1
|
Zhang H, Jiang Y, Ding G, Chen J, Liu Y, Wang F, Yu X. Expression and purification of PNGase F protein in yeast and its anti-PRV activity. Virology 2025; 603:110393. [PMID: 39827598 DOI: 10.1016/j.virol.2025.110393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/20/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Pseudorabies virus (Pseudorabiesvirus, PRV) has caused huge economic losses to the global pig industry. In recent years, it has been reported that there are PRV mutants, but the traditional vaccine can not completely prevent or control the infection of PRV, so there is an urgent need to develop new broad-spectrum anti-disease drugs for prevention and treatment. PNGase F from bacteria can catalyze the hydrolysis of oligosaccharides linked to asparagine residues on peptides, so we speculate that PNGase F can inhibit virus infection by removing the glycosylation of virus membrane glycoproteins. In this study, PNGase F protein was highly expressed and purified in Pichia pastoris, and the deglycosylation activity of PNGase F expressed in Pichia pastoris was verified. In vitro, 15 μM could significantly inhibit the proliferation of virus in cells. The results of cytotoxicity test showed that PNGase F was not toxic to many cells. To further evaluate the effect of PNGase F in different stages of virus infection, it was found that PNGase F had significant inhibitory effect on virus adsorption and invasion. In vivo experiments in mice, PNGase F could significantly inhibit the replication of PRV Ea strain in mice and inhibit PRV, reduced brain lesions. Our experiments show that PNGase F expressed by yeast can inhibit PRV infection in vitro and in vitro, and its inhibitory mechanism is preliminarily discussed, which can provide a new reference for the development of broad-spectrum antiviral drugs based on PNGase F.
Collapse
Affiliation(s)
- Haonan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062, Wuhan, China; Hubei Jiangxia Laboratory, 430200, Wuhan, China.
| | - Yu Jiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062, Wuhan, China; Hubei Jiangxia Laboratory, 430200, Wuhan, China.
| | - Gang Ding
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062, Wuhan, China; Hubei Jiangxia Laboratory, 430200, Wuhan, China.
| | - Jingyu Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062, Wuhan, China; Hubei Jiangxia Laboratory, 430200, Wuhan, China.
| | - Yuda Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062, Wuhan, China; Hubei Jiangxia Laboratory, 430200, Wuhan, China.
| | - Furong Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062, Wuhan, China; Hubei Jiangxia Laboratory, 430200, Wuhan, China.
| | - Xiaolan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062, Wuhan, China; Hubei Jiangxia Laboratory, 430200, Wuhan, China.
| |
Collapse
|
2
|
Mao H, Li J, Liao G, Gao M, Yang G, Bao J. The prevention strategies of swine viruses related to xenotransplantation. Virol J 2023; 20:121. [PMID: 37312151 PMCID: PMC10262131 DOI: 10.1186/s12985-023-02090-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/02/2023] [Indexed: 06/15/2023] Open
Abstract
Xenotransplantation is considered a solution for the shortage of organs, and pigs play an indispensable role as donors in xenotransplantation. The biosecurity of pigs, especially the zoonotic viruses carried by pigs, has attracted attention. This review introduces several viruses, including porcine endogenous retroviruses that are integrated into the pig genome in a DNA form, herpesviruses that have been proven to clearly affect recipient survival time in previous xenotransplant surgeries, the zoonotic hepatitis E virus, and the widely distributed porcine circoviruses. The detail virus information, such as structure, caused diseases, transmission pathways, and epidemiology was introduced in the current review. Diagnostic and control measures for these viruses, including detection sites and methods, vaccines, RNA interference, antiviral pigs, farm biosecurity, and drugs, are discussed. The challenges faced, including those posed by other viruses and newly emerged viruses, and the challenges brought by the modes of transmission of the viruses are also summarized.
