1
|
Xie O, Davies MR, Tong SYC. Streptococcus dysgalactiae subsp. equisimilis infection and its intersection with Streptococcus pyogenes. Clin Microbiol Rev 2024; 37:e0017523. [PMID: 38856686 PMCID: PMC11392527 DOI: 10.1128/cmr.00175-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
SUMMARYStreptococcus dysgalactiae subsp. equisimilis (SDSE) is an increasingly recognized cause of disease in humans. Disease manifestations range from non-invasive superficial skin and soft tissue infections to life-threatening streptococcal toxic shock syndrome and necrotizing fasciitis. Invasive disease is usually associated with co-morbidities, immunosuppression, and advancing age. The crude incidence of invasive disease approaches that of the closely related pathogen, Streptococcus pyogenes. Genomic epidemiology using whole-genome sequencing has revealed important insights into global SDSE population dynamics including emerging lineages and spread of anti-microbial resistance. It has also complemented observations of overlapping pathobiology between SDSE and S. pyogenes, including shared virulence factors and mobile gene content, potentially underlying shared pathogen phenotypes. This review provides an overview of the clinical and genomic epidemiology, disease manifestations, treatment, and virulence determinants of human infections with SDSE with a particular focus on its overlap with S. pyogenes. In doing so, we highlight the importance of understanding the overlap of SDSE and S. pyogenes to inform surveillance and disease control strategies.
Collapse
Affiliation(s)
- Ouli Xie
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Monash Infectious Diseases, Monash Health, Melbourne, Australia
| | - Mark R Davies
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Steven Y C Tong
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Victorian Infectious Disease Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
2
|
Armitage EP, Keeley AJ, de Crombrugghe G, Senghore E, Camara FE, Jammeh M, Bittaye A, Ceesay H, Ceesay I, Samateh B, Manneh M, Sesay AK, Kampmann B, Kucharski A, de Silva TI, Marks M. Streptococcus pyogenes carriage acquisition, persistence and transmission dynamics within households in The Gambia (SpyCATS): protocol for a longitudinal household cohort study. Wellcome Open Res 2023; 8:41. [PMID: 37954923 PMCID: PMC10638483 DOI: 10.12688/wellcomeopenres.18716.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2023] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND Streptococcus pyogenes (StrepA) causes a significant burden of disease globally from superficial infections to invasive disease. It is responsible for over 500,000 deaths each year, predominantly in low- and middle-income countries (LMIC). Superficial StrepA infections of the skin and pharynx can lead to rheumatic heart disease, the largest cause of StrepA-related deaths in LMIC. StrepA can also asymptomatically colonise normal skin and the pharynx (carriage), potentially increasing infection risk. Streptococcus dysgalactiae subsp. equisimilis (SDSE) carriage is also common in LMIC and may interact with StrepA. This study aims to investigate StrepA and SDSE carriage and infection epidemiology, transmission dynamics and naturally acquired immunity within households in The Gambia. METHODS A longitudinal household observational cohort study will be conducted over one year. 45 households will be recruited from the urban area of Sukuta, The Gambia, resulting in approximately 450 participants. Households will be visited monthly, and available participants will undergo oropharyngeal and normal skin swabbing. Incident cases of pharyngitis and pyoderma will be captured via active case reporting, with swabs taken from disease sites. Swabs will be cultured for the presence of group A, C and G beta-haemolytic streptococci. Isolates will undergo whole genome sequencing. At each visit, clinical, socio-demographic and social mixing data will be collected. Blood serum will be collected at baseline and final visit. Oral fluid and dried blood spot samples will be collected at each visit. Mucosal and serum anti-StrepA antibody responses will be measured. OUTCOME This study will report StrepA and SDSE clinical epidemiology, risk factors, transmission dynamics, and serological responses to carriage and infection. Detailed social mixing behaviour will be combined with phylogenetic relatedness to model the extent of transmission occurring withing and between households. The study will provide data to help meet global strategic StrepA research goals.
