1
|
Wang Y, Liu H, Wang S, Yang B, Sun D, Han S. Feasibility study of core training in knee injury recovery. Turk J Phys Med Rehabil 2025; 71:37-47. [PMID: 40270628 PMCID: PMC12012924 DOI: 10.5606/tftrd.2024.12985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/10/2024] [Indexed: 04/25/2025] Open
Abstract
Objectives This study aims to investigate the effects of core and routine training on joint function, anterior tibia translation and balance in patients with knee joint injury. Patients and methods Between March 2021 and March 2022, a total of 70 patients (49 males, 21 females; mean age: 31.2±5.3 years; range, 17 to 44 years) with knee ligament injury or meniscus injury were included. The patients were divided into core training group (n=35) and conventional training group (n=35) by matching method. During the recovery process, the regular training group performed routine training, whereas the core training group engaged in core training. Both groups were trained for a total of eight weeks. After training, the Visual Analog Scale (VAS), knee Lysholm score, KT-2000 tibial anterior translation, and the star excursion balance test (SEBT) results were collected. Results The mean VAS scores in both groups were decreased from baseline values. The mean Lysholm score increased from baseline data; the degree of tibial anterior translation decreased compared with baseline data (p<0.05). The mean SEBT scores showed significant improvement over baseline data. In contrast with the routine training group, the mean VAS score of core training was lower and the total score of Lysholm was higher (p<0.05). When bending the knee at 90°, the mean tibial anterior translation was 3.87±1.23 mm in the core training group, significantly lower than in the regular training group (p<0.05). The SEBT results showed that, after eight weeks of training, healthy and injured legs in core training group exceeded those of the regular training group in the farthest distance (p<0.05). Conclusion Our study results indicate that core training is more successful than regular training in reducing pain, and it can ameliorate the dynamic balance stability of patients with knee injury.
Collapse
Affiliation(s)
- Yue Wang
- Department of Nursing, Peking University Third Hospital Qinhuangdao Hospital, Qinhuangdao, China
| | - Hui Liu
- Department of Nursing, Peking University Third Hospital Qinhuangdao Hospital, Qinhuangdao, China
| | - Shuyuan Wang
- Department of Nursing, Peking University Third Hospital Qinhuangdao Hospital, Qinhuangdao, China
| | - Bo Yang
- Department of Nursing, Peking University Third Hospital Qinhuangdao Hospital, Qinhuangdao, China
| | - Di Sun
- Department of Orthopedics, Peking University Third Hospital Qinhuangdao Hospital, Qinhuangdao, China
| | - Shuangyang Han
- Department of Orthopedics, Peking University Third Hospital Qinhuangdao Hospital, Qinhuangdao, China
| |
Collapse
|
2
|
Kiełbowski K, Ćmil M, Biniek WJ, Bakinowska E, Pawlik A. The Role of Long Non-Coding RNA in Rheumatoid Arthritis. Int J Mol Sci 2025; 26:560. [PMID: 39859276 PMCID: PMC11766169 DOI: 10.3390/ijms26020560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that leads to joint damage and physical dysfunction. The pathogenesis of RA is highly complex, involving genetic, epigenetic, immune, and metabolic factors, among others. Over the years, research has highlighted the importance of non-coding RNAs (ncRNAs) in regulating gene expression. Given their dysregulation in numerous conditions, ncRNAs are thought to play a role in pathological processes. In RA, aberrant levels of circulating long ncRNAs (lncRNAs) are commonly observed in peripheral blood, along with their dysregulated expression in peripheral blood mononuclear cells and synovial tissue. This review discusses the involvement of lncRNAs in inflammation and the aggressive characteristics of fibroblast-like synoviocytes, a key cellular population driving RA progression.
Collapse
Affiliation(s)
| | | | | | | | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (M.Ć.); (W.J.B.); (E.B.)
| |
Collapse
|
3
|
Zhou TS, Yang CL, Wang JQ, Fang L, Xia Q, Liu YR. Identification of serum exosomal lncRNAs and their potential regulation of characteristic genes of fibroblast-like synoviocytes in rheumatoid arthritis. Int Immunopharmacol 2024; 143:113382. [PMID: 39433011 DOI: 10.1016/j.intimp.2024.113382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024]
Abstract
Rheumatoid arthritis (RA) is a common autoimmune disease whose pathogenesis is poorly understand. Gaps in laboratory biomarkers cause a lack of clinically available strategies for the early diagnosis and treatment of RA. This study aims to identify serum exosomal lncRNAs as promising biomarkers and to unravel potential mechanisms by which they affect characteristic genes of fibroblast-like synoviocytes (FLSs) to induce RA malignant properties. RNA sequencing datasets of serum exosomes (GSE271161 and PRJNA911001) and FLSs (GSE103578, GSE122616, GSE128813, GSE181614 and GSE83147) were purposively mined. Visualization and functional enrichment of differentially expressed (DE) lncRNAs/protein-coding genes, screening of significant lncRNAs, and construction of competing endogenous RNAs (ceRNAs) and protein-protein interaction (PPI) network were carried out. Quantitative real-time PCR, receiver operating characteristic curve (ROC) and correlation analysis were conducted on the validation cohort. As a result, we screened a total of 131 serum exosomal DElncRNAs and 125 FLSs DEmRNAs, which were predominantly enriched in the proliferative, inflammatory and metabolic pathways. In-depth learning of DElncRNAs expression profiles was performed to identify models with better performance and lncRNAs with higher importance scores using 4 machine learning algorithms (SVM, KNN, RF, Logit), which led to the establishment of ceRNAs network linking serum exosomal lncRNAs and characteristic genes of FLSs. In short, we proposed that 4 RA-representative serum exosomal lncRNAs (DLEU2, FAM13A-AS1, MEG3 and SNHG15) may be applied as valuable indicators for laboratory tests, and their-mediated intercellular communication and ceRNAs network may regulate the characteristic genes of FLSs, thereby generating malignant phenotypes and adaptive synovial microenvironment in RA.
Collapse
Affiliation(s)
- Tong-Sheng Zhou
- School of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei 230022, China
| | - Chun-Lan Yang
- School of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei 230022, China
| | - Jie-Quan Wang
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei 230000, China; Department of Pharmacy, Hefei Fourth People's Hospital, Hefei 230000, China; Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei 230000, China
| | - Ling Fang
- School of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei 230022, China
| | - Quan Xia
- School of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei 230022, China.
| | - Ya-Ru Liu
- School of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei 230022, China.
| |
Collapse
|
4
|
Zhao X, Yang Y, Wang Y, Chen X, Yao Y, Yuan T, Li J, Li Y, Song X. Roles of noncoding RNA in allergic rhinitis. Int Forum Allergy Rhinol 2024; 14:1757-1775. [PMID: 39367803 DOI: 10.1002/alr.23461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/03/2024] [Accepted: 09/13/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND Allergic rhinitis (AR) is one of the most common respiratory noninfectious diseases and chronic inflammatory diseases, the incidence of which has been increasing in recent years. The main pathological characteristics of AR are repeated inflammation, airway hyperreactivity, mucus hypersecretion, and reversible airway obstruction due to inflammatory cell response. AR occurrence is associated with various factors, including those of genetic and environmental origins. Noncoding RNAs (ncRNAs) are a group of RNA molecules that cannot be converted into polypeptides. The three main categories of ncRNAs include microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs). NcRNAs play a crucial role in controlling gene expression and contribute to the development of numerous human diseases. METHODS Articles are selected based on Pubmed's literature review and the author's personal knowledge. The largest and highest quality studies were included. The search selection is not standardized. Several recent studies have indicated the relationship of ncRNAs with the development of respiratory allergic diseases. NcRNAs, including miRNAs, lncRNAs, and circRNAs, are important gene expression regulatory factors. We review the expression and function of ncRNAs in AR, their role as disease biomarkers, and their prospective applicability in future research and clinically. We also discuss interactions between ncRNAs and their influence on AR comprehensively, these interactions are essential for determining the underlying pathological mechanisms further and discovering new drug therapeutic targets. RESULTS NcRNAs can be used as biomarkers for early AR diagnosis, disease surveillance and prognosis assessment. Various categories of ncRNAs play distinct yet interconnected roles and actively contribute to intricate gene regulatory networks. They are also therapeutic targets and biomarkers in other allergic diseases. CONCLUSION This article demonstrates ncRNAs have a wide range of applications in AR treatment. The database covers three key areas: miRNAs, lncRNAs, and circRNAs. Additionally, potential avenues for future research to facilitate the practical application of ncRNAs as therapeutic targets and biomarkers will be explore. With further research and technological development, ncRNAs may provide additional innovative, effective solutions for AR treatment.
Collapse
Affiliation(s)
- Xiangkun Zhao
- Department of Clinical Medicine, The Second School of Clinical Medicine of Binzhou Medical University, Yantai, China
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, China
| | - Yuteng Yang
- Department of Clinical Medicine, The Second School of Clinical Medicine of Binzhou Medical University, Yantai, China
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, China
| | - Yaqi Wang
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, China
| | - Xi Chen
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, China
| | - Yisong Yao
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, China
| | - Ting Yuan
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, China
| | - Jiaxuan Li
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, China
| | - Yumei Li
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, China
| | - Xicheng Song
- Department of Clinical Medicine, The Second School of Clinical Medicine of Binzhou Medical University, Yantai, China
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, China
| |
Collapse
|
5
|
Xiao H, Pu J, Jiang G, Pan C, Xu J, Zhang B, Bai M. Analysis of long non-coding RNA RMRP in the diagnosis and prognosis of coronary artery disease. J Cardiothorac Surg 2024; 19:341. [PMID: 38907341 PMCID: PMC11191311 DOI: 10.1186/s13019-024-02870-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/14/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) are abundant and closely related to the occurrence and development of human diseases. LncRNAs are known to play a key role in many cardiovascular diseases. The purpose of this study was to investigate the effect of the RNA component of mitochondrial RNA-processing endoribonuclease (RMRP) on the degree of coronary artery lesions and prognosis in patients with coronary artery disease (CAD). METHODS Patients who underwent coronary angiography (CAG) and dynamical-single photon emission computed tomography (D-SPECT) were selected as study subjects, and the results of CAG were reviewed, and the patients were grouped according to SYNTAX score. Evaluate the factors affecting SYNTAX scores. The follow-up analysis was conducted, and the endpoint events were major adverse cardiovascular events (MACEs). Kaplan-Meier method was used to estimate the survival rate, and multivariate Cox regression was used to analyze the relationship between RMRP and MACEs. RESULTS The expression level of serum RMRP in patients with CAD was significantly higher than that in healthy people. Multivariate Logistic regression analysis showed that age, low-density lipoprotein cholesterol (LDL-C), RMRP and rest left ventricular ejection fraction (LVEF) were independent factors that affected SYNTAX scores. There were 19 cases of MACEs in the high RMRP group and 9 cases in the low RMRP group, and there was a significant difference in the MACE free survival curve between the two groups. Multivariate Cox regression analysis showed that age, SYNTAX score, rest LVEF and RMRP were risk factors for MACEs. CONCLUSIONS Serum RMRP is a key factor affecting the degree of coronary artery disease and prognosis in CAD patients.
Collapse
Affiliation(s)
- Haiyan Xiao
- Cardiovascular Department, Changde First Hospital of Traditional Chinese Medicine, Hunan, 415000, China
| | - Jun Pu
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, No.1, Maoyuan South Road, Shunqing District, Nanchong, Sichuan, 637000, China.
| | - Gaxue Jiang
- Heart Center, The First Hospital of Lanzhou University, Chengguan District, No.1 Donggang West Road, Lanzhou, Gansu, 730000, China.
| | - Chenliang Pan
- Heart Center, The First Hospital of Lanzhou University, Chengguan District, No.1 Donggang West Road, Lanzhou, Gansu, 730000, China
| | - Jizhe Xu
- Heart Center, The First Hospital of Lanzhou University, Chengguan District, No.1 Donggang West Road, Lanzhou, Gansu, 730000, China
| | - Bo Zhang
- Heart Center, The First Hospital of Lanzhou University, Chengguan District, No.1 Donggang West Road, Lanzhou, Gansu, 730000, China
| | - Ming Bai
- Heart Center, The First Hospital of Lanzhou University, Chengguan District, No.1 Donggang West Road, Lanzhou, Gansu, 730000, China
| |
Collapse
|
6
|
Mehmandar-Oskuie A, Jahankhani K, Rostamlou A, Mardafkan N, Karamali N, Razavi ZS, Mardi A. Molecular mechanism of lncRNAs in pathogenesis and diagnosis of auto-immune diseases, with a special focus on lncRNA-based therapeutic approaches. Life Sci 2024; 336:122322. [PMID: 38042283 DOI: 10.1016/j.lfs.2023.122322] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 12/04/2023]
Abstract
Autoimmune diseases are a diverse set of conditions defined by organ damage due to abnormal innate and acquired immune system responses. The pathophysiology of autoimmune disorders is exceedingly intricate and has yet to be fully understood. The study of long non-coding RNAs (lncRNAs), non-protein-coding RNAs with at least 200 nucleotides in length, has gained significant attention due to the completion of the human genome project and the advancement of high-throughput genomic approaches. Recent research has demonstrated how lncRNA alters disease development to different degrees. Although lncRNA research has made significant progress in cancer and generative disorders, autoimmune illnesses are a relatively new research area. Moreover, lncRNAs play crucial functions in differentiating various immune cells, and their potential relationships with autoimmune diseases have received growing attention. Because of the importance of Th17/Treg axis in auto-immune disease development, in this review, we discuss various molecular mechanisms by which lncRNAs regulate the differentiation of Th17/Treg cells. Also, we reviewed recent findings regarding the several approaches in the application of lncRNAs in the diagnosis and treatment of human autoimmune diseases, as well as current challenges in lncRNA-based therapeutic approaches to auto-immune diseases.
