1
|
Pessman BJ, Hebets EA. Web transmission properties vary with a spider's past and current noise exposure. Curr Biol 2025; 35:1706-1715.e4. [PMID: 40088894 DOI: 10.1016/j.cub.2025.02.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/28/2025] [Accepted: 02/18/2025] [Indexed: 03/17/2025]
Abstract
Animals rely on the reception of accurate information for survival and reproduction. Environmental noise, especially from human activity, challenges information acquisition by disturbing sensory channels and masking relevant cues. Investigations into how animals cope with noise have been heavily biased toward plasticity in information production, often overlooking flexibility in information reception. Studying internal sensory structures is challenging, but web-building spiders offer a unique opportunity to investigate external sensory surfaces-their webs. Here, we explored the potential of the funnel-weaving spider, Agelenopsis pennsylvanica, to influence information reception amid vibratory noise. During web construction, we exposed spiders to a 2 × 2 fully-crossed design: rural/urban collection sites and quiet/loud noise treatments, reflecting natural vibratory noise variation. On the resulting webs, we compared frequency-dependent energy loss between site/treatment groups as vibrations transmitted short and longer distances from an artificial stimulus to the spider's hunting position. Under loud vibratory noise, rural webs retained more energy in longer-distance vibratory stimuli across a narrow frequency range (350-600 Hz) than all other groups, potentially to improve the reception of relevant prey and mate cues. Conversely, urban/loud webs lost more energy in short-distance vibrations across a broader frequency range (300-1,000 Hz) than all other groups, likely to prevent sensory overload from constant, high-amplitude urban noise. Variable web transmission was related to spiders' prior (ancestral and/or developmental) and current noise exposure. Our study highlights the capacity of animals to influence information reception amid environmental noise and emphasizes the importance of a holistic approach to studying information flow in dynamic environments.
Collapse
Affiliation(s)
- Brandi J Pessman
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA.
| | - Eileen A Hebets
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA.
| |
Collapse
|
2
|
Black CR, Shultz JW, Wood HM. Extended phenotype affects somatic phenotype in spiders: web builders have lower estimated biting forces than free hunters. Evolution 2025; 79:380-392. [PMID: 39588588 DOI: 10.1093/evolut/qpae170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/10/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
Reciprocal selection between extended and somatic phenotypes is an active area of investigation. Recent research on the influence of web-building on somatic evolution in spiders has produced conflicting results, with some finding no effect of web use on somatic evolution and others showing significant effects. These studies differed in focus, with the former surveying general anatomical traits and the latter concentrating on somatic systems with significant functional roles in prey capture. Here we propose and test the hypothesis that prey immobilization by webs is broadly synergistic with cheliceral biting force and that web builders have lower cheliceral forces compared to free hunters. Our analysis focused on the intercheliceral (IC) sclerite and muscles, a newly characterized system that is synapomorphic and ubiquitously distributed in spiders. Using µCT scans, we quantify IC sclerite shape and model IC muscle function. Statistical analyses show that inferred size-corrected isometric muscle force is lower in web-builders than in free hunters. No such association was found for IC sclerite shape. In the investigation of reciprocal selective effects between extended and somatic phenotypes, our results highlight the importance that these traits be functionally linked and adaptive.
Collapse
Affiliation(s)
- Corinthia R Black
- Department Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| | - Jeffrey W Shultz
- Department of Entomology, University of Maryland, College Park, Maryland, United States
| | - Hannah M Wood
- Department Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| |
Collapse
|
3
|
Just BB, Torres de Farias S. Living cognition and the nature of organisms. Biosystems 2024; 246:105356. [PMID: 39426661 DOI: 10.1016/j.biosystems.2024.105356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/27/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
There is no consensus about what cognition is. Different perspectives conceptualize it in different ways. In the same vein, there is no agreement about which systems are truly cognitive. This begs the question, what makes a process or a system cognitive? One of the most conspicuous features of cognition is that it is a set of processes. Cognition, in the end, is a collection of processes such as perception, memory, learning, decision-making, problem-solving, goal-directedness, attention, anticipation, communication, and maybe emotion. There is a debate about what they mean, and which systems possess these processes. One aspect of this problem concerns the level at which cognition and the single processes are conceptualized. To make this scenario clear, evolutionary and self-maintenance arguments are taken. Given the evolutive landscape, one sees processes shared by all organisms and their derivations in specific taxa. No matter which side of the complexity spectrum one favors, the similarities of the simple processes with the complex ones cannot be ignored, and the differences of some complex processes with their simple versions cannot be blurred. A final cognitive framework must make sense of both sides of the spectrum, their differences and similarities. Here, we discuss from an evolutionary perspective the basic elements shared by all living beings and whether these may be necessary and sufficient for understanding the cognitive process. Following these considerations, cognition can be expanded to every living being. Cognition is the set of informational and dynamic processes an organism must interact with and grasp aspects of its world. Understood at their most basic level, perception, memory, learning, problem-solving, decision-making, action, and other cognitive processes are basic features of biological functioning.
Collapse
Affiliation(s)
- Breno B Just
- Laboratório de Genética Evolutiva Paulo Leminski, Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, Brazil; Laboratório de Estudos Em Memória e Cognição (LEMCOG), Departamento de Psicologia, Universidade Federal da Paraíba, João Pessoa, Brazil.
| | - Sávio Torres de Farias
- Laboratório de Genética Evolutiva Paulo Leminski, Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, Brazil; Network of Researchers on the Chemical Evolution of Life (NoRCEL), Leeds LS7 3RB, UK.
| |
Collapse
|
4
|
Jeffery KJ, Cheng K, Newcombe NS, Bingman VP, Menzel R. Unpacking the navigation toolbox: insights from comparative cognition. Proc Biol Sci 2024; 291:20231304. [PMID: 38320615 PMCID: PMC10846957 DOI: 10.1098/rspb.2023.1304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 01/09/2024] [Indexed: 02/08/2024] Open
Abstract
The study of navigation is informed by ethological data from many species, laboratory investigation at behavioural and neurobiological levels, and computational modelling. However, the data are often species-specific, making it challenging to develop general models of how biology supports behaviour. Wiener et al. outlined a framework for organizing the results across taxa, called the 'navigation toolbox' (Wiener et al. In Animal thinking: contemporary issues in comparative cognition (eds R Menzel, J Fischer), pp. 51-76). This framework proposes that spatial cognition is a hierarchical process in which sensory inputs at the lowest level are successively combined into ever-more complex representations, culminating in a metric or quasi-metric internal model of the world (cognitive map). Some animals, notably humans, also use symbolic representations to produce an external representation, such as a verbal description, signpost or map that allows communication of spatial information or instructions between individuals. Recently, new discoveries have extended our understanding of how spatial representations are constructed, highlighting that the hierarchical relationships are bidirectional, with higher levels feeding back to influence lower levels. In the light of these new developments, we revisit the navigation toolbox, elaborate it and incorporate new findings. The toolbox provides a common framework within which the results from different taxa can be described and compared, yielding a more detailed, mechanistic and generalized understanding of navigation.
Collapse
Affiliation(s)
- Kate J. Jeffery
- School of Psychology and Neuroscience, University of Glasgow, Glasgow G12 8QB, UK
| | - Ken Cheng
- School of Natural Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Nora S. Newcombe
- Department of Psychology, Temple University, Philadelphia, PA 19122, USA
| | - Verner P. Bingman
- J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH 43403-0001, USA
- Department of Psychology, Bowling Green State University, Bowling Green, OH 43403-0001, USA
| | - Randolf Menzel
- Institute for Biology, Neurobiology, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
5
|
Jin P, Zhu B, Jia Y, Zhang Y, Wang W, Shen Y, Zhong Y, Zheng Y, Wang Y, Tong Y, Zhang W, Li S. Single-cell transcriptomics reveals the brain evolution of web-building spiders. Nat Ecol Evol 2023; 7:2125-2142. [PMID: 37919396 PMCID: PMC10697844 DOI: 10.1038/s41559-023-02238-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/29/2023] [Indexed: 11/04/2023]
Abstract
Spiders are renowned for their efficient capture of flying insects using intricate aerial webs. How the spider nervous systems evolved to cope with this specialized hunting strategy and various environmental clues in an aerial space remains unknown. Here we report a brain-cell atlas of >30,000 single-cell transcriptomes from a web-building spider (Hylyphantes graminicola). Our analysis revealed the preservation of ancestral neuron types in spiders, including the potential coexistence of noradrenergic and octopaminergic neurons, and many peptidergic neuronal types that are lost in insects. By comparing the genome of two newly sequenced plesiomorphic burrowing spiders with three aerial web-building spiders, we found that the positively selected genes in the ancestral branch of web-building spiders were preferentially expressed (42%) in the brain, especially in the three mushroom body-like neuronal types. By gene enrichment analysis and RNAi experiments, these genes were suggested to be involved in the learning and memory pathway and may influence the spiders' web-building and hunting behaviour. Our results provide key sources for understanding the evolution of behaviour in spiders and reveal how molecular evolution drives neuron innovation and the diversification of associated complex behaviours.
