1
|
Shaygannejad A, Rafiei N, Vaheb S, Yazdan Panah M, Shaygannejad V, Mirmosayyeb O. The Role of Glial Fibrillary Acidic Protein as a Biomarker in Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorder: A Systematic Review and Meta-Analysis. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1050. [PMID: 39064479 PMCID: PMC11279275 DOI: 10.3390/medicina60071050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/04/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024]
Abstract
There is debate on the role of glial fibrillary acidic protein (GFAP) as a reliable biomarker in multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD), and its potential to reflect disease progression. This review aimed to investigate the role of GFAP in MS and NMOSD. A systematic search of electronic databases, including PubMed, Embase, Scopus, and Web of Sciences, was conducted up to 20 December 2023 to identify studies that measured GFAP levels in people with MS (PwMS) and people with NMOSD (PwNMOSD). R software version 4.3.3. with the random-effect model was used to pool the effect size with its 95% confidence interval (CI). Of 4109 studies, 49 studies met our inclusion criteria encompassing 3491 PwMS, 849 PwNMOSD, and 1046 healthy controls (HCs). The analyses indicated that the cerebrospinal fluid level of GFAP (cGFAP) and serum level of GFAP (sGFAP) were significantly higher in PwMS than HCs (SMD = 0.7, 95% CI: 0.54 to 0.86, p < 0.001, I2 = 29%, and SMD = 0.54, 95% CI: 0.1 to 0.99, p = 0.02, I2 = 90%, respectively). The sGFAP was significantly higher in PwNMOSD than in HCs (SMD = 0.9, 95% CI: 0.73 to 1.07, p < 0.001, I2 = 10%). Among PwMS, the Expanded Disability Status Scale (EDSS) exhibited significant correlations with cGFAP (r = 0.43, 95% CI: 0.26 to 0.59, p < 0.001, I2 = 91%) and sGFAP (r = 0.36, 95% CI: 0.23 to 0.49, p < 0.001, I2 = 78%). Regarding that GFAP is increased in MS and NMOSD and has correlations with disease features, it can be a potential biomarker in MS and NMOSD and indicate the disease progression and disability in these disorders.
Collapse
Affiliation(s)
- Aysa Shaygannejad
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan 81839-83434, Iran; (A.S.); (S.V.); (V.S.)
| | - Nazanin Rafiei
- School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran;
| | - Saeed Vaheb
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan 81839-83434, Iran; (A.S.); (S.V.); (V.S.)
| | - Mohammad Yazdan Panah
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord 88157-13471, Iran;
| | - Vahid Shaygannejad
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan 81839-83434, Iran; (A.S.); (S.V.); (V.S.)
- Department of Neurology, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Omid Mirmosayyeb
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan 81839-83434, Iran; (A.S.); (S.V.); (V.S.)
- Department of Neurology, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| |
Collapse
|
2
|
Desu HL, Sawicka KM, Wuerch E, Kitchin V, Quandt JA. A rapid review of differences in cerebrospinal neurofilament light levels in clinical subtypes of progressive multiple sclerosis. Front Neurol 2024; 15:1382468. [PMID: 38654736 PMCID: PMC11035744 DOI: 10.3389/fneur.2024.1382468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Background Multiple sclerosis (MS) is divided into three clinical phenotypes: relapsing-remitting MS (RRMS), secondary progressive MS (SPMS), and primary progressive MS (PPMS). It is unknown to what extent SPMS and PPMS pathophysiology share inflammatory or neurodegenerative pathological processes. Cerebrospinal (CSF) neurofilament light (NfL) has been broadly studied in different MS phenotypes and is a candidate biomarker for comparing MS subtypes. Research question Are CSF NfL levels different among clinical subtypes of progressive MS? Methods A search strategy identifying original research investigating fluid neurodegenerative biomarkers in progressive forms of MS between 2010 and 2022 was applied to Medline. Identified articles underwent title and abstract screen and full text review against pre-specified criteria. Data abstraction was limited to studies that measured NfL levels in the CSF. Reported statistical comparisons of NfL levels between clinical phenotypes were abstracted qualitatively. Results 18 studies that focused on investigating direct comparisons of CSF NfL from people with MS were included in the final report. We found NfL levels were typically reported to be higher in relapsing and progressive MS compared to healthy controls. Notably, higher NfL levels were not clearly associated with progressive MS subtypes when compared to relapsing MS, and there was no observed difference in NfL levels between PPMS and SPMS in articles that separately assessed these phenotypes. Conclusion CSF NfL levels distinguish individuals with MS from healthy controls but do not differentiate MS subtypes. Broad biological phenotyping is needed to overcome limitations of current clinical phenotyping and improve biomarker translatability to decision-making in the clinic.
Collapse
Affiliation(s)
- Haritha L. Desu
- Neuroimmunology Unit, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montreal, QC, Canada
| | - Katherine M. Sawicka
- Child Health Evaluative Sciences Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada
- Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Emily Wuerch
- Hotchkiss Brain Institute and the Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada
| | - Vanessa Kitchin
- University of British Columbia Library, Vancouver, BC, Canada
| | - Jacqueline A. Quandt
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
López-Gómez J, Sacristán Enciso B, Caro Miró MA, Querol Pascual MR. Clinically isolated syndrome: Diagnosis and risk of developing clinically definite multiple sclerosis. Neurologia 2023; 38:663-670. [PMID: 37858891 DOI: 10.1016/j.nrleng.2021.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/01/2021] [Indexed: 10/21/2023] Open
Abstract
INTRODUCTION In most cases, multiple sclerosis (MS) initially presents as clinically isolated syndrome (CIS). Differentiating CIS from other acute or subacute neurological diseases and estimating the risk of progression to clinically definite MS is essential since presenting a second episode in a short time is associated with poorer long-term prognosis. DEVELOPMENT We conducted a literature review to evaluate the usefulness of different variables in improving diagnostic accuracy and predicting progression from CIS to MS, including magnetic resonance imaging (MRI) and such biofluid markers as oligoclonal IgG and IgM bands, lipid-specific oligoclonal IgM bands in the CSF, CSF kappa free light-chain (KFLC) index, neurofilament light chain (NfL) in the CSF and serum, and chitinase 3-like protein 1 (CHI3L1) in the CSF and serum. CONCLUSIONS Codetection of oligoclonal IgG bands and MRI lesions reduces diagnostic delays and suggests a high risk of CIS progression to MS. A KFLC index > 10.6 and CSF NfL concentrations > 1150 ng/L indicate that CIS is more likely to progress to MS within one year (40%-50%); 90% of patients with CIS and serum CHI3L1 levels > 33 ng/mL and 100% of those with lipid-specific oligoclonal IgM bands present MS within one year of CIS onset.