Collapse
Affiliation(s)
- Amirreza Mehmandar-Oskuie
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kasra Jahankhani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arman Rostamlou
- Department of Medical Biology, Faculty of Medicine, University of EGE, Izmir, Turkey
| | - Nasibeh Mardafkan
- Department of Laboratory Science, Faculty of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Negin Karamali
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Zahra Sadat Razavi
- Department of Immunology, Faculty of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Amirhossein Mardi
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
7
|
Harsij A, Gharebaghi A, Ghiasian M, Eslami S, Ghafouri-Fard S, Taheri M, Sayad A. Expression analysis of Treg-related lncRNAs in neuromyelitis optica spectrum disorder. Mult Scler Relat Disord 2024; 81:105350. [PMID: 38091807 DOI: 10.1016/j.msard.2023.105350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/06/2023] [Accepted: 11/26/2023] [Indexed: 01/23/2024]
Abstract
Neuromyelitis Optica Spectrum Disorder (NMOSD) is an autoimmune condition affecting the central nervous system, in which various kinds of immune cells, including T and B cells, and numerous cytokines and chemokines are implicated. LncRNAs modulating the function or differentiation of regulatory T cells (Tregs) may be involved in the pathoetiology of NMO. To assess the involvement of these lncRNAs in this disease, we studied the expression levels of TH2-LCR, MAFTRR, NEST, RMRP, and FLICR in NMO patients and healthy subjects. All of the lncRNAs listed were up-regulated in NMO patients compared with healthy controls. Although the interaction of group and gender factors significantly affected the expression of NEST, RMRP, and TH2-LCR genes, we detected no effect of gender factor on the expression of the examined genes. The highest expression correlation was found between RMRP and TH2-LCR among cases with correlation coefficient 0.73. ROC curve analysis indicated that TH2-LCR, MAFTRR, RMRP, and FLICR had significant prospective diagnostic power (AUC ± SD = 0.99 ± 0.002, 0.97 ± 0.01, 0.91 ± 0.01 and 0.84 ± 0.04, respectively). Best of these genes was TH2-LCR with AUC ± SD = 0.99 ± 0.002, sensitivity= 0.97, specificity= 1, P-value= <0.0001. RMRP and TH2-LCR had a positive correlation with age and age at onset and a negative correlation with EDSS. Cumulatively, TH2-LCR, MAFTRR, RMRP, and FLICR lncRNAs, particularly TH2-LCR, could be considered as potential contributors to the pathogenesis of NMO disease.
Collapse
Affiliation(s)
- Atefeh Harsij
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Gharebaghi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoud Ghiasian
- Department of Neurology, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Solat Eslami
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Arezou Sayad
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Zhang X, He X, Zhang M, Wu T, Liu X, Zhang Y, Xie Z, Liu S, Xia T, Wang Y, Wei F, Wang H, Xie C. Efficient delivery of the lncRNA LEF1-AS1 through the antibody LAIR-1 (CD305)-modified Zn-Adenine targets articular inflammation to enhance the treatment of rheumatoid arthritis. Arthritis Res Ther 2023; 25:238. [PMID: 38062469 PMCID: PMC10702009 DOI: 10.1186/s13075-023-03226-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUNDS Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease characterized by synovial hyperplasia. Maintaining a balance between the proliferation and apoptosis of rheumatoid arthritis synovial fibroblasts (RASFs) is crucial for preventing the erosion of bone and cartilage and, ultimately, mitigating the progression of RA. We found that the lncRNA LEF1-AS1 was expressed at low levels in the RASFs and inhibited their abnormal proliferation by targeting PIK3R2 protein and regulating the PI3K/AKT signal pathway through its interaction with miR-30-5p. In this study, we fabricated a nano-drug delivery system for LEF1-AS1 using Zn-Adenine nanoparticles (NPs) as a novel therapeutic strategy against RA. METHODS The expression levels of LEF1-AS1, miR-30-5p, PIK3R2, p-PI3K, and p-AKT were detected in the primary RASFs and a human fibroblast-like synovial cell line (HFLS). Zn-Adenine nanoparticles (NPs) were functionalized with anti-CD305 antibody to construct (Zn-Adenine)@Ab. These NPs were then loaded with LEF1-AS1 to form (Zn-Adenine)@Ab@lncRNA LEF1-AS1. Finally, the (Zn-Adenine)@Ab@lncRNA LEF1-AS1 NPs were locally injected into a rat model with collagen-induced arthritis (CIA). The arthritic injuries in each group were evaluated by HE staining and other methods. RESULTS LEF1-AS1 was expressed at low levels in the primary RASFs. High expression levels of LEF1-AS1 were detected in the HFLS cells, which corresponded to a significant downregulation of miR-30-5p. In addition, the expression level of PIK3R2 was significantly increased, and that of p-PI3K and p-AKT were significantly downregulated in these cells. The (Zn-Adenine)@Ab@lncRNA LEF1-AS1 NPs significantly inhibited the proliferation of RASFs and decreased the production of inflammatory cytokines (IL-1β, IL-6, TNF-α). Intra-articular injection (IAI) of (Zn-Adenine)@Ab@lncRNA LEF1-AS1 NPs significantly alleviated cartilage destruction and joint injury in the CIA-modeled rats. CONCLUSIONS LEF1-AS1 interacts with miR-30-5p to inhibit the abnormal proliferation of RASFs by regulating the PI3K/AKT signal pathway. The (Zn-Adenine)@Ab NPs achieved targeted delivery of the loaded LEF1-AS1 into the RASFs, which improved the cellular internalization rate and therapeutic effects. Thus, LEF1-AS1 is a potential target for the treatment of RA.
Collapse
Affiliation(s)
- Xiaonan Zhang
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, 2600 Donghai Avenue, Longzihu District, Bengbu, Anhui, 233030, China
| | - Xiaoyu He
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, Anhui, 233004, China
| | - Ming Zhang
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, 2600 Donghai Avenue, Longzihu District, Bengbu, Anhui, 233030, China
| | - Tianyu Wu
- Department of Preventive Medicine, Bengbu Medical College, 2600 Donghai Avenue, Longzihu District, Bengbu, Anhui, 233030, China
| | - Xiaojie Liu
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, 2600 Donghai Avenue, Longzihu District, Bengbu, Anhui, 233030, China
| | - Yan Zhang
- Clinical Medicine Department of Bengbu Medical College, 2600 Donghai Avenue, Longzihu District, Bengbu, Anhui, 233030, China
| | - Zhuobei Xie
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, Anhui, 233004, China
| | - Saisai Liu
- Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, 2600 Donghai Avenue, Longzihu District, Bengbu, Anhui, 233030, China
| | - Tian Xia
- Clinical Medicine Department of Bengbu Medical College, 2600 Donghai Avenue, Longzihu District, Bengbu, Anhui, 233030, China
| | - Yuanyuan Wang
- Department of Tissue and Embryology, Bengbu Medical College, 2600 Donghai Avenue, Longzihu District, Bengbu, Anhui, 233030, China
| | - Fang Wei
- School of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Longzihu District, Bengbu, Anhui, 233030, China
| | - Hongtao Wang
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, 2600 Donghai Avenue, Longzihu District, Bengbu, Anhui, 233030, China.
| | - Changhao Xie
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, Anhui, 233004, China.
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, 2600 Donghai Avenue, Longzihu District, Bengbu, Anhui, 233030, China.
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-Related Diseases, 287 Changhuai Road, Bengbu, Anhui, 233004, China.
| |
Collapse
|
9
|
Wang H, Yu L, Cheng L, Guo Z. The roles of lncRNAs in Th17-associated diseases, with special focus on JAK/STAT signaling pathway. Clin Exp Med 2023; 23:3349-3359. [PMID: 37743424 DOI: 10.1007/s10238-023-01181-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023]
Abstract
One of the most crucial T cell subsets in a variety of autoimmune and chronic inflammatory illnesses is T helper (Th) 17 cells. Th17 cells appear to have an essential role in the clearance of extracellular pathogens during infections. However, Th17 cells are also involved in inflammation and have been implicated in the pathogenesis of several autoimmune diseases and human inflammatory conditions. Due to the involvement of Th17 cells in the onset of Th17-associated diseases, understanding molecular mechanisms of Th17 cell functions may open the door to developing tailored therapies to address these difficult disorders. However, the molecular mechanisms governing Th17 differentiation in various diseases are still not well understood. The JAK/STAT signaling pathway plays a critical role in immune responses and has been linked to various aspects of Th17 cell differentiation and function. In this article, we conducted a comprehensive review of various molecular mechanisms (JAK/STAT, microRNAs, etc.), that can affect the differentiation of Th17 cells in various Th17-associated diseases.
Collapse
Affiliation(s)
- Han Wang
- Department of Clinical Laboratory, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Lanlan Yu
- Department of Clinical Laboratory, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Li Cheng
- Department of Clinical Laboratory, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Zhigang Guo
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, 130031, China.
| |
Collapse
|
10
|
Ghafouri-Fard S, Ahmadi Teshnizi S, Hussen BM, Taheri M, Zali H. A review on the role of GHET1 in different cancers. Pathol Res Pract 2023; 247:154545. [PMID: 37244053 DOI: 10.1016/j.prp.2023.154545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/29/2023]
Abstract
Gastric cancer High Expressed Transcript 1 (GHET1) is an RNA gene located on chromosome 7q36.1. This non-coding RNA is involved in the pathology of different cancers. It can regulate cell proliferation, apoptosis and cell cycle transition. Moreover, it induces epithelial-mesenchymal transition. Up-regulation of GHET1 has been correlated with poor prognosis of patients with different malignancies. Besides, its up-regulation has been mostly detected in later stages and advanced grades of cancers. This review summarizes recent studies on the expression of GHET1, its in vitro functions, and its impact on the beginning and progression of cancer based on xenograft models of cancer.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Ahmadi Teshnizi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hakimeh Zali
- Proteomics Research Center, Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Yin H, Chen L, Piao S, Wang Y, Li Z, Lin Y, Tang X, Zhang H, Zhang H, Wang X. M6A RNA methylation-mediated RMRP stability renders proliferation and progression of non-small cell lung cancer through regulating TGFBR1/SMAD2/SMAD3 pathway. Cell Death Differ 2023; 30:605-617. [PMID: 34628486 PMCID: PMC9984538 DOI: 10.1038/s41418-021-00888-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 11/09/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) has the highest mortality rate among all malignancies worldwide. The role of long noncoding RNAs (lncRNAs) in the progression of cancers is a contemporary research hotspot. Based on an integrative analysis of The Cancer Genome Atlas database, we identified lncRNA-RNA Component of Mitochondrial RNA Processing Endoribonuclease (RMRP) as one of the most highly upregulated lncRNAs that are associated with poor survival in NSCLC. Furthermore, N(6)-methyladenosine (m6A) was highly enriched within RMRP and enhanced its RNA stability. In vitro and in vivo experiments showed that RMRP promoted NSCLC cell proliferation, invasion, and migration. In terms of mechanism, RMRP recruited YBX1 to the TGFBR1 promotor region, leading to upregulation of the transcription of TGFBR1. The TGFBR1/SMAD2/SMAD3 pathway was also regulated by RMRP. In addition, RMRP promoted the cancer stem cells properties and epithelial mesenchymal transition, which promote the resistance to radiation therapy and cisplatin. Clinical data further confirmed a positive correlation between RMRP and TGFBR1. In short, our work reveals that m6A RNA methylation-mediated RMRP stability renders proliferation and progression of NSCLC through regulating TGFBR1/SMAD2/SMAD3 pathway.
