discuss current evidence that various processes within GCs can result in the aberrant production of B cells that possess autoreactive properties and might result in the production of RA related autoantibodies. Secondly, we discuss various (pre-)clinical studies that have targeted various GC processes as novel therapies for RA treatment.
Collapse
Affiliation(s)
- Dornatien C. Anang
- Department of Rheumatology & Clinical Immunology, Amsterdam Rheumatology & Immunology Center, 1007 MB Amsterdam, The Netherlands; (D.C.A.); (G.B.); (P.L.K.)
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Giulia Balzaretti
- Department of Rheumatology & Clinical Immunology, Amsterdam Rheumatology & Immunology Center, 1007 MB Amsterdam, The Netherlands; (D.C.A.); (G.B.); (P.L.K.)
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Antoine van Kampen
- Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Niek de Vries
- Department of Rheumatology & Clinical Immunology, Amsterdam Rheumatology & Immunology Center, 1007 MB Amsterdam, The Netherlands; (D.C.A.); (G.B.); (P.L.K.)
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Paul L. Klarenbeek
- Department of Rheumatology & Clinical Immunology, Amsterdam Rheumatology & Immunology Center, 1007 MB Amsterdam, The Netherlands; (D.C.A.); (G.B.); (P.L.K.)
- Department of Rheumatology, Spaarne Gasthuis, Hoofdorp, 2000 AK Haarlem, The Netherlands
| |
Collapse
|
14
|
Hosseinzadeh R, Feizisani F, Shomali N, Abdelbasset WK, Hemmatzadeh M, Gholizadeh Navashenaq J, Jadidi-Niaragh F, Bokov DO, Janebifam M, Mohammadi H. PD-1/PD-L1 blockade: Prospectives for immunotherapy in cancer and autoimmunity. IUBMB Life 2021; 73:1293-1306. [PMID: 34538007 DOI: 10.1002/iub.2558] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/10/2021] [Accepted: 09/06/2021] [Indexed: 12/14/2022]
Abstract
Immune checkpoint blockade therapy (ICBT) has become a successful cancer treatment approach in the field of cancer immunotherapy. Blockade of programmed death 1 (PD-1) and programmed death-ligand 1 (PD-L1) with monoclonal antibodies have been known as successful examples of cancer immunotherapy in recent years. Although ICBT has been shown to be beneficial in cancers, such benefits have only been seen in a portion of cancer patients. In this regard, enhancing the therapeutic effects of inhibiting PD-1 and PD-L1 and reducing the side effects of this approach can be considered as a potential approach in a successful ICBT. In this review, we have highlighted new viewpoints regarding improving the therapeutic effect of PD-1 and PD-L1 blockades in cancer therapy. Besides, their expression levels as a biomarker with prognostic value, their role in intestinal microbiota modulation, combination therapy, and immune-related side effects (irAEs) have been discussed.
Collapse
Affiliation(s)
- Ramin Hosseinzadeh
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Feizisani
- Student Research Committee, Sarab Faculty of Medical Sciences, Sarab, Iran
| | - Navid Shomali
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Medicine, Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia.,Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Maryam Hemmatzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Medicine, Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Medicine, Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dmitry O Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russian Federation.,Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, Moscow, Russian Federation
| | - Morteza Janebifam
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.,Noncommunicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
15
|
Su R, Wang Y, Hu F, Li B, Guo Q, Zheng X, Liu Y, Gao C, Li X, Wang C. Altered Distribution of Circulating T Follicular Helper-Like Cell Subsets in Rheumatoid Arthritis Patients. Front Med (Lausanne) 2021; 8:690100. [PMID: 34350197 PMCID: PMC8326448 DOI: 10.3389/fmed.2021.690100] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/09/2021] [Indexed: 12/30/2022] Open
Abstract