Collapse
Affiliation(s)
- Pengyu Jin
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Bingyue Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yinjun Jia
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Yiming Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Guangxi Normal University, Guilin, China
| | - Yunxiao Shen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu Zhong
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yami Zheng
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yang Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Tong
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Zhang
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Shuqiang Li
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
Bruner E. Cognitive Archeology and the Attentional System: An Evolutionary Mismatch for the Genus Homo. J Intell 2023; 11:183. [PMID: 37754912 PMCID: PMC10532831 DOI: 10.3390/jintelligence11090183] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
Brain evolution is a key topic in evolutionary anthropology. Unfortunately, in this sense the fossil record can usually support limited anatomical and behavioral inferences. Nonetheless, information from fossil species is, in any case, particularly valuable, because it represents the only direct proof of cerebral and behavioral changes throughout the human phylogeny. Recently, archeology and psychology have been integrated in the field of cognitive archeology, which aims to interpret current cognitive models according to the evidence we have on extinct human species. In this article, such evidence is reviewed in order to consider whether and to what extent the archeological record can supply information regarding changes of the attentional system in different taxa of the human genus. In particular, behavioral correlates associated with the fronto-parietal system and working memory are employed to consider recent changes in our species, Homo sapiens, and a mismatch between attentional and visuospatial ability is hypothesized. These two functional systems support present-moment awareness and mind-wandering, respectively, and their evolutionary unbalance can explain a structural sensitivity to psychological distress in our species.
Collapse
Affiliation(s)
- Emiliano Bruner
- Centro Nacional de Investigación sobre la Evolución Humana, Paseo Sierra de Atapuerca 3, 09002 Burgos, Spain
| |
Collapse
|
7
|
Hesselberg T, Gálvez D. Spider Ecology and Behaviour-Spiders as Model Organisms. INSECTS 2023; 14:330. [PMID: 37103145 PMCID: PMC10143103 DOI: 10.3390/insects14040330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Spiders are versatile and ubiquitous generalist predators that can be found in all terrestrial ecosystems except for Antarctica [...].
Collapse
Affiliation(s)
- Thomas Hesselberg
- Department for Continuing Education, University of Oxford, Oxford OX1 2JA, UK
- Department of Biology, University of Oxford, Oxford OX1 3PJ, UK
| | - Dumas Gálvez
- Coiba Scientific Station, Panama City 0843-01853, Panama
- Programa Centroamericano de Maestría en Entomología, Universidad de Panamá, Panama City 0824, Panama
- Smithsonian Tropical Research Institute, Panama City P.O. Box 0843-03092, Panama
| |
Collapse
|
8
|
Parise AG, Gubert GF, Whalan S, Gagliano M. Ariadne’s thread and the extension of cognition: A common but overlooked phenomenon in nature? Front Ecol Evol 2023. [DOI: 10.3389/fevo.2022.1069349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Over recent decades, our philosophical and scientific understanding of cognition has changed dramatically. We went from conceiving humans as the sole truly cognitive species on the planet to endowing several organisms with cognitive capacities, from considering brains as the exclusive seat of cognition to extending cognitive faculties to the entire physical body and beyond. That cognition could extend beyond the organism’s body is no doubt one of the most controversial of the recent hypotheses. Extended cognition (ExC) has been discussed not only to explain aspects of the human cognitive process, but also of other species such as spiders and more recently, plants. It has been suggested that ExC could offer insights for the grounding of environmentally extended cognitive traits in evolved ecological functions. Here, we reviewed the ecological literature for possible ExC examples that satisfy the mutual manipulability criterion, which can be used to establish experimentally the boundaries of cognitive systems. Our conclusion is that ExC might be far more common than previously thought, and present in organisms as diverse as plants, fungi, termites, spiders, mammals, and slime moulds. Experimental investigation is needed to clarify this idea which, if proven correct, could illuminate a new path into understanding the origins and evolution of cognition.
Collapse
|
9
|
Jacobs LF. The PROUST hypothesis: the embodiment of olfactory cognition. Anim Cogn 2023; 26:59-72. [PMID: 36542172 PMCID: PMC9877075 DOI: 10.1007/s10071-022-01734-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/20/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
The extension of cognition beyond the brain to the body and beyond the body to the environment is an area of debate in philosophy and the cognitive sciences. Yet, these debates largely overlook olfaction, a sensory modality used by most animals. Here, I use the philosopher's framework to explore the implications of embodiment for olfactory cognition. The philosopher's 4E framework comprises embodied cognition, emerging from a nervous system characterized by its interactions with its body. The necessity of action for perception adds enacted cognition. Cognition is further embedded in the sensory inputs of the individual and is extended beyond the individual to information stored in its physical and social environments. Further, embodiment must fulfill the criterion of mutual manipulability, where an agent's cognitive state is involved in continual, reciprocal influences with its environment. Cognition cannot be understood divorced from evolutionary history, however, and I propose adding evolved, as a fifth term to the 4E framework. We must, therefore, begin at the beginning, with chemosensation, a sensory modality that underlies purposive behavior, from bacteria to humans. The PROUST hypothesis (perceiving and reconstructing odor utility in space and time) describers how olfaction, this ancient scaffold and common denominator of animal cognition, fulfills the criteria of embodied cognition. Olfactory cognition, with its near universal taxonomic distribution as well as the near absence of conscious representation in humans, may offer us the best sensorimotor system for the study of embodiment.
Collapse
Affiliation(s)
- Lucia F. Jacobs
- Department of Psychology, University of California, Berkeley, 2121 Berkeley Way, Berkeley, CA 94720-1650 USA
| |
Collapse
|
10
|
Gillett AJ, Whyte CJ, Hewitson CL, Kaplan DM. Defending the use of the mutual manipulability criterion in the extended cognition debate. Front Psychol 2022; 13:1043747. [PMID: 36467197 PMCID: PMC9716203 DOI: 10.3389/fpsyg.2022.1043747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/07/2022] [Indexed: 07/02/2024] Open
|
11
|
Yu G, Li Z, Zhao Y, Liu J, Peng Y. An Ant-Mimicking Jumping Spider Achieves Higher Predation Probability with Lower Success Rate When Exposed to Ethanol. INSECTS 2022; 13:1009. [PMID: 36354833 PMCID: PMC9694002 DOI: 10.3390/insects13111009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/29/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Ethanol (ETOH) affects many animals' behaviour in nature; for example, honeybees become more aggressive after consuming ETOH. In previous studies, scientists have used honeybees and fruit flies as models to determine if they showed a strong preference to ETOH. Moreover, ETOH could affect their locomotion and learning abilities. However, whether and how ETOH affects spiders is unclear as of yet. In this study, we used empirical experiments to determine whether spiders showed preference for ETOH, as well as the potential benefits of spiders choosing ETOH, by using a common spider, Myrmarachne gisti, which has a high probability of contacting ETOH in their habitat. In our experiment, M. gisti showed a significant preference for ETOH. Although the success rate of the first attack was significantly decreased when M. gisti were exposed to ETOH, they had a significantly higher predation probability, since fruit flies also showed a significant preference for ETOH. Our findings suggested that ETOH could affect the prey capture efficiency of M. gisti, and indicated that spiders might evolve to use ETOH to locate a potential hunting place. Taken together, our findings suggested that M. gisti evolved to adapt to ETOH and could use it as a signal of the presence of food resources.
Collapse
Affiliation(s)
- Guocheng Yu
- Hubei Key Laboratory of Regional Development and Environmental Response, College of Resources and Environmental Science, Hubei University, Wuhan 430062, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering and Centre for Behavioural Ecology and Evolution, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Zichang Li
- Hubei Key Laboratory of Regional Development and Environmental Response, College of Resources and Environmental Science, Hubei University, Wuhan 430062, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering and Centre for Behavioural Ecology and Evolution, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yao Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering and Centre for Behavioural Ecology and Evolution, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jie Liu
- Hubei Key Laboratory of Regional Development and Environmental Response, College of Resources and Environmental Science, Hubei University, Wuhan 430062, China
| | - Yu Peng
- Hubei Key Laboratory of Regional Development and Environmental Response, College of Resources and Environmental Science, Hubei University, Wuhan 430062, China
| |
Collapse
|
12
|
Henneken J, Blamires SJ, Goodger JQ, Jones TM, Elgar MA. Population level variation in silk chemistry but not web architecture in a widely distributed orb web spider. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Spider webs are iconic examples of extended phenotypes that are remarkably plastic across different environments. Orb webs are not only effective traps for capturing prey, but can also provide information to potential mates and, in some cases, potential predators and prey through silk-based chemicals. As with regular phenotypic traits, variability in the properties of spider webs is thought to be mediated by a combination of genetic and environmental effects. Here, we examined variation in several key features of the webs of the orb-weaving spider Argiope keyserlingi across five geographically disparate populations. We documented variation in web architecture and chemical properties of webs collected directly from the field. We then probed the potential for the underlying environmental driver of local insect abundance to explain this variation, by analysing the properties of orb webs constructed by the spiders from these different populations, but under identical laboratory conditions. We found no evidence of variation across populations in the architecture of webs constructed in the laboratory, despite the large geographic distances. Nonetheless, we discovered between population variation in the composition of chemicals found on the surface of silk and in the taxonomic distribution of available prey. Furthermore, there was a positive correlation between the quantity of nitrogenous compounds in web silks and female body condition. When combined, these findings suggest that environmental mechanisms can drive variation in web traits across spider populations.