Collapse
Affiliation(s)
- J López-Gómez
- Unidad de Proteínas, Servicio de Análisis Clínicos, Hospital Universitario de Badajoz, Badajoz, Spain.
| | - B Sacristán Enciso
- Sección de Proteínas y Autoinmunidad, Servicio de Análisis Clínicos, Hospital de Mérida, Badajoz, Spain
| | - M A Caro Miró
- Servicio de Análisis Clínicos, Hospital Universitario de Badajoz, Badajoz, Spain
| | - M R Querol Pascual
- Servicio de Neurología, Hospital Universitario de Badajoz, Badajoz, Spain
| |
Collapse
|
4
|
Maroto-García J, Martínez-Escribano A, Delgado-Gil V, Mañez M, Mugueta C, Varo N, García de la Torre Á, Ruiz-Galdón M. Biochemical biomarkers for multiple sclerosis. Clin Chim Acta 2023; 548:117471. [PMID: 37419300 DOI: 10.1016/j.cca.2023.117471] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
INTRODUCTION Multiple sclerosis (MS) is the most frequent demyelinating disease of the central nervous system. Although there is currently no definite cure for MS, new therapies have recently been developed based on a continuous search for new biomarkers. DEVELOPMENT MS diagnosis relies on the integration of clinical, imaging and laboratory findings as there is still no singlepathognomonicclinical feature or diagnostic laboratory biomarker. The most commonly laboratory test used is the presence of immunoglobulin G oligoclonal bands (OCB) in cerebrospinal fluid of MS patients. This test is now included in the 2017 McDonald criteria as a biomarker of dissemination in time. Nevertheless, there are other biomarkers currently in use such as kappa free light chain, which has shown higher sensitivity and specificity for MS diagnosis than OCB. In addition, other potential laboratory tests involved in neuronal damage, demyelination and/or inflammation could be used for detecting MS. CONCLUSIONS CSF and serum biomarkers have been reviewed for their use in MS diagnosis and prognosis to stablish an accurate and prompt MS diagnosis, crucial to implement an adequate treatment and to optimize clinical outcomes over time.
Collapse
Affiliation(s)
- Julia Maroto-García
- Biochemistry Department, Clínica Universidad de Navarra, Spain; Department of Biochemistry and Molecular Biology. Faculty of Medicine. University of Malaga, Spain.
| | - Ana Martínez-Escribano
- Department of Biochemistry and Molecular Biology. Faculty of Medicine. University of Malaga, Spain; Laboratory Medicine, Hospital Clínico Universitario Virgen de la Arrixaca, IMIB-ARRIXACA, Murcia, Spain
| | - Virginia Delgado-Gil
- Neurology Department, Hospital Universitario Virgen de la Victoria, Malaga, Spain
| | - Minerva Mañez
- Neurology Department, Hospital Universitario Virgen de la Victoria, Malaga, Spain
| | - Carmen Mugueta
- Biochemistry Department, Clínica Universidad de Navarra, Spain
| | - Nerea Varo
- Biochemistry Department, Clínica Universidad de Navarra, Spain
| | - Ángela García de la Torre
- Clinical Analysis Service, Hospital Universitario Virgen de la Victoria, Malaga, Spain; The Biomedical Research Institute of Malaga (IBIMA), Malaga, Spain
| | - Maximiliano Ruiz-Galdón
- Department of Biochemistry and Molecular Biology. Faculty of Medicine. University of Malaga, Spain; Clinical Analysis Service, Hospital Universitario Virgen de la Victoria, Malaga, Spain; The Biomedical Research Institute of Malaga (IBIMA), Malaga, Spain
| |
Collapse
|
5
|
Maier S, Barcutean L, Andone S, Manu D, Sarmasan E, Bajko Z, Balasa R. Recent Progress in the Identification of Early Transition Biomarkers from Relapsing-Remitting to Progressive Multiple Sclerosis. Int J Mol Sci 2023; 24:4375. [PMID: 36901807 PMCID: PMC10002756 DOI: 10.3390/ijms24054375] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
Despite extensive research into the pathophysiology of multiple sclerosis (MS) and recent developments in potent disease-modifying therapies (DMTs), two-thirds of relapsing-remitting MS patients transition to progressive MS (PMS). The main pathogenic mechanism in PMS is represented not by inflammation but by neurodegeneration, which leads to irreversible neurological disability. For this reason, this transition represents a critical factor for the long-term prognosis. Currently, the diagnosis of PMS can only be established retrospectively based on the progressive worsening of the disability over a period of at least 6 months. In some cases, the diagnosis of PMS is delayed for up to 3 years. With the approval of highly effective DMTs, some with proven effects on neurodegeneration, there is an urgent need for reliable biomarkers to identify this transition phase early and to select patients at a high risk of conversion to PMS. The purpose of this review is to discuss the progress made in the last decade in an attempt to find such a biomarker in the molecular field (serum and cerebrospinal fluid) between the magnetic resonance imaging parameters and optical coherence tomography measures.
Collapse
Affiliation(s)
- Smaranda Maier
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
| | - Laura Barcutean
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
| | - Sebastian Andone
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
- Doctoral School, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Doina Manu
- Center for Advanced Medical and Pharmaceutical Research, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
| | - Emanuela Sarmasan
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
| | - Zoltan Bajko
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
| | - Rodica Balasa
- Ist Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
- Doctoral School, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| |
Collapse
|
6
|
Yang J, Hamade M, Wu Q, Wang Q, Axtell R, Giri S, Mao-Draayer Y. Current and Future Biomarkers in Multiple Sclerosis. Int J Mol Sci 2022; 23:ijms23115877. [PMID: 35682558 PMCID: PMC9180348 DOI: 10.3390/ijms23115877] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/06/2022] [Accepted: 05/08/2022] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) is a debilitating autoimmune disorder. Currently, there is a lack of effective treatment for the progressive form of MS, partly due to insensitive readout for neurodegeneration. The recent development of sensitive assays for neurofilament light chain (NfL) has made it a potential new biomarker in predicting MS disease activity and progression, providing an additional readout in clinical trials. However, NfL is elevated in other neurodegenerative disorders besides MS, and, furthermore, it is also confounded by age, body mass index (BMI), and blood volume. Additionally, there is considerable overlap in the range of serum NfL (sNfL) levels compared to healthy controls. These confounders demonstrate the limitations of using solely NfL as a marker to monitor disease activity in MS patients. Other blood and cerebrospinal fluid (CSF) biomarkers of axonal damage, neuronal damage, glial dysfunction, demyelination, and inflammation have been studied as actionable biomarkers for MS and have provided insight into the pathology underlying the disease process of MS. However, these other biomarkers may be plagued with similar issues as NfL. Using biomarkers of a bioinformatic approach that includes cellular studies, micro-RNAs (miRNAs), extracellular vesicles (EVs), metabolomics, metabolites and the microbiome may prove to be useful in developing a more comprehensive panel that addresses the limitations of using a single biomarker. Therefore, more research with recent technological and statistical approaches is needed to identify novel and useful diagnostic and prognostic biomarker tools in MS.
Collapse
Affiliation(s)
- Jennifer Yang
- Department of Neurology, Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (J.Y.); (M.H.); (Q.W.); (Q.W.)
| | - Maysa Hamade
- Department of Neurology, Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (J.Y.); (M.H.); (Q.W.); (Q.W.)
| | - Qi Wu
- Department of Neurology, Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (J.Y.); (M.H.); (Q.W.); (Q.W.)
| | - Qin Wang
- Department of Neurology, Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (J.Y.); (M.H.); (Q.W.); (Q.W.)
| | - Robert Axtell
- Department of Arthritis and Clinical Immunology Research, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA;
| | - Shailendra Giri
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA;
| | - Yang Mao-Draayer
- Department of Neurology, Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (J.Y.); (M.H.); (Q.W.); (Q.W.)