Objective: Recent studies on follicular regulatory T (Tfr) and follicular helper T (Tfh) cells suggest that they may participate in the pathogenesis of rheumatoid arthritis (RA). Here, we examine Tfr-like and Tfh-like cells and their subsets in RA and assess the correlations between these subsets with B cells and cytokines related to the pathogenesis of RA and their clinical significance. Methods: The study population consisted of 18 healthy controls and 47 RA patients (17 new onset, 57.00 ± 11.73 years; 30 treated RA patients, 57.56 ± 1.97 years). Disease activity scores in 28 joints were calculated. The positive rates of rheumatoid factor (RF) and anticyclic citrullinated peptide antibodies (anti-CCP) were 82.9 and 89.4%, respectively. Cell subsets were analyzed using flow cytometry, and serum cytokine levels were measured using cytometric bead array. Results: Tfh-like and PD-1+ Tfh-like cells were elevated, and the distribution of Tfh-like cell subsets was altered with increased Tfh17-like and Tfh1/17-like cells in RA patients. The receiver operating characteristics curves for Tfh-like, Tfh17-like, Tfh1/17-like, and PD-1+ Tfh-like cells indicate improved RA diagnostic potential. RA patients had decreased regulatory T (Treg), Tfr-like, and memory Tfr-like (mTfr-like) cells and increased Tfh-like/Treg, Tfh-like/Tfr-like, and Tfh-like/mTfr-like cell ratios. Tfh-like cells and their subsets, including Tfh1-like, Tfh2-like, Tfh1/17-like, and PD-1+ Tfh-like cells, were positively correlated with B cells. Tfh-like/Treg, Tfh-like/Tfr-like, and Tfh-like/mTfr-like cell ratios were positively correlated with B cells in new-onset RA. Interleukin (IL)-2, IL-4, IL-17, interferon-γ, and tumor necrosis factor-α were positively correlated with Tfr-like and mTfr-like cells. IL-2 and IL-10 were positively correlated with Tfh-like and Tfh2-like cells. IL-4 was positively correlated with Tfh-like cells. Conclusions: Tfh-like and PD-1+ Tfh-like cells are increased, whereas Treg, Tfr-like, and mTfr-like cells are decreased in RA, leading to an imbalance in Tfh-like/Treg, Tfh-like/Tfr-like, and Tfh-like/mTfr-like cell ratios. Tfh-like cells and a portion of their subsets as well as Tfh-like/Treg, Tfh-like/Tfr-like, and Tfh-like/mTfr-like cell ratios are closely related to B cells. Dysfunction of cell subsets leads to abnormal levels of cytokines involved in the pathogenesis of RA. The altered distributions of Tfh-like cell subsets, especially Tfh1/17-like cells, represent potential therapeutic targets for treatment of RA.
Collapse
Affiliation(s)
- Rui Su
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yanyan Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Fangyuan Hu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Baochen Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Qiaoling Guo
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xinyu Zheng
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yue Liu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chong Gao
- Pathology, Joint Program in Transfusion Medicine, Brigham and Women's Hospital/Children's Hospital Boston, Harvard Medical School, Boston, MA, United States
| | - Xiaofeng Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Caihong Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
16
|
Lu J, Wu J, Xia X, Peng H, Wang S. Follicular helper T cells: potential therapeutic targets in rheumatoid arthritis. Cell Mol Life Sci 2021; 78:5095-5106. [PMID: 33880615 PMCID: PMC11073436 DOI: 10.1007/s00018-021-03839-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/26/2021] [Accepted: 04/08/2021] [Indexed: 02/08/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease with joint and systemic inflammation that is accompanied by the production of autoantibodies, such as rheumatoid factor and anti-cyclic citrullinated peptide (anti-CCP) antibodies. Follicular helper T (Tfh) cells, which are a subset of CD4+ T cells, facilitate germinal center (GC) reactions by providing signals required for high-affinity antibody production and the generation of long-lived antibody-secreting plasma cells. Uncontrolled expansion of Tfh cells is observed in various systemic autoimmune diseases. Particularly, the frequencies of circulating Tfh-like (cTfh-like) cells, their subtypes and synovial-infiltrated T helper cells correlate with disease activity in RA patients. Therefore, reducing autoantibody production and restricting excessive Tfh cell responses are ideal ways to control RA pathogenesis. The present review summarizes current knowledge of the involvement of Tfh cells in RA pathogenesis and highlights the potential of these cells as therapeutic targets.