Collapse
Affiliation(s)
- Jessica Henneken
- School of BioSciences, The University of Melbourne , VIC 3010 , Australia
- Agriculture Victoria Research, AgriBio Centre , 5 Ring Road Bundoora, VIC 3083 , Australia
| | - Sean J Blamires
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales , Sydney, NSW 2052 , Australia
- NMR Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052 , Australia
| | - Jason Qd Goodger
- School of Ecosystem and Forest Sciences, The University of Melbourne, VIC 3010 , Australia
| | - Therésa M Jones
- School of BioSciences, The University of Melbourne , VIC 3010 , Australia
| | - Mark A Elgar
- School of BioSciences, The University of Melbourne , VIC 3010 , Australia
| |
Collapse
|
13
|
Artificial Intelligence for Sustainable Complex Socio-Technical-Economic Ecosystems. COMPUTATION 2022. [DOI: 10.3390/computation10060095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The strong and functional couplings among ecological, economic, social, and technological processes explain the complexification of human-made systems, and phenomena such as globalization, climate change, the increased urbanization and inequality of human societies, the power of information, and the COVID-19 syndemic. Among complexification’s features are non-decomposability, asynchronous behavior, components with many degrees of freedom, increased likelihood of catastrophic events, irreversibility, nonlinear phase spaces with immense combinatorial sizes, and the impossibility of long-term, detailed prediction. Sustainability for complex systems implies enough efficiency to explore and exploit their dynamic phase spaces and enough flexibility to coevolve with their environments. This, in turn, means solving intractable nonlinear semi-structured dynamic multi-objective optimization problems, with conflicting, incommensurable, non-cooperative objectives and purposes, under dynamic uncertainty, restricted access to materials, energy, and information, and a given time horizon. Given the high-stakes; the need for effective, efficient, diverse solutions; their local and global, and present and future effects; and their unforeseen short-, medium-, and long-term impacts; achieving sustainable complex systems implies the need for Sustainability-designed Universal Intelligent Agents (SUIAs). The proposed philosophical and technological SUIAs will be heuristic devices for harnessing the strong functional coupling between human, artificial, and nonhuman biological intelligence in a non-zero-sum game to achieve sustainability.
Collapse
|
14
|
Solé R, Seoane LF. Evolution of Brains and Computers: The Roads Not Taken. ENTROPY (BASEL, SWITZERLAND) 2022; 24:665. [PMID: 35626550 PMCID: PMC9141356 DOI: 10.3390/e24050665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 01/27/2023]
Abstract
When computers started to become a dominant part of technology around the 1950s, fundamental questions about reliable designs and robustness were of great relevance. Their development gave rise to the exploration of new questions, such as what made brains reliable (since neurons can die) and how computers could get inspiration from neural systems. In parallel, the first artificial neural networks came to life. Since then, the comparative view between brains and computers has been developed in new, sometimes unexpected directions. With the rise of deep learning and the development of connectomics, an evolutionary look at how both hardware and neural complexity have evolved or designed is required. In this paper, we argue that important similarities have resulted both from convergent evolution (the inevitable outcome of architectural constraints) and inspiration of hardware and software principles guided by toy pictures of neurobiology. Moreover, dissimilarities and gaps originate from the lack of major innovations that have paved the way to biological computing (including brains) that are completely absent within the artificial domain. As it occurs within synthetic biocomputation, we can also ask whether alternative minds can emerge from A.I. designs. Here, we take an evolutionary view of the problem and discuss the remarkable convergences between living and artificial designs and what are the pre-conditions to achieve artificial intelligence.
Collapse
Affiliation(s)
- Ricard Solé
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Dr Aiguader 88, 08003 Barcelona, Spain
- Institut de Biologia Evolutiva, CSIC-UPF, Pg Maritim de la Barceloneta 37, 08003 Barcelona, Spain
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| | - Luís F. Seoane
- Departamento de Biología de Sistemas, Centro Nacional de Biotecnología (CSIC), C/Darwin 3, 28049 Madrid, Spain;
- Grupo Interdisciplinar de Sistemas Complejos (GISC), 28049 Madrid, Spain
| |
Collapse
|
15
|
Davies MS, Hesselberg T. The Use of Tuning Forks for Studying Behavioural Responses in Orb Web Spiders. INSECTS 2022; 13:insects13040370. [PMID: 35447812 PMCID: PMC9027978 DOI: 10.3390/insects13040370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/22/2022] [Accepted: 04/06/2022] [Indexed: 02/05/2023]
Abstract
Simple Summary Spiders are common predators found in almost every type of environment, and are used as model organisms in studies ranging from communication and signalling to biochemical studies on their silk. Orb spiders are particularly interesting, as their web provides a cost-effective way to obtain information on their foraging behaviour. However, studies on short-term behaviours including prey capture and escape behaviours are rare and usually take place in artificial settings, such as laboratories. In this study, we tested a simple methodology using tuning forks that can be used consistently and reliably in the field. The two tuning forks are capable of producing attack (440 Hz) and escape (256 Hz) responses from the spiders. We also used a metal wire as a mechanical stimulus for comparison, which as predicted, was less reliable. We demonstrate the usefulness of the methodology by quantitatively investigating how the size of the spider and the size of its web affect predatory and escape response rates in the autumn spider, although no significant effects of either were found. However, our results confirm the ease by which this simple method can be used to conduct behavioural studies of orb spiders in the wild. Abstract Spiders and their webs are often used as model organisms to study a wide range of behaviours. However, these behavioural studies are often carried out in the laboratory, and the few field studies usually result in large amounts of video footage and subsequent labour-intensive data analysis. Thus, we aimed to devise a cost- and time-effective method for studying the behaviour of spiders in the field, using the now almost forgotten method of stimulating webs with tuning forks. Our study looked at the viability of using 256 Hz and 440 Hz tuning forks to stimulate, anti-predatory and predatory responses in the orb web spider Metellina segmentata, respectively. To assess the consistency of the behaviours produced, we compared these to direct mechanical stimulation with a metal wire. The results suggest that the tuning forks produce relatively consistent behaviours within and between two years in contrast to the metal wire. We furthermore found no significant effects of spider length or web area on spider reaction times. However, we found significant differences in reaction times between escape and prey capture behaviours, and between tuning forks and the wire. Thus, we demonstrated the potential of tuning forks to rapidly generate quantitative data in a field setting.
Collapse
Affiliation(s)
- Mollie S. Davies
- Department of Biological and Medical Sciences, Headington Campus, Oxford Brookes University, Oxford OX3 0BP, UK;
| | - Thomas Hesselberg
- Department of Biological and Medical Sciences, Headington Campus, Oxford Brookes University, Oxford OX3 0BP, UK;
- Department of Zoology, University of Oxford, 11 Mansfield Road, Oxford OX1 3SZ, UK
- Correspondence:
| |
Collapse
|
16
|
Zhou J, Lai J, Menda G, Stafstrom JA, Miles CI, Hoy RR, Miles RN. Outsourced hearing in an orb-weaving spider that uses its web as an auditory sensor. Proc Natl Acad Sci U S A 2022; 119:e2122789119. [PMID: 35349337 PMCID: PMC9169088 DOI: 10.1073/pnas.2122789119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/03/2022] [Indexed: 01/07/2023] Open
Abstract
SignificanceThe sense of hearing in all known animals relies on possessing auditory organs that are made up of cellular tissues and constrained by body sizes. We show that hearing in the orb-weaving spider is functionally outsourced to its extended phenotype, the proteinaceous self-manufactured web, and hence processes behavioral controllability. This finding opens new perspectives on animal extended cognition and hearing-the outsourcing and supersizing of auditory function in spiders. This study calls for reinvestigation of the remarkable evolutionary ecology and sensory ecology in spiders-one of the oldest land animals. The sensory modality of outsourced hearing provides a unique model for studying extended and regenerative sensing and presents new design features for inspiring novel acoustic flow detectors.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Mechanical Engineering, Binghamton University, Binghamton, NY 13902
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439
| | - Junpeng Lai
- Department of Mechanical Engineering, Binghamton University, Binghamton, NY 13902
| | - Gil Menda
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853
| | - Jay A. Stafstrom
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853
| | - Carol I. Miles
- Department of Biological Sciences, Binghamton University, Binghamton, NY 13902
| | - Ronald R. Hoy
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853
| | - Ronald N. Miles
- Department of Mechanical Engineering, Binghamton University, Binghamton, NY 13902
| |
Collapse
|
17
|
Bisshop A. Arachnomadology: A Zoētic Framework for Queering Stories of Spider Sex, Life, and Death. AUSTRALIAN FEMINIST STUDIES 2022. [DOI: 10.1080/08164649.2022.2051165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Guth TL, Persons MH. Landmark‐guided T‐maze learning in the wolf spider
Tigrosa helluo. Ethology 2022. [DOI: 10.1111/eth.13267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tiffany L. Guth
- Neuroscience Program Biology Department Susquehanna University Selinsgrove Pennsylvania USA
| | - Matthew H. Persons
- Neuroscience Program Biology Department Susquehanna University Selinsgrove Pennsylvania USA
| |
Collapse
|
19
|
Mangalam M, Fragaszy DM, Wagman JB, Day BM, Kelty-Stephen DG, Bongers RM, Stout DW, Osiurak F. On the psychological origins of tool use. Neurosci Biobehav Rev 2022; 134:104521. [PMID: 34998834 DOI: 10.1016/j.neubiorev.2022.104521] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 12/01/2021] [Accepted: 01/01/2022] [Indexed: 01/13/2023]
Abstract
The ubiquity of tool use in human life has generated multiple lines of scientific and philosophical investigation to understand the development and expression of humans' engagement with tools and its relation to other dimensions of human experience. However, existing literature on tool use faces several epistemological challenges in which the same set of questions generate many different answers. At least four critical questions can be identified, which are intimately intertwined-(1) What constitutes tool use? (2) What psychological processes underlie tool use in humans and nonhuman animals? (3) Which of these psychological processes are exclusive to tool use? (4) Which psychological processes involved in tool use are exclusive to Homo sapiens? To help advance a multidisciplinary scientific understanding of tool use, six author groups representing different academic disciplines (e.g., anthropology, psychology, neuroscience) and different theoretical perspectives respond to each of these questions, and then point to the direction of future work on tool use. We find that while there are marked differences among the responses of the respective author groups to each question, there is a surprising degree of agreement about many essential concepts and questions. We believe that this interdisciplinary and intertheoretical discussion will foster a more comprehensive understanding of tool use than any one of these perspectives (or any one of these author groups) would (or could) on their own.
