1
|
Liu J, Liu X, Song Z, Cao W, Li Y, Xia M, Wang D. A novel α-amylase from Streptococcus thermophilus 17140 with β-glycosidic bond hydrolysis capability for the transformation of rare ginsenosides. Int J Biol Macromol 2025; 306:141621. [PMID: 40024403 DOI: 10.1016/j.ijbiomac.2025.141621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/17/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Alpha-amylases typically act on starch and oligosaccharides that contain α-1,4 glycosidic linkages, while ginsenosides primarily consist of β-1,2 and β-1,6 glycosidic bonds, which cannot be hydrolyzed by α-amylases. However, for the first time, we have successfully isolated Streptococcus thermophilus 17140 (St17140), capable of converting ginsenoside Rb1 into rare ginsenosides. St17140 expresses a novel α-amylase (StAMY), which hydrolyzes ginsenoside Rb1 to produce Rd, gypenoside XVII, F2, and Rh2. With Rb1 as the substrate, the optimal reaction temperature is 50 °C and the optimal pH is 5.5. When Rb1, Rd, or gypenoside XVII are used as substrates, the Km are 0.135 mM, 0.0871 mM, and 0.260 mM respectively, the Kcat are 0.621 min-1, 0.397 min-1, and 0.297 min-1 respectively, and the Kcat/Km are 4.59 min-1·mM-1, 4.56 min-1·mM-1and 1.14 min-1·mM-1 respectively. Utilizing molecular docking and site-directed mutagenesis techniques, the mechanism of ginsenoside hydrolysis by StAMY was further elucidated. A107, F201, A337 and A268 are key amino acid residues that anchor the saponin in the active pocket, and D234 and D331 as catalytic amino acid residues to hydrolyze ginsenosides into rare ginsenosides. It is the first time to discover a novel α-amylase with the ability to hydrolyze ginsenosides β-1,2 and β-1,6 glycosidic linkage, and the first time to discover the ability of S. thermophilus to transform rare ginsenosides. These not only enrich the resources of glycosidases and offer novel insights for the rational modification of glycosidase, also are important for further elucidating the mechanism of probiotic transformation of rare ginsenosides and developing engineering bacteria with high production of rare ginsenosides.
Collapse
Affiliation(s)
- Jinxia Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Xinyi Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Zhaoqing Song
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Wenying Cao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Yue Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Mingyu Xia
- School of Life Science and Biological Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dong Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Benxi 117004, China.
| |
Collapse
|
2
|
Vasquez R, Song JH, Park YS, Paik HD, Kang DK. Application of probiotic bacteria in ginsenoside bioconversion and enhancing its health-promoting benefits: a review. Food Sci Biotechnol 2025; 34:1631-1659. [PMID: 40160953 PMCID: PMC11936870 DOI: 10.1007/s10068-024-01734-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/26/2024] [Accepted: 10/10/2024] [Indexed: 04/02/2025] Open
Abstract
Ginseng (Panax) is a perennial herb with medicinal properties found in Asia and North America. Ginseng extracts contain several compounds, such as ginsenosides, which have therapeutic properties and have been extensively studied. Because of their deglycosylated nature, minor ginsenosides exhibit more potent bioactive properties than their parent ginsenosides. However, untreated ginseng extracts contain low levels of bioactive minor ginsenosides. Thus, converting major ginsenosides to minor ginsenosides using various methods, including microbial bioconversion, is required. Probiotic bacteria such as lactic acid bacteria and bifidobacteria are safe and excellent agents for bioconverting ginsenosides. Numerous studies have demonstrated the application of probiotic bacteria to produce minor ginsenosides; however, a comprehensive discussion focusing on using probiotics in ginsenoside bioconversion has been lacking. Therefore, this review investigates the application of probiotic bacteria to produce minor ginsenosides. Moreover, improving the health-promoting properties of ginseng with the help of probiotics is also reviewed.
Collapse
Affiliation(s)
- Robie Vasquez
- Department of Animal Biotechnology, Dankook University, 119 Dandae-Ro, Cheonan, 31116 Republic of Korea
| | - Ji Hoon Song
- Department of Animal Biotechnology, Dankook University, 119 Dandae-Ro, Cheonan, 31116 Republic of Korea
| | - Young-Seo Park
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120 Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resource, Konkuk University, Seoul, 05029 Republic of Korea
| | - Dae-Kyung Kang
- Department of Animal Biotechnology, Dankook University, 119 Dandae-Ro, Cheonan, 31116 Republic of Korea
| |
Collapse
|
3
|
Xu M, Ren J, Jiang Z, Zhou S, Wang E, Li H, Wu W, Zhang X, Wang J, Jiao L. Structural characterization and immunostimulant activities of polysaccharides fractionated by gradient ethanol precipitation method from Panax ginseng C. A. Meyer. Front Pharmacol 2024; 15:1388206. [PMID: 38720774 PMCID: PMC11076722 DOI: 10.3389/fphar.2024.1388206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/08/2024] [Indexed: 05/12/2024] Open
Abstract
Panax ginseng C. A. Meyer is a dual-purpose plant for medicine and food, its polysaccharide is considered as an immune enhancer. Four polysaccharides, WGP-20-F, WGP-40-F, WGP-60-F and WGP-80-F were obtained from ginseng via water extraction and gradient ethanol precipitation with different molecular weights (Mw) of 1.720 × 106, 1.434 × 106, 4.225 × 104 and 1.520 × 104 Da, respectively. WGP-20-F and WGP-40-F which with higher Mw and a triple-helix structure are glucans composed of 4-ɑ-Glcp, do not show remarkable immunoregulatory effects. WGP-60-F and WGP-80-F are heteropolysaccharides mainly composed of 4-ɑ-Glcp and also contain t-ɑ-Araf, 5-ɑ-Araf and 3,5-ɑ-Araf. They are spherical branched conformations without a triple-helix structure and can effectively increase the index of immune organs, lymphocyte proliferation, activate macrophages to regulate the immune system in mice and further enhance immune functions by improving delayed-type hypersensitivity reaction and antibody response. These results indicated that WGP-60-F and WGP-80-F could be used as potential immune enhancers, and gradient ethanol precipitation can be applied for the preparation of ginseng bioactive polysaccharide.
