1
|
Kurilovich E, Geva-Zatorsky N. Effects of bacteriophages on gut microbiome functionality. Gut Microbes 2025; 17:2481178. [PMID: 40160174 PMCID: PMC11959909 DOI: 10.1080/19490976.2025.2481178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/28/2025] [Accepted: 03/13/2025] [Indexed: 04/02/2025] Open
Abstract
The gut microbiome, composed of bacteria, fungi, and viruses, plays a crucial role in maintaining the delicate balance of human health. Emerging evidence suggests that microbiome disruptions can have far-reaching implications, ranging from the development of inflammatory diseases and cancer to metabolic disorders. Bacteriophages, or "phages", are viruses that specifically infect bacterial cells, and their interactions with the gut microbiome are receiving increased attention. Despite the recently revived interest in the gut phageome, it is still considered the "dark matter" of the gut, with more than 80% of viral genomes remaining uncharacterized. Today, research is focused on understanding the mechanisms by which phages influence the gut microbiota and their potential applications. Bacteriophages may regulate the relative abundance of bacterial communities, affect bacterial functions in various ways, and modulate mammalian host immunity. This review explores how phages can regulate bacterial functionality, particularly in gut commensals and pathogens, emphasizing their role in gut health and disease.
Collapse
Affiliation(s)
- Elena Kurilovich
- Department of Cell Biology and Cancer Science, Rappaport Technion Integrated Cancer Center (RTICC), Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
| | - Naama Geva-Zatorsky
- Department of Cell Biology and Cancer Science, Rappaport Technion Integrated Cancer Center (RTICC), Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
- Humans and the Microbiome program, CIFAR, Toronto, ON, Canada
| |
Collapse
|
2
|
Zhou F, Wang K, Ji S, Liao X, Zhang W, Teng T, Wang L, Li Q. The virulent bacteriophage Henu8 as an antimicrobial synergist against Escherichia coli. Microbiol Spectr 2025:e0163324. [PMID: 40377308 DOI: 10.1128/spectrum.01633-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 04/02/2025] [Indexed: 05/18/2025] Open
Abstract
As the overuse of antibiotics has not yet been strictly limited in urban areas, drug-resistant Escherichia coli has become a fatal pressure for bacteremia treatment. Considering the outstanding performance of bacteriophages in vitro, bacteriophages may serve as an alternative to heal chronic refractory infections. In this study, a 49,890 bp double-stranded circular DNA phage, Henu8, was isolated and was able to lyse the group of E. coli strains tested in this study. Prominent biological characterization revealed that the highly adsorbed bacteriophage Henu8 could form a fully transparent plaque with a narrow translucent halo. The optimal multiplicity of infection of the bacteriophage Henu8 was 0.01, with a burst size of 275 PFU/cell. Genomic analysis revealed a G + C content of 44.17% Henu8, in which 65 open reading frames were located, which could be assigned as a new species in the genus Hanrivervirus of the subfamily Tempevirinae. The effective antibacterial ability and the obvious biofilm destruction and inhibition capability of phage Henu8 were observed. The time-killing assay demonstrated the synergetic potential of Henu8 with antibiotics in vitro for E. coli eradication. Henu8 has profound medicinal potential in a mouse bacteremia model. These studies indicate that Henu8 is a novel bacteriophage with therapeutic potential alone or in combination with antibiotics for clinical treatment.IMPORTANCEThe findings described in this study constitute concrete evidence that it is possible to significantly synergize the antimicrobial activity of bacteriophages and antibiotics. We showed that the newly isolated potent bacteriophage Henu8 lyses Escherichia coli rapidly but tends to produce resistant bacteria. The bacteriophage Henu8 has synergistic antimicrobial effects with several antibiotics and is not susceptible to developing resistance. These results provide further evidence that bacterial resistance to phages arises, possibly at an adaptive cost to sensitivity to antibiotics. Therefore, the findings of this study are important for increasing the potential of phages for clinical applications and developing new approaches to improve their therapeutic efficacy against bacterial drug resistance.