Collapse
Affiliation(s)
- Hang Yin
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, PR China
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Lin Chen
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, PR China
| | - Shiqi Piao
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, PR China
| | - Yiru Wang
- Department of Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, PR China
| | - Zhange Li
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang Province, PR China
- Department of Pharmacology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, PR China
| | - Yuan Lin
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Xueqing Tang
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Huijuan Zhang
- Department of Oncology, Yuhuangding Hospital, Yantai, Shangdong Province, PR China
| | - Haiyang Zhang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, PR China
| | - Xiaoyuan Wang
- Department of Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, PR China.
| |
Collapse
|
12
|
Studies on the role of non-coding RNAs in controlling the activity of T cells in asthma. Noncoding RNA Res 2023; 8:211-217. [PMID: 36865391 PMCID: PMC9972402 DOI: 10.1016/j.ncrna.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Bronchial asthma, commonly known as asthma, is a chronic inflammatory disease characterized by airway inflammation, increased responsiveness and changes in airway structure. T cells, particularly T helper cells, play a crucial role in the disease. Non-coding RNAs, which are RNAs that do not code for proteins, mainly include microRNAs, long non-coding RNAs, and circular RNAs, play a role in regulating various biological processes. Studies have shown that non-coding RNAs have an important role in the activation and transformation of T cells and other biological processes in asthma. The specific mechanisms and clinical applications are worth further examination. This article reviews the recent research on the role of microRNAs, long non-coding RNAs and circular RNAs in T cells in asthma.
Collapse
|
13
|
Sharifi G, Eghtedarian R, Taheri M, Hussen BM, Eslami S, Ghafouri-Fard S, Sayad A. Assessment of Treg-related lncRNAs in epilepsy. Front Mol Neurosci 2023; 15:1031314. [PMID: 36776769 PMCID: PMC9908604 DOI: 10.3389/fnmol.2022.1031314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/14/2022] [Indexed: 01/27/2023] Open
Abstract
Recent studies have shown dysregulation of several groups of long non-coding RNAs in the context of epilepsy. According to evidence regarding the role of regulatory T cells in this disorder, we examined expression levels of regulatory T cell-related lncRNAs, namely TH2-LCR, RMRP, IFNG-AS1 (NEST), MAFTRR and FLICR in the blood of epileptic cases compared with controls. Expression of RMRP was lower in patients with refractory epilepsy compared with controls [expression ratio (95% CI) = 0.32 (0.13-0.8), adjusted p-value = 0.0008]. Besides, its expression was lower in refractory patients vs. non-refractory patients [expression ratio (95% CI) = 0.2 (0.1-0.41), adjusted p-value < 0.0001]. Expression of TH2-LCR was lower in refractory patients vs. controls [expression ratio (95% CI) = 0.4 (0.17-0.93), adjusted p-value = 0.0044] and in refractory patients vs. non-refractory ones [Expression ratio = 0.28 (0.19-0.58), p-value < 0.0001]. Expression of NEST was higher in total patients [expression ratio (95% CI) = 2.48 (1.15-5.27), adjusted p-value = 0.0012] and in both groups of patients compared with controls. However, its expression was not different between refractory and non-refractory cases. Similarly, FLICR and MAFTRR were over-expressed in total cases and both groups of patients compared with controls, but their expressions were similar between refractory and non-refractory cases. MAFTRR could differentiate between total epileptic cases and controls with AUC value of 0.8. This lncRNA could separate refractory and non-refractory cases from healthy controls with AUC values of 0.73 and 0.88, respectively. This study provides evidence for deregulation of regulatory T cell-related lncRNAs in epilepsy and their potential role as diagnostic markers in this condition.
Collapse
Affiliation(s)
- Guive Sharifi
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reyhane Eghtedarian
- Phytochemistry Research Center, Shahid Beheshti University of Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq,Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Solat Eslami
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran,Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Soudeh Ghafouri-Fard
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran,*Correspondence: Soudeh Ghafouri-Fard, ✉
| | - Arezou Sayad
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Arezou Sayad, ✉
| |
Collapse
|
14
|
Patel RS, Lui A, Hudson C, Moss L, Sparks RP, Hill SE, Shi Y, Cai J, Blair LJ, Bickford PC, Patel NA. Small molecule targeting long noncoding RNA GAS5 administered intranasally improves neuronal insulin signaling and decreases neuroinflammation in an aged mouse model. Sci Rep 2023; 13:317. [PMID: 36609440 PMCID: PMC9822944 DOI: 10.1038/s41598-022-27126-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 12/26/2022] [Indexed: 01/09/2023] Open
Abstract
Shifts in normal aging set stage for neurodegeneration and dementia affecting 1 in 10 adults. The study demonstrates that lncRNA GAS5 is decreased in aged and Alzheimer's disease brain. The role and targets of lncRNA GAS5 in the aging brain were elucidated using a GAS5-targeting small molecule NPC86, a frontier in lncRNA-targeting therapeutic. Robust techniques such as molecular dynamics simulation of NPC86 binding to GAS5, in vitro functional assays demonstrating that GAS5 regulates insulin signaling, neuronal survival, phosphorylation of tau, and neuroinflammation via toll-like receptors support the role of GAS5 in maintaining healthy neurons. The study demonstrates the safety and efficacy of intranasal NPC86 treatment in aged mice to improve cellular functions with transcriptomic analysis in response to NPC86. In summary, the study demonstrates that GAS5 contributes to pathways associated with neurodegeneration and NPC86 has tremendous therapeutic potential to prevent the advent of neurodegenerative diseases and dementias.
Collapse
Affiliation(s)
- Rekha S. Patel
- grid.281075.90000 0001 0624 9286James A. Haley Veterans Hospital, Research Service, 13000 Bruce B. Downs Blvd., Tampa, FL 33612 USA
| | - Ashley Lui
- grid.170693.a0000 0001 2353 285XDepartment of Molecular Medicine, University of South Florida, Tampa, FL 33612 USA
| | - Charles Hudson
- grid.281075.90000 0001 0624 9286James A. Haley Veterans Hospital, Research Service, 13000 Bruce B. Downs Blvd., Tampa, FL 33612 USA
| | - Lauren Moss
- grid.170693.a0000 0001 2353 285XDepartment of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33612 USA
| | - Robert P. Sparks
- Present Address: UMass Chan Medical School, Worcester, MA 01655 USA
| | - Shannon E. Hill
- grid.170693.a0000 0001 2353 285XDepartment of Molecular Medicine, University of South Florida, Tampa, FL 33612 USA ,grid.170693.a0000 0001 2353 285XUSF Health Byrd Institute, University of South Florida, Tampa, FL 33612 USA
| | - Yan Shi
- grid.170693.a0000 0001 2353 285XDepartment of Chemistry, University of South Florida, Tampa, FL 33612 USA
| | - Jianfeng Cai
- grid.170693.a0000 0001 2353 285XDepartment of Chemistry, University of South Florida, Tampa, FL 33612 USA
| | - Laura J. Blair
- grid.281075.90000 0001 0624 9286James A. Haley Veterans Hospital, Research Service, 13000 Bruce B. Downs Blvd., Tampa, FL 33612 USA ,grid.170693.a0000 0001 2353 285XDepartment of Molecular Medicine, University of South Florida, Tampa, FL 33612 USA ,grid.170693.a0000 0001 2353 285XUSF Health Byrd Institute, University of South Florida, Tampa, FL 33612 USA
| | - Paula C. Bickford
- grid.281075.90000 0001 0624 9286James A. Haley Veterans Hospital, Research Service, 13000 Bruce B. Downs Blvd., Tampa, FL 33612 USA ,grid.170693.a0000 0001 2353 285XDepartment of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33612 USA
| | - Niketa A. Patel
- grid.281075.90000 0001 0624 9286James A. Haley Veterans Hospital, Research Service, 13000 Bruce B. Downs Blvd., Tampa, FL 33612 USA ,grid.170693.a0000 0001 2353 285XDepartment of Molecular Medicine, University of South Florida, Tampa, FL 33612 USA
| |
Collapse
|
15
|
Bo L, Jin X, Hu Y, Yang R. Role of Liquid Biopsies in Rheumatoid Arthritis. Methods Mol Biol 2023; 2695:237-246. [PMID: 37450123 DOI: 10.1007/978-1-0716-3346-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease caused by genetic and environmental factors. Early diagnosis is crucial for effective therapy and prognosis of RA, while biomarkers play important roles in early diagnosis. Traditional laboratory tests include rheumatoid factor, anti-cyclic citrullinated peptide antibody, which are inadequate in the ability of early diagnosis. Liquid biopsy technology is a technique using biomarkers found in the blood, urine, and other biological samples from patients, including DNA, RNA, exosome, etc. Evidence indicates that these biomarkers are involved in pathological and physiological conditions of RA. We reviewed the effects of liquid biopsy technology in the early diagnosis of RA and may provide new ideas for effective and precise treatment.
Collapse
Affiliation(s)
- Lin Bo
- Department of Rheumatology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaojia Jin
- Department of Rheumatology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yaqi Hu
- Department of Rheumatology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ru Yang
- Department of Rheumatology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
16
|
Kumar D, Sahoo SS, Chauss D, Kazemian M, Afzali B. Non-coding RNAs in immunoregulation and autoimmunity: Technological advances and critical limitations. J Autoimmun 2023; 134:102982. [PMID: 36592512 PMCID: PMC9908861 DOI: 10.1016/j.jaut.2022.102982] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 01/02/2023]
Abstract
Immune cell function is critically dependent on precise control over transcriptional output from the genome. In this respect, integration of environmental signals that regulate gene expression, specifically by transcription factors, enhancer DNA elements, genome topography and non-coding RNAs (ncRNAs), are key components. The first three have been extensively investigated. Even though non-coding RNAs represent the vast majority of cellular RNA species, this class of RNA remains historically understudied. This is partly because of a lag in technological and bioinformatic innovations specifically capable of identifying and accurately measuring their expression. Nevertheless, recent progress in this domain has enabled a profusion of publications identifying novel sub-types of ncRNAs and studies directly addressing the function of ncRNAs in human health and disease. Many ncRNAs, including circular and enhancer RNAs, have now been demonstrated to play key functions in the regulation of immune cells and to show associations with immune-mediated diseases. Some ncRNAs may function as biomarkers of disease, aiding in diagnostics and in estimating response to treatment, while others may play a direct role in the pathogenesis of disease. Importantly, some are relatively stable and are amenable to therapeutic targeting, for example through gene therapy. Here, we provide an overview of ncRNAs and review technological advances that enable their study and hold substantial promise for the future. We provide context-specific examples by examining the associations of ncRNAs with four prototypical human autoimmune diseases, specifically rheumatoid arthritis, psoriasis, inflammatory bowel disease and multiple sclerosis. We anticipate that the utility and mechanistic roles of these ncRNAs in autoimmunity will be further elucidated in the near future.
Collapse
Affiliation(s)
- Dhaneshwar Kumar
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Subhransu Sekhar Sahoo
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Daniel Chauss
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Majid Kazemian
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA.
| |
Collapse
|
17
|
Jiang Y, Zhong S, He S, Weng J, Liu L, Ye Y, Chen H. Biomarkers (mRNAs and non-coding RNAs) for the diagnosis and prognosis of rheumatoid arthritis. Front Immunol 2023; 14:1087925. [PMID: 36817438 PMCID: PMC9929281 DOI: 10.3389/fimmu.2023.1087925] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/09/2023] [Indexed: 02/04/2023] Open
Abstract
In recent years, diagnostic and therapeutic approaches for rheumatoid arthritis (RA) have continued to improve. However, in the advanced stages of the disease, patients are unable to achieve long-term clinical remission and often suffer from systemic multi-organ damage and severe complications. Patients with RA usually have no overt clinical manifestations in the early stages, and by the time a definitive diagnosis is made, the disease is already at an advanced stage. RA is diagnosed clinically and with laboratory tests, including the blood markers C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR) and the autoantibodies rheumatoid factor (RF) and anticitrullinated protein antibodies (ACPA). However, the presence of RF and ACPA autoantibodies is associated with aggravated disease, joint damage, and increased mortality, and these autoantibodies have low specificity and sensitivity. The etiology of RA is unknown, with the pathogenesis involving multiple factors and clinical heterogeneity. The early diagnosis, subtype classification, and prognosis of RA remain challenging, and studies to develop minimally invasive or non-invasive biomarkers in the form of biofluid biopsies are becoming more common. Non-coding RNA (ncRNA) molecules are composed of long non-coding RNAs, small nucleolar RNAs, microRNAs, and circular RNAs, which play an essential role in disease onset and progression and can be used in the early diagnosis and prognosis of RA. In this review of the diagnostic and prognostic approaches to RA disease, we provide an overview of the current knowledge on the subject, focusing on recent advances in mRNA-ncRNA as diagnostic and prognostic biomarkers from the biofluid to the tissue level.
