1
|
Shadrina MI, Slominsky PA. Genetic Architecture of Parkinson's Disease. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:417-433. [PMID: 37076287 DOI: 10.1134/s0006297923030100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 03/28/2023]
Abstract
Year 2022 marks 25 years since the first mutation in familial autosomal dominant Parkinson's disease was identified. Over the years, our understanding of the role of genetic factors in the pathogenesis of familial and idiopathic forms of Parkinson's disease has expanded significantly - a number of genes for the familial form of the disease have been identified, and DNA markers for an increased risk of developing its sporadic form have been found. But, despite all the success achieved, we are far from an accurate assessment of the contribution of genetic and, even more so, epigenetic factors to the disease development. The review summarizes the information accumulated to date on the genetic architecture of Parkinson's disease and formulates issues that need to be addressed, which are primarily related to the assessment of epigenetic factors in the disease pathogenesis.
Collapse
Affiliation(s)
- Maria I Shadrina
- Institute of Molecular Genetics, Kurchatov Institute National Research Centre, Moscow, 123182, Russia.
| | - Petr A Slominsky
- Institute of Molecular Genetics, Kurchatov Institute National Research Centre, Moscow, 123182, Russia
| |
Collapse
|
2
|
Kaur I, Behl T, Sehgal A, Singh S, Sharma N, Aleya L, Bungau S. Connecting the dots between mitochondrial dysfunction and Parkinson's disorder: focus mitochondria-targeting therapeutic paradigm in mitigating the disease severity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:37060-37081. [PMID: 34053042 DOI: 10.1007/s11356-021-14619-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Mitochondria are unique cell organelles, which exhibit multifactorial roles in numerous cell physiological processes, significantly preserving the integrity of neural synaptic interconnections, mediating ATP production, and regulating apoptotic signaling pathways and calcium homeostasis. Multiple neurological disorders occur as a consequence of impaired mitochondrial functioning, with greater sensitivity of dopaminergic (DA) neurons to mitochondrial dysfunction, due to oxidative nature and low mitochondrial mass, thus supporting the contribution of mitochondrial impairment in Parkinson's disorder (neuronal damage due to curbed dopamine levels). The pathophysiology of the second most common disorder, PD, is potentiated by various mitochondrial homeostasis regulating genes, as discussed in the review. The PD symptoms are known to be aggravated by multiple mitochondria-linked alterations, like reactive oxygen species (ROS) production, Ca2+ buffering, imbalanced mitochondrial dynamics (fission, fusion, mitophagy), biogenetic dysfunctions, disrupted mitochondrial membrane potential (MMP), protein aggregation, neurotoxins, and genetic mutations, which manifest the central involvement of unhealthy mitochondria in neurodegeneration, resulting in retarded DA neurons in region of substantia nigra pars compacta (SNpc), causing PD. Furthermore, the review tends to target altered mitochondrial components, like oxidative stress, inflammation, biogenetic alterations, impaired dynamics, uncontrolled homeostasis, and genetic mutations, to provide a sustainable and reliable alternative in PD therapeutics and to overcome the pitfalls of conventional therapeutic agents. Therefore, the authors elaborate the relationship between PD pathogenesis and mitochondrial dysfunctions, followed by a suitable mitochondria-targeting therapeutic portfolio, as well as future considerations, aiding the researchers to investigate novel strategies to mitigate the severity of the disease.
Collapse
Affiliation(s)
- Ishnoor Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
3
|
Saini P, Rudakou U, Yu E, Ruskey JA, Asayesh F, Laurent SB, Spiegelman D, Fahn S, Waters C, Monchi O, Dauvilliers Y, Dupré N, Greenbaum L, Hassin-Baer S, Espay AJ, Rouleau GA, Alcalay RN, Fon EA, Postuma RB, Gan-Or Z. Association study of DNAJC13, UCHL1, HTRA2, GIGYF2, and EIF4G1 with Parkinson's disease. Neurobiol Aging 2020; 100:119.e7-119.e13. [PMID: 33239198 DOI: 10.1016/j.neurobiolaging.2020.10.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/05/2020] [Accepted: 10/17/2020] [Indexed: 12/13/2022]
Abstract
Rare mutations in genes originally discovered in multigenerational families have been associated with increased risk of Parkinson's disease (PD). The involvement of rare variants in DNAJC13, UCHL1, HTRA2, GIGYF2, and EIF4G1 loci has been poorly studied or has produced conflicting results across cohorts. However, they are still being often referred to as "PD genes" and used in different models. To further elucidate the role of these 5 genes in PD, we fully sequenced them using molecular inversion probes in 2408 patients with PD and 3444 controls from 3 different cohorts. A total of 788 rare variants were identified across the 5 genes and 3 cohorts. Burden analyses and optimized sequence Kernel association tests revealed no significant association between any of the genes and PD after correction for multiple comparisons. Our results do not support an association of the 5 tested genes with PD. Combined with previous studies, it is unlikely that any of these genes plays an important role in PD. Their designation as "PARK" genes should be reconsidered.
