1
|
Deng X, Chen Y, Duan Q, Ding J, Wang Z, Wang J, Chen X, Zhou L, Zhao L. Genetic and molecular mechanisms of hydrocephalus. Front Mol Neurosci 2025; 17:1512455. [PMID: 39839745 PMCID: PMC11746911 DOI: 10.3389/fnmol.2024.1512455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/20/2024] [Indexed: 01/23/2025] Open
Abstract
Hydrocephalus is a neurological condition caused by aberrant circulation and/or obstructed cerebrospinal fluid (CSF) flow after cerebral ventricle abnormal dilatation. In the past 50 years, the diagnosis and treatment of hydrocephalus have remained understudied and underreported, and little progress has been made with respect to prevention or treatment. Further research on the pathogenesis of hydrocephalus is essential for developing new diagnostic, preventive, and therapeutic strategies. Various genetic and molecular abnormalities contribute to the mechanisms of hydrocephalus, including gene deletions or mutations, the activation of cellular inflammatory signaling pathways, alterations in water channel proteins, and disruptions in iron metabolism. Several studies have demonstrated that modulating the expression of key proteins, including TGF-β, VEGF, Wnt, AQP, NF-κB, and NKCC, can significantly influence the onset and progression of hydrocephalus. This review summarizes and discusses key mechanisms that may be involved in the pathogenesis of hydrocephalus at both the genetic and molecular levels. While obstructive hydrocephalus can often be addressed by removing the obstruction, most cases require treatment strategies that involve merely slowing disease progression by correcting CSF circulation patterns. There have been few new research breakthroughs in the prevention and treatment of hydrocephalus.
Collapse
Affiliation(s)
- Xuehai Deng
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Yiqian Chen
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Qiyue Duan
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Jianlin Ding
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Zhong Wang
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Junchi Wang
- School of Dentistry, North Sichuan Medical College, Nanchong, China
| | - Xinlong Chen
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liangxue Zhou
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Long Zhao
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
2
|
Yang Z, Luo TT, Dai YL, Duan HX, Chong CM, Tang J. Pharmacological Strategies and Surgical Management of Posthemorrhagic Hydrocephalus Following Germinal Matrix-Intraventricular Hemorrhage in Preterm Infants. Curr Neuropharmacol 2025; 23:241-255. [PMID: 39248058 PMCID: PMC11808585 DOI: 10.2174/1570159x23666240906115817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/19/2024] [Accepted: 03/19/2024] [Indexed: 09/10/2024] Open
Abstract
Germinal matrix-intraventricular hemorrhage (GM-IVH) is a detrimental neurological complication that occurs in preterm infants, especially in babies born before 32 weeks of gestation and in those with a very low birth weight. GM-IVH is defined as a rupture of the immature and fragile capillaries located in the subependymal germinal matrix zone of the preterm infant brain, and it can lead to detrimental neurological sequelae such as posthemorrhagic hydrocephalus (PHH), cerebral palsy, and other cognitive impairments. PHH following GM-IVH is difficult to treat in the clinic, and no levelone strategies have been recommended to pediatric neurosurgeons. Several cellular and molecular mechanisms of PHH following GM-IVH have been studied in animal models, but no effective pharmacological strategies have been used in the clinic. Thus, a comprehensive understanding of molecular mechanisms, potential pharmacological strategies, and surgical management of PHH is urgently needed. The present review presents a synopsis of the pathogenesis, diagnosis, and cellular and molecular mechanisms of PHH following GM-IVH and explores pharmacological strategies and surgical management.