Collapse
Affiliation(s)
- Madhur Mangalam
- Department of Physical Therapy, Movement and Rehabilitation Science, Northeastern University, Boston, Massachusetts 02115, USA.
| | | | - Jeffrey B Wagman
- Department of Psychology, Illinois State University, Normal, IL 61761, USA
| | - Brian M Day
- Department of Psychology, Butler University, Indianapolis, IN 46208, USA
| | | | - Raoul M Bongers
- Department of Human Movement Sciences, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, Netherlands
| | - Dietrich W Stout
- Department of Anthropology, Emory University, Atlanta, GA 30322, USA
| | - François Osiurak
- Laboratoire d'Etude des Mécanismes Cognitifs, Université de Lyon, Lyon 69361, France; Institut Universitaire de France, Paris 75231, France
| |
Collapse
|
20
|
Affiliation(s)
- Paul R. Smart
- Electronics and Computer Science, University of Southampton, Southampton, UK
| |
Collapse
|
21
|
OUP accepted manuscript. Syst Biol 2022; 71:1487-1503. [DOI: 10.1093/sysbio/syac023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 02/20/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
|
22
|
Sims M, Kiverstein J. Externalized memory in slime mould and the extended (non-neuronal) mind. COGN SYST RES 2021. [DOI: 10.1016/j.cogsys.2021.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
23
|
Wang Q, Guerra S, Ceccarini F, Bonato B, Castiello U. Sowing the seeds of intentionality: Motor intentions in plants. PLANT SIGNALING & BEHAVIOR 2021; 16:1949818. [PMID: 34346847 PMCID: PMC8525965 DOI: 10.1080/15592324.2021.1949818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 06/13/2023]
Abstract
Motor intention/intentionality has been investigated from a wide variety of perspectives: some researchers have, for example, been focusing on the purely physical and mechanical aspects underlying the control of action, while others have been concentrating on subjective intentionality. Basically, all approaches ranging from the neuroscientific to phenomenological-inspired ones have been used to investigate motor intentions. The current study set out to examine motor intentions in connection to plant behavior utilizing the final goal of plant action as the definition of its motor intention. Taking a wide-angle approach, the first part of the review is dedicated to examining philosophical and psychological studies on motor intentions. Recent data demonstrating that plant behavior does indeed seem goal-directed will then be reviewed as we ponder the possibility of purposeful or intentional plant responses to stimuli and stress conditions in their environment. The article will draw to a close as we examine current theories attempting to explain plants' overt behavior and corresponding covert representations.
Collapse
Affiliation(s)
- Qiuran Wang
- Department of General Psychology, University of Padua, Padua, Italy
| | - Silvia Guerra
- Department of General Psychology, University of Padua, Padua, Italy
| | | | - Bianca Bonato
- Department of General Psychology, University of Padua, Padua, Italy
| | | |
Collapse
|
24
|
Caetano-Anollés K, Ewers B, Iyer S, Lucas JR, Pavlic TP, Seale AP, Zeng Y. A Minimal Framework for Describing Living Systems: A Multi-Dimensional View of Life Across Scales. Integr Comp Biol 2021; 61:2053-2065. [PMID: 34387347 DOI: 10.1093/icb/icab172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 12/15/2022] Open
Abstract
The almost limitless complexity of biology has led to two general approaches to understanding biological phenomena. One approach is dominated by reductionism in which high-level phenomena of whole systems are viewed as emerging from relatively simple and generally understood interactions at a substantially lower level. Although this approach is theoretically general, it can become intractable in practice when attempting to simultaneously explain a wide range of systems. A second approach is for specialists to investigate biological phenomena within one of many different hierarchical levels of description that are separated to decouple from concerns at other levels. Although this approach reduces the explanatory burden on specialists that operate within each level, it also reduces integration from insights gained at other levels. Thus, as beneficial as these approaches have been, they limit the scope and integration of knowledge across scales of biological organization to the detriment of a truly synoptic view of life. The challenge is to find a theoretical and experimental framework that facilitates a broader understanding of the hierarchy of life-providing permeability for the exchange of ideas among disciplinary specialists without discounting the peculiarities that have come to define those disciplines. For this purpose, coarse-grained, scale-invariant properties and resources need to be identified that describe the characteristic features of a living system at all spatiotemporal scales. The approach will be aided by a common vernacular that underscores the realities of biological connections across a wide range of scales. Therefore, in this vision paper, we propose a conceptual approach based on four identified resources-energy, conductance, storage, and information (ECSI)-to reintegrate biological studies with the aim of unifying life sciences under resource limitations. We argue that no functional description of a living system is complete without accounting for at least all four of these resources. Thus, making these resources explicit will help to identify commonalities to aid in transdisciplinary discourse as well as opportunities for integrating among the differently scoped areas of specialized inquiry. The proposed conceptual framework for living systems should be valid across all scales and may uncover potential limitations of existing hypotheses and help researchers develop new hypotheses addressing fundamental processes of life without having to resort to reductionism.
Collapse
Affiliation(s)
| | - Brent Ewers
- Department of Botany and Program in Ecology, University of Wyoming, Laramie, WY 82071 USA
| | - Shilpa Iyer
- Department of Biological Sciences, J. William Fulbright College of Arts and Sciences, University of Arkansas, Fayetteville, AR 72701 USA
| | - Jeffrey R Lucas
- Department of Biological Sciences, Purdue University, West Lafayette IN 47907 USA
| | - Theodore P Pavlic
- School of Computing, Informatics, and Decision Systems Engineering / School of Sustainability / School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Andre P Seale
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai'i at Mānoa, 1955 East-West Road, Honolulu, HI 96822, USA
| | - Yu Zeng
- Schmid College of Science and Technology, Chapman University, Orange, CA 92866 USA
| |
Collapse
|
25
|
Fields C, Glazebrook JF, Levin M. Minimal physicalism as a scale-free substrate for cognition and consciousness. Neurosci Conscious 2021; 2021:niab013. [PMID: 34345441 PMCID: PMC8327199 DOI: 10.1093/nc/niab013] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 12/14/2022] Open
Abstract
Theories of consciousness and cognition that assume a neural substrate automatically regard phylogenetically basal, nonneural systems as nonconscious and noncognitive. Here, we advance a scale-free characterization of consciousness and cognition that regards basal systems, including synthetic constructs, as not only informative about the structure and function of experience in more complex systems but also as offering distinct advantages for experimental manipulation. Our "minimal physicalist" approach makes no assumptions beyond those of quantum information theory, and hence is applicable from the molecular scale upwards. We show that standard concepts including integrated information, state broadcasting via small-world networks, and hierarchical Bayesian inference emerge naturally in this setting, and that common phenomena including stigmergic memory, perceptual coarse-graining, and attention switching follow directly from the thermodynamic requirements of classical computation. We show that the self-representation that lies at the heart of human autonoetic awareness can be traced as far back as, and serves the same basic functions as, the stress response in bacteria and other basal systems.