Collapse
Affiliation(s)
- Fang Zhou
- Henan Province Engineering Technology Research Center of Rapid-Accuracy Medical Diagnostics, Department of Clinical Laboratory, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
| | - Kexiao Wang
- Henan Province Engineering Technology Research Center of Rapid-Accuracy Medical Diagnostics, Department of Clinical Laboratory, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
| | - Shuai Ji
- The Joint National Laboratory of Antibody Drug Engineering, Henan University, Kaifeng, China
| | - Xiaochen Liao
- The Joint National Laboratory of Antibody Drug Engineering, Henan University, Kaifeng, China
| | - Wenwen Zhang
- Department of Microbiology, College of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Tieshan Teng
- Henan Province Engineering Technology Research Center of Rapid-Accuracy Medical Diagnostics, Department of Clinical Laboratory, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
- Department of Microbiology, College of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Li Wang
- Henan Province Engineering Technology Research Center of Rapid-Accuracy Medical Diagnostics, Department of Clinical Laboratory, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
| | - Qiming Li
- Henan Province Engineering Technology Research Center of Rapid-Accuracy Medical Diagnostics, Department of Clinical Laboratory, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
- The Joint National Laboratory of Antibody Drug Engineering, Henan University, Kaifeng, China
- Department of Microbiology, College of Basic Medical Sciences, Henan University, Kaifeng, China
| |
Collapse
|
3
|
Lu J, Wu H, Wu S, Wang S, Fan H, Ruan H, Qiao J, Caiyin Q, Wen M. Salmonella: Infection mechanism and control strategies. Microbiol Res 2025; 292:128013. [PMID: 39675139 DOI: 10.1016/j.micres.2024.128013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
Salmonella is a foodborne pathogen that predominantly resides in the intestinal tract of humans and animals. Infections caused by Salmonella can lead to various illnesses, including gastroenteritis, bacteremia, septicemia, and focal infections, with severe cases potentially resulting in host mortality. The mechanisms by which Salmonella invades host cells and disseminates throughout the body are partly understood, but there are still many scientific questions to be solved. This review aims to synthesize existing research on the interactions between Salmonella and hosts, detailing a comprehensive infection mechanism from adhesion and invasion to intracellular propagation and systemic spread. Overuse of antibiotics contributes to the emergence of drug-resistant Salmonella strains. An in-depth analysis of the mechanism of Salmonella infection will provide a theoretical basis for the development of novel Salmonella control strategies. These innovative control strategies include antibiotic adjuvants, small molecules, phages, attenuated vaccines, and probiotic therapies, which show huge potential in controlling Salmonella infection.
Collapse
Affiliation(s)
- Juane Lu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Hao Wu
- Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing 312300, China; School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Shengbo Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing 312300, China
| | - Shengli Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing 312300, China
| | - Hongfei Fan
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300072, China
| | - Haihua Ruan
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300072, China
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing 312300, China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Qinggele Caiyin
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China.
| | - Mingzhang Wen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing 312300, China; Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China.
| |
Collapse
|
4
|
Petsong K, Kaewthong P, Kingwascharapong P, Nilsuwan K, Karnjanapratum S, Tippayawat P. Potential of jackfruit inner skin fibre for encapsulation of probiotics on their stability against adverse conditions. Sci Rep 2023; 13:11158. [PMID: 37429933 DOI: 10.1038/s41598-023-38319-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023] Open
Abstract
The aim of this study was to investigate the impact of jackfruit inner skin fibre (JS) incorporated with whey protein isolate (WPI) and soybean oil (SO) as a wall material for probiotic encapsulation to improve probiotic stability against freeze-drying and gastrointestinal (GI) tract conditions. Bifidobacterium bifidum TISTR2129, Bifidobacterium breve TISTR2130, and Lactobacillus acidophilus TISTR1338 were studied in terms of SCFA production and the antibiotic-resistant profile and in an antagonistic assay to select suitable strains for preparing a probiotic cocktail, which was then encapsulated. The results revealed that B. breve and L. acidophilus can be used effectively as core materials. JS showed the most influential effect on protecting probiotics from freeze-drying. WPI:SO:JS at a ratio of 3.9:2.4:3.7 was the optimized wall material, which provided an ideal formulation with 83.1 ± 6.1% encapsulation efficiency. This formulation presented > 50% probiotic survival after exposure to gastro-intestinal tract conditions. Up to 77.8 ± 0.1% of the encapsulated probiotics survived after 8 weeks of storage at refrigeration temperature. This study highlights a process and formulation to encapsulate probiotics for use as food supplements that could provide benefits to human health as well as an alternative approach to reduce agricultural waste by increasing the value of jackfruit inner skin.