Collapse
Affiliation(s)
- Zhao Yang
- Department of Neurosurgery, Children’s Hospital of Chongqing Medical University. National Research Center for Child Health and Disorders, Chongqing, 400014, China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, 400014, China
| | - Tian Tian Luo
- Department of Neurobiology, Army Medical University (Third military medical university), Chongqing, 400038, China
| | - Ya-Lan Dai
- Department of Neurosurgery, Children’s Hospital of Chongqing Medical University. National Research Center for Child Health and Disorders, Chongqing, 400014, China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, 400014, China
| | - Han-Xiao Duan
- Department of Neurosurgery, Children’s Hospital of Chongqing Medical University. National Research Center for Child Health and Disorders, Chongqing, 400014, China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, 400014, China
| | - Cheong-Meng Chong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Jun Tang
- Department of Neurosurgery, Children’s Hospital of Chongqing Medical University. National Research Center for Child Health and Disorders, Chongqing, 400014, China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, 400014, China
| |
Collapse
|
3
|
Deng X, Ding J, Liu C, Wang Z, Wang J, Duan Q, Li W, Chen X, Tang X, Zhao L. Progressive histological and behavioral deterioration of a novel mouse model of secondary hydrocephalus after subarachnoid hemorrhage. Sci Rep 2024; 14:31794. [PMID: 39738570 PMCID: PMC11685592 DOI: 10.1038/s41598-024-82843-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/09/2024] [Indexed: 01/02/2025] Open
Abstract
Hydrocephalus commonly occurs after subarachnoid hemorrhage (SAH) and is associated with increased morbidity and disability in patients with SAH. Choroid plexus cerebrospinal fluid (CSF) hypersecretion, obliterative arachnoiditis occluding the arachnoid villi, lymphatic obstruction, subarachnoid fibrosis, and glymphatic system injury are considered the main pathological mechanisms of hydrocephalus after SAH. Although the mechanisms of hydrocephalus after SAH are increasingly being revealed, the clinical prognosis of SAH still has not improved significantly. Further research on SAH is needed to reveal the underlying mechanisms of hydrocephalus and develop translatable therapies. A model that can stably mimic the histopathological and neuroethological features of hydrocephalus is critical for animal experiments. There have been fewer animal studies on hydrocephalus after SAH than on other stroke subtypes. The development of a reproducible and effective model of hydrocephalus after SAH is essential. In this study, we establish a mouse model of SAH that stably mimics brain injury and hydrocephalus after SAH through injections of autologous blood into the cisterna magna via different methods and characterize the model in terms of neurological behavior, histology, imaging, neuronal damage, and white matter damage.
Collapse
Affiliation(s)
- Xuehai Deng
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, 637000, China
| | - Jianlin Ding
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, 637000, China
| | - Chang Liu
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhong Wang
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, 637000, China
| | - Junchi Wang
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Qiyue Duan
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, 637000, China
| | - Weida Li
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, 637000, China
| | - Xinlong Chen
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, 637000, China
| | - Xiaoping Tang
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China.
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, 637000, China.
| | - Long Zhao
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China.
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, 637000, China.
| |
Collapse
|
4
|
Huang X, Jin L, Chang T, Liu J, Qu Y, Li J, Bai W, Li C, Wang J. Altered regional neural activity and functional connectivity in patients with non-communicating hydrocephalus: a resting-state functional magnetic resonance imaging study. Front Neurol 2024; 15:1438149. [PMID: 39206284 PMCID: PMC11349552 DOI: 10.3389/fneur.2024.1438149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Cognitive impairment is a frequent clinical symptom of non-communicating hydrocephalus (NCH) involving multiple domains, including executive function, working memory, visual-spatial function, language, and attention. Functional magnetic resonance imaging (fMRI) can be used to obtain information on functional activity in local brain areas and functional connectivity (FC) across multiple brain regions. However, studies on the associated cognitive impairment are limited; further, the pathophysiological mechanisms of NCH with cognitive impairment remain unclear. Here, we aimed to explore alterations in regional neural activity and FC, as well as the mechanisms of cognitive impairment, in patients with NCH. Methods Overall, 16 patients with NCH and 25 demographically matched healthy controls (HCs) were assessed using the Mini-Mental State Examination (MMSE) and fMRI. Changes in regional homogeneity (ReHo), degree centrality (DC), and region of interest-based FC were analyzed in both groups. The relationship between fMRI metrics (ReHo, DC, and FC) and MMSE scores in patients with NCH was also investigated. Results and discussion Compared with the HC group, the NCH group exhibited significantly lower ReHo values in the left precentral and postcentral gyri, and significantly higher ReHo values in the left medial prefrontal cortex (MPFC). The NCH group also showed significantly higher DC values in the bilateral MPFC compared with the HC group. Regarding seed-based FC, the MPFC showed reduced FC values in the right superior parietal and postcentral gyrus in the NCH group compared with those in the HC group. Moreover, within the NCH group, MMSE scores were significantly negatively correlated with the ReHo value in the left MPFC and the DC value in the bilateral MPFC, whereas MMSE scores were significantly positively correlated with FC values. To conclude, regional neural activity and FC are altered in patients with NCH and are correlated with cognitive impairment. These results advance our understanding of the pathophysiological mechanisms underlying the association between NCH and cognitive impairment.