Collapse
Affiliation(s)
- Chris Fields
- 23 Rue des Lavandières, 11160 Caunes Minervois, France
| | - James F Glazebrook
- Department of Mathematics and Computer Science, Eastern Illinois University, 600 Lincoln Ave, Charleston, IL 61920 USA
- Department of Mathematics, Adjunct Faculty, University of Illinois at Urbana–Champaign, 1409 W. Green Street, Urbana, IL 61801, USA
| | - Michael Levin
- Allen Discovery Center, Tufts University, 200 College Avenue, Medford, MA 02155, USA
| |
Collapse
|
26
|
Cross FR, Jackson RR. Odour priming of a mosquito-specialist predator's vision-based detouring decisions. Biochem Biophys Res Commun 2020; 564:18-26. [PMID: 33375956 DOI: 10.1016/j.bbrc.2020.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/09/2020] [Accepted: 12/02/2020] [Indexed: 10/22/2022]
Abstract
A capacity to execute long detours that are planned ahead of time has cognitive implications pertaining to reliance on internal representation. Here we investigate the detouring behaviour of Evarcha culicivora, an East African salticid spider that specializes at preying on blood-carrying mosquitoes. The findings from our experiments are the first evidence of a salticid making detouring plans based on whether the path chosen leads to more preferred instead of less preferred prey, as well as the first evidence of olfactory priming effects on motivation and selective attention in the context of detouring. Test spiders began on top of a starting platform from which, in some trials, they could view lures on top of two poles and, in some trials, the odour of blood-carrying mosquitoes was also present. When odour was present and prey were visible, significantly more test spiders took a detour and chose a pole than when only odour was present (prey not visible) or when prey were visible but odour was absent. When odour was present, test spiders also significantly more often chose the pole holding a blood-carrying mosquito instead of the pole holding another prey type.
Collapse
Affiliation(s)
- Fiona R Cross
- School of Biological Sciences, University of Canterbury, Private Bag, 4800, Christchurch, New Zealand; International Centre of Insect Physiology and Ecology, Thomas Odhiambo Campus, P.O. Box 30, Mbita Point, Kenya.
| | - Robert R Jackson
- School of Biological Sciences, University of Canterbury, Private Bag, 4800, Christchurch, New Zealand; International Centre of Insect Physiology and Ecology, Thomas Odhiambo Campus, P.O. Box 30, Mbita Point, Kenya
| |
Collapse
|
27
|
|
28
|
Krieger J, Hörnig MK, Laidre ME. Shells as 'extended architecture': to escape isolation, social hermit crabs choose shells with the right external architecture. Anim Cogn 2020; 23:1177-1187. [PMID: 32770436 PMCID: PMC7700067 DOI: 10.1007/s10071-020-01419-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 06/24/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023]
Abstract
Animals' cognitive abilities can be tested by allowing them to choose between alternatives, with only one alternative offering the correct solution to a novel problem. Hermit crabs are evolutionarily specialized to navigate while carrying a shell, with alternative shells representing different forms of 'extended architecture', which effectively change the extent of physical space an individual occupies in the world. It is unknown whether individuals can choose such architecture to solve novel navigational problems. Here, we designed an experiment in which social hermit crabs (Coenobita compressus) had to choose between two alternative shells to solve a novel problem: escaping solitary confinement. Using X-ray microtomography and 3D-printing, we copied preferred shell types and then made artificial alterations to their inner or outer shell architecture, designing only some shells to have the correct architectural fit for escaping the opening of an isolated crab's enclosure. In our 'escape artist' experimental design, crabs had to choose an otherwise less preferred shell, since only this shell had the right external architecture to allow the crab to free itself from isolation. Across multiple experiments, crabs were willing to forgo preferred shells and choose less preferred shells that enabled them to escape, suggesting these animals can solve novel navigational problems with extended architecture. Yet, it remains unclear if individuals solved this problem through trial-and-error or were aware of the deeper connection between escape and exterior shell architecture. Our experiments offer a foundation for further explorations of physical, social, and spatial cognition within the context of extended architecture.
Collapse
Affiliation(s)
- Jakob Krieger
- Department of Cytology and Evolutionary Biology, Zoological Institute and Museum, University of Greifswald, Soldmannstraße 23, 17489, Greifswald, Germany.
| | - Marie K Hörnig
- Department of Cytology and Evolutionary Biology, Zoological Institute and Museum, University of Greifswald, Soldmannstraße 23, 17489, Greifswald, Germany
| | - Mark E Laidre
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
29
|
Bulley A, McCarthy T, Gilbert SJ, Suddendorf T, Redshaw J. Children Devise and Selectively Use Tools to Offload Cognition. Curr Biol 2020; 30:3457-3464.e3. [PMID: 32649910 DOI: 10.1016/j.cub.2020.06.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/18/2020] [Accepted: 06/10/2020] [Indexed: 11/30/2022]
Abstract
From maps sketched in sand to supercomputing software, humans ubiquitously enhance cognitive performance by creating and using artifacts that bear mental load [1-5]. This extension of information processing into the environment has taken center stage in debates about the nature of cognition in humans and other animals [6-9]. How does the human mind acquire such strategies? In two experiments, we investigated the developmental origins of cognitive offloading in 150 children aged between 4 and 11 years. We created a memory task in which children were required to recall the location of hidden targets. In one experiment, participants were provided with a pre-specified cognitive offloading opportunity: an option to mark the target locations with tokens during the hiding period. Even 4-year-old children quickly adopted this external strategy and, in line with a metacognitive account, children across ages offloaded more often when the task was more difficult. In a second experiment, we provided children with the means to devise their own cognitive offloading strategy. Very few younger children spontaneously devised a solution, but by ages 10 and 11, nearly all did so. In a follow-up test phase, a simple prompt greatly increased the rate at which the younger children devised an offloading strategy. These findings suggest that sensitivity to the difficulties of thinking arises early in development and improves throughout the early school years, with children learning to modify the world around them to compensate for their cognitive limits.
Collapse
Affiliation(s)
- Adam Bulley
- Department of Psychology, Harvard University, Cambridge, MA 02138, USA; The University of Sydney, School of Psychology, Sydney, NSW 2006, Australia; The University of Sydney, Brain and Mind Centre, Sydney, NSW 2050, Australia.
| | - Thomas McCarthy
- Early Cognitive Development Centre, School of Psychology, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Sam J Gilbert
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK
| | - Thomas Suddendorf
- Early Cognitive Development Centre, School of Psychology, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Jonathan Redshaw
- Early Cognitive Development Centre, School of Psychology, The University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
30
|
Influence of past and current social contexts on hunting behaviour in spiderlings. Behav Ecol Sociobiol 2020. [DOI: 10.1007/s00265-020-02870-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
31
|
Abstract
Many animals manipulate their environments in ways that appear to augment cognitive processing. Adult humans show remarkable flexibility in this domain, typically relying on internal cognitive processing when adequate but turning to external support in situations of high internal demand. We use calendars, calculators, navigational aids and other external means to compensate for our natural cognitive shortcomings and achieve otherwise unattainable feats of intelligence. As yet, however, the developmental origins of this fundamental capacity for cognitive offloading remain largely unknown. In two studies, children aged 4-11 years (n = 258) were given an opportunity to manually rotate a turntable to eliminate the internal demands of mental rotation--to solve the problem in the world rather than in their heads. In study 1, even the youngest children showed a linear relationship between mental rotation demand and likelihood of using the external strategy, paralleling the classic relationship between angle of mental rotation and reaction time. In study 2, children were introduced to a version of the task where manually rotating inverted stimuli was sometimes beneficial to performance and other times redundant. With increasing age, children were significantly more likely to manually rotate the turntable only when it would benefit them. These results show how humans gradually calibrate their cognitive offloading strategies throughout childhood and thereby uncover the developmental origins of this central facet of intelligence.
Collapse
Affiliation(s)
| | - Adam Bulley
- Department of Psychology, Harvard University, Cambridge, MA, USA.,School of Psychology, The University of Sydney, Sydney, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | | |
Collapse
|
32
|
Still Minding the Gap? Reflecting on Transitions between Concepts of Information in Varied Domains. INFORMATION 2020. [DOI: 10.3390/info11020071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This conceptual paper, a contribution to the tenth anniversary Special Issue of Information, gives a cross-disciplinary review of general and unified theories of information. A selective literature review is used to update a 2013 article on bridging the gaps between conceptions of information in different domains, including material from the physical and biological sciences, from the humanities and social sciences including library and information science, and from philosophy. A variety of approaches and theories are reviewed, including those of Brenner, Brier, Burgin and Wu, Capurro, Cárdenas-García and Ireland, Hidalgo, Hofkirchner, Kolchinsky and Wolpert, Floridi, Mingers and Standing, Popper, and Stonier. The gaps between disciplinary views of information remain, although there has been progress, and increasing interest, in bridging them. The solution is likely to be either a general theory of sufficient flexibility to cope with multiple meanings of information, or multiple and distinct theories for different domains, but with a complementary nature, and ideally boundary spanning concepts.