Collapse
Affiliation(s)
- Kantiya Petsong
- Department of Food Technology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Pensiri Kaewthong
- Department of Agro-Industry, School of Agricultural Technology, Food Technology and Innovation Research Centre of Excellence, Walailak University, Thasala, Nakhon Si Thammarat, 80161, Thailand
| | | | - Krisana Nilsuwan
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Supatra Karnjanapratum
- Food Innovation and Packaging Center, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Patcharaporn Tippayawat
- Department of Medical Technology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
5
|
Shariati A, Noei M, Chegini Z. Bacteriophages: The promising therapeutic approach for enhancing ciprofloxacin efficacy against bacterial infection. J Clin Lab Anal 2023:e24932. [PMID: 37377167 PMCID: PMC10388223 DOI: 10.1002/jcla.24932] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/14/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND The emergence of ciprofloxacin-resistant bacteria is a serious challenge worldwide, bringing the need to find new approaches to manage this bacterium. Bacteriophages (phages) have been shown inhibitory effects against ciprofloxacin-resistance bacteria; thus, ciprofloxacin resistance or tolerance may not affect the phage's infection ability. Additionally, researchers used phage-ciprofloxacin combination therapy for the inhibition of multidrug-resistant bacteria. RESULTS The sublethal concentrations of ciprofloxacin could lead to an increase in progeny production. Antibiotic treatments could enhance the release of progeny phages by shortening the lytic cycle and latent period. Thus, sublethal concentrations of antibiotics combined with phages can be used for the management of bacterial infections with high antibiotic resistance. In addition, combination therapy exerts various selection pressures that can mutually decrease phage and antibiotic resistance. Moreover, phage ciprofloxacin could significantly reduce bacterial counts in the biofilm community. Immediate usage of phages after the attachment of bacteria to the surface of the flow cells, before the development of micro-colonies, could lead to the best effect of phage therapy against bacterial biofilm. Noteworthy, phage should be used before antibiotics usage because this condition may have allowed phage replication to occur first before ciprofloxacin interrupted the bacterial DNA replication process, thereby interfering with the activity of the phages. Furthermore, the phage-ciprofloxacin combination showed a promising result for the management of Pseudomonas aeruginosa infections in mouse models. Nevertheless, low data are existing about the interaction between phages and ciprofloxacin in combination therapies, especially regarding the emergence of phage-resistant mutants. Additionally, there is a challenging and important question of how the combined ciprofloxacin with phages can increase antibacterial functions. Therefore, more examinations are required to support the clinical usage of phage-ciprofloxacin combination therapy.