Collapse
Affiliation(s)
- Xiaoyuan Huang
- Graduate School, Xinjiang Medical University, Ürümqi, China
| | - Lu Jin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tengwu Chang
- Department of Neurosurgery, People’s Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
| | - Jian Liu
- Department of Orthopaedics, People’s Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
| | - Yuan Qu
- Radiographic Image Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
| | - Jinyong Li
- Graduate School, Xinjiang Medical University, Ürümqi, China
| | - Wenju Bai
- Graduate School, Xinjiang Medical University, Ürümqi, China
| | - Chuzhong Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jichao Wang
- Department of Neurosurgery, People’s Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
| |
Collapse
|
5
|
Han S, Yang Z, Wang L, Yang Y, Qi X, Yan C, Yu C. Postoperative hydrocephalus is a high-risk lethal factor for patients with low-grade optic pathway glioma. Br J Neurosurg 2024; 38:625-631. [PMID: 34240664 DOI: 10.1080/02688697.2021.1947971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/14/2021] [Accepted: 06/22/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVES To explore the prognostic factors of patients with low-grade optic pathway glioma (OPG) and the optimal treatment to reduce the incidence of postoperative hydrocephalus. PATIENTS AND METHODS This single-center study retrospectively analyzed data from 66 patients with OPGs who underwent surgery. The patients were followed, and overall survival (OS) and progression-free survival (PFS) were determined. The effects of different treatments on the hydrocephalus of patients were compared. RESULTS Postoperative hydrocephalus was identified as a factor to increase the risk of mortality by 1.99-fold (p = .028). And, 5-year survival rate was significantly lower among patients with postoperative hydrocephalus (p = .027). The main factors leading to preoperative hydrocephalus in patients are large tumor volume and invasion into the third ventricle. Gross total resections (GTR) could reduce the risk of long-term hydrocephalus (p = .046). Age younger than 4 years (p = .046) and tumor invasion range/classification (p = .029) are the main factors to reduce the five-year survival rate. Postoperative radiotherapy (RT) and chemotherapy (CT) had no significant effects on OS. Extraventricular drainage (EVD) was not associated with perioperative infection (p = .798 > .05) and bleeding (p = .09 > .05). Compared with 2 stage surgery (external ventricular drainage or ventriculoperitoneal shunt (VPS) was first placed, followed by tumor resection), 1 stage surgery (direct resection of tumor) had no complication increase. CONCLUSIONS Postoperative hydrocephalus is mostly obstructive hydrocephalus, and it is an important factor that reduces the OS of patients with low-grade OPGs. Surgery to remove the tumor to the greatest extent improves cerebrospinal fluid circulation is effective at reducing the incidence postoperative hydrocephalus. For patients whose ventricles are still dilated after surgery, in addition to considering poor ventricular compliance, they need to be aware of the persistence and progression of hydrocephalus.
Collapse
Affiliation(s)
- Song Han
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, PR China
| | - Zuocheng Yang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, PR China
| | - Liguo Wang
- Department of Neurosurgery, Fuxing Hospital, Capital Medical University, Beijing, PR China
| | - Yakun Yang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, PR China
| | - Xueling Qi
- Department of Pathology, Sanbo Brain Hospital, Capital Medical University, Beijing, PR China
| | - Changxiang Yan
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, PR China
| | - Chunjiang Yu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, PR China
| |
Collapse
|
6
|
Cortier J, Van Der Straeten R, Van Gestel F, Duerinck J, Van Velthoven V, Bruneau M, Du Four S. Nonprogrammable Shunts for Communicating Hydrocephalus and Three-Dimensional Volumetry: A Retrospective Analysis. World Neurosurg 2023; 177:e613-e620. [PMID: 37393997 DOI: 10.1016/j.wneu.2023.06.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/04/2023]
Abstract
OBJECTIVE Although the use of different types of valves has been extensively studied in shunt surgery for communicating hydrocephalus (cHC), a consensus about the valve type remains absent. The objective of this study is to evaluate our results with the primary placement of nonprogrammable valves (NPVs) for this indication. METHODS We retrospectively analyzed all first NPVs implanted between 2014 and 2020 for cHC. We studied the revision rate, clinical outcome described by modified Rankin Scale (mRS), and radiologic evolution using Evans Index (EI) and ventricular volumes three-dimensional semi-automatic segmentation (vv-3DSAS). RESULTS Forty-one patients were shunted for posthemorrhagic (61%), posttraumatic (24.4%), and tumoral (14.6%) hydrocephalus. Mean age was 65 years (range, 25-89 years). Overall, 59 procedures were performed including 18 revision surgeries in 12 patients (29.3%). The underlying reasons for first shunt revision were valve type related (valve dysfunction, overdrainage, and underdrainage) and nonvalve type related (malpositioning, infection, and shunt migration). The shunt-related revision rate was 17.1%. Twenty-eight patients (68.3%) had an mRS score improvement of 1 or more points. We found a good correlation between ventricle volumes (VV) and EI and a significant reduction in VV measured by EI and vv-3DSAS was observed. However, the mRS improvement was not correlated with a reduction in ventricle volumes. CONCLUSIONS Overall, our results in terms of shunt revisions as well as clinical and radiologic evolution are comparable to the literature for NPV. vv-3DSAS can be used and could be useful to detect small changes in VV in patients with cHC.