Collapse
Affiliation(s)
- Mengran Xu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Jing Ren
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Ziye Jiang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Shuo Zhou
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Enpeng Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Hui Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Wei Wu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Xiaoyu Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Jing Wang
- The Affiliated Hospital Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Lili Jiao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
4
|
Hong LL, Liu YN, Kong JQ. Exploring 3-O-glycosylations of 20(R)-dammarane ginsenosides and the catalytic mechanism underlying the stereoselectivity with the combined assistance of AlphaFold 2 and molecular docking. Int J Biol Macromol 2024; 254:127721. [PMID: 37913883 DOI: 10.1016/j.ijbiomac.2023.127721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023]
Abstract
Glycosylation at C3-OH is the favorable modification for pharmaceutical activities and diversity expansion of 20(R)-dammarane ginsenosides. The 3-O-glycosylation, exclusively occurring in 20(R)-PPD ginsenosides, has never been achieved in 20(R)-PPT ginsenosides. Herein, 3-O-glycosylation of 20(R)-PPT enabled by a glycosyltransferase (GT) OsSGT2 was achieved with the combined assistance of AlphaFold 2 and molecular docking. Firstly, we combined AlphaFold2 algorithm and molecular docking to predict interactions between 20(R)-PPT and candidate GTs. A catalytically favorable binding geometry was thus identified in the OsSGT2-20(R)-PPT complex, suggesting OsSGT2 might act on 20(R)-PPT. The enzymatic assays demonstrated that OsSGT2 reacted with varied sugar donors to form 20(R)-PPT 3-O-glycosides, exhibiting donor promiscuity. Additionally, OsSGT2 displayed acceptor promiscuity, catalyzing 3-O-glucosylation of 20(R/S)-PPT, 20(R/S)-PPD and 20(R/S)-Rh1, respectively. Protein engineering on OsSGT2 was thus performed to probe its catalytic mechanism underlying its stereoselectivity. The W207A mutant preferred 20(S)-dammarane aglycons, while F395Q/A396G(QG) displayed a conversion enhancement towards both 20(R/S)-dammarane aglycons. The QG mutant was then used to synthesize 20(R)-PPT 3-O-glucoside, which displayed a moderate angiotensin-converting enzyme inhibitory effect with an IC50 of 27.5 ± 4.7 μM, superior to that of its 20(S)-epimer, with the combined assistance of target fishing and reverse docking. The water solubility of 20(R)-PPT 3-O-glucoside increased as well.
Collapse
Affiliation(s)
- Li-Li Hong
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products & CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs), Beijing 100050, China
| | - Yuan-Ning Liu
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products & CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs), Beijing 100050, China
| | - Jian-Qiang Kong
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products & CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs), Beijing 100050, China.
| |
Collapse
|
5
|
Tran TNA, Son JS, Awais M, Ko JH, Yang DC, Jung SK. β-Glucosidase and Its Application in Bioconversion of Ginsenosides in Panax ginseng. Bioengineering (Basel) 2023; 10:bioengineering10040484. [PMID: 37106671 PMCID: PMC10136122 DOI: 10.3390/bioengineering10040484] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Ginsenosides are a group of bioactive compounds isolated from Panax ginseng. Conventional major ginsenosides have a long history of use in traditional medicine for both illness prevention and therapy. Bioconversion processes have the potential to create new and valuable products in pharmaceutical and biological activities, making them both critical for research and highly economic to implement. This has led to an increase in the number of studies that use major ginsenosides as a precursor to generate minor ones using β-glucosidase. Minor ginsenosides may also have useful properties but are difficult to isolate from raw ginseng because of their scarcity. Bioconversion processes have the potential to create novel minor ginsenosides from the more abundant major ginsenoside precursors in a cost-effective manner. While numerous bioconversion techniques have been developed, an increasing number of studies have reported that β-glucosidase can effectively and specifically generate minor ginsenosides. This paper summarizes the probable bioconversion mechanisms of two protopanaxadiol (PPD) and protopanaxatriol (PPT) types. Other high-efficiency and high-value bioconversion processes using complete proteins isolated from bacterial biomass or recombinant enzymes are also discussed in this article. This paper also discusses the various conversion and analysis methods and their potential applications. Overall, this paper offers theoretical and technical foundations for future studies that will be both scientifically and economically significant.