Collapse
Affiliation(s)
- Hongzhen Mao
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Center of Infectious Diseases & Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinyang Li
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Guangneng Liao
- Experimental Animal Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mengyu Gao
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Guang Yang
- Experimental Animal Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ji Bao
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Ye N, Feng W, Fu T, Tang D, Zeng Z, Wang B. Membrane fusion, potential threats, and natural antiviral drugs of pseudorabies virus. Vet Res 2023; 54:39. [PMID: 37131259 PMCID: PMC10152797 DOI: 10.1186/s13567-023-01171-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/04/2023] [Indexed: 05/04/2023] Open
Abstract
Pseudorabies virus (PrV) can infect several animals and causes severe economic losses in the swine industry. Recently, human encephalitis or endophthalmitis caused by PrV infection has been frequently reported in China. Thus, PrV can infect animals and is becoming a potential threat to human health. Although vaccines and drugs are the main strategies to prevent and treat PrV outbreaks, there is no specific drug, and the emergence of new PrV variants has reduced the effectiveness of classical vaccines. Therefore, it is challenging to eradicate PrV. In the present review, the membrane fusion process of PrV entering target cells, which is conducive to revealing new therapeutic and vaccine strategies for PrV, is presented and discussed. The current and potential PrV pathways of infection in humans are analyzed, and it is hypothesized that PrV may become a zoonotic agent. The efficacy of chemically synthesized drugs for treating PrV infections in animals and humans is unsatisfactory. In contrast, multiple extracts of traditional Chinese medicine (TCM) have shown anti-PRV activity, exerting its effects in different phases of the PrV life-cycle and suggesting that TCM compounds may have great potential against PrV. Overall, this review provides insights into developing effective anti-PrV drugs and emphasizes that human PrV infection should receive more attention.
Collapse
Affiliation(s)
- Ni Ye
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Wei Feng
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Tiantian Fu
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Deyuan Tang
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Zhiyong Zeng
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Bin Wang
- College of Animal Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
4
|
Insights into the Anti-inflammatory and Antiviral Mechanisms of Resveratrol. Mediators Inflamm 2022; 2022:7138756. [PMID: 35990040 PMCID: PMC9391165 DOI: 10.1155/2022/7138756] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 12/15/2022] Open
Abstract
Resveratrol is a naturally occurring stilbene phytoalexin phenolic compound, which has been extensively studied on its biological activity. It has been widely accepted that resveratrol possesses anti-inflammatory and antiviral activities. In this review, we summarize the anti-inflammatory dosages and mechanism and antiviral mechanism of resveratrol. Since viral infections are often accompanied by inflammation, we propose that the NF-κB signaling pathway is a key and common molecular mechanism of resveratrol to exert anti-inflammatory and antiviral effects. For future studies, we believe that resveratrol's anti-inflammatory and antiviral mechanisms can consider the upstream signaling molecules of the NF-κB signaling pathway. For resveratrol antivirus, future studies can be conducted on the interaction of resveratrol with key proteins or important enzymes of the virus. In addition, we also think that the clinical application of resveratrol is very important. In short, resveratrol is a promising anti-inflammatory and antiviral drug, and research on it needs to be expanded.
Collapse
|
5
|
Pseudorabies Virus: From Pathogenesis to Prevention Strategies. Viruses 2022; 14:v14081638. [PMID: 36016260 PMCID: PMC9414054 DOI: 10.3390/v14081638] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Pseudorabies (PR), also called Aujeszky’s disease (AD), is a highly infectious viral disease which is caused by pseudorabies virus (PRV). It has been nearly 200 years since the first PR case occurred. Currently, the virus can infect human beings and various mammals, including pigs, sheep, dogs, rabbits, rodents, cattle and cats, and among them, pigs are the only natural host of PRV infection. PRV is characterized by reproductive failure in pregnant sows, nervous disorders in newborn piglets, and respiratory distress in growing pigs, resulting in serious economic losses to the pig industry worldwide. Due to the extensive application of the attenuated vaccine containing the Bartha-K61 strain, PR was well controlled. With the variation of PRV strain, PR re-emerged and rapidly spread in some countries, especially China. Although researchers have been committed to the design of diagnostic methods and the development of vaccines in recent years, PR is still an important infectious disease and is widely prevalent in the global pig industry. In this review, we introduce the structural composition and life cycle of PRV virions and then discuss the latest findings on PRV pathogenesis, following the molecular characteristic of PRV and the summary of existing diagnosis methods. Subsequently, we also focus on the latest clinical progress in the prevention and control of PRV infection via the development of vaccines, traditional herbal medicines and novel small RNAs. Lastly, we provide an outlook on PRV eradication.