Collapse
Affiliation(s)
- Jeroen Cortier
- Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium; AZ Maria Middelares, Ghent, Belgium
| | - Robin Van Der Straeten
- Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Frederick Van Gestel
- Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Johnny Duerinck
- Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Vera Van Velthoven
- Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Michael Bruneau
- Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Stephanie Du Four
- Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium; AZ Delta, Roeselare, Belgium.
| |
Collapse
|
7
|
Qiu X, Wang D, Chen L, Huang G, Zhou X, Chen Q, Wang Z. The compensatory mechanism and clinical significance of hydrocephalus after cranioplasty. Front Neurol 2023; 13:1075137. [PMID: 36712427 PMCID: PMC9878597 DOI: 10.3389/fneur.2022.1075137] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/21/2022] [Indexed: 01/13/2023] Open
Abstract
Objective Cranioplasty (CP) and ventriculoperitoneal shunt (VPS) are procedures required after decompression of the flap (DC) to protect the cranial frame and prevent hydrocephalus. This study evaluated the safety and efficacy of different surgical sequences of CP and VPS after DC and identified risk factors for necessary permanent VPS. Methods From January 2017 to December 2021, valid follow-up data were collected in 192 cases. The observation group preferred CP, and then evaluated whether to receive VPS according to the progress of hydrocephalus. the control group was prioritized for VPS and continued with CP after 1 week. The improvement of hydrocephalus symptoms, follow-up outcomes, and post-operative complications before and after surgery were compared between the two groups, and univariate analysis was used to determine the risk factors for necessary permanent risk factors for VPS. Results There were 86 cases (44.8%) in the observation group, who received CP first, while 106 cases (55.2%) in the control group received VPS and CP, respectively. There was no significant difference between the two groups according to Barthel index, FMAS, Mrs, GCS, and Evans index, and there was no statistical difference in complications between the two groups. However, in the observation group, hydrocephalus disappeared after CP operation in 29 cases (33.7%), and finally avoided VPS. Univariate analysis showed that the main etiology was related to the size of the skull defect, the distance of the talus margin relative to the flap to the midline, and lumbar puncture pressure was a predictor of the need for permanent VPS. Conclusion This study provides detailed information on the efficacy and complications of different sequences of preferential CP or VPS after DC surgery. We found that priority CP reduced the incidence of VPS surgery without affecting surgical outcomes and complications.