Collapse
Affiliation(s)
- Jian Lu
- Department of Laboratory Medicine, Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212002, China
- Institute of Laboratory Medicine, Jiangsu Key Laboratory for Laboratory Medicine, Jiangsu University School of Medicine, Zhenjiang, China
| | - Jing Wu
- Institute of Laboratory Medicine, Jiangsu Key Laboratory for Laboratory Medicine, Jiangsu University School of Medicine, Zhenjiang, China
| | - Xueli Xia
- Institute of Laboratory Medicine, Jiangsu Key Laboratory for Laboratory Medicine, Jiangsu University School of Medicine, Zhenjiang, China
| | - Huiyong Peng
- Department of Laboratory Medicine, Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212002, China.
| | - Shengjun Wang
- Department of Laboratory Medicine, Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212002, China.
- Institute of Laboratory Medicine, Jiangsu Key Laboratory for Laboratory Medicine, Jiangsu University School of Medicine, Zhenjiang, China.
| |
Collapse
|
17
|
Bemani P, Eklund KK, Ali-Hassanzadeh M, Kabelitz D, Schmidt RE, Meri S, Kalantar K. Proportion of T follicular helper cells in peripheral blood of rheumatoid arthritis patients: a systematic review and meta-analysis. Expert Rev Clin Immunol 2021; 17:667-680. [PMID: 33853479 DOI: 10.1080/1744666x.2021.1915770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Introduction:Alterations in the levels and activity of Tfh may lead to impaired immune tolerance and autoimmune diseases. The aim of this study was to investigate the proportion and types of Tfh cells in the peripheral blood (PB) of RA patients.Areas covered:Comprehensive databases were searched for studies evaluating the proportion of Tfh cells in the PB of patients with RA compared to healthy control (HCs).The proportion of Tfh cells in RA patients was significantly higher than in HCs (SMD 0.699, [0.513, 0.884], p < 0.0001). Furthermore, Tfh cells proportion in untreated-RA and early-RA patients was markedly greater than HCs, when comparisons done without considering the definition markers, and also when Tfh cells were defined by the specified definition markers. While the proportion of Tfh cells by all definitions was higher in active-RA compared to HCs, analysis of two definitions, CD4+CXCR5+ and CD4+CXCR5+ICOS+, didn't show significant differences. Furthermore, higher proportion of Tfh cells defined by all definitions and a specified definition (CD4+CXCR5+PD-1high) was observed when S+RA compared to S-RA patients.Expert opinion:The results demonstrate that circulating Tfh are highly elevated in RA patients highlights its potential use as a biomarker and a target for RA therapy.
Collapse
Affiliation(s)
- Peyman Bemani
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kari K Eklund
- Department of Medicine, Division of Rheumatology, Helsinki University Central Hospital, Helsinki, Finland
| | - Mohammad Ali-Hassanzadeh
- Department of Immunology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | | | - Reinhold E Schmidt
- Klinik Für Immunologie Und Rheumatologie, Medizinische Hochschule Hannover (MHH), Hannover, Germany
| | - Seppo Meri
- Department of Bacteriology & Immunology and the Translational Immunology Research Program (TRIMM), University of Helsinki, Helsinki, Finland
| | - Kurosh Kalantar
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
18
|
Skeletal muscle redox signaling in rheumatoid arthritis. Clin Sci (Lond) 2021; 134:2835-2850. [PMID: 33146370 PMCID: PMC7642299 DOI: 10.1042/cs20190728] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/12/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by synovitis and the presence of serum autoantibodies. In addition, skeletal muscle weakness is a common comorbidity that contributes to inability to work and reduced quality of life. Loss in muscle mass cannot alone account for the muscle weakness induced by RA, but instead intramuscular dysfunction appears as a critical factor underlying the decreased force generating capacity for patients afflicted by arthritis. Oxidative stress and associated oxidative post-translational modifications have been shown to contribute to RA-induced muscle weakness in animal models of arthritis and patients with RA. However, it is still unclear how and which sources of reactive oxygen and nitrogen species (ROS/RNS) that are involved in the oxidative stress that drives the progression toward decreased muscle function in RA. Nevertheless, mitochondria, NADPH oxidases (NOX), nitric oxide synthases (NOS) and phospholipases (PLA) have all been associated with increased ROS/RNS production in RA-induced muscle weakness. In this review, we aim to cover potential ROS sources and underlying mechanisms of oxidative stress and loss of force production in RA. We also addressed the use of antioxidants and exercise as potential tools to counteract oxidative stress and skeletal muscle weakness.