Collapse
Affiliation(s)
- Yong Jiang
- Department of Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China.,Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuxin Zhong
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, China
| | - Shenghua He
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Juanling Weng
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Lijin Liu
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yufeng Ye
- Department of Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Hanwei Chen
- Department of Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China.,Department of Radiology, GuangzhouPanyu Health Management Center (Panyu Rehabilitation Hospital), Guangzhou, China
| |
Collapse
|
18
|
Ravaei A, Zimmer-Bensch G, Govoni M, Rubini M. lncRNA-mediated synovitis in rheumatoid arthritis: A perspective for biomarker development. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 175:103-119. [PMID: 36126801 DOI: 10.1016/j.pbiomolbio.2022.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/28/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
Long noncoding RNAs (lncRNAs) are a regulatory class of noncoding RNAs with a wide range of activities such as transcriptional and post-transcriptional regulations. Emerging evidence has demonstrated that various lncRNAs contribute to the initiation and progression of Rheumatoid Arthritis (RA) through distinctive mechanisms. The present study reviews the recent findings on lncRNA role in RA development. It focuses on the involvement of different lncRNAs in the main steps of RA pathogenesis including T cell activation, cytokine dysregulation, fibroblast-like synoviocyte (FLS) activation and joint destruction. Besides, it discusses the current findings on RA diagnosis and the potential of lncRNAs as diagnostic, prognostic and predictive biomarkers in Rheumatology clinic.
Collapse
Affiliation(s)
- Amin Ravaei
- Department of Neurosciences and Rehabilitation, Section of Medical Biochemistry, Molecular Biology and Genetics, University of Ferrara, Ferrara, Italy.
| | - Geraldine Zimmer-Bensch
- Division of Neuroepigenetics, Institute of Zoology (Biology II), RWTH Aachen University, Aachen, Germany.
| | - Marcello Govoni
- Department of Medical Science, Section of Rheumatology, University of Ferrara, Ferrara, Italy.
| | - Michele Rubini
- Department of Neurosciences and Rehabilitation, Section of Medical Biochemistry, Molecular Biology and Genetics, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
19
|
Ali MA, Hussein SK, Khalifa AA, El Amin Ali AM, Farhan MS, Ibrahim Amin AA, Mohamed EA. The Ifng antisense RNA 1 (IFNG-AS1) and growth arrest-specific transcript 5 (GAS5) are novel diagnostic and prognostic markers involved in childhood ITP. Front Mol Biosci 2022; 9:1007347. [PMID: 36310591 PMCID: PMC9597367 DOI: 10.3389/fmolb.2022.1007347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
Background/aim:IFNG-AS1 is a long noncoding RNA that works as an enhancer for the Interferon-gamma (IFN-γ) transcript. GAS5 (growth arrest-specific 5) is a lncRNA that is associated with glucocorticoid resistance. Aberrant expressions of IFNG-AS1 and GAS5 are directly linked to numerous autoimmune disorders but their levels in childhood ITP are still obscure. This study aims to elucidate expressions of target lncRNAs in childhood ITP and their association with pathophysiology and clinical features of the disease as well as their association with types and treatment responses. Method: The fold changes of target lncRNAs in blood samples from children with ITP and healthy controls were analyzed using quantitative real-time PCR (qRT-PCR). Results: There were overexpressed lncRNAs IFNG-AS1 and GAS5 in serum of childhood ITP patients [(median (IQR) = 3.08 (0.2–22.39) and 4.19 (0.9–16.91) respectively, Also, significant higher IFNG-AS1 and GAS5 (p < 0.05) were present in persistent ITP (3–12 months) [ median (IQR) = 4.58 (0.31–22.39) and 3.77 (0.87–12.36) respectively] or chronic ITP (>12 months) [ median (IQR) = 5.6 (0.25–12.59) and 5.61 (1.15–16.91) respectively] when compared to newly diagnosed <3 months patients [IFNG-AS1 median (IQR) = 1.21 (0.2–8.95), and GAS5 median (IQR) = 1.07 (0.09–3.55)]. Also, significant higher lncRNAs IFNG-AS1 and GAS5 were present in patients with partial response to treatment [IFNG-AS1 median (IQR) = 4.15 (0.94–19.25), and GAS5 (median (IQR) = 4.25 (0.81–16.91)] or non-response [IFNG-AS1 median (IQR) = 4.19 (1.25–22.39) and GAS5 median (IQR) = 5.11 (2.34–15.27)] when compared to patients who completely responded to treatment (IFNG-AS1 median (IQR) = 2.09 (0.2–14.58) and GAS5 (median (IQR) = 2.51 (0.09–10.33). In addition, following therapy, the expressions of IFNG-AS1 and GAS5 are significantly negatively correlated with platelet count. Conclusion: Findings suggest that lncRNAs IFNG-AS1 and GAS5 are novel diagnostic and prognostic genetic markers for childhood ITP that can aid in a precise prediction of the disease’s progress at the time of diagnosis and could be a useful tool for treatment planning.
Collapse
Affiliation(s)
- Marwa A. Ali
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
- *Correspondence: Marwa A. Ali, ,
| | | | - Abeer A. Khalifa
- Department of Physiology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Amani M. El Amin Ali
- Department of Medical Physiology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Marwa S. Farhan
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Amal A. Ibrahim Amin
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Esam Ali Mohamed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| |
Collapse
|
20
|
Zhao H, Li L, Zhao N, Lu A, Lu C, He X. The effect of long non-coding RNAs in joint destruction of rheumatoid arthritis. Front Cell Dev Biol 2022; 10:1011371. [PMID: 36263019 PMCID: PMC9574091 DOI: 10.3389/fcell.2022.1011371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease accompanied with joint destruction. Serious joint destruction will eventually lead to disability and the decline of life quality in RA patients. At present, the therapeutic effect of drugs to alleviate joint destruction in RA is limited. Recently, accumulating evidences have shown that long non-coding RNAs (lncRNAs) play an important role in the pathogenesis of joint diseases. Therefore, this paper reviews the expression change and the action mechanism of lncRNAs in joint destruction of RA in recent years. A more comprehensive understanding of the role of lncRNAs in joint destruction will help the treatment of RA.
Collapse
Affiliation(s)
- Hanxiao Zhao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ning Zhao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Shanghai GuangHua Hospital of Integrated Traditional Chinese and Western Medicine, Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Shanghai, China
- *Correspondence: Aiping Lu, ; Cheng Lu, ; Xiaojuan He,
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Aiping Lu, ; Cheng Lu, ; Xiaojuan He,
| | - Xiaojuan He
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Aiping Lu, ; Cheng Lu, ; Xiaojuan He,
| |
Collapse
|
21
|
Wang MQ, Zhu XH, Liu K, Tian XY, Liu YH. LncRNA ANRIL Promotes Autophagy Activation Through miR-16-5p/TLR4 Axis in Allergic Rhinitis. Am J Rhinol Allergy 2022; 36:510-520. [PMID: 35404176 DOI: 10.1177/19458924221086059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Allergic rhinitis (AR) is an allergic disease of nasal mucosa. LncRNAs are key modulators affecting AR development. Neverthelss, the impact of lncRNA ANRIL in AR is not clear. OBJECTIVE This work decided to study the mechanism underlying the impact of ANRIL on TLR4 expression through targeting miR-16-5p during autophagy and epithelial barrier dysfunction in the progression of AR. METHODS Human nasal epithelial cells were exposed to TNF-α to establish AR cell model, AR mice model was constructed by ovalbumin (OVA) treatment. QRT-PCR or western blot assays were applied to measure the levels of mRNA and proteins. Dual-luciferase reporter gene detection and RIP assay were conducted to verify the association between ANRIL and miR-16-5p. Autophagy flux assessment by mRFP-GFP-LC3 method was performed to detect autophagy level. RESULTS AR progression could induce the autophagy, and the expressions of tight junction proteins were downregulated in AR cell model. Moreover, knockdown of ANRIL reversed the effect of AR on autophagy-related protein and tight junction proteins MiR-16-5p was found to be bound with ANRIL and miR-16-5p inhibitor could reverse ANRIL knockdown-induced downregulation of autophagy-related proteins and epithelial barrier dysfunction. In addition, miR-16-5p directly targeted TLR4. Furthermore, knockdown of ANRIL reversed miR-16-5p and TLR4 expression, autophagy level, and tight junction protein levels in nasal mucosa of AR mice. CONCLUSION This study illustrated that ANRIL acted as a promotion factor in AR induced autophagy and epithelial barrier dysfunction by enhancing the expression of TLR4 via interacting with miR-16-5p.
Collapse
Affiliation(s)
- Mei-Qun Wang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| | - Xin-Hua Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| | - Ke Liu
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| | - Xiao-Yan Tian
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| | - Yue-Hui Liu
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| |
Collapse
|
22
|
Karimi B, Dehghani Firoozabadi A, Peymani M, Ghaedi K. Circulating long noncoding RNAs as novel bio-tools: Focus on autoimmune diseases. Hum Immunol 2022; 83:618-627. [PMID: 35717260 DOI: 10.1016/j.humimm.2022.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 11/04/2022]
Abstract
Long non-coding RNAs (lncRNAs) are an emerging class of non-coding RNAs that do not encode proteins. These RNAs have various essential regulatory functions. Irregular expression of lncRNAs has been related to the pathological process of varied diseases, and are considered promising diagnostic biomarkers. LncRNAs can release into the circulation and be stable in body fluids as circulating lncRNAs. A subset of circulating lncRNAs that exist in exosomes are referred to as exosomal lncRNA molecules. These lncRNAs are highly stable and resist RNases. Exosomes have captured a great deal of attention due to their involvement in regulating communications between cells. In conditions of autoimmune disease, exosomes play critical roles in the pathological processes. In this context, circulating lncRNAs have been shown to modulate the immune response and indicated as prognosis and diagnostic biomarkers for autoimmune diseases. This review highlights the role of circulating lncRNAs (particularly exosomal) as diagnostic biomarkers for autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis, psoriasis, and Sjögren's syndrome.
Collapse
Affiliation(s)
- Bahareh Karimi
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | | | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Kamran Ghaedi
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| |
Collapse
|
23
|
Levels of lncRNA GAS5 in Plasma of Patients with Severe Traumatic Brain Injury: Correlation with Systemic Inflammation and Early Outcome. J Clin Med 2022; 11:jcm11123319. [PMID: 35743389 PMCID: PMC9224922 DOI: 10.3390/jcm11123319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
Scientific efforts continue to concentrate on elucidating the complex molecular mechanisms underlying traumatic brain injury (TBI), and recent reports suggest that epigenetic regulation including long non-coding RNA (lncRNA) is involved. The present study aimed to investigate the plasma concentration of a long non-coding RNA, named growth arrest-specific 5 (GAS5), in a group of 45 patients with severe TBI (sTBI), and to analyze the correlations of GAS5 with TBI onset, injury severity, systemic inflammation, and early outcome of the patients. It was found that plasma GAS5 levels were substantially increased in sTBI patients compared with the relative controls (p < 0.001). Further, significantly higher expression of plasma GAS5 was observed in patients with a Glasgow Coma Scale (GCS) score of less than five (p = 0.002) or unfavorable outcome at discharge (p < 0.001). Circulating GAS5 expression had a negative correlation with GCS score (r = −0.406, p = 0.006), and positive correlations with white blood cell count (r = 0.473, p = 0.001), neutrophil count (r = 0.502, p < 0.001), and neutrophil/lymphocyte ratio (NLR) (r = 0.398, p = 0.007). Univariate and multivariate logistic regression analyses revealed that GCS score (OR = 0.318, 95% CI 0.132−0.767, p = 0.011) and GAS5 (OR = 2.771, 95% CI 1.025−7.494, p = 0.045) were the two independent predictors for early outcome of patients. The receiver operating characteristic (ROC) curves showed good prognostic values of GCS score (AUC = 0.856, 95% CI: 0.719−0.943) and GAS5 expression (AUC = 0.798, 95% CI: 0.651−0.903). Importantly, the combined use of them can improve the prognostic ability of TBI with an AUC of 0.895 (95% CI: 0.767−0.966). Collectively, our study indicated that the levels of lncRNA GAS5 in circulation were elevated following severe TBI and correlated well with injury severity and inflammatory parameters. In addition, GAS5 as well as GCS scores may have the potential to predict the early outcome of TBI patients.
