1
|
Oh S, Lee J, Kwak J, Oh W, Lee J. Oxidative stability of rice flour during storage under thermal oxidation and light irradiation. Food Sci Biotechnol 2025; 34:1359-1370. [PMID: 40110400 PMCID: PMC11914680 DOI: 10.1007/s10068-024-01790-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/20/2024] [Accepted: 12/05/2024] [Indexed: 03/22/2025] Open
Abstract
The oxidative stabilities of brown and white rice flours from two varieties, Baromi2 and Samkwang, were assessed under conditions of thermal oxidation at 60 °C and fluorescent light irradiation at 25 °C. Baromi2, designed for rice flour production, and Samkwang, intended for grain consumption, exhibited differing oxidative stabilities. Utilizing solid-phase microextraction-GC/MS and electronic nose techniques, the volatile profiles and the presence of singlet oxygen were investigated. Baromi2 displayed significantly lower oxidative stability than Samkwang under both thermal and light stress (p < 0.05), largely attributed to its higher lipid and riboflavin content. The presence of 1-octen-3-ol, a primary volatile associated with singlet oxygen, was notably detected in Baromi2 brown rice flour, whereas an increased number of aldehyde volatiles were identified in its white rice flour variant. A PCA executed through the electronic nose technique substantiated the distinction in volatile profiles between Baromi2 and Samkwang, as influenced by thermal and light irradiation treatments.
Collapse
Affiliation(s)
- SeungHyun Oh
- Department of Food Science and Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746 Republic of Korea
| | - JungMin Lee
- Department of Food Science and Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746 Republic of Korea
| | - Jieun Kwak
- Crop Post-Harvest Technology Research Division, Rural Development of Administration, National Institute of Crop Science, Pyeongchang, Korea
| | - WonYoung Oh
- College of Pharmacy Dongduk Women's University, Seoul, South Korea
| | - JaeHwan Lee
- Department of Food Science and Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746 Republic of Korea
- Food Flavor Sensory Research Center, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
2
|
Chu M, Noh E, Lee KG. Analysis of oxidation products and toxic compounds in edible and blended oil during the deep-frying of french fries. Food Sci Biotechnol 2024; 33:2275-2287. [PMID: 39145121 PMCID: PMC11319563 DOI: 10.1007/s10068-023-01494-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/11/2023] [Accepted: 11/27/2023] [Indexed: 08/16/2024] Open
Abstract
This study sought to analyze the oxidative products [acid value (AV), free fatty acids (FFA), conjugated dienoic acid (CDA), p-anisidine value (p-AV), antioxidant-prooxidant balance (APB) value] and toxic compounds [3-monochloropropane diol (3-MCPD), glycidyl ester (GE)] in edible oils after deep-frying. The deep-frying edible oils evaluated herein included soybean oil (S), palm oil (P), canola oil (C), grape seed oil (G), and a 1:1 blend (SC, SG, PC, PG, and CG). As frying time increased, the level of AV in PC, total FFA contents in CG, and p-AV in CG significantly increased up to 200%, 45.5%, and 410.5%, respectively (p < 0.05). The levels of 3-MCPD, and GE were 0.81-6.28 µg/mL and 0.14-2.84 µg/mL, respectively. The levels of 3-MCPD, GE, CDA, and APB changed significantly as frying time increased. Analysis of the correlation between oxidation products and toxic compounds indicated that the contents of 3-MCPD and palmitic acid were positively correlated. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01494-9.
Collapse
Affiliation(s)
- Mingi Chu
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326 Republic of Korea
| | - Eunjeong Noh
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326 Republic of Korea
| | - Kwang-Geun Lee
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326 Republic of Korea
| |
Collapse
|
3
|
Oh S, Oh W, Lee J. Evaluation of oxidative stability of rice oil from brown rice flour under thermal oxidation and light irradiation. Food Sci Biotechnol 2024; 33:1839-1846. [PMID: 38752120 PMCID: PMC11091002 DOI: 10.1007/s10068-023-01497-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/07/2023] [Accepted: 11/27/2023] [Indexed: 05/18/2024] Open
Abstract
Effects of autoxidation and light irradiation on the oxidative stability were evaluated in rice oil from two brown rice flours including 'Baromi2' and 'Samkwang'. 'Baromi2' is a newly developed variety for rice flour production while 'Samkwang' is a typical rice variety as a control. Degree of oxidation and volatile profiles were evaluated in rice oil stored at 60 °C or under fluorescent light at 25 °C. The oil yields of 'Baromi2' and 'Samkang' were 2.63 and 1.78%, respectively whereas rice oil from 'Baromi2' had lower degree of unsaturation than 'Samkang'. Rice oil from 'Samkwang' possessed higher volatile compounds and more oxidized products during autoxidation whereas rice oil from 'Baromi2' had more oxidation products under light irradiation. Hexanal and 2-heptenal were major headspace volatile from heated rice oil while 2-heptenal and 1-octene-3-ol were main volatiles from light irradiated rice oil, which implies the involvement of singlet oxygen in rice oil during photooxidation.