Collapse
Affiliation(s)
- Xiansheng Qiu
- The Graduate School of Fujian Medical University, Fuzhou, Fujian, China
| | - Dong Wang
- Department of Neurosurgery, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Li Chen
- Department of Neurosurgery, Fuzhou 900th Hospital of PLA, Fuzhou, Fujian, China
| | - Guanlin Huang
- Department of Neurosurgery, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Xiaoping Zhou
- Department of Neurosurgery, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Qiang Chen
- Department of Neurosurgery, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Zhanxiang Wang
- The Graduate School of Fujian Medical University, Fuzhou, Fujian, China,*Correspondence: Zhanxiang Wang ✉
| |
Collapse
|
8
|
Xu H, Fang X, Jing X, Bao D, Niu C. Multiple Machine Learning Approaches for Morphometric Parameters in Prediction of Hydrocephalus. Brain Sci 2022; 12:1484. [PMID: 36358410 PMCID: PMC9688126 DOI: 10.3390/brainsci12111484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 09/08/2024] Open
Abstract
BACKGROUND The diagnosis of hydrocephalus is mainly based on imaging findings. However, the significance of many imaging indicators may change, especially in some degenerative diseases, and even lead to misdiagnosis. METHODS This study explored the effectiveness of commonly used morphological parameters and typical radiographic findings in hydrocephalus diagnosis. The patients' imaging data were divided into three groups, including the hydrocephalus group, the symptomatic group, and the normal control group. The diagnostic validity and weight of various parameters were compared between groups by multiple machine learning methods. RESULTS Our results demonstrated that Evans' ratio is the most valuable diagnostic indicator compared to the hydrocephalus group and the normal control group. But frontal horns' ratio is more useful in diagnosing patients with symptoms. Meanwhile, the sign of disproportionately enlarged subarachnoid space and third ventricle enlargement could be effective diagnostic indicators in all situations. CONCLUSION Both morphometric parameters and radiological features were essential in diagnosing hydrocephalus, but the weights are different in different situations. The machine learning approaches can be applied to optimize the diagnosis of other diseases and consistently update the clinical diagnostic criteria.
Collapse
Affiliation(s)
- Hao Xu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Xiang Fang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Xiaolei Jing
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Dejun Bao
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Chaoshi Niu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| |
Collapse
|
9
|
Targeting choroid plexus epithelium as a novel therapeutic strategy for hydrocephalus. J Neuroinflammation 2022; 19:156. [PMID: 35715859 PMCID: PMC9205094 DOI: 10.1186/s12974-022-02500-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 06/01/2022] [Indexed: 11/25/2022] Open
Abstract
The choroid plexus is a tissue located in the lateral ventricles of the brain and is composed mainly of choroid plexus epithelium cells. The main function is currently thought to be the secretion of cerebrospinal fluid and the regulation of its pH, and more functions are gradually being demonstrated. Assistance in the removal of metabolic waste and participation in the apoptotic pathway are also the functions of choroid plexus. Besides, it helps to repair the brain by regulating the secretion of neuropeptides and the delivery of drugs. It is involved in the immune response to assist in the clearance of infections in the central nervous system. It is now believed that the choroid plexus is in an inflammatory state after damage to the brain. This state, along with changes in the cilia, is thought to be an abnormal physiological state of the choroid plexus, which in turn leads to abnormal conditions in cerebrospinal fluid and triggers hydrocephalus. This review describes the pathophysiological mechanism of hydrocephalus following choroid plexus epithelium cell abnormalities based on the normal physiological functions of choroid plexus epithelium cells, and analyzes the attempts and future developments of using choroid plexus epithelium cells as a therapeutic target for hydrocephalus.
Collapse
|
10
|
Yuan L, Zou D, Yang X, Chen X, Lu Y, Zhang A, Zhang P, Wei F. Proteomics and functional study reveal kallikrein-6 enhances communicating hydrocephalus. Clin Proteomics 2021; 18:30. [PMID: 34915845 PMCID: PMC8903716 DOI: 10.1186/s12014-021-09335-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/07/2021] [Indexed: 01/22/2023] Open
Abstract
Background Communicating hydrocephalus (CH) is a common neurological disorder caused by a blockage of cerebrospinal fluid. In this study, we aimed to explore the potential molecular mechanism underlying CH development. Methods Quantitative proteomic analysis was performed to screen the differentially expressed proteins (DEPs) between patients with and without CH. A CH rat model was verified by Hoechst staining, and the co-localization of the target protein and neuron was detected using immunofluorescence staining. Loss-of-function experiments were performed to examine the effect of KLK6 on the synapse structure. Results A total of 11 DEPs were identified, and kallikrein 6 (KLK6) expression was found to be significantly upregulated in patients with CH compared with that in patients without CH. The CH rat model was successfully constructed, and KLK6 was found to be co-localized with neuronal nuclei in brain tissue. The expression level of IL-1β, TNF-α, and KLK6 in the CH group was higher than that in the control group. After knockdown of KLK6 expression using small-interfering RNA (siRNA), the expression levels of synapsin-1 and PSD95 in neuronal cells were increased, and the length, number, and structure of synapses were significantly improved. Following siRNA interference KLK6 expression, 5681 differentially expressed genes (DEGs) were identified in transcriptome profile. The upregulated DEGs of Appl2, Nav2, and Nrn1 may be involved in the recovery of synaptic structures after the interference of KLK6 expression. Conclusions Collectively, KLK6 participates in the development of CH and might provide a new target for CH treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12014-021-09335-9.