Collapse
Affiliation(s)
- Thi Ngoc Anh Tran
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin 17104, Republic of Korea
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Jin-Sung Son
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Muhammad Awais
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Jae-Heung Ko
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Deok Chun Yang
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Seok-Kyu Jung
- Department of Horticulture, Kongju National University, Yesan 32439, Republic of Korea
| |
Collapse
|
6
|
Choudhary N, Tewari D, Nabavi SF, Kashani HRK, Lorigooini Z, Filosa R, Khan FB, Masoudian N, Nabavi SM. Plant based food bioactives: A boon or bane for neurological disorders. Crit Rev Food Sci Nutr 2022; 64:3279-3325. [PMID: 36369694 DOI: 10.1080/10408398.2022.2131729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Neurological disorders are the foremost occurring diseases across the globe resulting in progressive dysfunction, loss of neuronal structure ultimately cell death. Therefore, attention has been drawn toward the natural resources for the search of neuroprotective agents. Plant-based food bioactives have emerged as potential neuroprotective agents for the treatment of neurodegenerative disorders. This comprehensive review primarily focuses on various plant food bioactive, mechanisms, therapeutic targets, in vitro and in vivo studies in the treatment of neurological disorders to explore whether they are boon or bane for neurological disorders. In addition, the clinical perspective of plant food bioactives in neurological disorders are also highlighted. Scientific evidences point toward the enormous therapeutic efficacy of plant food bioactives in the prevention or treatment of neurological disorders. Nevertheless, identification of food bioactive components accountable for the neuroprotective effects, mechanism, clinical trials, and consolidation of information flow are warranted. Plant food bioactives primarily act by mediating through various pathways including oxidative stress, neuroinflammation, apoptosis, excitotoxicity, specific proteins, mitochondrial dysfunction, and reversing neurodegeneration and can be used for the prevention and therapy of neurodegenerative disorders. In conclusion, the plant based food bioactives are boon for neurological disorders.
Collapse
Affiliation(s)
- Neeraj Choudhary
- Department of Pharmacognosy, Adesh Institute of Pharmacy and Biomedical Sciences, Adesh University, Bathinda, Punjab, India
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Seyed Fazel Nabavi
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
- Nutringredientes Research Center, Federal Institute of Education, Science and Technology (IFCE), Baturite, Ceara, Brazil
| | - Hamid Reza Khayat Kashani
- Department of Neurosurgery, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Rosanna Filosa
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
- Department of Science and Technology, University of Sannio, 82100, Benevento, Italy
| | - Farheen Badrealam Khan
- Department of Biology, College of Science, The United Arab Emirates University, Al Ain, 15551 United Arab Emirates
| | - Nooshin Masoudian
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
| | - Seyed Mohammad Nabavi
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
- Nutringredientes Research Center, Federal Institute of Education, Science and Technology (IFCE), Baturite, Ceara, Brazil
| |
Collapse
|
7
|
Zeng C, Ji X, Shi Y, Mu S, Huang Y, Zhong M, Han Y, Duan C, Li X, Li D. Specific and efficient hydrolysis of all outer glucosyls in protopanaxadiol type and protopanaxatriol type ginsenosides by a β-glucosidase from Thermoclostridium stercorarium. Enzyme Microb Technol 2022; 162:110152. [DOI: 10.1016/j.enzmictec.2022.110152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/11/2022] [Accepted: 10/31/2022] [Indexed: 11/05/2022]
|
8
|
Zhang J, Ai Z, Hu Y, Wang Y, Liu S, Liu Y, Nan B, Wang Y. Remarkable impact of commercial sterilizing on ginsenosides transformation in fresh ginseng pulp based on widely targeted metabolomics analysis. Food Chem X 2022; 15:100415. [PMID: 36211783 PMCID: PMC9532786 DOI: 10.1016/j.fochx.2022.100415] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 11/10/2022] Open
Abstract
Terpenoids such as ginsenosides are the most important phytochemicals and functional components in ginseng. Commercial sterilizing with high temperature and high pressure is also one of the common methods of ginseng food processing. However, the changes of terpenoids in fresh ginsengs commercially sterilized are unclear. In this study, fresh ginseng pulp (FGP) was commercially sterilized at 121℃ for 30 min, and terpenoid compounds were analyzed by widely targeted metabolomics based on UPLC-ESI-MS/MS system. The commercial sterilization induced the changes of 88 terpenoid compounds including 30 types of ginsenosides, and many minor ginsenoside Rh4, Rg6, Rk2, F4, Rs3, Rk3, Rk1, Rg5, Rg3, Rg4 were remarkably increased in fresh ginseng pulp. Importantly, the ginsenoside ST3 was detected and F4, Rg3, and Rg5 were also found in fresh ginseng pulp. Commercial sterilizing at 121℃ for 30 min will remarkably affect the species and number of ginsenosides in ginseng food.