Collapse
|
33
|
Paul ES, Sher S, Tamietto M, Winkielman P, Mendl MT. Towards a comparative science of emotion: Affect and consciousness in humans and animals. Neurosci Biobehav Rev 2020; 108:749-770. [PMID: 31778680 PMCID: PMC6966324 DOI: 10.1016/j.neubiorev.2019.11.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 10/08/2019] [Accepted: 11/18/2019] [Indexed: 02/06/2023]
Abstract
The componential view of human emotion recognises that affective states comprise conscious, behavioural, physiological, neural and cognitive elements. Although many animals display bodily and behavioural changes consistent with the occurrence of affective states similar to those seen in humans, the question of whether and in which species these are accompanied by conscious experiences remains controversial. Finding scientifically valid methods for investigating markers for the subjective component of affect in both humans and animals is central to developing a comparative understanding of the processes and mechanisms of affect and its evolution and distribution across taxonomic groups, to our understanding of animal welfare, and to the development of animal models of affective disorders. Here, contemporary evidence indicating potential markers of conscious processing in animals is reviewed, with a view to extending this search to include markers of conscious affective processing. We do this by combining animal-focused approaches with investigations of the components of conscious and non-conscious emotional processing in humans, and neuropsychological research into the structure and functions of conscious emotions.
Collapse
Affiliation(s)
- Elizabeth S Paul
- Bristol Veterinary School, University of Bristol, Langford House, Langford, Bristol, BS40 5DU, UK.
| | - Shlomi Sher
- Department of Psychology, Pomona College, Claremont, CA, USA
| | - Marco Tamietto
- Department of Medical and Clinical Psychology, Tilburg University, Tilburg, the Netherlands; Department of Psychology, University of Torino, Torino, Italy
| | - Piotr Winkielman
- Department of Psychology, University of California, San Diego, La Jolla, CA, 92093, USA; Faculty of Psychology, SWPS University of Social Sciences and Humanities, 03-815, Warsaw, Poland
| | - Michael T Mendl
- Bristol Veterinary School, University of Bristol, Langford House, Langford, Bristol, BS40 5DU, UK
| |
Collapse
|
34
|
Abstract
Plants do not possess brains or neurons. However, they present astonishingly complex behaviors such as information acquisition, memory, learning, decision making, etc., which helps these sessile organisms deal with their ever-changing environments. As a consequence, they have been proposed to be cognitive and intelligent, an idea which is becoming increasingly accepted. However, how plant cognition could operate without a nervous central system remains poorly understood and new insights on this topic are urgently needed. According to the Extended Cognition hypothesis, cognition may also occur beyond the limits of the body, encompassing objects from the environment. This was shown possible in humans and spiders, who actively manipulate their external environment to extend their cognitive capacity. Here, we propose that extended cognition may also be found in plants and could partly explain the complexity of plant behavior. We suggest that plants can extend their cognitive abilities to the environment they manipulate through the root influence zone and the mycorrhizal fungi that associate with them. The possibility of a cognitive process involving organisms from different kingdoms is exciting and worthwhile exploring as it may provide key insights into the origin and evolution of cognition.
Collapse
Affiliation(s)
- André Geremia Parise
- Laboratory of Plant Cognition and Electrophysiology (LACEV), Department of Botany, Institute of Biology, Federal University of Pelotas, Pelotas, Brazil
- CONTACT André Geremia Parise Laboratory of Plant Cognition and Electrophysiology (LACEV), Department of Botany, Institute of Biology, Federal University of Pelotas, Pelotas, Brazil
| | - Monica Gagliano
- Biological Intelligence (BI) Laboratory, School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
- Sydney Environment Institute (SEI), The University of Sydney, Sydney, Australia
| | - Gustavo Maia Souza
- Laboratory of Plant Cognition and Electrophysiology (LACEV), Department of Botany, Institute of Biology, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
35
|
Fedato A, Silva-Gago M, Terradillos-Bernal M, Alonso-Alcalde R, Martín-Guerra E, Bruner E. Hand morphometrics, electrodermal activity, and stone tools haptic perception. Am J Hum Biol 2019; 32:e23370. [PMID: 31837092 DOI: 10.1002/ajhb.23370] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/21/2019] [Accepted: 11/27/2019] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVES Tool use requires integration among sensorial, biomechanical, and cognitive factors. Taking into account the importance of tool use in human evolution, changes associated with the genus Homo are to be expected in all these three aspects. Haptics is based on both tactile and proprioceptive feedbacks, and it is associated with emotional reactions. Previous analyses have suggested a difference between males and females, and during haptic exploration of different typologies of stone tools. Here, we analyze the correlation between electrodermal reactions during stone tool handling and hand morphology to provide evidence of possible allometric factors shared by males and females. METHODS Electrodermal analysis was used to investigate some specific parameters involved in these reactions, such as changes in the level of attention and arousal. We analyzed the responses of 46 right-handed adults to 20 distinct stone tools while blindfolded. RESULTS Females have smaller hands and a wider range of electrodermal reactions. Within males and females, hand diameters and general hand size do not correlate with the degree of electrodermal level and response. CONCLUSIONS Sex differences in electrodemal reaction during stone tool handling are apparently not due to the effect of hand size or proportions. Differences between males and females are better interpreted as real sex differences, either due to a biological or cultural influences. Hand size does not influence the degree of arousal or attention during tool exploration, suggesting that other factors trigger individual reactions. These results add to a general cognitive approach on hand-tool evolution and tool sensing.
Collapse
Affiliation(s)
- Annapaola Fedato
- Programa de paleobiología, Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain
| | - María Silva-Gago
- Programa de paleobiología, Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain
| | | | | | | | - Emiliano Bruner
- Programa de paleobiología, Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain
| |
Collapse
|
36
|
Miller LE, Fabio C, Ravenda V, Bahmad S, Koun E, Salemme R, Luauté J, Bolognini N, Hayward V, Farnè A. Somatosensory Cortex Efficiently Processes Touch Located Beyond the Body. Curr Biol 2019; 29:4276-4283.e5. [PMID: 31813607 DOI: 10.1016/j.cub.2019.10.043] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/30/2019] [Accepted: 10/21/2019] [Indexed: 01/24/2023]
Abstract
The extent to which a tool is an extension of its user is a question that has fascinated writers and philosophers for centuries [1]. Despite two decades of research [2-7], it remains unknown how this could be instantiated at the neural level. To this aim, the present study combined behavior, electrophysiology and neuronal modeling to characterize how the human brain could treat a tool like an extended sensory "organ." As with the body, participants localize touches on a hand-held tool with near-perfect accuracy [7]. This behavior is owed to the ability of the somatosensory system to rapidly and efficiently use the tool as a tactile extension of the body. Using electroencephalography (EEG), we found that where a hand-held tool was touched was immediately coded in the neural dynamics of primary somatosensory and posterior parietal cortices of healthy participants. We found similar neural responses in a proprioceptively deafferented patient with spared touch perception, suggesting that location information is extracted from the rod's vibrational patterns. Simulations of mechanoreceptor responses [8] suggested that the speed at which these patterns are processed is highly efficient. A second EEG experiment showed that touches on the tool and arm surfaces were localized by similar stages of cortical processing. Multivariate decoding algorithms and cortical source reconstruction provided further evidence that early limb-based processes were repurposed to map touch on a tool. We propose that an elementary strategy the human brain uses to sense with tools is to recruit primary somatosensory dynamics otherwise devoted to the body.
Collapse
Affiliation(s)
- Luke E Miller
- Integrative Multisensory Perception Action & Cognition Team-ImpAct, Lyon Neuroscience Research Center, INSERM U1028, CNRS U5292, 16 Avenue Doyen Lépine, Bron 69676, France; University of Lyon 1, 43 Boulevard du 11 Novembre 1918, Villeurbanne 69100, France; Hospices Civils de Lyon, Neuro-immersion, 16 Avenue Doyen Lépine, Bron 69676, France.