- Graduate Program in Immunology, Program in Biomedical Sciences, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Correspondence: ; Tel.: +1-734-615-5635
| |
Collapse
|
7
|
Blood GFAP as an emerging biomarker in brain and spinal cord disorders. Nat Rev Neurol 2022; 18:158-172. [PMID: 35115728 DOI: 10.1038/s41582-021-00616-3] [Citation(s) in RCA: 366] [Impact Index Per Article: 122.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 12/14/2022]
Abstract
Blood-derived biomarkers for brain and spinal cord diseases are urgently needed. The introduction of highly sensitive immunoassays led to a rapid increase in the number of potential blood-derived biomarkers for diagnosis and monitoring of neurological disorders. In 2018, the FDA authorized a blood test for clinical use in the evaluation of mild traumatic brain injury (TBI). The test measures levels of the astrocytic intermediate filament glial fibrillary acidic protein (GFAP) and neuroaxonal marker ubiquitin carboxy-terminal hydrolase L1. In TBI, blood GFAP levels are correlated with clinical severity and extent of intracranial pathology. Evidence also indicates that blood GFAP levels hold the potential to reflect, and might enable prediction of, worsening of disability in individuals with progressive multiple sclerosis. A growing body of evidence suggests that blood GFAP levels can be used to detect even subtle injury to the CNS. Most importantly, the successful completion of the ongoing validation of point-of-care platforms for blood GFAP might ameliorate the decision algorithms for acute neurological diseases, such as TBI and stroke, with important economic implications. In this Review, we provide a systematic overview of the evidence regarding the utility of blood GFAP as a biomarker in neurological diseases. We propose a model for GFAP concentration dynamics in different conditions and discuss the limitations that hamper the widespread use of GFAP in the clinical setting. In our opinion, the clinical use of blood GFAP measurements has the potential to contribute to accelerated diagnosis and improved prognostication, and represents an important step forward in the era of precision medicine.
Collapse
|
8
|
Neuroinflammation Is Associated with GFAP and sTREM2 Levels in Multiple Sclerosis. Biomolecules 2022; 12:biom12020222. [PMID: 35204724 PMCID: PMC8961656 DOI: 10.3390/biom12020222] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/16/2022] [Accepted: 01/22/2022] [Indexed: 01/22/2023] Open
Abstract
Background: Astrocytes and microglia play an important role in the inflammatory process of multiple sclerosis (MS). We investigated the associations between the cerebrospinal fluid (CSF) levels of glial fibrillary acid protein (GFAP) and soluble triggering receptors expressed on myeloid cells-2 (sTREM-2), inflammatory molecules, and clinical characteristics in a group of patients with relapsing-remitting MS (RRMS). Methods: Fifty-one RRMS patients participated in the study. Clinical evaluation and CSF collection were performed at the time of diagnosis. The CSF levels of GFAP, sTREM-2, and of a large set of inflammatory and anti-inflammatory molecules were determined. MRI structural measures (cortical thickness, T2 lesion load, cerebellar volume) were examined. Results: The CSF levels of GFAP and sTREM-2 showed significant correlations with inflammatory cytokines IL-8, G-CSF, and IL-5. Both GFAP and sTREM-2 CSF levels positively correlated with age at diagnosis. GFAP was also higher in male MS patients, and was associated with an increased risk of MS progression, as evidenced by higher BREMS at the onset. Finally, a negative association was found between GFAP CSF levels and cerebellar volume in RRMS at diagnosis. Conclusions: GFAP and sTREM-2 represent suitable biomarkers of central inflammation in MS. Our results suggest that enhanced CSF expression of GFAP may characterize patients with a higher risk of progression.
Collapse
|
9
|
Williams T, Zetterberg H, Chataway J. Neurofilaments in progressive multiple sclerosis: a systematic review. J Neurol 2021; 268:3212-3222. [PMID: 32447549 PMCID: PMC8357650 DOI: 10.1007/s00415-020-09917-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Neurofilament proteins have been extensively studied in relapsing-remitting multiple sclerosis, where they are promising biomarkers of disease activity and treatment response. Their role in progressive multiple sclerosis, where there is a particularly urgent need for improved biomarkers, is less clear. The objectives of this systematic review are to summarise the literature on neurofilament light and heavy in progressive multiple sclerosis, addressing key questions. METHODS A systematic search of PubMed, Embase, Web of Science and Scopus identified 355 potential sources. 76 relevant sources were qualitatively reviewed using QUADAS-2 criteria, and 17 were identified as at low risk of bias. We summarise the findings from all relevant sources, and separately from the 17 high-quality studies. RESULTS Differences in neurofilament light between relapsing-remitting and progressive multiple sclerosis appear to be explained by differences in covariates. Neurofilament light is consistently associated with current inflammatory activity and future brain atrophy in progressive multiple sclerosis, and is consistently shown to be a marker of treatment response with immunosuppressive disease-modifying therapies. Associations with current or future disability are inconsistent, and there is no evidence of NFL being a responsive marker of purportedly neuroprotective treatments. Evidence on neurofilament heavy is more limited and inconsistent. CONCLUSIONS Neurofilament light has shown consistent utility as a biomarker of neuroinflammation, future brain atrophy and immunosuppressive treatment response at a group level. Neither neurofilament light or heavy has shown a consistent treatment response to neuroprotective disease-modifying therapies, which will require further data from successful randomised controlled trials.
Collapse
Affiliation(s)
- Thomas Williams
- Department of Neuroinflammation, Faculty of Brain Sciences, Queen Square Multiple Sclerosis Centre, UCL Queen Square Institute of Neurology, University College London, London, UK.
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, Faculty of Brain Sciences, UCL Queen Square Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute, University College London, London, UK
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy At the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Jeremy Chataway
- Department of Neuroinflammation, Faculty of Brain Sciences, Queen Square Multiple Sclerosis Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
- Biomedical Research Centre, National Institute for Health Research, University College London Hospitals, London, UK
| |
Collapse
|
10
|
Ercan Z, Bilek F, Demir CF. The effect of aerobic exercise on Neurofilament light chain and glial Fibrillary acidic protein level in patients with relapsing remitting type multiple sclerosis. Mult Scler Relat Disord 2021; 55:103219. [PMID: 34433118 DOI: 10.1016/j.msard.2021.103219] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/09/2021] [Accepted: 08/15/2021] [Indexed: 11/29/2022]
Abstract
Background Multiple sclerosis (MS) is an autoimmune and neurodegenerative disease of the central nervous system in which disease activity can be monitored with some biomarkers. The aim of our study was to investigate serum Glial Fibrillary Acidic Protein (GFAP) and Neurofilament Light Chain (NFL) in relapsing-remitting MS (RRMS) patients after the aerobic exercise. Methods A total of 38 participants with RRMS (Expanded Disability Status Scale: 1.0 - 4.5) were randomized to a study group (3 × /week for 8 weeks at 60 - 70 % of maximal aerobic capacity (VO2max) + home exercises) and a control group (were given home exercises programme 3 times a week for 8 week). Serum NFL and GFAP levels were analyzed using enzyme-linked immunosorbent analysis method before and at the end of 8 weeks. Results: NFL and GFAP levels were statistically lower in the study group at the end of the study than before the study. In the control group, no significant changes were observed in serum NFL and GFAP levels. ΔNFL levels were significantly higher in the study group than control group. Conclusion It was shown, for the first time that serum GFAP and NFL levels (%10 and % 32, respectively) in RRMS patients decreased after aerobic exercise. Our study is important in terms of investigating the effects of aerobic exercise in individuals with RRMS and elucidating the underlying measurable biomarkers. The significant reduction of NFL and GFAP, which have an important role in the pathology associated with nervous system damage in MS, with aerobic exercise may be promising in understanding the regulation of disease activity in MS patients.