Collapse
Affiliation(s)
- Junshun Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Zhiyi Ai
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Yue Hu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Yonghong Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Sitong Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Yongzhe Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Bo Nan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
| | - Yuhua Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, China
- National Processing Laboratory for Soybean Industry and Technology, Changchun, China
- National Engineering Laboratory for Wheat and Corn Deep Processing, Changchun, China
| |
Collapse
|
9
|
Murugesan M, Mathiyalagan R, Boopathi V, Kong BM, Choi SK, Lee CS, Yang DC, Kang SC, Thambi T. Production of Minor Ginsenoside CK from Major Ginsenosides by Biotransformation and Its Advances in Targeted Delivery to Tumor Tissues Using Nanoformulations. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193427. [PMID: 36234555 PMCID: PMC9565578 DOI: 10.3390/nano12193427] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/24/2022] [Accepted: 09/25/2022] [Indexed: 05/13/2023]
Abstract
For over 2000 years, ginseng (roots of Panax ginseng C.A. Meyer) has been used as a traditional herbal medicine. Ginsenosides are bioactive compounds present in ginseng responsible for the pharmacological effects and curing various acute diseases as well as chronic diseases including cardiovascular disease, cancer and diabetes. Structurally, ginsenosides consist of a hydrophobic aglycone moiety fused with one to four hydrophilic glycoside moieties. Based on the position of sugar units and their abundance, ginsenosides are classified into major and minor ginsenosides. Despite the great potential of ginsenosides, major ginsenosides are poorly absorbed in the blood circulation, resulting in poor bioavailability. Interestingly, owing to their small molecular weight, minor ginsenosides exhibit good permeability across cell membranes and bioavailability. However, extremely small quantities of minor ginsenosides extracted from ginseng plants cannot fulfill the requirement of scientific and clinical studies. Therefore, the production of minor ginsenosides in mass production is a topic of interest. In addition, their poor solubility and lack of targetability to tumor tissues limits their application in cancer therapy. In this review, various methods used for the transformation of major ginsenosides to minor ginsenoside compound K (CK) are summarized. For the production of CK, various transformation methods apply to major ginsenosides. The challenges present in these transformations and future research directions for producing bulk quantities of minor ginsenosides are discussed. Furthermore, attention is also paid to the utilization of nanoformulation technology to improve the bioavailability of minor ginsenoside CK.
Collapse
Affiliation(s)
- Mohanapriya Murugesan
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Korea
| | - Ramya Mathiyalagan
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Korea
| | - Vinothini Boopathi
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Korea
| | - Byoung Man Kong
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Korea
| | - Sung-Keun Choi
- Daedong Korea Ginseng Co., Ltd., 86, Gunbuk-ro, Gunbuk-myeon, Geumsan-gun 32718, Chungcheongnam-do, Korea
| | - Chang-Soon Lee
- Daedong Korea Ginseng Co., Ltd., 86, Gunbuk-ro, Gunbuk-myeon, Geumsan-gun 32718, Chungcheongnam-do, Korea
| | - Deok Chun Yang
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Korea
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Korea
| | - Se Chan Kang
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Korea
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Korea
- Correspondence: (S.C.K.); (T.T.)
| | - Thavasyappan Thambi
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Korea
- Correspondence: (S.C.K.); (T.T.)
| |
Collapse
|
10
|
Increases in Ginsenoside Rg3, Compound K, and Antioxidant Activity of Cultivated Wild Panax Ginseng (CWPG) by Puffing. Foods 2022; 11:foods11192936. [PMID: 36230012 PMCID: PMC9564143 DOI: 10.3390/foods11192936] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Cultivated wild Panax ginseng (CWPG) has been reported to have a higher content of ginsenoside than normal Panax ginseng. This study was carried out to increase the antioxidant activity and active ingredients by the puffing process. Therefore, effects of moisture content and pressure conditions on the antioxidant activity and active ingredients of CWPG were investigated. Extraction yield and crude saponin content were decreased at all moisture contents with increasing pressure. HPLC analysis showed that the contents of ginsenoside Rg3 and compound K were increased by puffing when the pressure increased. Antioxidant properties, total phenolic content (TPC) and total flavonoid content (TFC) were increased by puffing. The correlation between color change and antioxidant activity showed the greatest correlation with the decrease of L value. It is expected that the progress of this study will play an important role in the international market of high-value-added food using CWPG.
Collapse
|
11
|
Zhou Y, Guan X, Li Z, Ma Q, Wang L. Effects of white ginseng on quality characteristics and volatile flavor compounds of roast chickens. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:3711-3722. [PMID: 35875236 PMCID: PMC9304491 DOI: 10.1007/s13197-022-05394-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/25/2022] [Accepted: 01/30/2022] [Indexed: 05/12/2023]
Abstract
The purpose of this study was to investigate the effects of white ginseng addition (1%, 1.5%, 2%, 2.5% and 3% of meat weight) on the physical and chemical properties of roast chickens. The parameters studied were basic characteristics (salting absorptivity, texture, shear force, pH and sensory evaluation), lipid and protein oxidation, volatile compounds and ginsenoside content. Headspace solid phase micro-extraction and gas chromatography-mass spectrometry (GC-MS) were used to identify the flavor compounds of samples. The changes in physical and chemical properties showed that white ginseng had a positive effect on the quality of roast chickens. The oxidation rate of lipid and protein decreased with the increase of white ginseng addition. In addition, the contents of Ginsenoside Rg1 (Rg1), Ginsenoside Re (Re) and Ginsenoside Rb1 (Rb1) in samples were 5.763 μg/g, 6.047 μg/g and 8.447 μg/g, respectively. Obtained data evidenced the possibility of improvement of the quality characteristics and enrichment of the flavor of roast chickens by adding white ginseng. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-022-05394-4.