Collapse
Affiliation(s)
- Prabhjyot Saini
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Human Genetics, McGill University, Montréal, Quebec, Canada
| | - Uladzislau Rudakou
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Human Genetics, McGill University, Montréal, Quebec, Canada
| | - Eric Yu
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Human Genetics, McGill University, Montréal, Quebec, Canada
| | - Jennifer A Ruskey
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Farnaz Asayesh
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Sandra B Laurent
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Human Genetics, McGill University, Montréal, Quebec, Canada
| | - Dan Spiegelman
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Stanley Fahn
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - Cheryl Waters
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - Oury Monchi
- Department of Clinical Neurosciences and Department of Radiology, University of Calgary, Calgary, Alberta, Canada; Cumming School of Medicine, Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Yves Dauvilliers
- Department of Neurology, National Reference Center for Narcolepsy, Sleep Unit, Gui-de-Chauliac Hospital, CHU Montpellier, University of Montpellier, Inserm U1061, Montpellier, France
| | - Nicolas Dupré
- Division of Neurosciences, CHU de Québec, Université Laval, Quebec City, Quebec, Canada; Department of Medicine, Faculty of Medicine, Université Laval, Québec, Quebec, Canada
| | - Lior Greenbaum
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel; The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Sharon Hassin-Baer
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Neurology, The Movement Disorders Institute, Sheba Medical Center, Tel Hashomer, Israel
| | - Alberto J Espay
- Department of Neurology, Gardner Family Center for Parkinson's Disease and Movement Disorders, University of Cincinnati, Cincinnati, OH, USA
| | - Guy A Rouleau
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Human Genetics, McGill University, Montréal, Quebec, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Roy N Alcalay
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - Edward A Fon
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Ronald B Postuma
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Ziv Gan-Or
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Human Genetics, McGill University, Montréal, Quebec, Canada; Department of Neurology and neurosurgery, McGill University, Montréal, Quebec, Canada.
| |
Collapse
|
4
|
Fang Y, Shen X. Ubiquitin carboxyl-terminal hydrolases: involvement in cancer progression and clinical implications. Cancer Metastasis Rev 2018; 36:669-682. [PMID: 29080080 DOI: 10.1007/s10555-017-9702-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein ubiquitination and deubiquitination participate in a number of biological processes, including cell growth, differentiation, transcriptional regulation, and oncogenesis. Ubiquitin C-terminal hydrolases (UCHs), a subfamily of deubiquitinating enzymes (DUBs), includes four members: UCH-L1/PGP9.5 (protein gene product 9.5), UCH-L3, UCHL5/UCH37, and BRCA1-associated protein-1 (BAP1). Recently, more attention has been paid to the relationship between the UCH family and malignancies, which play different roles in the progression of different tumors. It remains controversial whether UCHL1 is a tumor promoter or suppressor. UCHL3 and UCH37 are considered to be tumor promoters, while BAP1 is considered to be a tumor suppressor. Studies have showed that UCH enzymes influence several signaling pathways that play crucial roles in oncogenesis, tumor invasion, and migration. In addition, UCH families are associated with tumor cell sensitivity to therapeutic modalities. Here, we reviewed the roles of UCH enzymes in the development of tumors, highlighting the potential consideration of UCH enzymes as new interesting targets for the development of anticancer drugs.
Collapse
Affiliation(s)
- Ying Fang
- The Department of Gastroenterology of Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, People's Republic of China
| | - Xizhong Shen
- The Department of Gastroenterology of Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, People's Republic of China. .,Key Laboratory of Medical Molecule Virology, Ministry of Education and Health, Shanghai Institute of Liver Diseases Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
5
|
Jiménez-Jiménez FJ, Alonso-Navarro H, García-Martín E, Agúndez JAG. Advances in understanding genomic markers and pharmacogenetics of Parkinson's disease. Expert Opin Drug Metab Toxicol 2016; 12:433-48. [PMID: 26910127 DOI: 10.1517/17425255.2016.1158250] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The inheritance pattern of Parkinson's disease (PD) is likely multifactorial (owing to the interplay of genetic predisposition and environmental factors). Many pharmacogenetic studies have tried to establish a possible role of candidate genes in PD risk. Several studies have focused on the influence of genes in the response to antiparkinsonian drugs and in the risk of developing side-effects of these drugs. AREAS COVERED This review presents an overview of current knowledge, with particular emphasis on the most recent advances, both in case-control association studies on the role of candidate genes in the risk for PD as well as pharmacogenetic studies on the role of genes in the development of side effects of antiparkinsonian drugs. The most reliable results should be derived from meta-analyses of case-control association studies on candidate genes involving large series of PD patients and controls, and from genome-wide association studies (GWAS). EXPERT OPINION Prospective studies of large samples involving several genes with a detailed history of exposure to environmental factors in the same cohort of subjects, should be useful to clarify the role of genes in the risk for PD. The results of studies on the role of genes in the development of side-effects of antiparkinsonian drugs should, at this stage, only be considered preliminary.