Collapse
|
19
|
Lucas C, Perdriger A, Amé P. Definition of B cell helper T cells in rheumatoid arthritis and their behavior during treatment. Semin Arthritis Rheum 2020; 50:867-872. [DOI: 10.1016/j.semarthrit.2020.06.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/13/2020] [Accepted: 06/24/2020] [Indexed: 12/24/2022]
|
20
|
Jin Z, Cai G, Zhang P, Li X, Yao S, Zhuang L, Ren M, Wang Q, Yu X. The value of the neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio as complementary diagnostic tools in the diagnosis of rheumatoid arthritis: A multicenter retrospective study. J Clin Lab Anal 2020; 35:e23569. [PMID: 32951253 PMCID: PMC7843258 DOI: 10.1002/jcla.23569] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/21/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) have drawn attention in recent years as novel non-specific inflammatory markers; however, only a few studies have been conducted to investigate their value in RA. OBJECTIVE To investigate the value of the neutrophil-to-lymphocyte ratio (NLR) and the platelet-to-lymphocyte ratio (PLR) as complementary diagnostic tools in rheumatoid arthritis (RA). METHOD This study included 1009 patients with RA, 170 patients with other rheumatic diseases, and 245 healthy individuals from four medical centers. The patients' general data, including complete blood count, C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), and rheumatoid factor (RF), were retrospectively analyzed, and the NLR and PLR were calculated. Potential effective indicators were screened by logistic regression analysis, and a receiver operating characteristic (ROC) curve was plotted to evaluate their diagnostic value for RA. RESULTS (a) The NLR and PLR were significantly higher in the RA group than in the non-RA group and the control group (P < .05). (b) Spearman's Rho showed that the NLR was positively correlated with the PLR (r = .584, P < .05), RF (r = .167, P < .01), and CRP (r = .280, P < .01) but was not significantly correlated with ESR (r = .100, P > .05). The PLR was positively correlated with RF (r = .139, P < .01), CRP (r = .297, P < .01), and ESR (r = .262, P < .05). (c) Logistic analysis showed that RF, CRP, ESR, and the NLR had diagnostic value for RA. (d) For the NLR, the area under the curve (AUC) of the ROC curve was 0.831; at the cutoff value of 2.13, the diagnostic sensitivity, specificity, accuracy, and Youden index were 76.7%, 75.9%, 76.4%, and 0.5424, respectively. CONCLUSION The NLR was less effective than CRP and RF but was superior to ESR in the diagnosis of RA. The NLR can thus be used as a complementary diagnostic indicator in the diagnosis of RA.