Collapse
Affiliation(s)
- SeungHyun Oh
- Department of Food Science and Biotechnology, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon, 440-746 Gyeonggi-Do Korea
| | - WonYoung Oh
- Department of Food Science and Biotechnology, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon, 440-746 Gyeonggi-Do Korea
- College of Pharmacy Dongduk Women’s University, Seoul, South Korea
| | - JaeHwan Lee
- Department of Food Science and Biotechnology, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon, 440-746 Gyeonggi-Do Korea
- Food Flavor Sensory Research Center, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
4
|
Lee MK, Kim MJ, Oh WY, Lee J. Generation of volatiles from heated enzymatic hydrolysates of perilla meal with coconut oil in Maillard reaction system. Food Chem 2024; 440:138153. [PMID: 38103503 DOI: 10.1016/j.foodchem.2023.138153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/30/2023] [Accepted: 12/03/2023] [Indexed: 12/19/2023]
Abstract
Perilla meal hydrolysates (PMHs) were prepared by proteases; volatile profiles from heated mixtures of PMH and coconut oil (CO) were evaluated for their application as odor providers. Amino acids composition and degree of hydrolysis, and antioxidant activity in O/W emulsion of PMHs were assessed. PMHs were heated with different concentration of CO or with CO, xylose, and cysteine, which were non-Maillard and Maillard system, respectively. Among PMHs, double enzyme treatment using Alcalase and Flavourzyme showed higher degree of hydrolysis and antioxidant activity compared to PMHs from one type of enzymes. The presence of CO significantly increased oxygen, sulfur, and nitrogen-containing volatiles from PMHs in non-Maillard system. In case of Maillard system, PMHs with 10 % (w/w) CO contributed the formation of oxygen and nitrogen-containing volatiles such as furan and 2-methylpyrazine. PMHs might serve as an odor generator in the presence of edible oils like CO.
Collapse
Affiliation(s)
- Myung Kyu Lee
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Mi-Ja Kim
- Department of Food and Nutrition, Kangwon National University, Samcheok, Republic of Korea
| | - Won Young Oh
- College of Pharmacy, Dongduk Womens University, Republic of Korea.
| | - JaeHwan Lee
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
5
|
Wang X, Chen Y, McClements DJ, Meng C, Zhang M, Chen H, Deng Q. Recent advances in understanding the interfacial activity of antioxidants in association colloids in bulk oil. Adv Colloid Interface Sci 2024; 325:103117. [PMID: 38394718 DOI: 10.1016/j.cis.2024.103117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/07/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
The chemical stability of edible oils rich in polyunsaturated fatty acids (PUFAs) is a major challenge within the food and supplement industries, as lipid oxidation reduces oil quality and safety. Despite appearing homogeneous to the human eye, bulk oils are actually multiphase heterogeneous systems at the nanoscale level. Association colloids, such as reverse micelles, are spontaneously formed within bulk oils due to the self-assembly of amphiphilic molecules that are present, like phospholipids, free fatty acids, and/or surfactants. In bulk oil, lipid oxidation often occurs at the oil-water interface of these association colloids because this is where different reactants accumulate, such as PUFAs, hydroperoxides, transition metals, and antioxidants. Consequently, the efficiency of antioxidants in bulk oils is governed by their chemical reactivity, but also by their ability to be located close to the site of oxidation. This review describes the impact of minor constituents in bulk oils on the nature of the association colloids formed. And then the formation of mixed reverse micelles (LOOH, (co)surfactants, or antioxidations) during the peroxidation of bulk oils, as well as changes in their composition and structure over time are also discussed. The critical importance of selecting appropriate antioxidants and surfactants for the changes of interface and colloid, as well as the inhibition of lipid oxidation is emphasized. The knowledge presented in this review article may facilitate the design of bulk oil products with improved resistance to oxidation, thereby reducing food waste and improving food quality and safety.