Collapse
Affiliation(s)
| | | | | | - José A G Agúndez
- b Department of Pharmacology , University of Extremadura , Cáceres , Spain
| |
Collapse
|
6
|
Al-Mubarak BR, Bohlega SA, Alkhairallah TS, Magrashi AI, AlTurki MI, Khalil DS, AlAbdulaziz BS, Abou Al-Shaar H, Mustafa AE, Alyemni EA, Alsaffar BA, Tahir AI, Al Tassan NA. Parkinson's Disease in Saudi Patients: A Genetic Study. PLoS One 2015; 10:e0135950. [PMID: 26274610 PMCID: PMC4537238 DOI: 10.1371/journal.pone.0135950] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 07/29/2015] [Indexed: 11/19/2022] Open
Abstract
Parkinson’s disease (PD) is one of the major causes of parkinsonism syndrome. Its characteristic motor symptoms are attributable to dopaminergic neurons loss in the midbrain. Genetic advances have highlighted underlying molecular mechanisms and provided clues to potential therapies. However, most of the studies focusing on the genetic component of PD have been performed on American, European and Asian populations, whereas Arab populations (excluding North African Arabs), particularly Saudis remain to be explored. Here we investigated the genetic causes of PD in Saudis by recruiting 98 PD-cases (sporadic and familial) and screening them for potential pathogenic mutations in PD-established genes; SNCA, PARKIN, PINK1, PARK7/DJ1, LRRK2 and other PD-associated genes using direct sequencing. To our surprise, the screening revealed only three pathogenic point mutations; two in PINK1 and one in PARKIN. In addition to mutational analysis, CNV and cDNA analysis was performed on a subset of patients. Exon/intron dosage alterations in PARKIN were detected and confirmed in 2 cases. Our study suggests that mutations in the ORF of the screened genes are not a common cause of PD in Saudi population; however, these findings by no means exclude the possibility that other genetic events such as gene expression/dosage alteration may be more common nor does it eliminate the possibility of the involvement of novel genes.
Collapse
Affiliation(s)
- Bashayer R. Al-Mubarak
- Behavioral Genetics unit, Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- * E-mail:
| | - Saeed A. Bohlega
- Department of Neurosciences, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Thamer S. Alkhairallah
- Department of Neurosciences, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Amna I. Magrashi
- Behavioral Genetics unit, Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Maha I. AlTurki
- Behavioral Genetics unit, Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Dania S. Khalil
- Behavioral Genetics unit, Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Basma S. AlAbdulaziz
- Behavioral Genetics unit, Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Hussam Abou Al-Shaar
- Behavioral Genetics unit, Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Abeer E. Mustafa
- Behavioral Genetics unit, Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Eman A. Alyemni
- Behavioral Genetics unit, Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Bashayer A. Alsaffar
- King Abdulaziz City for Science and Technology, Kingdom of Saudi Arabia, Riyadh, Saudi Arabia
| | - Asma I. Tahir
- Behavioral Genetics unit, Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Nada A. Al Tassan
- Behavioral Genetics unit, Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Moon HE, Paek SH. Mitochondrial Dysfunction in Parkinson's Disease. Exp Neurobiol 2015; 24:103-16. [PMID: 26113789 PMCID: PMC4479806 DOI: 10.5607/en.2015.24.2.103] [Citation(s) in RCA: 290] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/02/2015] [Accepted: 06/03/2015] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is characterized by the selective loss of dopaminergic neurons of the substantia nigra pars compacta (SNc) with motor and nonmotor symptoms. Defective mitochondrial function and increased oxidative stress (OS) have been demonstrated as having an important role in PD pathogenesis, although the underlying mechanism is not clear. The etiopathogenesis of sporadic PD is complex with variable contributions of environmental factors and genetic susceptibility. Both these factors influence various mitochondrial aspects, including their life cycle, bioenergetic capacity, quality control, dynamic changes of morphology and connectivity (fusion, fission), subcellular distribution (transport), and the regulation of cell death pathways. Mitochondrial dysfunction has mainly been reported in various non-dopaminergic cells and tissue samples from human patients as well as transgenic mouse and fruit fly models of PD. Thus, the mitochondria represent a highly promising target for the development of PD biomarkers. However, the limited amount of dopaminergic neurons prevented investigation of their detailed study. For the first time, we established human telomerase reverse transcriptase (hTERT)-immortalized wild type, idiopathic and Parkin deficient mesenchymal stromal cells (MSCs) isolated from the adipose tissues of PD patients, which could be used as a good cellular model to evaluate mitochondrial dysfunction for the better understanding of PD pathology and for the development of early diagnostic markers and effective therapy targets of PD. In this review, we examine evidence for the roles of mitochondrial dysfunction and increased OS in the neuronal loss that leads to PD and discuss how this knowledge further improve the treatment for patients with PD.
Collapse
Affiliation(s)
- Hyo Eun Moon
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul 110-744, Korea. ; Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-744, Korea. ; Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 110-744, Korea
| | - Sun Ha Paek
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul 110-744, Korea. ; Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-744, Korea. ; Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 110-744, Korea
| |
Collapse
|