Collapse
Affiliation(s)
- Zihan Jin
- Clinical Lab, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou City, China
| | - Gaojun Cai
- Department of Cardiology, Wujin Hospital Affiliated with Jiangsu University, Changzhou City, China
| | - Ping Zhang
- Clinical Lab, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou City, China
| | - Xiaohong Li
- Clinical Lab, Changzhou TCM Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Changzhou City, China
| | - Shuang Yao
- Clinical Lab, The Third Affiliated Hospital of Soochow University, Changzhou City, China
| | - Lin Zhuang
- Department of Surgery, The Wujin Clinical College of Xuzhou Medical University, Changzhou City, China
| | - Min Ren
- Department of Rheumatology, Wujin Hospital Affiliated with Jiangsu University, Changzhou City, China
| | - Qiang Wang
- Department of Surgery, The Wujin Clinical College of Xuzhou Medical University, Changzhou City, China
| | - Xiaolong Yu
- Science and Education Section, Wujin Hospital Affiliated with Jiangsu University, Changzhou City, China.,Department of Ultrasonics, The Wujin Clinical College of Xuzhou Medical University, Changzhou City, China
| |
Collapse
|
21
|
Cao G, Wang P, Cui Z, Yue X, Chi S, Ma A, Zhang Y. An imbalance between blood CD4 +CXCR5 +Foxp3 + Tfr cells and CD4 +CXCR5 +Tfh cells may contribute to the immunopathogenesis of rheumatoid arthritis. Mol Immunol 2020; 125:1-8. [PMID: 32610164 DOI: 10.1016/j.molimm.2020.06.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/06/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Follicular helper T (Tfh) cells are a subgroup of activated CD4+ T cells which can assist the formation and maintenance of germinal centers. Follicular regulatory T (Tfr) cells are a new class of regulatory T cells which play a major role in suppressing cells in humoral immunity. In contrast to the role of Tfh cells, Tfr cells can inhibit the function of Tfh cells and B cells. Imbalance of blood Tfr/Tfh ratio resulted in the expansion of auto-reactive B cells and auto-antibody production (). However, the effect of Tfr cells and Tfh cells in the pathogenesis of RA (rheumatoid arthritis) is unclear. The purpose of this study was to investigate the function of Tfr cells and Tfh cells in the pathogenesis of RA. METHODS We recruited 20 patients fulfilled the the American College of Rheumatology diagnosis criteria and 20 healthy controls (HCs). The number of CD4+CXCR5+Foxp3+ Tfr cells and CD4+CXCR5+ Tfh cells in 20 RA patients were measured by flow cytometry analysis. Furthermore, the correlations between the Tfr/Tfh ratio and the characteristic clinical parameters were assessed. The serum levels of IL-21(interleukin-21), CXCL13 (chemokine (C-X-C motif) ligand 13) and TGF-β (Transforming growth factor-β) were measured by ELISA. The formation of ectopic germinal center (GC) of synovial membrane was examined by H&E staining. The transcriptional levels of CXCR5 (C-X-C chemokine receptor type 5), CXCL13, ICOS (inducible co-stimulater) and TGF-β mRNA were also analyzed. In addition, the expression of Bcl-6 (B-cell lymphoma 6), CXCR5, CXCL13 and ICOS in synovial membrane were examined by immunohistochemistry. RESULTS RA patients had more Tfh cells in peripheral blood, conversely, the frequency of blood Tfr cells (p < 0.05) and the ratio of Tfr/Tfh were significantly decreased compared to healthy controls (p < 0.05, p < 0.01). Furthermore, the ratio of Tfr/Tfh was negatively correlated with values of ESR (r=-0.57, p < 0.05), RF (r=-0.5275, p < 0.001), CRP (r=-0.4486, p < 0.001), IgG (r=-0.4631, p < 0.05), DAS28 scores (r=-0.5645, p < 0.01), as well as the levels of IL-21(r=-0.7398, p < 0.01), CXCL13 (r=-0.4832, p < 0.05). However, the ratio of Tfr/Tfh was positively with the serum level of TGF-β (r=0.5115, p < 0.05). Higher mRNA expression of CXCR5, CXCL13, ICOS and lower TGF-β mRNA expression were observed in RA patients. The serum expression level of IL-21, CXCL13 was significantly increased and expression of TGF-β was significantly decreased in RA patients. Furthermore, ectopic germinal center formation and higher expression of Bcl-6, CXCR5, ICOS, CXCL13 in the synovial membrane of the joints in RA patients were observed. CONCLUSIONS The decreased blood CD4+CXCR5+Foxp3+ Tfr cells/CD4+CXCR5+ Tfh cells may be responsible for the immunopathogenesis of RA.