Collapse
Affiliation(s)
- Zubeyde Ercan
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Fırat University, Elazığ, Turkey.
| | - Furkan Bilek
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Fırat University, Elazığ, Turkey.
| | - Caner Feyzi Demir
- Department of Neurology, Faculty of Medical, Fırat University, Elazığ, Turkey.
| |
Collapse
|
11
|
López-Gómez J, Sacristán-Enciso B, Caro-Miró MA, Querol Pascual MR. Clinically isolated syndrome: diagnosis and risk of developing clinically definite multiple sclerosis. Neurologia 2021; 38:S0213-4853(21)00028-1. [PMID: 33757657 DOI: 10.1016/j.nrl.2021.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/01/2021] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION In most cases, multiple sclerosis (MS) initially presents as clinically isolated syndrome (CIS). Differentiating CIS from other acute or subacute neurological diseases and estimating the risk of progression to clinically definite MS is essential since presenting a second episode in a short time is associated with poorer long-term prognosis. DEVELOPMENT We conducted a literature review to evaluate the usefulness of different variables in improving diagnostic accuracy and predicting progression from CIS to MS, including magnetic resonance imaging (MRI) and such biofluid markers as oligoclonal IgG and IgM bands, lipid-specific oligoclonal IgM bands in the CSF, CSF kappa free light-chain (KFLC) index, neurofilament light chain (NfL) in the CSF and serum, and chitinase 3-like protein 1 (CHI3L1) in the CSF and serum. CONCLUSIONS Codetection of oligoclonal IgG bands and MRI lesions reduces diagnostic delays and suggests a high risk of CIS progression to MS. A KFLC index > 10.6 and CSF NfL concentrations > 1150 ng/L indicate that CIS is more likely to progress to MS within one year (40-50%); 90% of patients with CIS and serum CHI3L1 levels > 33 ng/mL and 100% of those with lipid-specific oligoclonal IgM bands present MS within one year of CIS onset.
Collapse
Affiliation(s)
- J López-Gómez
- Unidad de Proteínas, Servicio de Análisis Clínicos, Hospital Universitario de Badajoz, Badajoz, España.
| | - B Sacristán-Enciso
- Sección de Proteínas y Autoinmunidad, Servicio de Análisis Clínicos, Hospital de Mérida, Badajoz, España
| | - M A Caro-Miró
- Servicio de Análisis Clínicos, Hospital Universitario de Badajoz, Badajoz, España
| | - M R Querol Pascual
- Servicio de Neurología. Hospital Universitario de Badajoz, Badajoz, España
| |
Collapse
|
12
|
Sun M, Liu N, Xie Q, Li X, Sun J, Wang H, Wang M. A candidate biomarker of glial fibrillary acidic protein in CSF and blood in differentiating multiple sclerosis and its subtypes: A systematic review and meta-analysis. Mult Scler Relat Disord 2021; 51:102870. [PMID: 33819724 DOI: 10.1016/j.msard.2021.102870] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/20/2021] [Accepted: 02/23/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Multiple sclerosis (MS) is an inflammatory demyelinating autoimmune disease of the central nervous system. Glial fibrillary acidic protein (GFAP) is a monomeric intermediate filament protein. A systematic review and meta-analysis was performed regarding a candidate biomarker for astrocytic damage of cerebrospinal fluid (CSF) and blood GFAP levels in differentiating multiple sclerosis and its subtypes. METHODS Relevant studies published prior to October 2020 were retrieved from the PubMed, Web of Science, Cochrane Library and clinicaltrials.gov databases using the following keywords: 'Multiple sclerosis' or 'MS' and 'Glial Fibrillary Acidic Protein' or 'GFAP'. Two authors independently selected the articles and extracted the data. Of the 31 full articles screened, 11 were included in the qualitative analysis and meta-analysis. Differences in the mean CSF and blood GFAP levels were used as the main efficacy measures, and the meta-analysis was performed using Review Manager version 5.3 software. RESULTS Eleven clinical trials comprising 960 patients were selected. CSF GFAP levels were higher in 503 MS patients than in 252 (healthy and disease) controls, with a moderate effect size of 0.72 (p < 0.00001). Mean CSF GFAP levels were significantly higher in 325 MS patients with relapsing disease than in 140 MS patients with progressive disease (SMD=-0.47; 95% CI=-0.80 to -0.15; P = 0.005). CSF GFAP levels in 161 MS patients in relapse (irrespective of MS subtype) were significantly higher than those in 180 MS patients in remission (MD=103.83; 95% CI=68.09 to139.57; P<0.001). The performances of GFAP in blood for differentiating patients with MS from controls were also significant. Blood GFAP was higher in 245 MS patients than in 53 (healthy and disease) controls, with a moderate effect size of 37.25 (p < 0.00001). CONCLUSION The level of CSF-GFAP is correlated with MS and its different subtypes, reflecting the different degrees of damage to astrocytes in different subtypes of MS. In addition, progressive MS is more closely related to the increase in cerebrospinal fluid GFAP level than relapsing-remitting MS, and GFAP may be a useful marker of disease progression. Moreover, the GFAP level in the blood of MS patients is higher than that in the control group, and the sample size needs to be further expanded for verification in the future..
Collapse
Affiliation(s)
- MengJiao Sun
- Department of Neurology, Lanzhou University Second Hospital, Cuiyingmen 82, Chengguan District, Lanzhou 730030, Gansu, China.
| | - Ning Liu
- Department of Neurology, Lanzhou University Second Hospital, Cuiyingmen 82, Chengguan District, Lanzhou 730030, Gansu, China
| | - QinFang Xie
- Department of Neurology, Lanzhou University Second Hospital, Cuiyingmen 82, Chengguan District, Lanzhou 730030, Gansu, China
| | - Xiaoling Li
- Department of Neurology, Lanzhou University Second Hospital, Cuiyingmen 82, Chengguan District, Lanzhou 730030, Gansu, China
| | - Jing Sun
- Department of Neurology, Lanzhou University Second Hospital, Cuiyingmen 82, Chengguan District, Lanzhou 730030, Gansu, China
| | - Hongxia Wang
- Department of Neurology, Lanzhou University Second Hospital, Cuiyingmen 82, Chengguan District, Lanzhou 730030, Gansu, China
| | - ManXia Wang
- Department of Neurology, Lanzhou University Second Hospital, Cuiyingmen 82, Chengguan District, Lanzhou 730030, Gansu, China.
| |
Collapse
|
13
|
El-Wahsh S, Finger EC, Piguet O, Mok V, Rohrer JD, Kiernan MC, Ahmed RM. Predictors of survival in frontotemporal lobar degeneration syndromes. J Neurol Neurosurg Psychiatry 2021; 92:jnnp-2020-324349. [PMID: 33441385 DOI: 10.1136/jnnp-2020-324349] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/26/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022]
Abstract
After decades of research, large-scale clinical trials in patients diagnosed with frontotemporal lobar degeneration (FTLD) are now underway across multiple centres worldwide. As such, refining the determinants of survival in FTLD represents a timely and important challenge. Specifically, disease outcome measures need greater clarity of definition to enable accurate tracking of therapeutic interventions in both clinical and research settings. Multiple factors potentially determine survival, including the clinical phenotype at presentation; radiological patterns of atrophy including markers on both structural and functional imaging; metabolic factors including eating behaviour and lipid metabolism; biomarkers including both serum and cerebrospinal fluid markers of underlying pathology; as well as genetic factors, including both dominantly inherited genes, but also genetic modifiers. The present review synthesises the effect of these factors on disease survival across the syndromes of frontotemporal dementia, with comparison to amyotrophic lateral sclerosis, progressive supranuclear palsy and corticobasal syndrome. A pathway is presented that outlines the utility of these varied survival factors for future clinical trials and drug development. Given the complexity of the FTLD spectrum, it seems unlikely that any single factor may predict overall survival in individual patients, further suggesting that a precision medicine approach will need to be developed in predicting disease survival in FTLD, to enhance drug target development and future clinical trial methodologies.