Collapse
Affiliation(s)
- Aref Shariati
- Molecular and Medicine Research Centre, Khomein University of Medical Sciences, Khomein, Iran
| | - Milad Noei
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zahra Chegini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
6
|
Hasan M, Dawan J, Ahn J. Assessment of the potential of phage-antibiotic synergy to induce collateral sensitivity in Salmonella Typhimurium. Microb Pathog 2023; 180:106134. [PMID: 37150310 DOI: 10.1016/j.micpath.2023.106134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/09/2023]
Abstract
This study was designed to evaluate the synergistic effect of phage and antibiotic on the induction of collateral sensitivity in Salmonella Typhimurium. The synergistic effects of Salmonella phage PBST32 combined with ciprofloxacin (CIP) against S. Typhimurium KCCM 40253 (STKCCM) were evaluated using a fractional inhibitory concentration (FIC) assay. The CIP susceptibility of STKCCM was increased when combined with PBST32, showing 16-fold decrease at 7 log PFU/mL. The combination of 1/2 × MIC of CIP and PBST32 (CIP[1/2]+PBST32) effectively inhibited the growth of STKCCM up to below the detection limit (1.3 log CFU/mL) after 12 h of incubation at 37 °C. The significant reduction in bacterial swimming motility was observed for PBST32 and CIP[1/4]+PBST32. The CIP[1/4]+PBST32 increased the fitness cost (relative fitness = 0.57) and decreased the cross-resistance to different classes of antibiotics. STKCCM treated with PBST32 alone treatment exhibited the highest coefficient of variation (90%), followed by CIP[1/4]+PBST32 (75%). These results suggest that the combination of PBST32 and CIP can be used to control bacterial pathogens.
Collapse
Affiliation(s)
- Mahadi Hasan
- Department of Biomedical Science, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Jirapat Dawan
- Department of Biomedical Science, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Juhee Ahn
- Department of Biomedical Science, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea; Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea.
| |
Collapse
|
7
|
Abdelsattar AS, Eita MA, Hammouda ZK, Gouda SM, Hakim TA, Yakoup AY, Safwat A, El-Shibiny A. The Lytic Activity of Bacteriophage ZCSE9 against Salmonella enterica and Its Synergistic Effects with Kanamycin. Viruses 2023; 15:v15040912. [PMID: 37112892 PMCID: PMC10142335 DOI: 10.3390/v15040912] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Salmonella, the causative agent of several diseases in humans and animals, including salmonellosis, septicemia, typhoid fever, and fowl typhoid, poses a serious threat to global public health and food safety. Globally, reports of therapeutic failures are increasing because of the increase in bacterial antibiotic resistance. Thus, this work highlights the combined phage–antibiotic therapy as a promising approach to combating bacterial resistance. In this manner, the phage ZCSE9 was isolated, and the morphology, host infectivity, killing curve, combination with kanamycin, and genome analysis of this phage were all examined. Morphologically, phage ZCSE9 is a siphovirus with a relatively broad host range. In addition, the phage can tolerate high temperatures until 80 °C with one log reduction and a basic environment (pH 11) without a significant decline. Furthermore, the phage prevents bacterial growth in the planktonic state, according to the results of the time-killing curve. Moreover, using the phage at MOI 0.1 with kanamycin against five different Salmonella serotypes reduces the required antibiotics to inhibit the growth of the bacteria. Comparative genomics and phylogenetic analysis suggested that phage ZCSE9, along with its close relatives Salmonella phages vB_SenS_AG11 and wksl3, belongs to the genus Jerseyvirus. In conclusion, phage ZCSE9 and kanamycin form a robust heterologous antibacterial combination that enhances the effectiveness of a phage-only approach for combating Salmonella.