Collapse
|
24
|
Ghafouri-Fard S, Shoorei H, Mohaqiq M, Majidpoor J, Moosavi MA, Taheri M. Exploring the role of non-coding RNAs in autophagy. Autophagy 2022; 18:949-970. [PMID: 33525971 PMCID: PMC9196749 DOI: 10.1080/15548627.2021.1883881] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/13/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
As a self-degradative mechanism, macroautophagy/autophagy has a role in the maintenance of energy homeostasis during critical periods in the development of cells. It also controls cellular damage through the eradication of damaged proteins and organelles. This process is accomplished by tens of ATG (autophagy-related) proteins. Recent studies have shown the involvement of non-coding RNAs in the regulation of autophagy. These transcripts mostly modulate the expression of ATG genes. Both long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) have been shown to modulate the autophagy mechanism. Levels of several lncRNAs and miRNAs are altered in this process. In the present review, we discuss the role of lncRNAs and miRNAs in the regulation of autophagy in diverse contexts such as cancer, deep vein thrombosis, spinal cord injury, diabetes and its complications, acute myocardial infarction, osteoarthritis, pre-eclampsia and epilepsy.Abbreviations: AMI: acute myocardial infarction; ATG: autophagy-related; lncRNA: long non-coding RNA; miRNA: microRNA.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahdi Mohaqiq
- Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University, Winston-Salem, NC, USA
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Moosavi
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Han JJ, Wang XQ, Zhang XA. Functional Interactions Between lncRNAs/circRNAs and miRNAs: Insights Into Rheumatoid Arthritis. Front Immunol 2022; 13:810317. [PMID: 35197980 PMCID: PMC8858953 DOI: 10.3389/fimmu.2022.810317] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/06/2022] [Indexed: 12/14/2022] Open
Abstract
Rheumatoid arthritis (RA) is one of the most common autoimmune diseases that affect synovitis, bone, cartilage, and joint. RA leads to bone and cartilage damage and extra-articular disorders. However, the pathogenesis of RA is still unclear, and the lack of effective early diagnosis and treatment causes severe disability, and ultimately, early death. Accumulating evidence revealed that the regulatory network that includes long non-coding RNAs (lncRNAs)/circular RNAs (circRNAs), micro RNAs (miRNAs), and messenger RNAs (mRNA) plays important roles in regulating the pathological and physiological processes in RA. lncRNAs/circRNAs act as the miRNA sponge and competitively bind to miRNA to regulate the expression mRNA in synovial tissue, FLS, and PBMC, participate in the regulation of proliferation, apoptosis, invasion, and inflammatory response. Thereby providing new strategies for its diagnosis and treatment. In this review, we comprehensively summarized the regulatory mechanisms of lncRNA/circRNA-miRNA-mRNA network and the potential roles of non-coding RNAs as biomarkers and therapeutic targets for the diagnosis and treatment of RA.
Collapse
Affiliation(s)
- Juan-Juan Han
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
- *Correspondence: Xin-An Zhang, ; Xue-Qiang Wang,
| | - Xin-An Zhang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- College of Kinesiology, Shenyang Sport University, Shenyang, China
- *Correspondence: Xin-An Zhang, ; Xue-Qiang Wang,
| |
Collapse
|
26
|
Wu H, Chen S, Li A, Shen K, Wang S, Wang S, Wu P, Luo W, Pan Q. LncRNA Expression Profiles in Systemic Lupus Erythematosus and Rheumatoid Arthritis: Emerging Biomarkers and Therapeutic Targets. Front Immunol 2022; 12:792884. [PMID: 35003113 PMCID: PMC8732359 DOI: 10.3389/fimmu.2021.792884] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/07/2021] [Indexed: 12/29/2022] Open
Abstract
Systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) are two common multisystem autoimmune diseases that share, among others, many clinical manifestations and serological features. The role of long non-coding RNAs (lncRNAs) has been of particular interest in the pathogenesis of autoimmune diseases. Here, we aimed to summarize the roles of lncRNAs as emerging novel biomarkers and therapeutic targets in SLE and RA. We conducted a narrative review summarizing original articles on lncRNAs associated with SLE and RA, published until November 1, 2021. Based on the studies on lncRNA expression profiles in samples (including PBMCs, serum, and exosomes), it was noted that most of the current research is focused on investigating the regulatory mechanisms of these lncRNAs in SLE and/or RA. Several lncRNAs have been hypothesized to play key roles in these diseases. In SLE, lncRNAs such as GAS5, NEAT1, TUG1, linc0949, and linc0597 are dysregulated and may serve as emerging novel biomarkers and therapeutic targets. In RA, many validated lncRNAs, such as HOTAIR, GAS5, and HIX003209, have been identified as promising novel biomarkers for both diagnosis and treatment. The shared lncRNAs, for example, GAS5, may participate in SLE pathogenesis through the mitogen-activated protein kinase pathway and trigger the AMP-activated protein kinase pathway in RA. Here, we summarize the data on key lncRNAs that may drive the pathogenesis of SLE and RA and could potentially serve as emerging novel biomarkers and therapeutic targets in the coming future.
Collapse
Affiliation(s)
- Han Wu
- Clinical Research Center, Department of Clinical Laboratory, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shuxian Chen
- Clinical Research Center, Department of Clinical Laboratory, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Aifen Li
- Clinical Research Center, Department of Clinical Laboratory, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Kangyuan Shen
- Clinical Research Center, Department of Clinical Laboratory, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shuting Wang
- Clinical Research Center, Department of Clinical Laboratory, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Sijie Wang
- Clinical Research Center, Department of Clinical Laboratory, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ping Wu
- Clinical Research Center, Department of Clinical Laboratory, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wenying Luo
- Clinical Research Center, Department of Clinical Laboratory, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qingjun Pan
- Clinical Research Center, Department of Clinical Laboratory, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
27
|
Medhat E, Ayeldeen G, Hosni Ahmed H, Shaker O, Gheita T, Salama Ashour S. HOTAIR and THRIL Long Non Coding RNAs and Their Target Genes in Rheumatoid Arthritis patients. Rep Biochem Mol Biol 2022; 10:614-621. [PMID: 35291607 PMCID: PMC8903355 DOI: 10.52547/rbmb.10.4.697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/24/2021] [Indexed: 05/20/2023]
Abstract
BACKGROUND Rheumatoid arthtritis (RA) is a chronic systemic inflammatory autoimmune disease characterized by irreversible joint damage and deformity. The aim of this study is to investigate THRIL and HOTAIR serum expression and their target genes in Egyptian RA patients and to evaluate their relationship to the clinico-pathological data. METHODS The present study included fifty-two RA patients and fifty-six healthy controls. RA patients were classified according to DAS28 score. All subjects were subjected to full history taking and clinical examination. Quantitative real time PCR was done to estimate the expression levels of serum THRIL and HOTAIR as well as their target genes tumor necrosis factor alpha (TNF-α) and metalloproteinase 2 (MMP-2) were estimated by ELISA techniques. RESULTS Results revealed that both THRIL and HOTAIR were statistically over expressed in RA patients compared to healthy group with p-value< 0.05. Results showed as well that the target genes for those long-non coding RNAs, TNF-α and MMP-2, were also significantly higher in RA patients compared to healthy controls. CONCLUSION Both THRIL and HOTAIR associated with their target genes, can be considered as diagnostic markers for RA.
Collapse
Affiliation(s)
- Engy Medhat
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University.
- Corresponding author: Engy Medhat; Tel: 002 01002975847; E-mail:
| | - Ghada Ayeldeen
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University.
| | - Hanan Hosni Ahmed
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University.
| | - Olfat Shaker
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University.
| | - Tamer Gheita
- Rheumatology Department, Faculty of Medicine, Cairo University.
| | | |
Collapse
|
28
|
Abstract
The last decade has seen an enormous increase in long non-coding RNA (lncRNA) research within rheumatology. LncRNAs are arbitrarily classed as non-protein encoding RNA transcripts that exceed 200 nucleotides in length. These transcripts have tissue and cell specific patterns of expression and are implicated in a variety of biological processes. Unsurprisingly, numerous lncRNAs are dysregulated in rheumatoid conditions, correlating with disease activity and cited as potential biomarkers and targets for therapeutic intervention. In this chapter, following an introduction into each condition, we discuss the lncRNAs involved in rheumatoid arthritis, osteoarthritis and systemic lupus erythematosus. These inflammatory joint conditions share several inflammatory signalling pathways and therefore not surprisingly many commonly dysregulated lncRNAs are shared across these conditions. In the interest of translational research only those lncRNAs which are strongly conserved have been addressed. The lncRNAs discussed here have diverse roles in regulating inflammation, proliferation, migration, invasion and apoptosis. Understanding the molecular basis of lncRNA function in rheumatology will be crucial in fully determining the inflammatory mechanisms that drive these conditions.
Collapse
|
29
|
Wang X, Chen H, Liu J, Gai L, Yan X, Guo Z, Liu F. Emerging Advances of Non-coding RNAs and Competitive Endogenous RNA Regulatory Networks in Asthma. Bioengineered 2021; 12:7820-7836. [PMID: 34635022 PMCID: PMC8806435 DOI: 10.1080/21655979.2021.1981796] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/11/2021] [Accepted: 09/12/2021] [Indexed: 12/31/2022] Open
Abstract
Asthma is a chronic inflammatory disease characterized by airway remodeling and bronchial hyperresponsiveness. A variety of effector cells and cytokines jointly stimulate the occurrence of inflammatory response in asthma. Although the pathogenesis of asthma is not entirely clear, the possible roles of non-coding RNAs (ncRNAs) have been recently demonstrated. NcRNAs are non-protein-coding RNA molecules, such as circular RNAs (circRNAs), long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), which are involved in the regulation of a variety of biological processes. Mounting studies have shown that ncRNAs play pivotal roles in the occurrence and progression of asthma via competing endogenous RNA (ceRNA) regulatory networks. However, the specific mechanism and clinical application of ncRNAs and ceRNA regulatory networks in asthma have not been fully elucidated, which are worthy of further investigation. This paper comprehensively summarized the current progress on the roles of miRNAs, lncRNAs, circRNAs, and ceRNA regulatory networks in asthma, which can provide a better understanding for the disease pathogenesis and is helpful for identifying novel biomarkers for asthma.
Collapse
Affiliation(s)
- Xiaoxu Wang
- Clinical Medicine College, Weifang Medical University, WeifangChina
- Department of Allergy, The First Affiliated Hospital of Weifang Medical University/ Weifang People’s Hospital, WeifangChina
| | - Hui Chen
- Clinical Medicine College, Weifang Medical University, WeifangChina
- Department of Allergy, The First Affiliated Hospital of Weifang Medical University/ Weifang People’s Hospital, WeifangChina
| | - Jingjing Liu
- Clinical Medicine College, Weifang Medical University, WeifangChina
- Department of Allergy, The First Affiliated Hospital of Weifang Medical University/ Weifang People’s Hospital, WeifangChina
| | - Linlin Gai
- Department of Central Laboratory, The First Affiliated Hospital of Weifang Medical University/Weifang People’s Hospital, WeifangChina
| | - Xinyi Yan
- Department of Central Laboratory, The First Affiliated Hospital of Weifang Medical University/Weifang People’s Hospital, WeifangChina
| | - Zhiliang Guo
- Department of Spine Surgery, The 80th Group Army Hospital of Chinese PLA, WeifangChina
| | - Fengxia Liu
- Department of Allergy, The First Affiliated Hospital of Weifang Medical University/ Weifang People’s Hospital, WeifangChina
| |
Collapse
|
30
|
Zou Y, Shen C, Shen T, Wang J, Zhang X, Zhang Q, Sun R, Dai L, Xu H. LncRNA THRIL is involved in the proliferation, migration, and invasion of rheumatoid fibroblast-like synoviocytes. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1368. [PMID: 34733920 PMCID: PMC8506560 DOI: 10.21037/atm-21-1362] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/20/2021] [Indexed: 01/01/2023]
Abstract
Background Fibroblast-like synoviocytes (FLSs), which can migrate and directly invade the cartilage and the bone, are crucial players in joint damage in rheumatoid arthritis (RA). Nevertheless, the detailed mechanisms underlying the aberrant activation of RA FLSs remain unclear. Several studies have attempted to explore the relationship between long non-coding RNAs (lncRNAs) and RA pathology; however, the role of lncRNAs in RA is unknown. The present study aimed to determine the functions of tumor necrosis factor-α and heterogeneous nuclear ribonucleoprotein L-related immunoregulatory lincRNA (THRIL) in RA FLSs migration and invasion. Methods Small interfering RNA targeting THRIL or lentivirus overexpressing THRIL was used to knockdown or overexpress THRIL. Quantitative reverse transcription polymerase chain reaction (PCR) was employed for the detection of RNA expression. The proliferation rate of RA FLSs was measured using a 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay. Migration and invasion were detected using a transwell chamber. Downstream targets were identified using a human cell cycle real-time PCR array and a human cell motility real-time PCR array. Results A significant decrease in THRIL expression was found in RA FLSs compared with cells from healthy control (HC)patients. THRIL is mainly localized in the nucleus. Knockdown of THRIL increased the proliferation, migration, and invasion of RA FLSs. In contrast, THRIL overexpression had the opposite effect. THRIL knockdown increased interleukin-1β (IL-1β)-triggered expression of matrix metalloproteinase (MMP)-1, MMP-3, and MMP-13. THRIL overexpression led to a significant decrease in MMP-13 expression in response to stimulation with IL-1β. Furthermore, we observed that the expression levels of cyclin-dependent kinase 1 (CDK1) and G2 and S phase-expressed-1 (GTSE1), both of which are associated with cellular mobility and proliferation, were downregulated with THRIL overexpression. Conclusions Reduced expression of lncRNA THRIL represses the proliferation, migration, and invasion of RA FLSs, suggesting that lncRNA THRIL might be a potential target for RA therapy.