Collapse
Affiliation(s)
- Shadi El-Wahsh
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Elizabeth C Finger
- Department of Clinicial Neurological Sciences, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Olivier Piguet
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Vincent Mok
- Gerald Choa Neuroscience Centre, Lui Che Woo Institute of Innovative Medicine, Margaret K.L. Cheung Research Centre for Management of Parkinsonism, Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Matthew C Kiernan
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Rebekah M Ahmed
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
14
|
Blume JE, Manning WC, Troiano G, Hornburg D, Figa M, Hesterberg L, Platt TL, Zhao X, Cuaresma RA, Everley PA, Ko M, Liou H, Mahoney M, Ferdosi S, Elgierari EM, Stolarczyk C, Tangeysh B, Xia H, Benz R, Siddiqui A, Carr SA, Ma P, Langer R, Farias V, Farokhzad OC. Rapid, deep and precise profiling of the plasma proteome with multi-nanoparticle protein corona. Nat Commun 2020; 11:3662. [PMID: 32699280 PMCID: PMC7376165 DOI: 10.1038/s41467-020-17033-7] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 06/02/2020] [Indexed: 02/08/2023] Open
Abstract
Large-scale, unbiased proteomics studies are constrained by the complexity of the plasma proteome. Here we report a highly parallel protein quantitation platform integrating nanoparticle (NP) protein coronas with liquid chromatography-mass spectrometry for efficient proteomic profiling. A protein corona is a protein layer adsorbed onto NPs upon contact with biofluids. Varying the physicochemical properties of engineered NPs translates to distinct protein corona patterns enabling differential and reproducible interrogation of biological samples, including deep sampling of the plasma proteome. Spike experiments confirm a linear signal response. The median coefficient of variation was 22%. We screened 43 NPs and selected a panel of 5, which detect more than 2,000 proteins from 141 plasma samples using a 96-well automated workflow in a pilot non-small cell lung cancer classification study. Our streamlined workflow combines depth of coverage and throughput with precise quantification based on unique interactions between proteins and NPs engineered for deep and scalable quantitative proteomic studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Marwin Ko
- Seer, Inc., Redwood City, CA, 94065, USA
| | - Hope Liou
- Seer, Inc., Redwood City, CA, 94065, USA
| | | | | | | | | | | | | | - Ryan Benz
- Seer, Inc., Redwood City, CA, 94065, USA
| | | | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Philip Ma
- Seer, Inc., Redwood City, CA, 94065, USA
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Vivek Farias
- Sloan School and Operations Research Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Omid C Farokhzad
- Seer, Inc., Redwood City, CA, 94065, USA.
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
15
|
Preziosa P, Rocca MA, Filippi M. Current state-of-art of the application of serum neurofilaments in multiple sclerosis diagnosis and monitoring. Expert Rev Neurother 2020; 20:747-769. [DOI: 10.1080/14737175.2020.1760846] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Paolo Preziosa
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria A. Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
16
|
Li J, Gu Y, An H, Zhou Z, Zheng D, Wang Z, Wen Z, Shen HY, Wang Q, Wang H. Cerebrospinal fluid light and heavy neurofilament level increased in anti-N-methyl-d-aspartate receptor encephalitis. Brain Behav 2019; 9:e01354. [PMID: 31313506 PMCID: PMC6710226 DOI: 10.1002/brb3.1354] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 06/01/2019] [Accepted: 06/08/2019] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Neurofilaments (Nf) are a series of highly specific scaffolding proteins of neurons. Neurofilament light chains (Nf-L) and the heavy one (Nf-H) are subunits of Nf, and they are recognized as potent productions of neural damage. The concentrations of Nf aggrandized significantly in neurological disease including neuromyelitis optica, multiple sclerosis, and Alzheimer's disease. However, whether Nf in cerebrospinal fluid (CSF) elevated in anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis is unclear. Here, we aimed to detect whether CSF Nf is altered in NMDAR and whether changes in CSF Nf can serve as an objective and effective biomarker to evaluate disease severity and prognosis. METHODS We collected 24 anti-NMDAR encephalitis patients, 11 viral meningoencephalitis/encephalitis (VM) patients, and 21 controls in this study. CSF Nf-L, Nf-H, and cytokine levels (IL-1β, IL-6, and IL-17A) were determined by enzyme-linked immunosorbent assay (ELISA) and compared between groups. We evaluated patients' clinical outcomes or prognosis according to modified Rankin scale (mRS) score. RESULTS Compared with controls, both CSF Nf-L and Nf-H levels were significantly increased in anti-NMDAR encephalitis patients. While compared with VM patients, only Nf-L were increased in anti-NMDAR encephalitis patients. Moreover, CSF Nf-L were positively correlated with concentration of cytokines (IL-1β, IL-17A) and mRS scores in anti-NMDAR encephalitis patients. After treatment, both CSF Nf-L and Nf-H levels decreased. Furthermore, the Nf-L during follow-up positively correlated with 3-month mRS scores, and ΔNf-L positively correlated with ΔmRS. CONCLUSIONS Briefly, CSF Nf-L levels notably increased in anti-NMDAR encephalitis patients in acute phase and positively correlated with disease severity. It could be considered as a useful indicator for clinical outcomes and prognosis.
Collapse
Affiliation(s)
- Jiayu Li
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong Gu
- Department of Encephalopathy, Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou, China
| | - Hongwei An
- Department of Neurology, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, China
| | - Zheyi Zhou
- Department of Neurology, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, China
| | - Dong Zheng
- Department of Neurology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhanhang Wang
- Department of Neurology, 999 Brain Hospital, Guangzhou, China
| | - Zehuai Wen
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hai-Ying Shen
- RS Dow Neurobiology Laboratories, Legacy Research Institute, Portland, Oregon
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Honghao Wang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
17
|
Castle D, Wynford-Thomas R, Loveless S, Bentley E, Howell OW, Tallantyre EC. Using biomarkers to predict clinical outcomes in multiple sclerosis. Pract Neurol 2019; 19:342-349. [PMID: 31243138 DOI: 10.1136/practneurol-2018-002000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2019] [Indexed: 11/04/2022]
Abstract
Long-term outcomes in multiple sclerosis (MS) are highly varied and treatment with disease-modifying therapies carries significant risks. Finding tissue biomarkers that can predict clinical outcomes would be valuable in individualising treatment decisions for people with MS. Several candidate biomarkers-reflecting inflammation, neurodegeneration and glial pathophysiology-show promise for predicting outcomes. However, many candidates still require validation in cohorts with long-term follow-up and evaluation for their independent contribution in predicting outcome when models are adjusted for known demographic, clinical and radiological predictors. Given the complexity of MS pathophysiology, heterogeneous panels comprising a combination of biomarkers that encompass the various aspects of neurodegenerative, glial and immune pathology seen in MS, may enhance future predictions of outcome.
Collapse
Affiliation(s)
- Daniel Castle
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK.,Helen Durham Centre for Neuroinflammation, University Hospital of Wales, Cardiff, UK
| | - Ray Wynford-Thomas
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK.,Helen Durham Centre for Neuroinflammation, University Hospital of Wales, Cardiff, UK
| | - Sam Loveless
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK.,Helen Durham Centre for Neuroinflammation, University Hospital of Wales, Cardiff, UK
| | - Emily Bentley
- Helen Durham Centre for Neuroinflammation, University Hospital of Wales, Cardiff, UK
| | - Owain W Howell
- Institute of Life Science (ILS), Swansea University Medical School, Swansea, UK
| | - Emma C Tallantyre
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK .,Helen Durham Centre for Neuroinflammation, University Hospital of Wales, Cardiff, UK
| |
Collapse
|
18
|
Shedko ED, Tyumentseva MA. Cerebrospinal fluid molecular biomarkers of multiple sclerosis. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:95-102. [DOI: 10.17116/jnevro201911907195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Pawlitzki M, Schreiber S, Bittner D, Kreipe J, Leypoldt F, Rupprecht K, Carare RO, Meuth SG, Vielhaber S, Körtvélyessy P. CSF Neurofilament Light Chain Levels in Primary Progressive MS: Signs of Axonal Neurodegeneration. Front Neurol 2018; 9:1037. [PMID: 30631300 PMCID: PMC6315185 DOI: 10.3389/fneur.2018.01037] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/16/2018] [Indexed: 11/29/2022] Open
Abstract
Objectives: Elevated neurofilament light chain (NFL) levels within the cerebrospinal fluid (CSF) are a biomarker representing axonal neurodegeneration in rapid progressive neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). It is unclear to what extent the levels of NFL increase in the CSF (CSF-NFL) in a chronic neuroinflammatory process with axonal neurodegeneration, as found in primary progressive multiple sclerosis (PPMS). Methods: We used a multicenter approach to statistically compare CSF-NFL levels between PPMS patients (n = 50), ALS patients (n = 50), and healthy controls (n = 50). Clinical findings, including disease duration, expanded disability status scale (EDSS), electrophysiological recordings such as visual evoked potentials or spinal and cerebral MRI, and previously administered treatment were selected as experimental parameters retrospectively. Results: Median [range] CSF-NFL concentrations in PPMS patients were significantly higher than in the controls [1724 (799–4275) pg/ml vs. 1202 (612–2934) pg/ml, p = 0.015], and significantly lower compared to ALS patients [1724 (799–4275) pg/ml vs. 10238 (2610–35138) pg/ml, p < 0.001]. There was no correlation between CSF-NFL and disease duration (p = 0.5), EDSS (p = 0.2) or treatment (p = 0.3). Conclusion: We conclude that CSF-NFL may mirror the proposed slow axonal degeneration in PPMS, but does not reflect the disease severity.