Collapse
Affiliation(s)
- Lei Yuan
- Department of Neurosurgery, The Affiliated Sixth People's Hospital, Shanghai Jiaotong University, NO. 600 Yishan Road, Shanghai, 200233, China
| | - Dongdong Zou
- Department of Neurosurgery, The Affiliated Sixth People's Hospital, Shanghai Jiaotong University, NO. 600 Yishan Road, Shanghai, 200233, China
| | - Xia Yang
- Department of Neurosurgery, The Affiliated Sixth People's Hospital, Shanghai Jiaotong University, NO. 600 Yishan Road, Shanghai, 200233, China
| | - Xin Chen
- Department of Neurosurgery, The Affiliated Sixth People's Hospital, Shanghai Jiaotong University, NO. 600 Yishan Road, Shanghai, 200233, China.
| | - Youming Lu
- Department of Neurosurgery, The Affiliated Sixth People's Hospital, Shanghai Jiaotong University, NO. 600 Yishan Road, Shanghai, 200233, China
| | - Aijun Zhang
- Department of Neurosurgery, The Affiliated Sixth People's Hospital, Shanghai Jiaotong University, NO. 600 Yishan Road, Shanghai, 200233, China
| | - Pengqi Zhang
- Department of Neurosurgery, The Affiliated Sixth People's Hospital, Shanghai Jiaotong University, NO. 600 Yishan Road, Shanghai, 200233, China
| | - Fance Wei
- Department of Neurosurgery, The Affiliated Sixth People's Hospital, Shanghai Jiaotong University, NO. 600 Yishan Road, Shanghai, 200233, China
| |
Collapse
|
11
|
Sun T, Cui W, Yang J, Yuan Y, Li X, Yu H, Zhou Y, You C, Guan J. Shunting outcomes in communicating hydrocephalus: protocol for a multicentre, open-label, randomised controlled trial. BMJ Open 2021; 11:e051127. [PMID: 34446499 PMCID: PMC8395273 DOI: 10.1136/bmjopen-2021-051127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/17/2021] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION Ventriculoperitoneal shunt (VPS) remains the most widely used methods to treat communicating hydrocephalus. More recently, lumboperitoneal shunt (LPS) has been suggested as a reasonable option in some studies. However, there is lack of high-quality studies comparing these two techniques in order to certain the benefits and harms to use one of these two methods. The purpose of the current study is to determine the effectiveness and safety of the LPS versus the VPS in patients with communicating hydrocephalus. METHODS AND ANALYSIS All eligible patients aged 18-90 years with communicating hydrocephalus will be recruited and then randomly allocated into LPS or VPS group in a ratio of 1:1. All patients will be analysed before shunt insertion, at the time of discharge, 1 month, 6 months, 12 months and 24 months postoperatively. The primary outcome measure is the rate of shunt failure at a 2-year follow-up term. The secondary outcomes include Keifer's Hydrocephalus Scale, National Institute of Health Stroke Scale, Glasgow Outcome Scale Extended, Evans index, safety endpoints and cost-effectiveness of hospital stay. ETHICS AND DISSEMINATION The study will be performed in compliance with the Declaration of Helsinki (2002) of the World Medical Association. The study was approved by Institutional Review Board of West China Hospital. All patients will be fully informed the potential benefits, potential risks and responsibilities, those who will sign the informed consents once they are included. Preliminary and final results will be published in peer-reviewed journals and presented at national and international congresses. TRIAL REGISTRATION NUMBER ChiCTR2100043839.