Collapse
|
6
|
Tan L, Yao J, Yang Y, Luo W, Yuan X, Yang L, Wang A. Current Status and Challenge of Pseudorabies Virus Infection in China. Virol Sin 2021; 36:588-607. [PMID: 33616892 PMCID: PMC7897889 DOI: 10.1007/s12250-020-00340-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Pseudorabies (PR), also called Aujeszky’s disease, is a highly infectious disease caused by pseudorabies virus (PRV). Without specific host tropism, PRV can infect a wide variety of mammals, including pig, sheep, cattle, etc., thereby causing severe clinical symptoms and acute death. PRV was firstly reported in China in 1950s, while outbreaks of emerging PRV variants have been documented in partial regions since 2011, leading to significant economic losses in swine industry. Although scientists have been devoting to the design of diagnostic approaches and the development of vaccines during the past years, PR remains a vital infectious disease widely prevalent in Chinese pig industry. Especially, its potential threat to human health has also attracted the worldwide attention. In this review, we will provide a summary of current understanding of PRV in China, mainly focusing on PRV history, the existing diagnosis methods, PRV prevalence in pig population and other susceptible mammals, molecular characteristics, and the available vaccines against its infection. Additionally, promising agents including traditional Chinese herbal medicines and novel inhibitors that may be employed to treat this viral infection, are also discussed.
Collapse
Affiliation(s)
- Lei Tan
- Laboratory of Animal Disease Prevention and Control and Animal Model, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, 410128, China
| | - Jun Yao
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, 650224, China
| | - Yadi Yang
- Laboratory of Animal Disease Prevention and Control and Animal Model, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, 410128, China
| | - Wei Luo
- Department of Animal Science and Technology, Huaihua Vocational and Technical College, Huaihua, 418000, China
| | - Xiaomin Yuan
- Laboratory of Animal Disease Prevention and Control and Animal Model, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, 410128, China
| | - Lingchen Yang
- Laboratory of Animal Disease Prevention and Control and Animal Model, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, 410128, China.
| | - Aibing Wang
- Laboratory of Animal Disease Prevention and Control and Animal Model, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), Changsha, 410128, China.
- PCB Biotechnology LLC, Rockville, MD, 20852, USA.
| |
Collapse
|
7
|
Mattio LM, Catinella G, Pinto A, Dallavalle S. Natural and nature-inspired stilbenoids as antiviral agents. Eur J Med Chem 2020; 202:112541. [PMID: 32652408 PMCID: PMC7335248 DOI: 10.1016/j.ejmech.2020.112541] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/24/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022]
Abstract
Viruses continue to be a major threat to human health. In the last century, pandemics occurred and resulted in significant mortality and morbidity. Natural products have been largely screened as source of inspiration for new antiviral agents. Within the huge class of plant secondary metabolites, resveratrol-derived stilbenoids present a wide structural diversity and mediate a great number of biological responses relevant for human health. However, whilst the antiviral activity of resveratrol has been extensively studied, little is known about the efficacy of its monomeric and oligomeric derivatives. The purpose of this review is to provide an overview of the achievements in this field, with particular emphasis on the source, chemical structures and the mechanism of action of resveratrol-derived stilbenoids against the most challenging viruses. The collected results highlight the therapeutic versatility of stilbene-containing compounds and provide a prospective insight into their potential development as antiviral agents.