Collapse
Affiliation(s)
- Yajun Zhou
- College of Food Science and Engineering, Jilin University, Changchun, 130062 People’s Republic of China
| | - Xue Guan
- College of Food Science and Engineering, Jilin University, Changchun, 130062 People’s Republic of China
| | - Zongping Li
- National Drinking Water Quality Supervision and Inspection Center, Baishan, 134399 People’s Republic of China
| | - Qingshu Ma
- National Drinking Water Quality Supervision and Inspection Center, Baishan, 134399 People’s Republic of China
| | - Lu Wang
- College of Food Science and Engineering, Jilin University, Changchun, 130062 People’s Republic of China
| |
Collapse
|
12
|
Lim WC, Shin EJ, Lim TG, Choi JW, Song NE, Hong HD, Cho CW, Rhee YK. Ginsenoside Rf Enhances Exercise Endurance by Stimulating Myoblast Differentiation and Mitochondrial Biogenesis in C2C12 Myotubes and ICR Mice. Foods 2022; 11:foods11121709. [PMID: 35741909 PMCID: PMC9222511 DOI: 10.3390/foods11121709] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 02/04/2023] Open
Abstract
Ginsenoside Rf (G-Rf) is a saponin of the protopanaxatriol family and a bioactive component of Korean ginseng. Several ginsenosides are known to have a positive effect on exercise endurance, but there is not yet a report on that of G-Rf. Forced swimming tests were performed on G-Rf-treated mice to evaluate the effect of G-Rf on exercise endurance. Subsequently, the expression of markers related to myoblast differentiation and mitochondrial biogenesis in murine skeletal C2C12 myotubes and tibialis anterior muscle tissue was determined using Western blotting, quantitative real-time polymerase chain reaction, and immunofluorescence staining to elucidate the mechanism of action of G-Rf. The swimming duration of the experimental animal was increased by oral gavage administration of G-Rf. Moreover, G-Rf significantly upregulated the myoblast differentiation markers, mitochondrial biogenesis markers, and its upstream regulators. In particular, the mitochondrial biogenesis marker increased by G-Rf was decreased by each inhibitor of the upstream regulators. G-Rf enhances exercise endurance in mice, which may be mediated by myoblast differentiation and enhanced mitochondrial biogenesis through AMPK and p38 MAPK signaling pathways, suggesting that it increases energy production to satisfy additional needs of exercising muscle cells. Therefore, G-Rf is an active ingredient in Korean ginseng responsible for improving exercise performance.
Collapse
Affiliation(s)
- Won-Chul Lim
- Research Group of Traditional Food, Korea Food Research Institute, Wanju-gun 55365, Korea; (W.-C.L.); (E.J.S.); (J.W.C.); (N.-E.S.); (H.-D.H.)
| | - Eun Ju Shin
- Research Group of Traditional Food, Korea Food Research Institute, Wanju-gun 55365, Korea; (W.-C.L.); (E.J.S.); (J.W.C.); (N.-E.S.); (H.-D.H.)
| | - Tae-Gyu Lim
- Division of Food Science & Biotechnology, Sejong University, Seoul 05006, Korea;
| | - Jae Woong Choi
- Research Group of Traditional Food, Korea Food Research Institute, Wanju-gun 55365, Korea; (W.-C.L.); (E.J.S.); (J.W.C.); (N.-E.S.); (H.-D.H.)
| | - Nho-Eul Song
- Research Group of Traditional Food, Korea Food Research Institute, Wanju-gun 55365, Korea; (W.-C.L.); (E.J.S.); (J.W.C.); (N.-E.S.); (H.-D.H.)
| | - Hee-Do Hong
- Research Group of Traditional Food, Korea Food Research Institute, Wanju-gun 55365, Korea; (W.-C.L.); (E.J.S.); (J.W.C.); (N.-E.S.); (H.-D.H.)
| | - Chang-Won Cho
- Research Group of Traditional Food, Korea Food Research Institute, Wanju-gun 55365, Korea; (W.-C.L.); (E.J.S.); (J.W.C.); (N.-E.S.); (H.-D.H.)
- Correspondence: (C.-W.C.); (Y.K.R.); Tel.: +82-63-219-9312 (C.-W.C.); +82-63-219-9319 (Y.K.R.)
| | - Young Kyoung Rhee
- Research Group of Traditional Food, Korea Food Research Institute, Wanju-gun 55365, Korea; (W.-C.L.); (E.J.S.); (J.W.C.); (N.-E.S.); (H.-D.H.)
- Correspondence: (C.-W.C.); (Y.K.R.); Tel.: +82-63-219-9312 (C.-W.C.); +82-63-219-9319 (Y.K.R.)
| |
Collapse
|
13
|
Huang R, Zhang M, Tong Y, Teng Y, Li H, Wu W. Studies on Bioactive Components of Red Ginseng by UHPLC-MS and Its Effect on Lipid Metabolism of Type 2 Diabetes Mellitus. Front Nutr 2022; 9:865070. [PMID: 35571895 PMCID: PMC9094573 DOI: 10.3389/fnut.2022.865070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/25/2022] [Indexed: 11/09/2022] Open
Abstract
Objectives Red ginseng is a processed product of Panax ginseng C.A. Meyer, which is one of the widely used medicinal and edible herbs for the treatment of type 2 diabetes mellitus (T2DM). Ginsenosides are its main pharmacologically active ingredient. This study aims to clarify the material basis of total ginsenosides of red ginseng (RGW) and verify the activity of RGW in treating lipid metabolism disorders caused by T2DM. Methods An ultrahigh performance liquid chromatography coupled with quadrupole time of flight mass spectrometry (UHPLC-Q-TOF-MS) technology was applied to quantitatively analyze RGW. A T2DM rat model was established to verify the activity of RGW in treating lipid metabolism disorders caused by diabetes. First, the changes in diabetes-related parameters were observed, then the biochemical parameters of the rat serum and liver were measured, and finally, the pathological sections of the rat liver were observed, and the content of short-chain fatty acids in stools was measured. The in vitro activity of RGW was verified by fatty degenerated HepG2 cells. Results A total of 10 ginsenosides were identified and quantitatively analyzed in RGW. Experimental results demonstrated that RGW can improve lipid metabolism disorders. RGW significantly reduced the fasting blood glucose and TG and TC levels in T2DM rats, and hepatic steatosis was significantly ameliorated. In vitro experiments by RGW treatment also significantly attenuated lipid deposition in HepG2 cells. RGW upregulated the content of 5 short-chain fatty acids in rat stools, which are related to lipid oxidation and liver gluconeogenesis. Conclusion The total RGW were quantitatively analyzed by UHPLC-MS, and its effect on lipid metabolism of T2DM was studied. The experiment demonstrated that red ginseng can regulate lipid metabolism and improve lipid deposition, which provides a promising development for red ginseng as a functional food.