| | - Cécile Fabio
- Integrative Multisensory Perception Action & Cognition Team-ImpAct, Lyon Neuroscience Research Center, INSERM U1028, CNRS U5292, 16 Avenue Doyen Lépine, Bron 69676, France; University of Lyon 1, 43 Boulevard du 11 Novembre 1918, Villeurbanne 69100, France
| | - Valeria Ravenda
- Integrative Multisensory Perception Action & Cognition Team-ImpAct, Lyon Neuroscience Research Center, INSERM U1028, CNRS U5292, 16 Avenue Doyen Lépine, Bron 69676, France; University of Lyon 1, 43 Boulevard du 11 Novembre 1918, Villeurbanne 69100, France; Department of Psychology & Milan Center for Neuroscience-NeuroMi, University of Milano Bicocca, Building U6, 1 Piazza dell'Ateneo Nuovo, Milan 20126, Italy
| | - Salam Bahmad
- Integrative Multisensory Perception Action & Cognition Team-ImpAct, Lyon Neuroscience Research Center, INSERM U1028, CNRS U5292, 16 Avenue Doyen Lépine, Bron 69676, France; University of Lyon 1, 43 Boulevard du 11 Novembre 1918, Villeurbanne 69100, France
| | - Eric Koun
- Integrative Multisensory Perception Action & Cognition Team-ImpAct, Lyon Neuroscience Research Center, INSERM U1028, CNRS U5292, 16 Avenue Doyen Lépine, Bron 69676, France; University of Lyon 1, 43 Boulevard du 11 Novembre 1918, Villeurbanne 69100, France; Hospices Civils de Lyon, Neuro-immersion, 16 Avenue Doyen Lépine, Bron 69676, France
| | - Romeo Salemme
- Integrative Multisensory Perception Action & Cognition Team-ImpAct, Lyon Neuroscience Research Center, INSERM U1028, CNRS U5292, 16 Avenue Doyen Lépine, Bron 69676, France; University of Lyon 1, 43 Boulevard du 11 Novembre 1918, Villeurbanne 69100, France; Hospices Civils de Lyon, Neuro-immersion, 16 Avenue Doyen Lépine, Bron 69676, France
| | - Jacques Luauté
- Integrative Multisensory Perception Action & Cognition Team-ImpAct, Lyon Neuroscience Research Center, INSERM U1028, CNRS U5292, 16 Avenue Doyen Lépine, Bron 69676, France; University of Lyon 1, 43 Boulevard du 11 Novembre 1918, Villeurbanne 69100, France; Hospices Civils de Lyon, Neuro-immersion, 16 Avenue Doyen Lépine, Bron 69676, France
| | - Nadia Bolognini
- Department of Psychology & Milan Center for Neuroscience-NeuroMi, University of Milano Bicocca, Building U6, 1 Piazza dell'Ateneo Nuovo, Milan 20126, Italy; Laboratory of Neuropsychology, IRCSS Istituto Auxologico Italiano, 28 Via G. Mercalli, Milan 20122, Italy
| | - Vincent Hayward
- Sorbonne Université, Institut des Systèmes Intelligents et de Robotique (ISIR), 4 Place Jussieu, Paris 75005, France; Centre for the Study of the Senses, School of Advanced Study, University of London, Senate House, Malet Street, London WC1E 7HU, UK
| | - Alessandro Farnè
- Integrative Multisensory Perception Action & Cognition Team-ImpAct, Lyon Neuroscience Research Center, INSERM U1028, CNRS U5292, 16 Avenue Doyen Lépine, Bron 69676, France; University of Lyon 1, 43 Boulevard du 11 Novembre 1918, Villeurbanne 69100, France; Hospices Civils de Lyon, Neuro-immersion, 16 Avenue Doyen Lépine, Bron 69676, France; Center for Mind/Brain Sciences, University of Trento, 31 Corso Bettini, Rovereto 38068, Italy
| |
Collapse
|
37
|
Ryan K, Schiavio A. Extended musicking, extended mind, extended agency. Notes on the third wave. NEW IDEAS IN PSYCHOLOGY 2019. [DOI: 10.1016/j.newideapsych.2019.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Wheatley T, Boncz A, Toni I, Stolk A. Beyond the Isolated Brain: The Promise and Challenge of Interacting Minds. Neuron 2019; 103:186-188. [PMID: 31319048 DOI: 10.1016/j.neuron.2019.05.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/19/2019] [Accepted: 05/03/2019] [Indexed: 11/29/2022]
Abstract
As scientists, we brainstorm and develop experimental designs with our colleagues and students. Paradoxically, this teamwork has produced a field focused nearly exclusively on mapping the brain as if it evolved in isolation. Here, we discuss promises and challenges in advancing our understanding of how human minds connect during social interaction.
Collapse
Affiliation(s)
- Thalia Wheatley
- Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA; Santa Fe Institute, Santa Fe, NM, USA.
| | - Adam Boncz
- Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA; Central European University, Budapest, Hungary; Institute of Cognitive Neuroscience and Psychology, Hungarian Academy of Sciences Research Centre for Natural Sciences, Budapest, Hungary
| | - Ivan Toni
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Arjen Stolk
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
39
|
Bruner E. Human paleoneurology: Shaping cortical evolution in fossil hominids. J Comp Neurol 2019; 527:1753-1765. [PMID: 30520032 DOI: 10.1002/cne.24591] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/22/2018] [Accepted: 11/26/2018] [Indexed: 12/22/2022]
Abstract
Evolutionary neuroanatomy must integrate two different sources of information, namely from fossil and from living species. Fossils supply information concerning the process of evolution, whereas living species supply information on the product of evolution. Unfortunately, the fossil record is partial and fragmented, and often cannot support validations for specific evolutionary hypotheses. Living species can provide more comprehensive indications, but they do not represent ancestral groups or primitive forms. Macaques or chimpanzees are frequently used as proxy for human ancestral conditions, despite the fact they are divergent and specialized lineages, with their own biological features. Similarly, in paleoanthropology independent lineages (such as Neanderthals) should not be confused with ancestral modern human stages. In this comparative framework, paleoneurology deals with the analysis of the endocranial cavity in extinct species, in order to make inferences on brain evolution. A main target of this field is to distinguish the endocranial variations due to brain changes, from those due to cranial constraints. Digital anatomy and computed morphometrics have provided major advances in this field. However, brains and endocasts can be hard to analyze with geometrical models, because of uncertainties due to the localization of cortical landmarks and boundaries. The study of the evolution of the parietal cortex supplies an interesting case-study in which paleontological and neontological data can integrate and test evolutionary hypotheses based on multiple sources of evidence. The relationships with visuospatial functions and brain-body-tool integration stress further that the analysis of the cognitive system should go beyond the neural boundaries of the brain.
Collapse
Affiliation(s)
- Emiliano Bruner
- Programa de Paleobiología de Homínidos, Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain
| |
Collapse
|
40
|
Orb-web spiders as Bayesian learners. Naturwissenschaften 2019; 106:22. [DOI: 10.1007/s00114-019-1615-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/18/2019] [Accepted: 04/03/2019] [Indexed: 10/26/2022]
|
41
|
Bruner E, Gleeson BT. Body Cognition and Self-Domestication in Human Evolution. Front Psychol 2019; 10:1111. [PMID: 31164852 PMCID: PMC6536601 DOI: 10.3389/fpsyg.2019.01111] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/29/2019] [Indexed: 12/18/2022] Open
Affiliation(s)
- Emiliano Bruner
- Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain
| | - Ben T. Gleeson
- Fenner School of Environment and Society, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
42
|
Tozzi A. The multidimensional brain. Phys Life Rev 2019; 31:86-103. [PMID: 30661792 DOI: 10.1016/j.plrev.2018.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 05/17/2018] [Accepted: 12/27/2018] [Indexed: 01/24/2023]
Abstract
Brain activity takes place in three spatial-plus time dimensions. This rather obvious claim has been recently questioned by papers that, taking into account the big data outburst and novel available computational tools, are starting to unveil a more intricate state of affairs. Indeed, various brain activities and their correlated mental functions can be assessed in terms of trajectories embedded in phase spaces of dimensions higher than the canonical ones. In this review, I show how further dimensions may not just represent a convenient methodological tool that allows a better mathematical treatment of otherwise elusive cortical activities, but may also reflect genuine functional or anatomical relationships among real nervous functions. I then describe how to extract hidden multidimensional information from real or artificial neurodata series, and make clear how our mind dilutes, rather than concentrates as currently believed, inputs coming from the environment. Finally, I argue that the principle "the higher the dimension, the greater the information" may explain the occurrence of mental activities and elucidate the mechanisms of human diseases associated with dimensionality reduction.
Collapse
Affiliation(s)
- Arturo Tozzi
- Center for Nonlinear Science, University of North Texas, 1155 Union Circle, #311427 Denton, TX 76203-5017, USA.
| |
Collapse
|
43
|
Kamath A, Primavera SD, Wright CM, Doering GN, Sheehy KA, Pinter-Wollman N, Pruitt JN. Collective behavior and colony persistence of social spiders depends on their physical environment. Behav Ecol 2019; 30:39-47. [PMID: 30846891 PMCID: PMC6398429 DOI: 10.1093/beheco/ary158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/16/2018] [Accepted: 11/06/2018] [Indexed: 12/18/2022] Open
Abstract
The physical environment occupied by group-living animals can profoundly affect their cooperative social interactions and therefore their collective behavior and success. These effects can be especially apparent in human-modified habitats, which often harbor substantial variation in the physical environments available within them. For nest-building animal societies, this influence of the physical environment on collective behavior can be mediated by the construction of nests-nests could either buffer animal behavior from changes in the physical environment or facilitate shifts in behavior through changes in nest structure. We test these alternative hypotheses by examining the differences in collective prey-attacking behavior and colony persistence between fence-dwelling and tree-dwelling colonies of Stegodyphus dumicola social spiders. Fences and trees represent substantially different physical environments: fences are 2-dimensional and relatively homogenous environments, whereas tree branches are 3-dimensional and relatively heterogeneous. We found that fence-dwelling colonies attack prey more quickly and with more attackers than tree-dwelling colonies in both field and controlled settings. Moreover, in the field, fence-dwelling colonies captured more prey, were more likely to persist, and had a greater number of individuals remaining at the end of the experiment than tree-dwelling colonies. Intriguingly, we also observed a greater propensity for colony fragmentation in tree-dwelling colonies than fence-dwelling colonies. Our results demonstrate that the physical environment is an important influence on the collective behavior and persistence of colonies of social spiders, and suggest multiple possible proximate and ultimate mechanisms-including variation in web complexity, dispersal behavior, and bet-hedging-by which this influence may be realized.