Collapse
Affiliation(s)
- Gan Cao
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, 750004, PR China
| | - Peipei Wang
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, 750004, PR China
| | - Zhenhua Cui
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, 750004, PR China
| | - Xiaoqi Yue
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, 750004, PR China
| | - Shuhong Chi
- Department of Rheumatology, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, PR China
| | - Ailing Ma
- Department of Pathology, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, PR China
| | - Yanli Zhang
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, 750004, PR China.
| |
Collapse
|
22
|
Bakheet SA, Alrwashied BS, Ansari MA, Nadeem A, Attia SM, Alanazi MM, Aldossari AA, Assiri MA, Mahmood HM, Al-Mazroua HA, Ahmad SF. CXC chemokine receptor 3 antagonist AMG487 shows potent anti-arthritic effects on collagen-induced arthritis by modifying B cell inflammatory profile. Immunol Lett 2020; 225:74-81. [PMID: 32590119 DOI: 10.1016/j.imlet.2020.06.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/05/2020] [Accepted: 06/11/2020] [Indexed: 02/04/2023]
Abstract
Several studies have suggested that chemokine receptors are important mediators of inflammatory response in rheumatoid arthritis (RA). B cells are also known to play an important role in RA pathology. C-X-C chemokine receptor type 3 (CXCR3) is considered a potential therapeutic target in different inflammatory diseases; however, the mechanism remains unclear. Here, we evaluated the potentially protective effect of AMG487, a selective CXCR3 antagonist, in collagen-induced arthritis (CIA) mouse model. CIA mice were treated with AMG487 (5 mg/kg) every 48 h, from day 21 until day 41. We then investigated the effect of AMG487 on NF-κB p65-, NOS2-, MCP-1-, TNF-α-, IFN-γ, IL-4-, and IL-27-producing CD19+ B cells in the spleen through flow cytometry. We also evaluated the mRNA and protein expression levels of these molecules using RT-PCR and western blotting in the knee tissues. Our results revealed that AMG487-treated mice showed decreased NF-κB p65-, NOS2-, MCP-1-, and TNF-α-, and increased IL-4-, and IL-27-producing CD19+ B cells compared with the control mice. Additionally, AMG487 treatment significantly down regulated NF-κB p65, NOS2, TNF-α, and IFN-γ, and upregulated IL-4 and IL-27 mRNA and protein expression levels compared with the control. Thus, our study shows that AMG487 exerts its anti-arthritic effect by potently downregulating inflammatory B cell signaling. Based on our observations, we propose that AMG487 could serve as a potential novel therapeutic agent for inflammatory and autoimmune diseases, including RA.
Collapse
Affiliation(s)
- Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Bader S Alrwashied
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed M Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah A Aldossari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed A Assiri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hafiz M Mahmood
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Haneen A Al-Mazroua
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
23
|
Monserrat J, Bohórquez C, Gómez Lahoz AM, Movasat A, Pérez A, Ruíz L, Díaz D, Chara L, Sánchez AI, Albarrán F, Sanz I, Álvarez-Mon M. The Abnormal CD4+T Lymphocyte Subset Distribution and Vbeta Repertoire in New-onset Rheumatoid Arthritis Can Be Modulated by Methotrexate Treament. Cells 2019; 8:E871. [PMID: 31405169 PMCID: PMC6721760 DOI: 10.3390/cells8080871] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/17/2019] [Accepted: 08/06/2019] [Indexed: 12/29/2022] Open
Abstract
Patients with long-term, treated, rheumatoid arthritis (RA) show abnormalities in their circulating CD4+ T-lymphocytes, but whether this occurs in recently diagnosed naïve patients to disease-modifying drugs (DMARDs) is under discussion. These patients show heterogeneous clinical response to methotrexate (MTX) treatment. We have examined the count of circulating CD4+ T-lymphocytes, and their naïve (TN), central memory (TCM), effector memory (TEM) and effector (TE) subsets, CD28 expression and Vβ TCR repertoire distribution by polychromatic flow cytometry in a population of 68 DMARD-naïve recently diagnosed RA patients, before and after 3 and 6 months of MTX treatment. At pre-treatment baseline, patients showed an expansion of the counts of CD4+ TN, TEM, TE and TCM lymphocyte subsets, and of total CD4+CD28- cells and of the TE subset with a different pattern of numbers in MTX responder and non-responders. The expansion of CD4+TEM lymphocytes showed a predictive value of MTX non-response. MTX treatment was associated to different modifications in the counts of the CD4+ subsets and of the Vβ TCR repertoire family distribution and in the level of CD28 expression in responders and non-responders. In conclusion, the disturbance of CD4+ lymphocytes is already found in DMARD-naïve RA patients with different patterns of alterations in MTX responders and non-responders.