Collapse
Affiliation(s)
- Luce M Mattio
- Department of Food, Environmental and Nutritional Sciences, Università Degli Studi di Milano, Via Celoria 2, 20133, Milano, Italy
| | - Giorgia Catinella
- Department of Food, Environmental and Nutritional Sciences, Università Degli Studi di Milano, Via Celoria 2, 20133, Milano, Italy
| | - Andrea Pinto
- Department of Food, Environmental and Nutritional Sciences, Università Degli Studi di Milano, Via Celoria 2, 20133, Milano, Italy
| | - Sabrina Dallavalle
- Department of Food, Environmental and Nutritional Sciences, Università Degli Studi di Milano, Via Celoria 2, 20133, Milano, Italy.
| |
Collapse
|
8
|
Lv C, Liu W, Wang B, Dang R, Qiu L, Ren J, Yan C, Yang Z, Wang X. Ivermectin inhibits DNA polymerase UL42 of pseudorabies virus entrance into the nucleus and proliferation of the virus in vitro and vivo. Antiviral Res 2018; 159:55-62. [PMID: 30266338 DOI: 10.1016/j.antiviral.2018.09.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/10/2018] [Accepted: 09/24/2018] [Indexed: 12/31/2022]
Abstract
Pseudorabies virus (PRV) is an important viral pathogen of pigs that causes huge losses in pig herds worldwide. Ivermectin is a specific inhibitor of importin-α/β-dependent nuclear transport and shows antiviral potential against several RNA viruses by blocking the nuclear localization of viral proteins. Since the replication of DNA viruses is in the nucleus, ivermectin may be functional against DNA virus infections if the DNA polymerase or other important viral proteins enter the nucleus via the importin-α/β-mediated pathway. Here, we determined whether ivermectin suppresses PRV replication in hamster kidney BHK-21 cells and investigated the effect of ivermectin on the subcellular localization of the PRV UL42 protein, the accessory subunit of PRV DNA polymerase. Also, an in vivo anti-PRV assay was conducted in mice. Our data demonstrate that ivermectin treatment inhibits PRV infection in cells in a dose-dependent manner. Treatment of PRV-infected cells with ivermectin significantly suppressed viral DNA synthesis and progeny virus production. Ivermectin disrupted the nuclear localization of UL42 by targeting the nuclear localization signal of the protein in transfected cells. Ivermectin treatment increased the survival rates of mice infected with PRV and relieved infection as indicated by lower clinical scores and fewer gross lesions in the brain. Together, our results suggest that ivermectin may be a therapeutic or preventative agent against PRV infection.
Collapse
Affiliation(s)
- Changjie Lv
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Wenkai Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Bin Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Ruyi Dang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Li Qiu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Juan Ren
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Chuanqi Yan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Xinglong Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
9
|
Zhao X, Cui Q, Fu Q, Song X, Jia R, Yang Y, Zou Y, Li L, He C, Liang X, Yin L, Lin J, Ye G, Shu G, Zhao L, Shi F, Lv C, Yin Z. Antiviral properties of resveratrol against pseudorabies virus are associated with the inhibition of IκB kinase activation. Sci Rep 2017; 7:8782. [PMID: 28821840 PMCID: PMC5562710 DOI: 10.1038/s41598-017-09365-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/25/2017] [Indexed: 11/10/2022] Open
Abstract
Pseudorabies virus (PRV) is a pathogen of swine resulting in devastating disease and economic losses worldwide. Resveratrol (Res) exhibits inhibitory activity against a wide range of viruses. Despite these important advances, the molecular mechanism(s) by which Res exerts its broad biological effects have not yet been elucidated. In this paper, the antiviral activity of Res against PRV and its mechanism of action were investigated. The results showed that Res potently inhibited PRV replication in a dose-dependent manner, with a 50% inhibition concentration of 17.17 μM. The inhibition of virus multiplication in the presence of Res was not attributed to direct inactivation or inhibition of viral entry into the host cells but to the inhibition of viral multiplication in host cells. Further studies demonstrated that Res is a potent inhibitor of both NF-κB activation and NF-κB-dependent gene expression through its ability to inhibit IκB kinase activity, which is the key regulator in NF-κB activation. Thus, the inhibitory effect of Res on PRV-induced cell death and gene expression may be due to its ability to inhibit the degradation of IκB kinase. These results provided a new alternative control measure for PRV infection and new insights into the antiviral mechanism of Res.
Collapse
Affiliation(s)
- Xinghong Zhao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiankun Cui
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiuting Fu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Renyong Jia
- Key laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yi Yang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuanfeng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lixia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Changliang He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoxia Liang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lizi Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Juchun Lin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Gang Ye
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Gang Shu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ling Zhao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Fei Shi
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Cheng Lv
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|