Collapse
Affiliation(s)
- Yaoyao Zou
- Department of Rheumatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chuyu Shen
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ting Shen
- Department of Radiation Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingnan Wang
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuepei Zhang
- Department of Rheumatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qian Zhang
- Department of Rheumatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Runlu Sun
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lie Dai
- Department of Rheumatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hanshi Xu
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
31
|
Wang Y, Xue M, Xia F, Zhu L, Jia D, Gao Y, Li L, Shi Y, Li Y, Chen S, Xu G, Yuan C. Long noncoding RNA GAS5 in age-related diseases. Curr Med Chem 2021; 29:2863-2877. [PMID: 34711157 DOI: 10.2174/0929867328666211027123932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/18/2021] [Accepted: 09/01/2021] [Indexed: 11/22/2022]
Abstract
Aging refers to a natural process and a universal phenomenon in all cells, tissues, organs and the whole organism. Long non-coding RNAs (lncRNAs) are non-coding RNAs with the length of 200 nucleotides. LncRNA growth arrest-specific 5 (lncRNA GAS5) is often down-regulated in cancer. The accumulation of lncRNA GAS5 has been found to be able to inhibit cancer growth, invasion and metastasis, while enhancing the sensitivity of cells to chemotherapy drugs. LncRNA GAS5 can be a signaling protein, which is specifically transcribed under different triggering conditions. Subsequently, it is involved in signal transmission in numerous pathways as a signal node. LncRNA GAS5, with a close relationship to multiple miRNAs, was suggested to be involved in the signaling pathway under three action modes (i.e., signal, bait and guidance). LncRNA GAS5 was found to be involved in different age-related diseases (e.g., rheumatoid arthritis, type 2 diabetes, atherosclerosis, osteoarthritis, osteoporosis, multiple sclerosis, cancer etc.). This study mainly summarized the regulatory effect exerted by lncRNA GAS5 on age-related diseases.
Collapse
Affiliation(s)
- Yaqi Wang
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Mengzhen Xue
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Fangqi Xia
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Leiqi Zhu
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Dengke Jia
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Yan Gao
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Luoying Li
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Yue Shi
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Yuanyang Li
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Silong Chen
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Guangfu Xu
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Chengfu Yuan
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| |
Collapse
|
32
|
Tian X, Shen L, Wang Z, Zhou L, Peng L. A novel lncRNA-protein interaction prediction method based on deep forest with cascade forest structure. Sci Rep 2021; 11:18881. [PMID: 34556758 PMCID: PMC8460650 DOI: 10.1038/s41598-021-98277-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 08/18/2021] [Indexed: 02/08/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) regulate many biological processes by interacting with corresponding RNA-binding proteins. The identification of lncRNA-protein Interactions (LPIs) is significantly important to well characterize the biological functions and mechanisms of lncRNAs. Existing computational methods have been effectively applied to LPI prediction. However, the majority of them were evaluated only on one LPI dataset, thereby resulting in prediction bias. More importantly, part of models did not discover possible LPIs for new lncRNAs (or proteins). In addition, the prediction performance remains limited. To solve with the above problems, in this study, we develop a Deep Forest-based LPI prediction method (LPIDF). First, five LPI datasets are obtained and the corresponding sequence information of lncRNAs and proteins are collected. Second, features of lncRNAs and proteins are constructed based on four-nucleotide composition and BioSeq2vec with encoder-decoder structure, respectively. Finally, a deep forest model with cascade forest structure is developed to find new LPIs. We compare LPIDF with four classical association prediction models based on three fivefold cross validations on lncRNAs, proteins, and LPIs. LPIDF obtains better average AUCs of 0.9012, 0.6937 and 0.9457, and the best average AUPRs of 0.9022, 0.6860, and 0.9382, respectively, for the three CVs, significantly outperforming other methods. The results show that the lncRNA FTX may interact with the protein P35637 and needs further validation.
Collapse
Affiliation(s)
- Xiongfei Tian
- School of Computer Science, Hunan University of Technology, Zhuzhou, 412007, China
| | - Ling Shen
- School of Computer Science, Hunan University of Technology, Zhuzhou, 412007, China
| | - Zhenwu Wang
- School of Computer Science, Hunan University of Technology, Zhuzhou, 412007, China
| | - Liqian Zhou
- School of Computer Science, Hunan University of Technology, Zhuzhou, 412007, China.
| | - Lihong Peng
- School of Computer Science, Hunan University of Technology, Zhuzhou, 412007, China.
| |
Collapse
|
33
|
Song J, Wang T, Chen Y, Cen R. Long non-coding RNA growth arrest-specific 5 and its targets, microRNA-21 and microRNA-140, are potential biomarkers of allergic rhinitis. J Clin Lab Anal 2021; 35:e23938. [PMID: 34473845 PMCID: PMC8529140 DOI: 10.1002/jcla.23938] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 12/30/2022] Open
Abstract
Objective Long non‐coding RNA growth arrest‐specific 5 (lnc‐GAS5) and its targets (microRNA [miR]‐21 and miR‐140) are involved in the development and progression of allergic rhinitis (AR). However, the correlation of lnc‐GAS5 with miR‐21 and miR‐140 and their associations with disease risk, symptom severity, and Th1/Th2 cytokines in AR remain unclear. Thus, this study aimed to investigate this topic. Methods In total, 120 patients with AR and 60 controls were recruited. Nasal‐mucosa tissues were collected from all participants. Lnc‐GAS5, its targets (miR‐21 and miR‐140), interferon (IFN)‐γ, interleukin (IL)‐2, IL‐4, and IL‐10 were detected by reverse‐transcription quantitative polymerase chain reaction. Results Lnc‐GAS5 was elevated, while miR‐21 and miR‐140 was downregulated in AR patients than in controls (p < 0.001). In AR patients, lnc‐GAS5 was negatively correlated with miR‐21 (p < 0.001), miR‐140 (p < 0.001), IFN‐γ (p = 0.019), and IL‐2 (p = 0.039) and positively correlated with IL‐4 (p = 0.004) and IL‐10 (p < 0.001), individual nasal symptom scores (INSSs) for itching, sneezing, and congestion (p < 0.05), and total nasal symptom score (TNSS) (p < 0.001). Moreover, miR‐21 and miR‐140 were negatively correlated with some INSSs, total TNSS score, and IL‐10 and positively correlated with IFN‐γ and IL‐2 (p < 0.05). Conclusion Lnc‐GAS5 is negatively correlated with that of its targets (miR‐21 and miR‐140) in AR; meanwhile, lnc‐GAS5, miR‐21, and miR‐140 are correlated with disease risk, symptom severity, and Th1/Th2 imbalance in AR, suggesting the potential of these biomarkers in the development and progression of AR.
Collapse
Affiliation(s)
- Ji Song
- Department of Otorhinolaryngology, The University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Taojiao Wang
- Department of Otorhinolaryngology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, HuangShi, China
| | - Yandan Chen
- Department of Otorhinolaryngology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, HuangShi, China
| | - Ruixiang Cen
- Department of Otorhinolaryngology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, HuangShi, China
| |
Collapse
|
34
|
Tsai CY, Hsieh SC, Liu CW, Lu CH, Liao HT, Chen MH, Li KJ, Wu CH, Shen CY, Kuo YM, Yu CL. The Expression of Non-Coding RNAs and Their Target Molecules in Rheumatoid Arthritis: A Molecular Basis for Rheumatoid Pathogenesis and Its Potential Clinical Applications. Int J Mol Sci 2021; 22:ijms22115689. [PMID: 34073629 PMCID: PMC8198764 DOI: 10.3390/ijms22115689] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is a typical autoimmune-mediated rheumatic disease presenting as a chronic synovitis in the joint. The chronic synovial inflammation is characterized by hyper-vascularity and extravasation of various immune-related cells to form lymphoid aggregates where an intimate cross-talk among innate and adaptive immune cells takes place. These interactions facilitate production of abundant proinflammatory cytokines, chemokines and growth factors for the proliferation/maturation/differentiation of B lymphocytes to become plasma cells. Finally, the autoantibodies against denatured immunoglobulin G (rheumatoid factors), EB virus nuclear antigens (EBNAs) and citrullinated protein (ACPAs) are produced to trigger the development of RA. Furthermore, it is documented that gene mutations, abnormal epigenetic regulation of peptidylarginine deiminase genes 2 and 4 (PADI2 and PADI4), and thereby the induced autoantibodies against PAD2 and PAD4 are implicated in ACPA production in RA patients. The aberrant expressions of non-coding RNAs (ncRNAs) including microRNAs (miRs) and long non-coding RNAs (lncRNAs) in the immune system undoubtedly derange the mRNA expressions of cytokines/chemokines/growth factors. In the present review, we will discuss in detail the expression of these ncRNAs and their target molecules participating in developing RA, and the potential biomarkers for the disease, its diagnosis, cardiovascular complications and therapeutic response. Finally, we propose some prospective investigations for unraveling the conundrums of rheumatoid pathogenesis.
Collapse
Affiliation(s)
- Chang-Youh Tsai
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital, National Yang-Ming Chiao-Tung University, Taipei 11217, Taiwan; (C.-W.L.); (H.-T.L.); (M.-H.C.)
- Correspondence: (C.-Y.T.); (C.-L.Y.)
| | - Song-Chou Hsieh
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (K.-J.L.); (C.-H.W.); (C.-Y.S.); (Y.-M.K.)
| | - Chih-Wei Liu
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital, National Yang-Ming Chiao-Tung University, Taipei 11217, Taiwan; (C.-W.L.); (H.-T.L.); (M.-H.C.)
| | - Cheng-Hsun Lu
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (K.-J.L.); (C.-H.W.); (C.-Y.S.); (Y.-M.K.)
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan
| | - Hsien-Tzung Liao
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital, National Yang-Ming Chiao-Tung University, Taipei 11217, Taiwan; (C.-W.L.); (H.-T.L.); (M.-H.C.)
| | - Ming-Han Chen
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital, National Yang-Ming Chiao-Tung University, Taipei 11217, Taiwan; (C.-W.L.); (H.-T.L.); (M.-H.C.)
| | - Ko-Jen Li
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (K.-J.L.); (C.-H.W.); (C.-Y.S.); (Y.-M.K.)
| | - Cheng-Han Wu
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (K.-J.L.); (C.-H.W.); (C.-Y.S.); (Y.-M.K.)
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan
| | - Cheih-Yu Shen
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (K.-J.L.); (C.-H.W.); (C.-Y.S.); (Y.-M.K.)
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan
| | - Yu-Min Kuo
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (K.-J.L.); (C.-H.W.); (C.-Y.S.); (Y.-M.K.)
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan
| | - Chia-Li Yu
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (K.-J.L.); (C.-H.W.); (C.-Y.S.); (Y.-M.K.)
- Correspondence: (C.-Y.T.); (C.-L.Y.)
| |
Collapse
|
35
|
Hussen BM, Azimi T, Hidayat HJ, Taheri M, Ghafouri-Fard S. Long Non-coding RNA RMRP in the Pathogenesis of Human Disorders. Front Cell Dev Biol 2021; 9:676588. [PMID: 33996836 PMCID: PMC8120005 DOI: 10.3389/fcell.2021.676588] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/12/2021] [Indexed: 12/17/2022] Open
Abstract
RNA component of mitochondrial RNA processing endoribonuclease (RMRP) is a non-coding transcript firstly acknowledged for its association with the cartilage-hair hypoplasia (CHH) syndrome, a rare autosomal recessive condition. This transcript has been spotted in both nucleus and mitochondria. In addition to its role in the pathogenesis of CHH, RMRP participates in the pathogenesis of cancers. Independent studies in bladder cancer, colon cancer, hepatocellular carcinoma, lung cancer, breast carcinoma and multiple myeloma have confirmed the oncogenic effects of RMRP. Mechanistically, RMRP serves as a sponge for some miRNAs such as miR-206, miR-613, and miR-217. In addition to these miRNAs, expressions of tens of miRNAs have been altered following RMRP silencing, implying the vast extent of RMRP/miRNA network. In the present narrative review, we explain the role of RMRP in the development of cancers and some other non-malignant disorders.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Tahereh Azimi
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahadddin University-Erbil, Erbil, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
GAS5 regulates viability and apoptosis in TGF-β1-stimulated bronchial epithelial cells by regulating miR-217/HDAC4 axis. Genes Genomics 2021; 43:837-846. [PMID: 33864612 DOI: 10.1007/s13258-021-01092-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/26/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Asthma is a serious respiratory disease that affects the physical and mental health of children. Airway epithelial apoptosis concomitantly mediated by transforming growth factor-β1 (TGF-β1) is a crucial component of asthma pathogenesis. LncRNA growth Arrest Specific 5 (GAS5), microRNA-217 (miR-217) and Histone deacetylase 4 (HDAC4) shown a close relationship with TGF-β1-induced injury of airway epithelial. However, the mechanism underlying TGF-β1-induced injury of airway epithelial in asthma still needs to be investigated. OBJECTIVE We aimed to investigate the effect and underlying mechanism of GAS5/miR-217/HDAC4 axis in TGF-β1-stimulated bronchial epithelial cells. METHODS The levels of were detected by quantitative real-time polymerase chain reaction (RT-qPCR). All protein levels were determined by western blot. Cell viability and apoptosis rate were assessed by Methyl thiazolyl tetrazolium (MTT) and Flow cytometry, respectively. The targeting relationship between miR-217 and GAS5 or HDAC4 was examined with dual-luciferase reporter assay. RESULTS TGF-β1, GAS5, HDAC4 were up-regulated, while miR-217 was down-regulated in bronchial mucosal tissues of asthmatic children and TGF-β1-treated BEAS-2B cells. TGF-β1 could reduce cell viability and induce apoptosis, while these effects could be reversed by downregulation of GAS5 or HDAC4. Mechanically, GAS5 acted as a sponge for miR-217 to regulate the expression of HDAC4. Furthermore, overexpression of HDAC4 rescued the effects of GAS5 knockdown on viability and apoptosis of TGF-β1-induced BEAS-2B cells. GAS5 knockdown induced cell viability and hampered cell apoptosis in TGF-β1-stimulated BEAS-2B cells by regulating the miR-217/HDAC4 axis. CONCLUSIONS The lncRNA GAS5/miR-217/HDAC4 axis played an important role in regulating TGF-β1-induced bronchial epithelial cells injury, thus contributing to asthma.