Collapse
Affiliation(s)
- Abdallah S. Abdelsattar
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza 12578, Egypt
| | - Mohamed Atef Eita
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza 12578, Egypt
| | - Zainab K. Hammouda
- Microbiology and Immunology Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 11787, Egypt
| | - Shrouk Mohamed Gouda
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza 12578, Egypt
| | - Toka A. Hakim
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza 12578, Egypt
| | - Aghapy Yermans Yakoup
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza 12578, Egypt
| | - Anan Safwat
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza 12578, Egypt
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, Giza 12578, Egypt
- Faculty of Environmental Agricultural Sciences, Arish University, Arish 45511, Egypt
| |
Collapse
|
8
|
Evaluation of phage-antibiotic combinations in the treatment of extended-spectrum β-lactamase-producing Salmonella enteritidis strain PT1. Heliyon 2023; 9:e13077. [PMID: 36747932 PMCID: PMC9898657 DOI: 10.1016/j.heliyon.2023.e13077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Foodborne infections caused by Salmonella spp. are among the most common foodborne diseases in the world. We isolated a lytic phage against extended-spectrum beta-lactam producing S. Enteritidis strain PT1 derived from chicken carcass. Results from electronmicrography indicated that phiPT1 belonged to the family, Siphoviridae, in the order, Caudovirales. Phage phiPT1 was stable at temperatures from 4 °C to 60 °C and inactivated at 90 °C. phiPT1 retained a high titer from pH 4 to pH 10 for at least 1 h. Nevertheless, it displayed a significant decrease (p < 0.05) in titer at pH 11 and 12, with phage titers of 5.5 and 2.4 log10 PFU/mL, respectively. The latent time and burst size of phiPT1 were estimated to be 30 min and 252 PFU/infected cell, respectively. The virulence of phage phiPT1 was evaluated against S. Enteritidis strain PT1 at different MOIs. phiPT1 reduced Salmonella proliferation relative to the negative control (MOI 0) at all MOIs (P < 0.05). However, there is no significant difference among the MOIs (P > 0.05). The phage-antibiotic combination analysis (PAS) indicated that synergism was not detected at higher phiPT1 titer (1012 PFU/mL) with all tested antibiotics at all subinhibitory concentrations. However, synergistic activities were recorded at 0.25 × MIC of four tested antibiotics: cefixime, gentamicin, ciprofloxacin, and aztreonam in combination with phage at 104, 106 and 108 PFU/mL (ΣFIC ≤0.5). Synergism was detected for all antibiotics (0.1 × MIC) except meropenem and colistin in combination with phiPT1 at 104, 106 and 108 PFU/mL (ΣFIC ≤0.5). Synergism also displayed at the lowest concentrations of all antibiotics (0.01 MIC) in combination with phiPT1 at all titers except 1012 PFU/mL. Such characteristic features make phiPT1 to be a potential candidate for therapeutic uses.
Collapse
|
9
|
Chaudhari R, Singh K, Kodgire P. Biochemical and molecular mechanisms of antibiotic resistance in Salmonella spp. Res Microbiol 2023; 174:103985. [PMID: 35944794 DOI: 10.1016/j.resmic.2022.103985] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 01/11/2023]
Abstract
Salmonella is a diverse Gram-negative bacterium that represents the major disease burden worldwide. According to WHO, Salmonella is one of the fourth global causes of diarrhoeal disease. Antibiotic resistance is a worldwide health concern, and Salmonella spp. is one of the microorganisms that can evade the toxicity of antimicrobials via antibiotic resistance. This review aims to deliver in-depth knowledge of the molecular mechanisms and the underlying biochemical alterations perceived in antibiotic resistance in Salmonella. This information will help understand and mitigate the impact of antibiotic-resistant bacteria on humans and contribute to the state-of-the-art research developing newer and more potent antibiotics.
Collapse
Affiliation(s)
- Rahul Chaudhari
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Kanika Singh
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Prashant Kodgire
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore 453552, India.
| |
Collapse
|
10
|
Kim SG, Lee SB, Jo SJ, Cho K, Park JK, Kwon J, Giri SS, Kim SW, Kang JW, Jung WJ, Lee YM, Roh E, Park SC. Phage Cocktail in Combination with Kasugamycin as a Potential Treatment for Fire Blight Caused by Erwinia amylovora. Antibiotics (Basel) 2022; 11:1566. [PMID: 36358221 PMCID: PMC9686651 DOI: 10.3390/antibiotics11111566] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 08/27/2023] Open
Abstract
Recently, there has been an increasing number of blight disease reports associated with Erwinia amylovora and Erwinia pyrifoliae in South Korea. Current management protocols that have been conducted with antibiotics have faced resistance problems and the outbreak has not decreased. Because of this concern, the present study aimed to provide an alternative method to control the invasive fire blight outbreak in the nation using bacteriophages (phages) in combination with an antibiotic agent (kasugamycin). Among 54 phage isolates, we selected five phages, pEa_SNUABM_27, 31, 32, 47, and 48, based on their bacteriolytic efficacy. Although only phage pEa_SNUABM_27 showed host specificity for E. amylovora, all five phages presented complementary lytic potential that improved the host infectivity coverage of each phage All the phages in the cocktail solution could lyse phage-resistant strains. These strains had a decreased tolerance to the antibiotic kasugamycin, and a synergistic effect of phages and antibiotics was demonstrated both in vitro and on immature wound-infected apples. It is noteworthy that the antibacterial effect of the phage cocktail or phage cocktail-sub-minimal inhibitory concentration (MIC) of kasugamycin was significantly higher than the kasugamycin at the MIC. The selected phages were experimentally stable under environmental factors such as thermal or pH stress. Genomic analysis revealed these are novel Erwinia-infecting phages, and did not encode antibiotic-, virulence-, or lysogenic phage-related genes. In conclusion, we suggest the potential of the phage cocktail and kasugamycin combination as an effective strategy that would minimize the use of antibiotics, which are being excessively used in order to control fire blight pathogens.