Collapse
Affiliation(s)
- Tong Sun
- Department of Neurosurgery, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Wenyao Cui
- Department of Neurosurgery, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Jingguo Yang
- Department of Neurosurgery, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Yikai Yuan
- Department of Neurosurgery, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Xuepei Li
- Medical Simulation Center, Chengdu First People's Hospital, Chengdu, Sichuan, China
| | - Hang Yu
- Department of Neurology, Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Yicheng Zhou
- Department of Neurosurgery, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Chao You
- Department of Neurosurgery, Sichuan University West China Hospital, Chengdu, Sichuan, China
- Neurosurgery Research Laboratory, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Junwen Guan
- Department of Neurosurgery, Sichuan University West China Hospital, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Hao X, Wei D. The risk factors of shunt-dependent hydrocephalus after subarachnoid space hemorrhage of intracranial aneurysms. Medicine (Baltimore) 2019; 98:e15970. [PMID: 31277089 PMCID: PMC6635240 DOI: 10.1097/md.0000000000015970] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 05/06/2019] [Accepted: 05/13/2019] [Indexed: 10/26/2022] Open
Abstract
Shunt-dependent hydrocephalus is a common complication of aneurysmal subarachnoid hemorrhage (aSAH) which indicated intensive care unit stay and unfavorable outcome. Our aim is to study the risk factors of shunt-dependent hydrocephalus after aneurysmal subarachnoid space hemorrhage. Patients with intracranial aneurysms treated in our department from January 2014 to October 2018 were included in the study. Patients' age, gender, history of hypertension and diabetes, location of aneurysms, Glasgow coma scale (GCS) score, Hunt-Hess grading, intraventricular hemorrhage, therapeutic option, shunt placement, clinical outcome, length of stay were analyzed. The follow-up period was 1 to 5 years. Statistics included Chi-squared, Student t test, 1-way analysis of variance, Pearson correlation coefficient, and multivariate logistic regression. About 845 cases with intracranial aneurysms treated in our department were included in the study. The mean age was 52.19 ± 9.51 years and the sex ratio was 317/528. About 14.3% (121/845) of the patients developed shunt-dependent hydrocephalus in the follow-up period. According to our results, older than 60, Hunt-Hess grading, GCS, coma, posterior circulation aneurysm, external ventricular drainage, and decompress craniotomy were risk factors of shunt dependency (P < .05). Moreover, older than 60, GCS 3 to 8, Hunt-Hess 3 to 5, and posterior circulation aneurysm were the independent risk factors of shunt dependency. Moreover, shunt dependency was related to longer hospital stay and unfavorable outcome (P < .05). In conclusion, patients older than 60, GCS 3 to 8, Hunt-Hess 3 to 5, and posterior circulation aneurysm need more strict observation and longer follow-up. Timely and appropriate treatment may benefit patients in recovery, while further exploration is still needed in the future.
Collapse
Affiliation(s)
- Xu Hao
- Department of Neurosurgery, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui
| | - Ding Wei
- Department of Neurosurgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Park B, Hong SC, Park SW, Yi CS, Ha YK, Choi DJ. Herbal medicine for hemorrhage-related hydrocephalus: A systematic review of randomised controlled trials. Complement Ther Med 2018; 39:146-153. [DOI: 10.1016/j.ctim.2018.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/27/2018] [Accepted: 06/07/2018] [Indexed: 01/14/2023] Open
|
14
|
Masoudi MS, Rasafian M, Naghmehsanj Z, Ghaffarpasand F. Intraperitoneal cerebrospinal fluid pseudocyst with ventriculoperitoneal shunt. Afr J Paediatr Surg 2017; 14:56-58. [PMID: 29557353 PMCID: PMC5881288 DOI: 10.4103/ajps.ajps_94_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Ventriculoperitoneal (VP) shunting is mostly used in the treatment of hydrocephalus and many complications have been reported with this method. Abdominal Pseudocyst (APC) are relatively uncommon but important complications in patients with VP shunts. We herein report the case of a 9-year-old boy with VP shunt who presented with abdominal distension, abdominal pain, malaise, and decrease of appetite. Abdominal pelvic computed tomography confirmed a diagnosis of APC. Laparotomy was done and VP shunt was placed into the other side of peritoneal cavity again. Also here, etiology, presentation, diagnosis, and treatment of APC were reviewed.
Collapse
Affiliation(s)
| | - Marziye Rasafian
- Department of Neurosurgery, AJA University of Medical Sciences, Tehran, Iran
| | - Zahra Naghmehsanj
- Department of Neurosurgery, AJA University of Medical Sciences, Tehran, Iran
| | - Fariborz Ghaffarpasand
- Department of Neurosurgery, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|