Collapse
Affiliation(s)
- Xintian Wang
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Science, Wuhan, China
| | - Yashu Chen
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Science, Wuhan, China
| | | | - Chen Meng
- College of Biological Engineering and Food, Hubei University of Technology, Wuhan, China
| | - Mingkai Zhang
- College of Food and Biological Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Hongjian Chen
- College of Health Science and Engineering, Hubei University, Wuhan, China.
| | - Qianchun Deng
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Science, Wuhan, China.
| |
Collapse
|
6
|
Yoo K, Kim S, Kim MJ, Oh W, Lee J. Effects of association colloidal structures on the oxygen solubility in oil-in-water emulsion matrix. Food Sci Biotechnol 2024; 33:569-577. [PMID: 38274193 PMCID: PMC10805683 DOI: 10.1007/s10068-023-01338-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/11/2023] [Accepted: 05/11/2023] [Indexed: 01/27/2024] Open
Abstract
Although association colloidal structures are believed as major oxidation places, relationship of oxygen molecules with association colloids have not been evaluated in oil-in-water (O/W) emulsion. Oxygen solubility was determined in O/W emulsion containing dispersed phases with different charges of emulsifiers, numbers of dispersed droplets, and surface areas of dispersed droplets. The rates of lipid oxidation were also examined. O/W emulsion made of positively charged emulsifier had higher oxygen solubility than negatively charged and neutral emulsifiers. As number and surface area of oil droplet in O/W emulsion increased, higher oxygen solubility was observed, implying that dispersed phases could be places for oxygen molecules. O/W emulsion made of positively charged emulsifier had higher lipid oxidation than neutral emulsifier. O/W emulsion with more interfaces had lower oxidative stability, implying interfaces of association colloids could affect rates of lipid oxidation. Dispersed phase in O/W emulsion can be places for oxygen molecules.
Collapse
Affiliation(s)
- KeunCheol Yoo
- Department of Food Science and Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746 Republic of Korea
| | - SeHyeok Kim
- Department of Food Science and Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746 Republic of Korea
| | - Mi-Ja Kim
- Department of Food and Nutrition, Kangwon National University, Samcheok, Republic of Korea
| | - WonYoung Oh
- Department of Food Science and Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746 Republic of Korea
| | - JaeHwan Lee
- Department of Food Science and Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746 Republic of Korea
| |
Collapse
|
7
|
Jia W, Wu X, Kang X. Integrated the embedding delivery system and targeted oxygen scavenger enhances free radical scavenging capacity. Food Chem X 2023; 17:100558. [PMID: 36845467 PMCID: PMC9943856 DOI: 10.1016/j.fochx.2022.100558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
World trends in oil crop growing area, yield, and production over the last 10 years exhibited an increase of 48 %, 82 %, and 240 %, respectively. Concerning reduced shelf-life of oil-containing food products caused by oil oxidation and the demand for sensory quality of oil, the development of methods the improvement oil quality is urgently required. This critical review presented a concise overview of the recent literature related to the inhibition ways of oil oxidation. The mechanism of different antioxidants and nanoparticle delivery systems on oil oxidation was also explored. The current review provides scientific findings on control strategies: (i) design oxidation quality assessment model; (ii) packaging by antioxidant coatings and eco-friendly film nanocomposite: ameliorate physicochemical properties; (iii) molecular investigations on inhibitory effects of selected antioxidants and underlying mechanisms; (iv) explore the interrelationship between the cysteine/citric acid and lipoxygenase pathway in the progression of oxidative/fragmentation degradation of unsaturated fatty acid chains.