Collapse
Affiliation(s)
- Marc Pawlitzki
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany.,Department of Neurology with Institute of Translational Neurology, University Hospital of Muenster, Münster, Germany
| | - Stefanie Schreiber
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany.,German Center for Neurodegenerative Diseases, (DZNE), Magdeburg, Germany
| | - Daniel Bittner
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany.,German Center for Neurodegenerative Diseases, (DZNE), Magdeburg, Germany
| | - Julia Kreipe
- Neuroimmunology, Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Frank Leypoldt
- Neuroimmunology, Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Klemens Rupprecht
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Roxana O Carare
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Sven G Meuth
- Department of Neurology with Institute of Translational Neurology, University Hospital of Muenster, Münster, Germany
| | - Stefan Vielhaber
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany.,German Center for Neurodegenerative Diseases, (DZNE), Magdeburg, Germany
| | - Peter Körtvélyessy
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany.,German Center for Neurodegenerative Diseases, (DZNE), Magdeburg, Germany.,Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| |
Collapse
|
20
|
Serum GFAP as a biomarker for disease severity in multiple sclerosis. Sci Rep 2018; 8:14798. [PMID: 30287870 PMCID: PMC6172254 DOI: 10.1038/s41598-018-33158-8] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 09/24/2018] [Indexed: 01/11/2023] Open
Abstract
While neurofilament light chain (NfL) measurement in serum is a well-established marker of neuroaxonal damage in multiple sclerosis (MS), data on astroglial markers in serum are missing. In our study, glial fibrillary acid protein (GFAP) and NfL were measured in cerebrospinal fluid (CSF) and serum of MS patients and patients with other non-inflammatory neurological diseases (OND) using the Simoa technology. Clinical data like age, gender, expanded disability status scale (EDSS) and MRI findings were correlated to neurochemical markers. We included 80 MS patients: 42 relapsing-remitting MS (RRMS), 38 progressive MS (PMS), as well as 20 OND. Serum GFAP levels were higher in PMS compared to RRMS and OND (p < 0.001, p = 0.02 respectively). Serum GFAP levels correlated with disease severity in the whole MS group and PMS (Spearman-rho = 0.5, p < 0.001 in both groups). Serum GFAP correlated with serum NfL in PMS patients (Spearman-rho = 0.4, p = 0.01). Levels of serum GFAP were higher with increasing MRI-lesion count (p = 0.01). in summary, we report elevated levels of GFAP in the serum of MS patients. Since serum levels of GFAP correlate with the clinical severity scores and MRI lesion count, especially in PMS patients, it might be a suitable disease progression marker.
Collapse
|
21
|
Cai L, Huang J. Neurofilament light chain as a biological marker for multiple sclerosis: a meta-analysis study. Neuropsychiatr Dis Treat 2018; 14:2241-2254. [PMID: 30214214 PMCID: PMC6126505 DOI: 10.2147/ndt.s173280] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PURPOSE There is a need for biomarkers in multiple sclerosis (MS) to make an early diagnosis and monitor its progression. This study was designed to evaluate the value of neurofilament light (NFL) chain levels as cerebrospinal fluid (CSF) or blood biomarker in patients with MS by using a quantitative meta-analysis. METHODS The PubMed, Embase, and Web of Science databases were systematically searched for relevant studies. Articles in English that evaluated the utility of NFL in CSF and blood in the diagnosis of MS were included. Data were extracted by two independent researchers. Mean (± SD) NFL concentration for MS patients and control subjects were extracted. Review Manager version 5.3 software with a continuous-variable random-effects model was used to summarize the diagnostic indexes from eligible studies. The Newcastle-Ottawa Scale was used for assessing the quality and risk of bias of included studies. In addition, subgroup analysis and meta-regression were performed to assess potential heterogeneity sources. RESULTS The meta-analysis included 13 articles containing results from 15 studies. A total of 10 studies measured NFL levels in CSF and five studies measured NFL levels in blood. Data were available on 795 participants in CSF and 1,856 participants in blood. Moreover, CSF NFL in MS patients was higher than that in healthy control groups (pooled standard mean difference [Std.MD]=0.88, 95% CI [0.50, 1.26], P<0.00001) and serum NFL in MS patients was higher than that in control subjects (pooled Std.MD=0.47, 95% CI [0.24, 0.71], P<0.0001). CONCLUSION NFL chain has significantly increased in MS patients, which substantially strengthens the clinical evidence of the NFL in MS. The NFL may be used as a prognostic biomarker to monitor disease progression, disease activity, and treatment efficacy in the future.
Collapse
Affiliation(s)
- Laisheng Cai
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Jiangxi, People's Republic of China,
| | - Jingwei Huang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Jiangxi, People's Republic of China,
| |
Collapse
|
22
|
Kassubek R, Gorges M, Schocke M, Hagenston VAM, Huss A, Ludolph AC, Kassubek J, Tumani H. GFAP in early multiple sclerosis: A biomarker for inflammation. Neurosci Lett 2017; 657:166-170. [PMID: 28802830 DOI: 10.1016/j.neulet.2017.07.050] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/17/2017] [Accepted: 07/27/2017] [Indexed: 12/22/2022]
Abstract
OBJECTIVE The role of Glial Fibrillic Acidic Protein (GFAP) as a potential biomarker for relapsing-remitting multiple sclerosis (RRMS) and clinically isolated syndrome (CIS) has been controversially discussed. The aim was to characterize the added value of GFAP levels in the CSF of RRMS and CIS patients in correlation with MRI lesion load. MATERIALS & METHODS GFAP levels in the CSF from 18 patients with RRMS, 8 patients with CIS and 35 controls were analyzed together with MRI data for acute and chronic inflammatory lesion load. RESULTS GFAP levels of patients vs. controls were higher (p=0.005), while there was no difference between GFAP levels in RRMS and CIS. There was no correlation between the number of supra- or infratentorial gadolinium enhancing lesions and GFAP levels, while there was a correlation between GFAP levels with infratentorial chronic inflammatory lesion load (p=0.0035). Most importantly, a highly significant correlation could be observed between GFAP levels and the intensity of gadolinium-enhancement as a parameter for the acute activity of inflammatory processes (p=0.0002). CONCLUSIONS GFAP seems to be a useful biomarker for highly active acute inflammation in patients with RRMS as well as with CIS.