Collapse
Affiliation(s)
- Sang-Guen Kim
- Laboratory of Aquatic Biomedicine, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Sung-Bin Lee
- Laboratory of Aquatic Biomedicine, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Su-Jin Jo
- Laboratory of Aquatic Biomedicine, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Kevin Cho
- Laboratory of Aquatic Biomedicine, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Jung-Kum Park
- Crop Protection Division, National Institute of Agriculture Sciences, Rural Development Administration, Wanju 55365, Korea
| | - Jun Kwon
- Laboratory of Aquatic Biomedicine, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Sib Sankar Giri
- Laboratory of Aquatic Biomedicine, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Sang-Wha Kim
- Laboratory of Aquatic Biomedicine, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Jeong-Woo Kang
- Laboratory of Aquatic Biomedicine, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Won-Joon Jung
- Laboratory of Aquatic Biomedicine, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Young-Min Lee
- Laboratory of Aquatic Biomedicine, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Eunjung Roh
- Crop Protection Division, National Institute of Agriculture Sciences, Rural Development Administration, Wanju 55365, Korea
| | - Se-Chang Park
- Laboratory of Aquatic Biomedicine, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
11
|
Ahmed I, Li Z, Shahzad S, Naveed S, Khan AK, Ahmed A, Kamran Z, Yousaf M, Ahmad S, Afzal G, Ahmad HI, Yasin NA, Jia J, Hussain M, Munir S. Potential Probiotics Role in Excluding Antibiotic Resistance. J FOOD QUALITY 2022; 2022:1-20. [DOI: 10.1155/2022/5590004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background. Antibiotic supplementation in feed has been continued for the previous 60 years as therapeutic use. They can improve the growth performance and feed efficiency in the chicken flock. A favorable production scenario could favor intestinal microbiota interacting with antibiotic growth promoters and alter the gut bacterial composition. Antibiotic growth promoters did not show any beneficial effect on intestinal microbes. Scope and Approach. Suitable and direct influence of growth promoters are owed to antimicrobial activities that reduce the conflict between host and intestinal microbes. Unnecessary use of antibiotics leads to resistance in microbes, and moreover, the genes can relocate to microbes including Campylobacter and Salmonella, resulting in a great risk of food poisoning. Key Findings and Conclusions. This is a reason to find alternative dietary supplements that can facilitate production, growth performance, favorable pH, and modulate gut microbial function. Therefore, this review focus on different nutritional components and immune genes used in the poultry industry to replace antibiotics, their influence on the intestinal microbiota, and how to facilitate intestinal immunity to overcome antibiotic resistance in chicken.