Collapse
|
37
|
Chi X, Guo Y, Zhang L, Zhang J, Du Y, Zhao W, Wang M, Feng M, Guo Y, Wang J, Zhang L, Zhang W. Long non-coding RNA GAS5 regulates Th17/Treg imbalance in childhood pneumonia by targeting miR-217/STAT5. Cell Immunol 2021; 364:104357. [PMID: 33862314 DOI: 10.1016/j.cellimm.2021.104357] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/02/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
The imbalance of helper T (Th) 17 and regulatory T (Treg) cells plays an important role in the pathogenesis of pneumonia. This study aims to investigate the role and mechanism of long non-coding RNA growth arrest-specific 5 (GAS5) in the differentiation of Th17 cells and Tregs in childhood pneumonia. Expression of GAS5, miR-217, signal transducer and activator of transcription-5 (STAT5), receptor-related orphan receptor γt (RORγt), and transcription factor Forkhead box P3 (Foxp3) were examined by qRT-PCR and western blot. The percentage of Th17 cells and Tregs in CD4+ T cells were measured by flow cytometry. The interaction between miR-217 and GAS5 or STAT5 was analyzed by luciferase reporter assay. Downregulated GAS5 expression and Treg cell percentage, and upregulated Th17 cell percentage were observed in pneumonia patients when compared with the healthy controls. Furthermore, GAS5 overexpression corrected the imbalanced Th17/Treg in peripheral blood CD4+ T cells derived from pneumonia patients, and this effect was reversed by miR-217 mimic and STAT5 silencing. Mechanistically, GAS5 acted as a sponge of miR-217 to reduce binding of miR-217 to its target STAT5, leading to upregulation of STAT5 expression. Taken together, GAS5 corrects the Treg/Th17 imbalance by targeting the miR-217/STAT5 axis in childhood pneumonia.
Collapse
Affiliation(s)
- Xiaowen Chi
- Department of Pediatric, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150036, China
| | - Yuening Guo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Lijuan Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Jiawen Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Yumin Du
- Department of Pediatric, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150036, China
| | - Wencheng Zhao
- Department of Pediatric, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150036, China
| | - Mengyao Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Mingfa Feng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Youfang Guo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Jianmei Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Liying Zhang
- Department of Pediatric, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150036, China
| | - Wei Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China.
| |
Collapse
|
38
|
Miao C, Bai L, Yang Y, Huang J. Dysregulation of lncRNAs in Rheumatoid Arthritis: Biomarkers, Pathogenesis and Potential Therapeutic Targets. Front Pharmacol 2021; 12:652751. [PMID: 33776780 PMCID: PMC7994855 DOI: 10.3389/fphar.2021.652751] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/05/2021] [Indexed: 12/15/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease of unknown etiology, mainly manifested by persistent abnormal proliferation of fibroblast-like synoviocytes (FLSs), inflammation, synovial hyperplasia and cartilage erosion, accompanied by joint swelling and joint destruction. Abnormal expression or function of long noncoding RNAs (lncRNAs) are closely related to human diseases, including cancers, mental diseases, autoimmune diseases and others. The abnormal sequence and spatial structure of lncRNAs, the disorder expression and the abnormal interaction with the binding protein will lead to the change of gene expression in the way of epigenetic modification. Increasing evidence demonstrated that lncRNAs were involved in the activation of FLSs, which played a key role in the pathogenesis of RA. In this review, the research progress of lncRNAs in the pathogenesis of RA was systematically summarized, including the role of lncRNAs in the diagnosis of RA, the regulatory mechanism of lncRNAs in the pathogenesis of RA, and the intervention role of lncRNAs in the treatment of RA. Furthermore, the activated signal pathways, the role of DNA methylation and other mechanism have also been overview in this review.
Collapse
Affiliation(s)
- Chenggui Miao
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Anhui Provincial Key Laboratory of Chinese Medicine Compound, Anhui University of Chinese Medicine, Hefei, China.,Department of Pharmacy, School of Life and Health Sciences, Anhui University of Science and Technology, Fengyang, China
| | - Liangliang Bai
- Department of Biomedical Engineering, School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Yaru Yang
- Department of Pharmacy, First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Jinling Huang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
39
|
Ghafouri-Fard S, Abak A, Mohaqiq M, Shoorei H, Taheri M. The Interplay Between Non-coding RNAs and Insulin-Like Growth Factor Signaling in the Pathogenesis of Neoplasia. Front Cell Dev Biol 2021; 9:634512. [PMID: 33768092 PMCID: PMC7985092 DOI: 10.3389/fcell.2021.634512] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/02/2021] [Indexed: 12/11/2022] Open
Abstract
The insulin-like growth factors (IGFs) are polypeptides with similar sequences with insulin. These factors regulate cell growth, development, maturation, and aging via different processes including the interplay with MAPK, Akt, and PI3K. IGF signaling participates in the pathogenesis of neoplasia, insulin resistance, diabetes mellitus, polycystic ovarian syndrome, cerebral ischemic injury, fatty liver disease, and several other conditions. Recent investigations have demonstrated the interplay between non-coding RNAs and IGF signaling. This interplay has fundamental roles in the development of the mentioned disorders. We designed the current study to search the available data about the role of IGF-associated non-coding RNAs in the evolution of neoplasia and other conditions. As novel therapeutic strategies have been designed for modification of IGF signaling, identification of the impact of non-coding RNAs in this pathway is necessary for the prediction of response to these modalities.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Mohaqiq
- School of Advancement, Centennial College, Ashtonbee Campus, Toronto, ON, Canada
- Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University, Winston-Salem, NC, United States
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Biranjd University of Medical Sciences, Birjand, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Kuai F, Zhou L, Zhou J, Sun X, Dong W. Long non-coding RNA THRIL inhibits miRNA-24-3p to upregulate neuropilin-1 to aggravate cerebral ischemia-reperfusion injury through regulating the nuclear factor κB p65 signaling. Aging (Albany NY) 2021; 13:9071-9084. [PMID: 33675584 PMCID: PMC8034910 DOI: 10.18632/aging.202762] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/29/2020] [Indexed: 12/19/2022]
Abstract
Purpose: The aim of this study was to investigate the role of the tumor necrosis factor and HNRNPL related immunoregulatory long non-coding RNA (THRIL) in cerebral ischemia-reperfusion injury. Methods: A rat middle cerebral artery occlusion/ischemia-reperfusion (MCAO/IR) model and an oxygen glucose deprivation/reoxygenation (OGD/R) cell model were constructed. THRIL was knocked down using siTHRIL. Neurological deficit score was detected based on the criteria of Zea-Longa. Brain region 2,3,5-Triphenyltetrazolium (TTC) staining and quantitative analysis of cerebral infarction volume, RT-qPCR, and fluorescence immunostaining were performed for assessing THRIL expression. MTT assay was used to detect the cell proliferation ability after transfection, TUNEL assay was applied to detect apoptosis, and western blot and ELISA detected related protein expression. A dual luciferase reporter system and RIP assay were used to confirm the target relationship. Results: THRIL was upregulated in both in vitro and in vivo models of brain ischemia-reperfusion injury. Knockdown of THRIL attenuated OGD/R neuronal apoptosis and OGD/R-induced inflammation. THRIL targeted and regulated the expression of miR-24-3p/neuropilin-1 (NRP1) axis. THRIL silencing significantly improved the neurological functioning of rats in the MCAO/R model by miR-24-3p/NRP1/NF-κB p65 signaling pathway. Conclusion: THRIL could aggravate cerebral ischemia-reperfusion injury by competitively binding to miR-24-3p to promote the upregulation of NRP1 and further promoted the activation of the NF-κB p65 signaling pathway.
Collapse
Affiliation(s)
- Feng Kuai
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.,Department of Geriatrics, The First People's Hospital of Yancheng, The Forth Affiliated Hospital of Nantong University, Yancheng 224001, China
| | - Liang Zhou
- Department of orthopedic, The People's Hospital of Lianshui, Huai'an 223001, China
| | - Jianping Zhou
- Department of Geriatrics, The First People's Hospital of Yancheng, The Forth Affiliated Hospital of Nantong University, Yancheng 224001, China
| | - Xuemei Sun
- Department of Geriatrics, The First People's Hospital of Yancheng, The Forth Affiliated Hospital of Nantong University, Yancheng 224001, China
| | - Wanli Dong
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| |
Collapse
|
41
|
Zhang X, Huang Z, Wang Y, Wang T, Li J, Xi P. Long Non-Coding RNA RMRP Contributes to Sepsis-Induced Acute Kidney Injury. Yonsei Med J 2021; 62:262-273. [PMID: 33635017 PMCID: PMC7934096 DOI: 10.3349/ymj.2021.62.3.262] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/15/2020] [Accepted: 11/11/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE This study aimed to explore the role of the long non-coding RNA (lncRNA) RNA component of mitochondrial RNAase P (RMRP) in sepsis-induced acute kidney injury (AKI). MATERIALS AND METHODS Venous blood was collected from septic patients and healthy people. C57BL/6 mice who underwent cecal ligation and puncture (CLP) were used as in vivo models of septic AKI. Lipopolysaccharide (LPS)-induced HK-2 cells were employed as in vitro models of AKI. Flow cytometry analysis was conducted to detect cell apoptosis. Enzyme-linked immunosorbent assay and Western blot assays were used to detect levels of pro-inflammatory cytokines. RESULTS RMRP was upregulated in sera from patients with AKI and in LPS-induced cells. Knockdown of RMRP inhibited cell apoptosis and reduced production of inflammatory factors in LPS-induced cells, as well as alleviated AKI in CLP mice. RMRP facilitated inflammation by activating NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome. We found that microRNA 206 (miR-206) binds with and is negatively regulated by RMRP: miR-206 directly targets the 3' untranslated region of DEAD-box helicase 5 (DDX5) and negatively regulates DDX5 expression. By binding with miR-206, RMRP upregulated DDX5 expression. Rescue assays revealed that overexpression of DDX5 counteracted the effect of RMRP inhibition on cell apoptosis and inflammatory response in LPS-induced cells. CONCLUSION The lncRNA RMRP contributes to sepsis-induced AKI through upregulation of DDX5 in a miR-206 dependent manner and through activation of NLRP3 inflammasome. This novel discovery may provide a potential strategy for treating AKI.
Collapse
Affiliation(s)
- Xia Zhang
- Department of Emergency, Affiliated Hospital of Nantong University, Nantong, China
| | - Zhongwei Huang
- Department of Emergency, Affiliated Hospital of Nantong University, Nantong, China.
| | - Yan Wang
- Department of Emergency, Affiliated Hospital of Nantong University, Nantong, China
| | - Ting Wang
- Department of Emergency, Affiliated Hospital of Nantong University, Nantong, China
| | - Jingjing Li
- Department of Emergency, Affiliated Hospital of Nantong University, Nantong, China
| | - Peipei Xi
- Department of Emergency, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
42
|
Ghafouri-Fard S, Bahroudi Z, Shoorei H, Abak A, Ahin M, Taheri M. microRNA-140: A miRNA with diverse roles in human diseases. Biomed Pharmacother 2021; 135:111256. [PMID: 33434855 DOI: 10.1016/j.biopha.2021.111256] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/27/2020] [Accepted: 01/03/2021] [Indexed: 02/07/2023] Open
Abstract
MicroRNA-140 (miR-140) has been shown to be associated with the pathogenesis of a wide range of pathologies including osteoarthritis, osteoporosis, renal fibrosis, ischemic conditions, and most importantly neoplasia. This miRNA has been shown to be down-regulated in a diversity of cancers namely breast cancer, gastrointestinal cancers, lung cancer, and prostate cancer. miR-140 has a lot of immune-related targets. Moreover, several miR-140 targets regulate cell proliferation, cell cycle transition, and apoptosis. This miRNA has been shown to be sponged by a number of lncRNAs and circ-RNAs. miR-140 has essential roles in the determination of the sensitivity of neoplastic cells to chemotherapeutic agents such as temozolomide, doxorubicin, and cisplatin. Besides, expression quantities of miR-140 in cancer tissues can be used for the prediction of clinical outcomes of patients with neoplasia. In the present paper, we describe the impact of miR-140 in neoplastic and non-neoplastic disorders.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Bahroudi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Atefe Abak
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maliheh Ahin
- Taleghani Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
43
|
Abstract
Long non-coding RNA (lncRNA) plays a contributory role in rheumatoid arthritis (RA). In this review, we summarized the current findings of lncRNAs in RA, including cellular function and the potential mechanisms. Serum lncRNA levels are associated with serum proinflammatory cytokines and disease activity. LncRNAs regulate proliferation, migration, invasion and apoptosis of RA fibroblast-like synoviocytes (FLSs), modulate the differentiation of T lymphocytes and macrophages, and affect bone formation-destruction balance of chondrocytes. Besides, lncRNAs are involved in inflammation and cell motivation signaling pathways. In-depth research on lncRNAs may help elucidate the pathogenesis of RA and provides clues for novel treatment targets.