Collapse
Affiliation(s)
| | - Martin Gorges
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Michael Schocke
- Department of Radiology and Neuroradiology, University and Rehabilitation Hospital Ulm, Ulm, Germany
| | | | - André Huss
- Department of Neurology, University of Ulm, Ulm, Germany
| | | | - Jan Kassubek
- Department of Neurology, University of Ulm, Ulm, Germany
| | | |
Collapse
|
23
|
Dubuisson N, Puentes F, Giovannoni G, Gnanapavan S. Science is 1% inspiration and 99% biomarkers. Mult Scler 2017; 23:1442-1452. [PMID: 28537780 DOI: 10.1177/1352458517709362] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neurodegeneration plays a key role in multiple sclerosis (MS) contributing to long-term disability in patients. The prognosis is, however, unpredictable coloured by complex disease mechanisms which can only be clearly appreciated using biomarkers specific to pathobiology of the underlying process. Here, we describe six promising neurodegenerative biomarkers in MS (neurofilament proteins, neurofilament antibodies, tau, N-acetylaspartate, chitinase and chitinase-like proteins and osteopontin), critically evaluating the evidence using a modified Bradford Hill criteria.
Collapse
Affiliation(s)
- Nicolas Dubuisson
- Department of Neuroscience and Trauma, Blizard Institute, Queen Mary University of London, London, UK
| | - Fabiola Puentes
- Department of Neuroscience and Trauma, Blizard Institute, Queen Mary University of London, London, UK
| | - Gavin Giovannoni
- Department of Neuroscience and Trauma, Blizard Institute, Queen Mary University of London, London, UK
| | - Sharmilee Gnanapavan
- Department of Neuroscience and Trauma, Blizard Institute, Queen Mary University of London, London, UK
| |
Collapse
|
24
|
Skillbäck T, Mattsson N, Blennow K, Zetterberg H. Cerebrospinal fluid neurofilament light concentration in motor neuron disease and frontotemporal dementia predicts survival. Amyotroph Lateral Scler Frontotemporal Degener 2017. [DOI: 10.1080/21678421.2017.1281962] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tobias Skillbäck
- Institute of Neuroscience and Physiology, Department of Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden,
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden,
| | - Niklas Mattsson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden,
- Department of Neurology, Skåne University Hospital, Lund, Sweden, and
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden,
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden,
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden,
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden,
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| |
Collapse
|
25
|
Abstract
Secondary progressive multiple sclerosis (SPMS) is diagnosed retrospectively and involves a clinical course characterized by a progressive accumulation of neurological disability, independent of relapses, following an initial relapsing-remitting (RR) phase. Our incomplete understanding of the pathological mechanisms underlying neurodegeneration in multiple sclerosis (MS) may explain why, to date, there is no definitive imaging or laboratory test that is able to inform us when the disease is clearly entering into a progressive phase and why the vast majority of clinical trials testing immunosuppressant and immunomodulating drugs in SPMS patients has so far yielded disappointing or mixed results. Here we discuss the definition(s) of SPMS and how it may vary, outcome measurements (current and emerging) and modern trial design.
Collapse
Affiliation(s)
- Domenico Plantone
- Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, University College London, London, WC1N 3BG, UK.
| | - Floriana De Angelis
- Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Anisha Doshi
- Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Jeremy Chataway
- Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre, UCL Institute of Neurology, University College London, London, WC1N 3BG, UK
| |
Collapse
|
26
|
Abstract
Existing clinical outcomes of disease activity, including relapse rates, are inherently insensitive to the underlying pathological process in MS. Moreover, it is extremely difficult to measure clinical disability in patients, which is often a retrospective assessment, and definitely not within the time frame of a clinical trial. Biomarkers , conversely are more specific for a pathologic process and if used correctly can prove invaluable in the diagnosis, stratification and monitoring of disease activity, including any subclinical activity which is not visible to the naked eye. In this chapter, we discuss the development of neurofilaments as surrogate outcomes of disability in MS. The validation and qualification are vital steps in biomarker development and to gaining acceptance in scientific community, and the pitfalls leading up to this are also discussed.
Collapse
|
27
|
Abdelhak A, Junker A, Brettschneider J, Kassubek J, Ludolph AC, Otto M, Tumani H. Brain-Specific Cytoskeletal Damage Markers in Cerebrospinal Fluid: Is There a Common Pattern between Amyotrophic Lateral Sclerosis and Primary Progressive Multiple Sclerosis? Int J Mol Sci 2015; 16:17565-88. [PMID: 26263977 PMCID: PMC4581209 DOI: 10.3390/ijms160817565] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/20/2015] [Accepted: 07/23/2015] [Indexed: 11/25/2022] Open
Abstract
Many neurodegenerative disorders share a common pathophysiological pathway involving axonal degeneration despite different etiological triggers. Analysis of cytoskeletal markers such as neurofilaments, protein tau and tubulin in cerebrospinal fluid (CSF) may be a useful approach to detect the process of axonal damage and its severity during disease course. In this article, we review the published literature regarding brain-specific CSF markers for cytoskeletal damage in primary progressive multiple sclerosis and amyotrophic lateral sclerosis in order to evaluate their utility as a biomarker for disease progression in conjunction with imaging and histological markers which might also be useful in other neurodegenerative diseases associated with affection of the upper motor neurons. A long-term benefit of such an approach could be facilitating early diagnostic and prognostic tools and assessment of treatment efficacy of disease modifying drugs.
Collapse
Affiliation(s)
- Ahmed Abdelhak
- Department of Neurology, Ulm University, Oberer Eselsberg 45, 89081 Ulm, Germany.
| | - Andreas Junker
- Institute of Neuropathology, University Hospital Göttingen, Robert-Koch-Str 40, 37075 Göttingen, Germany.
| | | | - Jan Kassubek
- Department of Neurology, Ulm University, Oberer Eselsberg 45, 89081 Ulm, Germany.
| | - Albert C Ludolph
- Department of Neurology, Ulm University, Oberer Eselsberg 45, 89081 Ulm, Germany.
| | - Markus Otto
- Department of Neurology, Ulm University, Oberer Eselsberg 45, 89081 Ulm, Germany.
| | - Hayrettin Tumani
- Department of Neurology, Ulm University, Oberer Eselsberg 45, 89081 Ulm, Germany.
| |
Collapse
|
28
|
Fressinaud C, Eyer J. Neurofilaments and NFL-TBS.40–63 peptide penetrate oligodendrocytes through clathrin-dependent endocytosis to promote their growth and survival in vitro. Neuroscience 2015; 298:42-51. [DOI: 10.1016/j.neuroscience.2015.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/05/2015] [Accepted: 04/02/2015] [Indexed: 12/13/2022]
|
29
|
Collins MA, An J, Peller D, Bowser R. Total protein is an effective loading control for cerebrospinal fluid western blots. J Neurosci Methods 2015; 251:72-82. [PMID: 26004848 DOI: 10.1016/j.jneumeth.2015.05.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 05/13/2015] [Accepted: 05/14/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cerebrospinal fluid (CSF) has been used to identify biomarkers of neurological disease. CSF protein biomarkers identified by high-throughput methods, however, require further validation. While Western blotting (WB) is well-suited to this task, the lack of a validated loading control for CSF WB limits the method's accuracy. NEW METHOD We investigated the use of total protein (TP) as a CSF WB loading control. Using iodine-based reversible membrane staining, we determined the linear range and consistency of the CSF TP signal. We then spiked green fluorescent protein (GFP) into CSF to create defined sample-to-sample differences in GFP levels that were measured by WB before and after TP loading correction. Levels of CSF complement C3 and cystatin C measured by WB with TP loading correction and ELISA in amyotrophic lateral sclerosis and healthy control CSF samples were then compared. RESULTS CSF WB with the TP loading control accurately detected defined differences in GFP levels and corrected for simulated loading errors. Individual CSF sample Western blot and ELISA measurements of complement C3 and cystatin C were significantly correlated and the methods showed a comparable ability to detect between-groups differences. COMPARISON WITH EXISTING METHOD CSF TP staining has a greater linear dynamic range and sample-to-sample consistency than albumin, a commonly used CSF loading control. The method accurately corrects for simulated errors in loading and improves the sensitivity of CSF WB compared to using no loading control. CONCLUSIONS The TP staining loading control improves the sensitivity and accuracy of CSF WB results.