Collapse
|
14
|
Linh NN, Hang PLB, Hue HTT, Ha NH, Hanh HH, Ton ND, Hien LTT. Species discrimination of novel chloroplast DNA barcodes and their application for identification of Panax (Aralioideae, Araliaceae). PHYTOKEYS 2022; 188:1-18. [PMID: 35095289 PMCID: PMC8758638 DOI: 10.3897/phytokeys.188.75937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Certain species within the genus Panax L. (Araliaceae) contain pharmacological precious ginsenosides, also known as ginseng saponins. Species containing these compounds are of high commercial value and are thus of particular urgency for conservation. However, within this genus, identifying the particular species that contain these compounds by morphological means is challenging. DNA barcoding is one method that is considered promising for species level identification. However, in an evolutionarily complex genus such as Panax, commonly used DNA barcodes such as nrITS, matK, psbA-trnH, rbcL do not provide species-level resolution. A recent in silico study proposed a set of novel chloroplast markers, trnQ-rps16, trnS-trnG, petB, and trnE-trnT for species level identification within Panax. In the current study, the discriminatory efficiency of these molecular markers is assessed and validated using 91 reference barcoding sequences and 38 complete chloroplast genomes for seven species, one unidentified species and one sub-species of Panax, and two outgroup species of Aralia L. along with empirical data of Panax taxa present in Vietnam via both distance-based and tree-based methods. The obtained results show that trnQ-rps16 can classify with species level resolution every clade tested here, including the highly valuable Panaxvietnamensis Ha et Grushv. We thus propose that this molecular marker to be used for identification of the species within Panax to support both its conservation and commercial trade.
Collapse
Affiliation(s)
- Nguyen Nhat Linh
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, VietnamInstitute of Genome Research, Vietnam Academy of Science and TechnologyHanoiVietnam
| | - Pham Le Bich Hang
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, VietnamInstitute of Genome Research, Vietnam Academy of Science and TechnologyHanoiVietnam
| | - Huynh Thi Thu Hue
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, VietnamInstitute of Genome Research, Vietnam Academy of Science and TechnologyHanoiVietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, VietnamGraduate University of Science and TechnologyHanoiVietnam
| | - Nguyen Hai Ha
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, VietnamInstitute of Genome Research, Vietnam Academy of Science and TechnologyHanoiVietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, VietnamGraduate University of Science and TechnologyHanoiVietnam
| | - Ha Hong Hanh
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, VietnamInstitute of Genome Research, Vietnam Academy of Science and TechnologyHanoiVietnam
| | - Nguyen Dang Ton
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, VietnamInstitute of Genome Research, Vietnam Academy of Science and TechnologyHanoiVietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, VietnamGraduate University of Science and TechnologyHanoiVietnam
| | - Le Thi Thu Hien
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, VietnamInstitute of Genome Research, Vietnam Academy of Science and TechnologyHanoiVietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, VietnamGraduate University of Science and TechnologyHanoiVietnam
| |
Collapse
|
15
|
Huang L, Ren C, Li HJ, Wu YC. Recent Progress on Processing Technologies, Chemical Components, and Bioactivities of Chinese Red Ginseng, American Red Ginseng, and Korean Red Ginseng. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02697-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
16
|
Xue Y, Yu X, Zhang X, Yu P, Li Y, Fu W, Yu J, Sui D. Protective effects of ginsenoside Rc against acute cold exposure-induced myocardial injury in rats. J Food Sci 2021; 86:3252-3264. [PMID: 34146399 DOI: 10.1111/1750-3841.15757] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/26/2021] [Accepted: 04/09/2021] [Indexed: 11/30/2022]
Abstract
Ginsenoside Rc is one of the cardinal bioactive components of Panax ginseng. The present study aimed to investigate whether ginsenoside Rc exerted protective effects against acute cold exposure-induced myocardial injury in rats. Forty rats were randomly assigned into four groups: Control, model, ginsenoside Rc 10 mg/kg, and 20 mg/kg groups. Rats were intragastrically administrated with ginsenoside Rc (10, 20 mg/kg) or vehicle daily for 7 days. On the seventh day, all rats except the control group were exposed to low temperature. Cardiac function, myocardial enzyme activities, hemorheology, and inflammatory response were detected. Histopathological examination and apoptosis of cardiac tissues were performed. The expressions of silent information regulator 1 (SIRT1), B-cell lymphoma (Bcl-2), Bcl-2-associated X (Bax), procaspase-3, and the mRNA (messenger RNA) level of SIRT1 were measured by western blot and real-time quantitative polymerase chain reaction (PCR) analysis. Ginsenoside Rc significantly improved cardiac function, diminished the activities of lactate dehydrogenase (LDH), aspartate aminotransferase, and creatine kinase isoenzyme (CK-MB), and regulated abnormal hemorheology in acute cold-exposed rats (p < 0.05 or p < 0.01). Furthermore, ginsenoside Rc could attenuate myocardial histological changes and structural abnormalities, decrease apoptotic cells and reduce the mRNA levels and activity of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6 (p < 0.01). In addition, ginsenoside Rc upregulated the expressions of SIRT1, Bcl-2, and procaspase-3 and downregulated that of Bax (p < 0.01). The changes in both the mRNA and protein expression levels of SIRT1 were similar. The results of the current study suggested that ginsenoside Rc could alleviate acute cold exposure-induced myocardial injury in rats by inhibiting cardiomyocyte apoptosis via regulating SIRT1 expression and attenuating the inflammatory responses. PRACTICAL APPLICATION: The current study indicated that ginsenoside Rc could alleviate acute cold exposure-induced myocardial injury in rats. Ginsenoside Rc could be potentially used as a bioactive ingredient in processed functional food products or food supplements to prevent from acute cold exposure-induced myocardial injury.