Collapse
|
44
|
Sadeghpour S, Ghafouri-Fard S, Mazdeh M, Nicknafs F, Nazer N, Sayad A, Taheri M. Over-Expression of Immune-Related lncRNAs in Inflammatory Demyelinating Polyradiculoneuropathies. J Mol Neurosci 2020; 71:991-998. [PMID: 33057965 DOI: 10.1007/s12031-020-01721-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/24/2020] [Indexed: 11/27/2022]
Abstract
Long non-coding RNAs (lncRNAs) have crucial roles in the pathogenesis of immune-related disorders. However, their role in the pathobiology of inflammatory demyelinating polyradiculoneuropathies remains unclear. In the current study, we measured peripheral expression of four lncRNAs, namely TUG1, FAS-AS1, NEAT1, and GAS5, in patients with acute/chronic inflammatory demyelinating polyradiculoneuropathies (AIDP/CIDP) compared with healthy subjects. Notably, all lncRNAs were over-expressed in patients compared with controls (P < 0.0001 for all lncRNAs). When assessing their expressions in AIDP and CIDP groups separately, TUG1 and NEAT1 were up-regulated in both patient groups compared with controls, yet FAS-AS1 and GAS5 were only up-regulated in CIDP cases. There were remarkable pairwise correlations between expression levels of these lncRNAs in all study groups. Based on the above-mentioned data, we suggest participation of these for lncRNAs in the pathogenesis of inflammatory demyelinating polyradiculoneuropathies. Moreover, FAS-AS1 and GAS5 lncRNAs have type-specific roles in this regard. Future functional studies are needed to elaborate the molecular mechanisms of the contribution of these transcripts in AIDP/CIDP.
Collapse
Affiliation(s)
- Saba Sadeghpour
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdokht Mazdeh
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fwad Nicknafs
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Naghme Nazer
- Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran
| | - Arezou Sayad
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
45
|
Peng H, Xiong S, Ding X, Tang X, Wang X, Wang L, Liu Y. Long non‑coding RNA expression profiles identify lncRNA‑XLOC_I2_006631 as a potential novel blood biomarker for Hashimoto's thyroiditis. Int J Mol Med 2020; 46:2172-2184. [PMID: 33125100 PMCID: PMC7595668 DOI: 10.3892/ijmm.2020.4755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/17/2020] [Indexed: 12/25/2022] Open
Abstract
Long non‑coding RNAs (lncRNAs) have been increasingly recognized as important immune checkpoints involved in the pathogenesis of autoimmune diseases. However, the exact role of lncRNAs in Hashimoto's thyroiditis (HT) has been rarely studied. The aim of the present study was to investigate the role of lncRNAs and the potential biomarkers in HT, a total of 33 patients with HT and 32 healthy volunteers were enrolled in the present study, and five patients and five healthy controls were investigated using next generation sequencing. A total of 218 dysregulated lncRNAs, including 94 upregulated and 124 downregulated lncRNAs, were identified and examined in the peripheral blood mononuclear cells (PBMCs) from patients with HT. The majority of the lncRNAs were intergenic and exonic (66.06%). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis demonstrated that abnormally expressed lncRNAs were enriched in the 'NF‑kB expression', in the 'TGF‑β signaling pathway' and in the 'JAK‑STAT signaling pathway', which are associated with the immunopathogenic mechanisms of HT. In total, three lncRNAs (LOC729737, XLOC_I2_006631 and BC041964) were validated and had a trend identical to that detected by the sequencing results. The expression of lncRNA‑XLOC_I2_006631 was upregulated and was positively correlated with the serum concentrations of anti‑thyroperoxidase antibody in patients with HT. Methyl‑CpG‑binding protein 2 (MECP2) was identified as the potential regulatory gene of lncRNA‑XLOC_I2_006631 using a prediction program. The expression of MECP2 was increased and was positively correlated with the elevated expression levels of lncRNA‑XLOC_I2_006631 and anti‑thyroperoxidase antibody in patients with HT. Furthermore, lncRNA‑XLOC_I2_006631 was able to regulate MECP2 expression in vitro. Receiver operating characteristic curve analysis suggested that lncRNA‑XLOC_I2_006631 has a potential diagnostic value. Collectively, the present results indicated the important role of dysregulated lncRNAs in HT and demonstrated that lncRNA‑XLOC_I2_006631 functioned as a positive regulator of MECP2 expression, suggesting a potential mechanism. Thus, lncRNA‑XLOC_I2_006631 may be used as a biomarker of HT.
Collapse
Affiliation(s)
- Huiyong Peng
- Department of Laboratory Medicine, The Affiliated People's Hospital of Jiangsu University, Zhenjiang Medical School of Nanjing Medical University, Zhenjiang, Jiangsu 212002, P.R. China
| | - Si Xiong
- Department of Endocrinology, The Fifth People's Hospital of Wuhan, Wuhan, Hubei 430050, P.R. China
| | - Xiangmei Ding
- Department of Endocrinology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang Medical School of Nanjing Medical University, Zhenjiang, Jiangsu 212002, P.R. China
| | - Xinyi Tang
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN 55902, USA
| | - Xuehua Wang
- Department of Endocrinology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang Medical School of Nanjing Medical University, Zhenjiang, Jiangsu 212002, P.R. China
| | - Li Wang
- Department of Endocrinology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang Medical School of Nanjing Medical University, Zhenjiang, Jiangsu 212002, P.R. China
| | - Yingzhao Liu
- Department of Endocrinology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang Medical School of Nanjing Medical University, Zhenjiang, Jiangsu 212002, P.R. China
| |
Collapse
|
46
|
Taheri M, Eghtedarian R, Dinger ME, Ghafouri-Fard S. Dysregulation of non-coding RNAs in Rheumatoid arthritis. Biomed Pharmacother 2020; 130:110617. [DOI: 10.1016/j.biopha.2020.110617] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/26/2020] [Accepted: 08/02/2020] [Indexed: 02/07/2023] Open
|
47
|
Ayoub SE, Hefzy EM, Abd El-Hmid RG, Ahmed NA, Khalefa AA, Ali DY, Ali MA. Analysis of the expression profile of long non-coding RNAs MALAT1 and THRIL in children with immune thrombocytopenia. IUBMB Life 2020; 72:1941-1950. [PMID: 32563217 DOI: 10.1002/iub.2310] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND/AIMS Pediatric immune thrombocytopenia (ITP) is an autoimmune disease; whose etiology is not exactly understood and seems to be highly multifactorial. Long non-coding RNAs (lncRNAs) are key regulators of different actions, which contribute to the development of many autoimmune diseases. To gain a further understanding, we estimated the relative expression of lncRNAs Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and tumor necrosis factor-α (TNF-α) and heterogeneous nuclear ribonucleoprotein L (hnRNPL) immune-regulatory lncRNA (THRIL) in pediatric ITP. METHODS In this case-control study, analysis of the expression profiles of these lncRNAs in blood samples from children with ITP and healthy controls (HCs) using quantitative real-time PCR was done. The association of MALAT1 and THRIL with ITP clinical features and their potential usage as non-invasive circulating biomarkers for ITP diagnosis was also evaluated. The receiver operating characteristic curve was constructed, and an area under the curve was analyzed. RESULTS Both lncRNAs MALAT1 and THRIL were significantly upregulated in ITP patients in comparison to HCs ( p < .0001 and = .001 respectively). In addition, there was a positive significant correlation between the expression level of both biomarkers among patients (r = 0.745, p < .0001). At cutoff points of 1.17 and 1.27 for lncRNAs MALAT1and THRIL, respectively, both biomarkers had an excellent specificity (100% for both) and fair sensitivity (63.6 and 73.3% for lncRNAs MALAT1and THRIL, respectively). Improvement of biomarkers specificity was obtained by evaluation of the combined expression of both biomarkers. Serum lncRNAs MALAT1 and THRIL could be used as potential biomarkers in differentiating childhood ITP patients and HCs.
Collapse
Affiliation(s)
- Shymaa E Ayoub
- Department of Medical Biochemistry and Molecular Biology, Fayoum University, Al Fayoum, Egypt
| | - Enas M Hefzy
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Fayoum University, Al Fayoum, Egypt
| | - Rehab G Abd El-Hmid
- Department of Pediatric Medicine, Faculty of Medicine, Fayoum University, Al Fayoum, Egypt
| | - Naglaa A Ahmed
- Department of Physiology, Faculty of Medicine, Zagazig University, El Zagazig, Egypt
| | - Abeer A Khalefa
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Fayoum University, Al Fayoum, Egypt
| | - Doaa Y Ali
- Department of Clinical Pathology, Fayoum University, Al Fayoum, Egypt
| | - Marwa A Ali
- Department of Medical Biochemistry and Molecular Biology, Fayoum University, Al Fayoum, Egypt
| |
Collapse
|
48
|
Jiang X, Ning Q. The mechanisms of lncRNA GAS5 in cardiovascular cells and its potential as novel therapeutic target. J Drug Target 2020; 28:1012-1017. [PMID: 32396741 DOI: 10.1080/1061186x.2020.1769108] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Long noncoding RNAs (lncRNAs) are a large class of non (protein)-coding RNAs, which are longer beyond 200 nucleotides. LncRNA GAS5 is widely considered as a tumour suppressor in cell proliferation, apoptosis, cell migration and invasion of tumour cells. Recently, a growing body of evidences indicated that GAS5 was also widely involved in the pathologic process of cardiovascular cells, including regulation of apoptosis and inflammatory injury of cardiomyocytes; proliferation, apoptosis, autophagy and angiogenesis of endothelial cells; and proliferation, migration, apoptosis and differentiation of VSMCs. In this regard, we summarised current studies of GAS5 in cardiovascular cells, which shed light on not only our understanding of the mechanisms of GAS5 in cardiovascular cells but also understanding of the potential of GAS5 as novel therapeutic target.
Collapse
Affiliation(s)
- Xiaoying Jiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Qilan Ning
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|
49
|
Liang Y, Li H, Gong X, Ding C. Long Non-coding RNA THRIL Mediates Cell Growth and Inflammatory Response of Fibroblast-Like Synoviocytes by Activating PI3K/AKT Signals in Rheumatoid Arthritis. Inflammation 2020; 43:1044-1053. [DOI: 10.1007/s10753-020-01189-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
50
|
Zou Y, Xu H. Involvement of long noncoding RNAs in the pathogenesis of autoimmune diseases. J Transl Autoimmun 2020; 3:100044. [PMID: 32743525 PMCID: PMC7388364 DOI: 10.1016/j.jtauto.2020.100044] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 03/08/2020] [Indexed: 02/07/2023] Open
Abstract
Autoimmune diseases are a group of heterogeneous disorders characterized by damage to various organs caused by abnormal innate and adaptive immune responses. The pathogenesis of autoimmune diseases is extremely complicated and has not yet been fully elucidated. Long noncoding RNAs (lncRNAs), which are defined as transcripts containing more than 200 nucleotides with no protein-coding capacity, are emerging as important regulators of gene expression via epigenetic modification, transcriptional regulation and posttranscriptional regulation. Accumulating evidence has demonstrated that lncRNAs play a key role in the regulation of immunological functions and autoimmunity. In this review, we discuss various molecular mechanisms by which lncRNAs regulate gene expression and recent findings regarding the involvement of lncRNAs in many human autoimmune diseases, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), idiopathic inflammatory myopathy (IIM), systemic sclerosis (SSc) and Sjögren’s syndrome (pSS). lncRNAs are observed to be differentially expressed in various autoimmune diseases. lncRNAs are involved in abnormal immune regulation and inflammatory responses in autoimmune diseases, which provides new insight into disease pathogenesis. LncRNAs may have the potential of biomarkers for diagnosis and prognosis of autoimmune diseases.
Collapse
Affiliation(s)
- Yaoyao Zou
- Department of Rheumatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hanshi Xu
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|