Collapse
Key Words
- Antioxidant control strategies
- Antioxidations
- BHA, butyl hydroxy anisole
- BHT, butylated hydroxytoluene
- FDA, Food and Drug Administration
- HPLC, high performance liquid chromatography
- HPODE, hydroperoxyoctadecadienoic acid
- LC, liquid chromatography
- Linoleic acid
- Lipoxygenase
- MDA, malondialdehyde
- MPN, metal-polyphenol network
- MS, mass spectrometry
- MUFA, monounsaturated fatty acid
- Nanocomposite packaging
- Nanoparticle delivery system
- PUFA, polyunsaturated fatty acid
- SFA, saturated fatty acid
- TA, tannic acid
- TBHQ, tert-butyl hydroquinone
- US FDA, US Food and Drug Administration
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xinyu Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xin Kang
- Department of Foot and Ankle Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
8
|
Kim Y, Kim MJ, Oh WY, Lee J. Antioxidant effects and reaction volatiles from heated mixture of soy protein hydrolysates and coconut oil. Food Sci Biotechnol 2023; 32:309-317. [PMID: 36778091 PMCID: PMC9905523 DOI: 10.1007/s10068-022-01189-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/27/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Soy protein hydrolysates (SPHs) are prepared from soybean meal using commercially available protease enzymes and acid/alkali treatment. The antioxidant properties of SPHs were evaluated by measuring headspace oxygen consumption and conjugated diene formation in oil-in-water (O/W) emulsions. In addition, volatile profiles were analyzed for the heated mixture of SPHs and the coconut oil (SPHCO). Total amino acid content was the highest in double proteases. SPHs prepared from enzymes acted as better antioxidants than those prepared from acid/alkali treatments in O/W emulsions. SPHs prepared from double proteases generated the highest amounts of total volatiles and nitrogen-containing compounds in SPHCO. 2,3-Dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one, 2-methyl-butanal, benzeneacetaldehyde, and 2,6-dimethylpyrazine were the major volatiles in SPHCO. Enzymatic SPHs act as natural antioxidants in the O/W emulsion matrix, and thermal reaction products from SPHCO may contribute to the production of a unique volatile flavor in plant protein-based foods. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-022-01189-7.
Collapse
Affiliation(s)
- YoonHa Kim
- Department of Food Science and Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do Republic of Korea
| | - Mi-Ja Kim
- Department of Food and Nutrition, Kangwon National University, Samcheok, Republic of Korea
| | - Won Young Oh
- Department of Food Science and Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do Republic of Korea
| | - JaeHwan Lee
- Department of Food Science and Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do Republic of Korea
| |
Collapse
|
9
|
Choi H, Na H, Kim S, Lee Y, Lee J. Enhancing oxidative stability of tocopherol-enriched edible oils using short-term exposure to microwave irradiation. J Food Sci 2021; 86:5272-5281. [PMID: 34796500 DOI: 10.1111/1750-3841.15964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/02/2021] [Accepted: 10/11/2021] [Indexed: 11/30/2022]
Abstract
The effect of microwave irradiation on the oxidative stability of tocopherol-enriched corn oil at temperatures of 60 or 100°C was evaluated using the Rancimat assay. Short durations of microwave treatment (1 min) on 10-g oil aliquots were found to increase the induction period of corn oil samples containing 500 and 1000 ppm tocopherol by 7.7% and 9.9%, respectively compared to control oils. The moisture content of tocopherol-enriched corn oil decreased by 15% compared to that of corn oil after 1 min of microwave treatment. At 100°C, 1000 ppm tocopherol-enriched corn oil received 3 min of microwave treatment had 5.8% and 9.9% lower primary and secondary oxidation products than control groups, respectively while this effect was not clearly observed for oils stored at 60°C. However, 15 min of microwave irradiation accelerated the rates of lipid oxidation in corn oils irrespective of the addition of tocopherol. Content of α- and γ-tocopherols in 1 min of microwave irradiated samples remained more by 28.8 and 5.8%, respectively than those of controls after 9 h heat treatment at 100°C. Overall, microwave irradiation within 3 min can increase the oxidative stability of 10 g-corn oils, especially at 100°C, which could be due to the reduced moisture content in the bulk oil matrix. Practical Application: A microwave oven is an irreplaceable home appliance and is widely used in households. Short time exposure to microwave irradiation can remove moisture efficiently from edible oils without the formation of oxidation products, which could increase the oxidative stability of these oils, especially under frying conditions. The results of this study can be utilized to ensure a longer shelf-life of fried products in the food industry by short time treatment of microwave irradiation.
Collapse
Affiliation(s)
- Hyuk Choi
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - HeeSun Na
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - SungHwa Kim
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - YoonHee Lee
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - JaeHwan Lee
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea.,Food Flavor Sensory Research Center, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|