Collapse
Affiliation(s)
- Ambika Kamath
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA
- Department of Environmental Science, Policy, and Management & Miller Institute for Basic Research in Science, University of California Berkeley, Berkeley, CA, USA
| | - Skylar D Primavera
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Colin M Wright
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Grant N Doering
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Kirsten A Sheehy
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Noa Pinter-Wollman
- Department of Ecology & Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Jonathan N Pruitt
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario Canada
| |
Collapse
|
44
|
|
45
|
Cross FR, Jackson RR. Portia’s capacity to decide whether a detour is necessary. J Exp Biol 2019; 222:jeb.203463. [DOI: 10.1242/jeb.203463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/19/2019] [Indexed: 01/16/2023]
Abstract
Proficiency at planning is known to be part of the exceptionally complex predatory repertoire of Portia, a genus of jumping spiders (Salticidae) that specialize at preying on other spiders. This includes proficiency at choosing between two detour routes, with only one leading to otherwise inaccessible prey. Less is known about Portia’s proficiency at making strategic decisions pertaining to whether a detour is required or not. By using Portia africana, we investigated this by having lures (prey or leaf pieces) visible at the beginning of a trial but not later, and by using water for restricting Portia’s freedom of movement. A detour path was always present, but sometimes a causeway was also present, allowing for direct access to lures. After seeing prey, Portia more often took the causeway when present and, when absent, more often took the detour path. After seeing leaf pieces, Portia never took the detour path.
Collapse
Affiliation(s)
- Fiona R. Cross
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
- International Centre of Insect Physiology and Ecology, Thomas Odhiambo Campus, P.O. Box 30, Mbita Point, Kenya
- Entomology and Nematology Department, University of Florida, P.O. Box 110620, Gainesville, Florida, 32611-0620, USA
| | - Robert R. Jackson
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
- International Centre of Insect Physiology and Ecology, Thomas Odhiambo Campus, P.O. Box 30, Mbita Point, Kenya
| |
Collapse
|
46
|
Bruner E, Fedato A, Silva-Gago M, Alonso-Alcalde R, Terradillos-Bernal M, Fernández-Durantes MÁ, Martín-Guerra E. Visuospatial Integration and Hand-Tool Interaction in Cognitive Archaeology. Curr Top Behav Neurosci 2019; 41:13-36. [PMID: 30547431 DOI: 10.1007/7854_2018_71] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Testing cognitive hypotheses in extinct species can be challenging, but it can be done through the integration of independent sources of information (e.g., anatomy, archaeology, neurobiology, psychology), and validated with quantitative and experimental approaches. The parietal cortex has undergone changes and specializations in humans, probably in regions involved in visuospatial integration. Visual imagery and hand-eye coordination are crucial for a species with a remarkable technological and symbolic capacity. Hand-tool relationships are not only a matter of spatial planning but involve deeper cognitive levels that concern body cognition, self-awareness, and the ability to integrate tools into body schemes, extending the body's functional and structural range. Therefore, a co-evolution between body and technology is to be expected not only in terms of anatomical correspondence but also in terms of cognitive integration. In prehistory, lithic tools are crucial in the interpretation of the cognitive abilities of extinct human species. The shape of tools and the grasping patterns associated with the corresponding haptic experience can supply some basic quantitative approaches to evaluate changes in the archaeological record. At the physiological level, electrodermal activity can be used as proxy to investigate the cognitive response during haptic experiences, revealing differences between tools and between subjects. These approaches can be also useful to evaluate whether and to what extent our complex cognitive resources are based on the capacity to export and delegate functions to external technological components.
Collapse
Affiliation(s)
- Emiliano Bruner
- Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain.
| | - Annapaola Fedato
- Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain
| | - María Silva-Gago
- Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain
| | | | | | | | | |
Collapse
|
47
|
Schuster S. Hunting in archerfish - an ecological perspective on a remarkable combination of skills. ACTA ACUST UNITED AC 2018; 221:221/24/jeb159723. [PMID: 30530768 DOI: 10.1242/jeb.159723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Archerfish are well known for using jets of water to dislodge distant aerial prey from twigs or leaves. This Review gives a brief overview of a number of skills that the fish need to secure prey with their shooting technique. Archerfish are opportunistic hunters and, even in the wild, shoot at artificial objects to determine whether these are rewarding. They can detect non-moving targets and use efficient search strategies with characteristics of human visual search. Their learning of how to engage targets can be remarkably efficient and can show impressive degrees of generalization, including learning from observation. In other cases, however, the fish seem unable to learn and it requires some understanding of the ecological and biophysical constraints to appreciate why. The act of shooting has turned out not to be of a simple all-or-none character. Rather, the fish adjust the volume of water fired according to target size and use fine adjustments in the timing of their mouth opening and closing manoeuvre to adjust the hydrodynamic stability of their jets to target distance. As soon as prey is dislodged and starts falling, the fish make rapid and yet sophisticated multi-dimensional decisions to secure their prey against many intraspecific and interspecific competitors. Although it is not known why and how archerfish evolved an ability to shoot in the first place, I suggest that the evolution of shooting has strongly pushed the co-evolution of diverse other skills that are needed to secure a catch.
Collapse
Affiliation(s)
- Stefan Schuster
- Department of Animal Physiology, University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
48
|
Biological evolution as defense of 'self'. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 142:54-74. [PMID: 30336184 DOI: 10.1016/j.pbiomolbio.2018.10.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/27/2018] [Accepted: 10/11/2018] [Indexed: 02/06/2023]
Abstract
Although the origin of self-referential consciousness is unknown, it can be argued that the instantiation of self-reference was the commencement of the living state as phenomenal experientiality. As self-referential cognition is demonstrated by all living organisms, life can be equated with the sustenance of cellular homeostasis in the continuous defense of 'self'. It is proposed that the epicenter of 'self' is perpetually embodied within the basic cellular form in which it was instantiated. Cognition-Based Evolution argues that all of biological and evolutionary development represents the perpetual autopoietic defense of self-referential basal cellular states of homeostatic preference. The means by which these states are attained and maintained is through self-referential measurement of information and its communication. The multicellular forms, either as biofilms or holobionts, represent the cellular attempt to achieve maximum states of informational distinction and energy efficiency through individual and collective means. In this frame, consciousness, self-consciousness and intelligence can be identified as forms of collective cellular phenotype directed towards the defense of fundamental cellular self-reference.
Collapse
|
49
|
Miller LE, Montroni L, Koun E, Salemme R, Hayward V, Farnè A. Sensing with tools extends somatosensory processing beyond the body. Nature 2018; 561:239-242. [DOI: 10.1038/s41586-018-0460-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 07/02/2018] [Indexed: 11/09/2022]
|
50
|
Mortimer B, Soler A, Siviour CR, Vollrath F. Remote monitoring of vibrational information in spider webs. Naturwissenschaften 2018; 105:37. [PMID: 29789945 PMCID: PMC5978847 DOI: 10.1007/s00114-018-1561-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/02/2018] [Accepted: 05/07/2018] [Indexed: 01/21/2023]
Abstract
Spiders are fascinating model species to study information-acquisition strategies, with the web acting as an extension of the animal’s body. Here, we compare the strategies of two orb-weaving spiders that acquire information through vibrations transmitted and filtered in the web. Whereas Araneus diadematus monitors web vibration directly on the web, Zygiella x-notata uses a signal thread to remotely monitor web vibration from a retreat, which gives added protection. We assess the implications of these two information-acquisition strategies on the quality of vibration information transfer, using laser Doppler vibrometry to measure vibrations of real webs and finite element analysis in computer models of webs. We observed that the signal thread imposed no biologically relevant time penalty for vibration propagation. However, loss of energy (attenuation) was a cost associated with remote monitoring via a signal thread. The findings have implications for the biological use of vibrations by spiders, including the mechanisms to locate and discriminate between vibration sources. We show that orb-weaver spiders are fascinating examples of organisms that modify their physical environment to shape their information-acquisition strategy.
Collapse
Affiliation(s)
- B Mortimer
- Department of Zoology, University of Oxford, Oxford, UK. .,School of Biological Sciences, University of Bristol, Bristol, UK.
| | - A Soler
- Department Continuum Mechanics and Structural Analysis, Universidad Carlos III de Madrid, Madrid, Spain
| | - C R Siviour
- Department of Engineering Science, University of Oxford, Oxford, UK
| | - F Vollrath
- Department of Zoology, University of Oxford, Oxford, UK
| |
Collapse
|