Collapse
Affiliation(s)
- Irfan Ahmed
- Department of Animal Nutrition, Faculty of Veterinary & Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Zhengtian Li
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, Yunnan, China
| | - Sharoon Shahzad
- Incharge Medical Officer Basic Health Unit Munday Key District Kasur, Kasur, Pakistan
| | - Saima Naveed
- Department of Animal Nutrition, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Ahmad Kamran Khan
- Department of Plant Protection, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Ayesha Ahmed
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Zahid Kamran
- Department of Animal Nutrition, Faculty of Veterinary & Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Yousaf
- Department of Animal Nutrition, Faculty of Veterinary & Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Shakeel Ahmad
- Department of Poultry Production, Faculty of Veterinary & Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Gulnaz Afzal
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Hafiz Ishfaq Ahmad
- Department of Animal Nutrition, Faculty of Veterinary & Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Nasim Ahmad Yasin
- Quaid-e-Azam Campus, University of the Punjab, Lahore, Punjab, Pakistan
| | - Junjing Jia
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming 650201, Yunnan Province, China
| | - Mubashir Hussain
- Vector Borne Diseases Laboratory, Department of Microbiology, Kohat University of Science and Technology Kohat, Kohat 26000, Pakistan
| | - Shahzad Munir
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| |
Collapse
|
12
|
Phage–Antibiotic Therapy as a Promising Strategy to Combat Multidrug-Resistant Infections and to Enhance Antimicrobial Efficiency. Antibiotics (Basel) 2022; 11:antibiotics11050570. [PMID: 35625214 PMCID: PMC9137994 DOI: 10.3390/antibiotics11050570] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/20/2022] [Accepted: 04/24/2022] [Indexed: 02/06/2023] Open
Abstract
Infections caused by multidrug-resistant (MDR) bacteria have highlighted the importance of the development of new antimicrobial agents. While bacteriophages (phages) are widely studied as alternative agents to antibiotics, combined treatments using phages and antibiotics have exhibited Phage–Antibiotic Synergy (PAS), in which antibiotics promote phage replication and extraordinary antimicrobial efficacy with reduced development of bacterial resistance. This review paper on the current progress of phage–antibiotic therapy includes aspects of the mechanisms of PAS and the therapeutic performance of PAS in combating multidrug-resistant bacterial infections. The choice of phages and antibiotics, the administration time and sequence, and the concentrations of the two agents impact the bacterial inhibitory effects to different extents.
Collapse
|
13
|
Carascal MB, dela Cruz-Papa DM, Remenyi R, Cruz MCB, Destura RV. Phage Revolution Against Multidrug-Resistant Clinical Pathogens in Southeast Asia. Front Microbiol 2022; 13:820572. [PMID: 35154059 PMCID: PMC8830912 DOI: 10.3389/fmicb.2022.820572] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/04/2022] [Indexed: 12/16/2022] Open
Abstract
Southeast Asia (SEA) can be considered a hotspot of antimicrobial resistance (AMR) worldwide. As recent surveillance efforts in the region reported the emergence of multidrug-resistant (MDR) pathogens, the pursuit of therapeutic alternatives against AMR becomes a matter of utmost importance. Phage therapy, or the use of bacterial viruses called bacteriophages to kill bacterial pathogens, is among the standout therapeutic prospects. This narrative review highlights the current understanding of phages and strategies for a phage revolution in SEA. We define phage revolution as the radical use of phage therapy in infectious disease treatment against MDR infections, considering the scientific and regulatory standpoints of the region. We present a three-phase strategy to encourage a phage revolution in the SEA clinical setting, which involves: (1) enhancing phage discovery and characterization efforts, (2) creating and implementing laboratory protocols and clinical guidelines for the evaluation of phage activity, and (3) adapting regulatory standards for therapeutic phage formulations. We hope that this review will open avenues for scientific and policy-based discussions on phage therapy in SEA and eventually lead the way to its fullest potential in countering the threat of MDR pathogens in the region and worldwide.