Collapse
Affiliation(s)
- Mahlon A Collins
- Department of Neurobiology, University of Pittsburgh, 200 South Lothrop Street, Pittsburgh, PA 15213, USA; Departments of Neurobiology and Neurology, St. Joseph's Hospital and Medical Center and Barrow Neurological Institute, 350 West Thomas Road, Phoenix, AZ 85013, USA.
| | - Jiyan An
- Departments of Neurobiology and Neurology, St. Joseph's Hospital and Medical Center and Barrow Neurological Institute, 350 West Thomas Road, Phoenix, AZ 85013, USA.
| | - Danielle Peller
- Departments of Neurobiology and Neurology, St. Joseph's Hospital and Medical Center and Barrow Neurological Institute, 350 West Thomas Road, Phoenix, AZ 85013, USA.
| | - Robert Bowser
- Departments of Neurobiology and Neurology, St. Joseph's Hospital and Medical Center and Barrow Neurological Institute, 350 West Thomas Road, Phoenix, AZ 85013, USA.
| |
Collapse
|
30
|
Lee JY, Taghian K, Petratos S. Axonal degeneration in multiple sclerosis: can we predict and prevent permanent disability? Acta Neuropathol Commun 2014; 2:97. [PMID: 25159125 PMCID: PMC4243718 DOI: 10.1186/s40478-014-0097-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 08/06/2014] [Indexed: 12/24/2022] Open
Abstract
Axonal degeneration is a major determinant of permanent neurological impairment during multiple sclerosis (MS). Due to the variable course of clinical disease and the heterogeneity of MS lesions, the mechanisms governing axonal degeneration may differ between disease stages. While the etiology of MS remains elusive, there now exist potential prognostic biomarkers that can predict the conversion to clinically definite MS. Specialized imaging techniques identifying axonal injury and drop-out are becoming established in clinical practice as a predictive measure of MS progression, such as optical coherence tomography (OCT) or diffusion tensor imaging (DTI). However, these imaging techniques are still being debated as predictive biomarkers since controversy surrounds their lesion-specific association with expanded disability status scale (EDSS). A more promising diagnostic measure of axonal degeneration has been argued for the detection of reduced N-acetyl aspartate (NAA) and Creatine ratios via magnetic resonance spectroscopic (MRS) imaging, but again fail with its specificity for predicting actual axonal degeneration. Greater accuracy of predictive biomarkers is therefore warranted and may include CSF neurofilament light chain (NF-L) and neurofilament heavy chain (NF-H) levels, for progressive MS. Furthermore, defining the molecular mechanisms that occur during the neurodegenerative changes in the various subgroups of MS may in fact prove vital for the future development of efficacious neuroprotective therapies. The clinical translation of a combined Na+ and Ca2+ channel blocker may lead to the establishment of a bona fide neuroprotective agent for the treatment of progressive MS. However, more specific therapeutic targets to limit axonal damage in MS need investigation and may include such integral axonal proteins such as the collapsin response mediator protein-2 (CRMP-2), a molecule which upon post-translational modification may propagate axonal degeneration in MS. In this review, we discuss the current clinical determinants of axonal damage in MS and consider the cellular and molecular mechanisms that may initiate these neurodegenerative changes. In particular we highlight the therapeutic candidates that may formulate novel therapeutic strategies to limit axonal degeneration and EDSS during progressive MS.
Collapse
|
31
|
Skillbäck T, Zetterberg H, Blennow K, Mattsson N. Cerebrospinal fluid biomarkers for Alzheimer disease and subcortical axonal damage in 5,542 clinical samples. ALZHEIMERS RESEARCH & THERAPY 2013; 5:47. [PMID: 24479774 PMCID: PMC3978733 DOI: 10.1186/alzrt212] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 10/03/2013] [Indexed: 11/25/2022]
Abstract
Introduction The neuronal loss in Alzheimer disease (AD) has been described to affect grey matter in the cerebral cortex. However, in the elderly, AD pathology is likely to occur together with subcortical axonal degeneration on the basis of cerebrovascular disease. Therefore, we hypothesized that biomarkers for AD and subcortical axonal degeneration would correlate in patients undergoing testing for dementia biomarkers, particularly in older age groups. Methods We performed correlation and cluster analyses of cerebrospinal fluid (CSF) biomarker data from 5,542 CSF samples analyzed in our routine clinical neurochemistry laboratory in 2010 through 2012 for the established CSF AD biomarkers total tau (T-tau), phosphorylated-tau (P-tau), amyloid β1-42 (Aβ42), and for neurofilament light (NFL), which is a protein expressed in large-caliber myelinated axons, the CSF levels of which correlate with subcortical axonal injury. Results Aβ42, T-tau, and P-tau correlated with NFL. By cluster analysis, we found a bimodal data distribution in which a group with a low Aβ42/P-tau ratio (suggesting AD pathology) had high levels of NFL. High levels of NFL also correlated with the presence of an AD biomarker pattern defined by Aβ42/P-tau and T-tau. Only 29% of those with an AD biomarker signature had normal NFL levels. Age was a possible confounding factor for the associations between NFL and established AD biomarkers, but in a logistic regression analysis, both age and NFL independently predicted the AD biomarker pattern. Conclusions The association between an AD-like signature using the established biomarkers Aβ42, T-tau, and P-tau with increased levels of NFL provides in vivo evidence of an association between AD and subcortical axonal degeneration in this uniquely large dataset of CSF samples tested for dementia biomarkers.
Collapse
|
32
|
Quantification of α-tubulin isotypes by sandwich ELISA with signal amplification through biotinyl-tyramide or immuno-PCR. J Immunol Methods 2013; 395:63-70. [DOI: 10.1016/j.jim.2013.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/02/2013] [Accepted: 07/02/2013] [Indexed: 11/17/2022]
|
33
|
Koch MW, Cutter G, Stys PK, Yong VW, Metz LM. Treatment trials in progressive MS—current challenges and future directions. Nat Rev Neurol 2013; 9:496-503. [DOI: 10.1038/nrneurol.2013.148] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
Abstract
Dementia due to Alzheimer's disease (AD) is estimated to reach epidemic proportions by the year 2030. Given the limited accuracy of current AD clinical diagnosis, biomarkers of AD pathologies are currently being sought. Reductions in cerebrospinal fluid levels of β-amyloid 42 (a marker of amyloid plaques) and elevations in tau species (markers of neurofibrillary tangles and/or neurodegeneration) are well-established as biomarkers useful for AD diagnosis and prognosis. However, novel markers for other features of AD pathophysiology (e.g., β-amyloid processing, neuroinflammation and neuronal stress/dysfunction) and for other non-AD dementias are required to improve the accuracy of AD disease diagnosis, prognosis, staging and therapeutic monitoring (theragnosis). This article discusses the potential of several promising novel cerebrospinal fluid analytes, highlights the next steps critical for advancement in the field, and provides a prediction on how the field may evolve in 5-10 years.
Collapse
Affiliation(s)
- Anne M Fagan
- Department of Neurology, Washington University School of Medicine, 660 South Euclid Ave., St Louis, MO 63110, USA.
| | | |
Collapse
|