Collapse
Affiliation(s)
- Jorge Monserrat
- Laboratory of Immune System Diseases, University of Alcalá, Alcalá de Henares, 28871 Madrid, Spain
- Department of Medicine, University Hospital "Príncipe de Asturias", University of Alcalá and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Alcalá de Henares, 28871 Madrid, Spain
| | - Cristina Bohórquez
- Department of Medicine, University Hospital "Príncipe de Asturias", University of Alcalá and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Alcalá de Henares, 28871 Madrid, Spain
- Immune System Diseases-Rheumatology Service, University Hospital "Príncipe de Asturias", Alcalá de Henares, 28871 Madrid, Spain
| | - Ana María Gómez Lahoz
- Laboratory of Immune System Diseases, University of Alcalá, Alcalá de Henares, 28871 Madrid, Spain
- Immune System Diseases-Rheumatology Service, University Hospital "Príncipe de Asturias", Alcalá de Henares, 28871 Madrid, Spain
| | - Atusa Movasat
- Department of Medicine, University Hospital "Príncipe de Asturias", University of Alcalá and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Alcalá de Henares, 28871 Madrid, Spain
- Immune System Diseases-Rheumatology Service, University Hospital "Príncipe de Asturias", Alcalá de Henares, 28871 Madrid, Spain
| | - Ana Pérez
- Department of Medicine, University Hospital "Príncipe de Asturias", University of Alcalá and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Alcalá de Henares, 28871 Madrid, Spain
- Immune System Diseases-Rheumatology Service, University Hospital "Príncipe de Asturias", Alcalá de Henares, 28871 Madrid, Spain
| | - Lucía Ruíz
- Department of Medicine, University Hospital "Príncipe de Asturias", University of Alcalá and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Alcalá de Henares, 28871 Madrid, Spain
- Immune System Diseases-Rheumatology Service, University Hospital "Príncipe de Asturias", Alcalá de Henares, 28871 Madrid, Spain
| | - David Díaz
- Laboratory of Immune System Diseases, University of Alcalá, Alcalá de Henares, 28871 Madrid, Spain
- Immune System Diseases-Rheumatology Service, University Hospital "Príncipe de Asturias", Alcalá de Henares, 28871 Madrid, Spain
| | - Luis Chara
- Laboratory of Immune System Diseases, University of Alcalá, Alcalá de Henares, 28871 Madrid, Spain
- Immune System Diseases-Rheumatology Service, University Hospital "Príncipe de Asturias", Alcalá de Henares, 28871 Madrid, Spain
| | - Ana Isabel Sánchez
- Department of Medicine, University Hospital "Príncipe de Asturias", University of Alcalá and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Alcalá de Henares, 28871 Madrid, Spain
- Immune System Diseases-Rheumatology Service, University Hospital "Príncipe de Asturias", Alcalá de Henares, 28871 Madrid, Spain
| | - Fernando Albarrán
- Department of Medicine, University Hospital "Príncipe de Asturias", University of Alcalá and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Alcalá de Henares, 28871 Madrid, Spain
- Immune System Diseases-Rheumatology Service, University Hospital "Príncipe de Asturias", Alcalá de Henares, 28871 Madrid, Spain
| | - Ignacio Sanz
- Division of Immunology and Rheumatology, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Melchor Álvarez-Mon
- Laboratory of Immune System Diseases, University of Alcalá, Alcalá de Henares, 28871 Madrid, Spain.
- Department of Medicine, University Hospital "Príncipe de Asturias", University of Alcalá and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Alcalá de Henares, 28871 Madrid, Spain.
- Immune System Diseases-Rheumatology Service, University Hospital "Príncipe de Asturias", Alcalá de Henares, 28871 Madrid, Spain.
| |
Collapse
|