Collapse
Affiliation(s)
- Mark B. Carascal
- Clinical and Translational Research Institute, The Medical City, Pasig, Philippines
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Donna May dela Cruz-Papa
- Clinical and Translational Research Institute, The Medical City, Pasig, Philippines
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
- Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| | - Roland Remenyi
- Clinical and Translational Research Institute, The Medical City, Pasig, Philippines
| | - Mely Cherrylynne B. Cruz
- Clinical and Translational Research Institute, The Medical City, Pasig, Philippines
- The Graduate School, University of Santo Tomas, Manila, Philippines
| | - Raul V. Destura
- Clinical and Translational Research Institute, The Medical City, Pasig, Philippines
- National Institutes of Health, University of the Philippines Manila, Manila, Philippines
| |
Collapse
|
14
|
Jung D, Gaudreau-Lapierre A, Alnahhas E, Asraoui S. Bacteriophage-Liposomes Complex, a Bi-therapy System to Target Streptococcus pneumonia and Biofilm: A Research Protocol. UNDERGRADUATE RESEARCH IN NATURAL AND CLINICAL SCIENCE AND TECHNOLOGY (URNCST) JOURNAL 2021; 5:1-10. [DOI: 10.26685/urncst.294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Introduction: Streptococcus pneumoniae is a gram-positive bacterium, which is the leading cause of death for young children, elderly population, and immunocompromised patients. Its ability to mutate and become resistant to some of the strongest antibiotics makes them difficult to treat and increases the risk of disease spread. Although the development of stronger antibiotics to treat such microbes may be an option, they potentially pose a dangerous threat to the body. As such, a viable treatment option to fight against antimicrobial resistance has yet been found.
Methods: The study focuses on utilizing a bi-therapy system to target S. pneumoniae in biofilm, which is the site of emerging antibiotic resistant mutants, by creating levofloxacin-liposomes carrying phages and testing them both in vitro and in vivo.
Anticipated results: Using bacteriophage therapy and applying bacteriophage-antibiotic synergy, it is hoped to augment the potency of the treatment while lowering its side-effects. The Cp-1 bacteriophage-liposomes complexes are expected to be specific to the S. pneumoniae to carry antibiotics to sites of infection.
Discussion: The therapy could ensure targeted bacterial lysis and site-directed delivery of low-dose drugs to decrease the toxicity effect of the antibiotics. Once the efficacy is established and is proven to be significant, its potency can be tested in BALB/cByJ mice models before bringing this therapy to animal trials then human clinical trials.
Conclusion: Bacteriophages are very attractive therapeutic agents that effectively target pathogenic bacteria, safe for the human body, and highly modifiable to combat newly emerging bacterial threats. In addition to its many benefits, the use of bacteriophages could significantly reduce healthcare costs. The potential use of bacteriophages-liposomes complexes could be translated to treat respiratory infections in humans after confirming its efficacy in vitro and in vivo studies.
Collapse
|
15
|
Easwaran M, Ahn J. Advances in bacteriophage-mediated control strategies to reduce bacterial virulence. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.02.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
16
|
Jeon G, Ahn J. Evaluation of phage adsorption to Salmonella Typhimurium exposed to different levels of pH and antibiotic. Microb Pathog 2021; 150:104726. [PMID: 33400986 DOI: 10.1016/j.micpath.2020.104726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/23/2020] [Accepted: 12/27/2020] [Indexed: 11/17/2022]
Abstract
This study was designed to evaluate the physicochemical properties of phage P22 in different pH and antibiotic levels as measured by growth kinetics, phage adsorption, and lytic activity. P22 was susceptible to acidic pHs and stable above pH 4. The latent period of P22 was 45 min and burst size was 34 phages/cell. The adsorption ability of phage to Salmonella Typhimurium was varied depending on the multiplicity of infections (MOIs). The latent period was reduced to 6.84, 4.02, and 1.72 h, respectively, on the levels of the host at 104, 106, and 108 CFU/ml. No significant differences in adsorption were observed between pH 4 and pH 7, but the lytic activities were significantly enhanced at the presence of ceftriaxone (CEA) and ciprofloxacin (CIP) at pH 7. Therefore, the phages combined with antibiotics can be a promising therapeutic tool to control antibiotic-resistant bacteria. This results provide a better understanding of host-phages interactions in different environmental conditions.
Collapse
Affiliation(s)
- Gibeom Jeon
- Department of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Juhee Ahn
- Department of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea.
| |
Collapse
|