Collapse
Affiliation(s)
- Yan Xue
- The Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, PR China.,The Department of Burn Surgery, The First Hospital of Jilin University, Changchun, Jilin, PR China
| | - Xiaofeng Yu
- The Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, PR China
| | - Xiuhang Zhang
- The Department of Burn Surgery, The First Hospital of Jilin University, Changchun, Jilin, PR China
| | - Ping Yu
- The Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, PR China
| | - Yuangeng Li
- The Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, PR China
| | - Wenwen Fu
- The Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, PR China
| | - Jiaao Yu
- The Department of Burn Surgery, The First Hospital of Jilin University, Changchun, Jilin, PR China
| | - Dayun Sui
- The Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, PR China
| |
Collapse
|
17
|
Piao XM, Huo Y, Kang JP, Mathiyalagan R, Zhang H, Yang DU, Kim M, Yang DC, Kang SC, Wang YP. Diversity of Ginsenoside Profiles Produced by Various Processing Technologies. Molecules 2020; 25:E4390. [PMID: 32987784 PMCID: PMC7582514 DOI: 10.3390/molecules25194390] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
Ginseng is a traditional medicinal herb commonly consumed world-wide owing to its unique family of saponins called ginsenosides. The absorption and bioavailability of ginsenosides mainly depend on an individual's gastrointestinal bioconversion abilities. There is a need to improve ginseng processing to predictably increase the pharmacologically active of ginsenosides. Various types of ginseng, such as fresh, white, steamed, acid-processed, and fermented ginsengs, are available. The various ginseng processing methods produce a range ginsenoside compositions with diverse pharmacological properties. This review is intended to summarize the properties of the ginsenosides found in different Panax species as well as the different processing methods. The sugar moiety attached to the C-3, C-6, or C-20 deglycosylated to produce minor ginsenosides, such as Rb1, Rb2, Rc, Rd→Rg3, F2, Rh2; Re, Rf→Rg1, Rg2, F1, Rh1. The malonyl-Rb1, Rb2, Rc, and Rd were demalonylated into ginsenoside Rb1, Rb2, Rc, and Rd by dehydration. Dehydration also produces minor ginsenosides such as Rg3→Rk1, Rg5, Rz1; Rh2→Rk2, Rh3; Rh1→Rh4, Rk3; Rg2→Rg6, F4; Rs3→Rs4, Rs5; Rf→Rg9, Rg10. Acetylation of several ginsenosides may generate acetylated ginsenosides Rg5, Rk1, Rh4, Rk3, Rs4, Rs5, Rs6, and Rs7. Acid processing methods produces Rh1→Rk3, Rh4; Rh2→Rk1, Rg5; Rg3→Rk2, Rh3; Re, Rf, Rg2→F1, Rh1, Rf2, Rf3, Rg6, F4, Rg9. Alkaline produces Rh16, Rh3, Rh1, F4, Rk1, ginsenoslaloside-I, 20(S)-ginsenoside-Rh1-60-acetate, 20(R)-ginsenoside Rh19, zingibroside-R1 through hydrolysis, hydration addition reactions, and dehydration. Moreover, biological processing of ginseng generates the minor ginsenosides of Rg3, F2, Rh2, CK, Rh1, Mc, compound O, compound Y through hydrolysis reactions, and synthetic ginsenosides Rd12 and Ia are produced through glycosylation. This review with respect to the properties of particular ginsenosides could serve to increase the utilization of ginseng in agricultural products, food, dietary supplements, health supplements, and medicines, and may also spur future development of novel highly functional ginseng products through a combination of various processing methods.
Collapse
Affiliation(s)
- Xiang Min Piao
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, Jilin Agriculture University, Changchun 130118, China; (X.M.P.); (H.Z.); (D.C.Y.)
| | - Yue Huo
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi do 17104, Korea; (Y.H.); (J.P.K.); (R.M.); (D.U.Y.)
| | - Jong Pyo Kang
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi do 17104, Korea; (Y.H.); (J.P.K.); (R.M.); (D.U.Y.)
| | - Ramya Mathiyalagan
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi do 17104, Korea; (Y.H.); (J.P.K.); (R.M.); (D.U.Y.)
| | - Hao Zhang
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, Jilin Agriculture University, Changchun 130118, China; (X.M.P.); (H.Z.); (D.C.Y.)
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Dong Uk Yang
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi do 17104, Korea; (Y.H.); (J.P.K.); (R.M.); (D.U.Y.)
| | - Mia Kim
- Department of Cardiovascular and Neurologic Diseases, College of Korea Medicine, Kyung Hee University, Seoul 100011, Korea;
| | - Deok Chun Yang
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, Jilin Agriculture University, Changchun 130118, China; (X.M.P.); (H.Z.); (D.C.Y.)
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi do 17104, Korea; (Y.H.); (J.P.K.); (R.M.); (D.U.Y.)
| | - Se Chan Kang
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi do 17104, Korea; (Y.H.); (J.P.K.); (R.M.); (D.U.Y.)
| | - Ying Ping Wang
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, Jilin Agriculture University, Changchun 130118, China; (X.M.P.); (H.Z.); (D.C.Y.)
| |
Collapse
|
18
|
Lin JN, Lee PS, Mei NW, Cheng AC, Yu RC, Pan MH. Effects of ginseng dietary supplementation on a high-Fat diet-induced obesity in C57BL/6 Mice. FOOD SCIENCE AND HUMAN WELLNESS 2019. [DOI: 10.1016/j.fshw.2019.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Ma L, Wang X, Li W, Qu F, Liu Y, Lu J, Su G, Zhao Y. Conjugation of Ginsenoside with Dietary Amino Acids: A Promising Strategy To Suppress Cell Proliferation and Induce Apoptosis in Activated Hepatic Stellate Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10245-10255. [PMID: 31389238 DOI: 10.1021/acs.jafc.9b03305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ginseng has been widely used as a functional food in the world because of its well-defined health benefits. Previous studies have confirmed that AD-1, a new ginsenoside derived from ginseng, can ameliorate thioacetamide-induced liver injury and fibrosis in mice. Simultaneously, amino acid supplementation is getting more attention as an important adjuvant therapy in the improvement of hepatopathy. The aim of this study was to conjugate AD-1 with several selected amino acids and investigate the cytotoxicity of the obtained conjugates in activated t-HSC/Cl-6 cells and normal human liver cells (LO2). Structure-activity relationships of conjugates and underlying mechanisms of the effect are also explored. The results indicated that conjugate 7c remarkably inhibited cell proliferation in activated t-HSC/Cl-6 cells (IC50 = 3.8 ± 0.4 μM) and appeared to be nontoxic to LO2. Besides, conjugate 7c had a relatively good plasma stability. Further study demonstrated that inducing S-phase arrest and activation of mitochondrial-mediated apoptosis were included in the mechanisms underlying the efficiency of conjugate 7c. These findings provided further insight into designing functional foods (ginsenoside and amino acid) for the application in prevention or improvement of liver fibrosis.
Collapse
|
20
|
Huang CH, Wang FT, Chan WH. Dosage-related beneficial and deleterious effects of ginsenoside Rb1 on mouse oocyte maturation and fertilization and fetal development. ENVIRONMENTAL TOXICOLOGY 2019; 34:1001-1012. [PMID: 31112002 DOI: 10.1002/tox.22771] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/24/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
Ginsenoside Rb1 (GRb1), the major saponin component of ginseng root, has a wide range of therapeutic applications for various diseases. Previously, our group showed that GRb1 triggers ROS-mediated apoptotic cascades in mouse blastocysts, leading to decreased cell viability and impairment of pre- and postimplantation embryonic development, both in vitro and in vivo. In this study, we further found that GRb1 exerted dose-dependent effects on oocyte maturation and sequent development in vitro. Oocytes preincubated with 25 μg/mL GRB1 displayed significantly enhanced maturation and in vitro fertilization (IVF) rates, along with progression of subsequent embryonic development. In contrast, treatment with 50 and 100 μg/mL GRB1 led to impairment of mouse oocyte maturation, decreased IVF rates, and injurious effects on subsequent embryonic development. In vivo, intravenous injection of 1 mg/kg body weight GRb1 significantly promoted mouse oocyte maturation, IVF, and early-stage embryo development after fertilization while administration of 5 mg/kg body weight GRb1 led to a marked decrease in oocyte maturation and IVF rates concomitant with impairment of early embryonic development in our animal model. In terms of the mechanisms underlying the regulatory effects of GRb1 demonstrated increased intracellular reactive oxygen species (ROS) production and apoptosis in the 100 μg/mL GRb1 treatment group. However, we observed a significant decrease in total intracellular ROS content and inhibition of apoptosis events in the 25 μg/mL GRb1 treatment group, signifying that the intracellular ROS content serves as a key upstream regulator of GRb1 that influences its dose-dependent beneficial or deleterious effects on oocyte maturation and sequent embryonic development. For further clarification of the mechanisms underlying GRb1-triggered injurious effects, oocytes were pretreated with Ac-DEVD-CHO, a caspase-3-specific inhibitor, which effectively blocked injury to oocyte maturation, fertilization, and sequent development. In sum, study findings highlight the potential involvement of p53-, p21-, and caspase-3-dependent regulatory signaling cascades in GRb1-mediated apoptotic processes.
Collapse
Affiliation(s)
- Chien-Hsun Huang
- Department of Obstetrics and Gynecology, Taoyuan General Hospital, Ministry of Health & Welfare, Taoyuan City, Taiwan
| | - Fu-Ting Wang
- Rehabilitation and Technical Aid Center, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Wen-Hsiung Chan
- Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, Taoyuan City, Taiwan
| |
Collapse
|
21
|
Lin JN, Lee PS, Mei NW, Cheng AC, Yu RC, Pan MH. WITHDRAWN: Effects of ginseng dietary supplementation on a high-fat diet-induced obesity in C57BL/6 mice. FOOD SCIENCE AND HUMAN WELLNESS 2019. [DOI: 10.1016/j.fshw.2019.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|