Collapse
Affiliation(s)
- Edwin P. Armitage
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Alex J. Keeley
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Gabrielle de Crombrugghe
- Molecular Bacteriology Laboratory, Faculty of Medicine, Free University of Brussels, Brussels, Belgium
| | - Elina Senghore
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Fatoumatta E. Camara
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Musukoi Jammeh
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Amat Bittaye
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Haddy Ceesay
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Isatou Ceesay
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Bunja Samateh
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Muhammed Manneh
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Abdul Karim Sesay
- Genomics Strategic Core Platform, Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Beate Kampmann
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Adam Kucharski
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Thushan I. de Silva
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
- The Florey Institute and Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, S10 2TN, UK
| | - Michael Marks
- Division of Infection and Immunity, University College London, London, WC1E 6BT, UK
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
- Hospital for Tropical Diseases, University College London Hospital, London, NW1 2BU, UK
| | - MRCG StrepA Study Group
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
- Molecular Bacteriology Laboratory, Faculty of Medicine, Free University of Brussels, Brussels, Belgium
- Genomics Strategic Core Platform, Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
- The Florey Institute and Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, S10 2TN, UK
- Division of Infection and Immunity, University College London, London, WC1E 6BT, UK
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
- Hospital for Tropical Diseases, University College London Hospital, London, NW1 2BU, UK
| |
Collapse
|
3
|
Alhaddad AJ, Aljaroodi S, Alkhasawneh OM, Dibo R, Alturki SA, Aljamaan KA, Wanni NH, Alnimr AM, Aldossary RA, Aljindan RY, Alkharsah KR. Diagnosis of group A streptococcal pharyngitis in the paediatric emergency department using a fluorescence-based RADT: predicted impact on antibiotic prescription. J Med Microbiol 2023; 72. [PMID: 36763078 DOI: 10.1099/jmm.0.001624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Introduction. Using rapid antigen diagnostic tests (RADTs) in clinical practice has shown excellent specificity but often has diminished sensitivity.Gap Statement. Local data for evaluating the diagnostic performance of a new fluorescence-based RADT and its influence on the antibiotic prescription rate are not available.Aim. To evaluate the accuracy of fluorescent immunoassay (FIA)-RADTs for diagnosing group A streptococcal (GAS) pharyngitis among children and its estimated effect as a point of care test (POCT) on the antibiotic prescription rate at the paediatric emergency department.Methodology. A prospective study was conducted, comprising children 3 to 14 years old presenting with pharyngitis. Throat swab culture and FIA-RADTs were performed on all samples. Conventional PCR was performed on the discordant samples.Results. A total of 246 children were included in this study. The sensitivity, specificity, and positive and negative predictive values of the FIA-RADT, based on culture results and PCR detection combined, were 95.6, 96.8, 94.6 and 97.4 %, respectively. Antibiotics have been prescribed to 162 (65.9 %) children; however, if FIA-RADTs had been added in the clinical practice as a POCT, only 92 (37.4 %) children would have received antibiotics in total. Additionally, implementation of FIA-RADTs would significantly reduce the antibiotic prescription rate from 48.8 and 60.6 % to 9.5 and 31.9 % among patients with clinical scores of 2 and 3, respectively.Conclusion. The new FIA-RADT is simple, prompt and reliable. It is helpful in clinical settings and may be used to reduce antibiotic overprescription, especially for children who have a low risk for GAS pharyngitis, according to the clinical score.
Collapse
Affiliation(s)
- Ali J Alhaddad
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Saudi Arabia
| | - Salma Aljaroodi
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Saudi Arabia
| | - Omar M Alkhasawneh
- Microbiology Laboratory, Medical Laboratory Department, King Fahd Hospital of the University, Al Khobar, Saudi Arabia
| | - Randa Dibo
- Pediatrics Department, King Fahd Hospital of the University, Al Khobar, Saudi Arabia
| | - Shams A Alturki
- Pediatrics Department, College of Medicine, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Saudi Arabia
| | - Khalid A Aljamaan
- Pediatrics Department, King Fahd Hospital of the University, Al Khobar, Saudi Arabia
| | - Nahid H Wanni
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Saudi Arabia
| | - Amani M Alnimr
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Saudi Arabia
| | - Reem A Aldossary
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Saudi Arabia
| | - Reem Y Aljindan
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Saudi Arabia
| | - Khaled R Alkharsah
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Saudi Arabia
| |
Collapse
|
4
|
Riu F, Ruda A, Ibba R, Sestito S, Lupinu I, Piras S, Widmalm G, Carta A. Antibiotics and Carbohydrate-Containing Drugs Targeting Bacterial Cell Envelopes: An Overview. Pharmaceuticals (Basel) 2022; 15:942. [PMID: 36015090 PMCID: PMC9414505 DOI: 10.3390/ph15080942] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 02/07/2023] Open
Abstract
Certain bacteria constitute a threat to humans due to their ability to escape host defenses as they easily develop drug resistance. Bacteria are classified into gram-positive and gram-negative according to the composition of the cell membrane structure. Gram-negative bacteria have an additional outer membrane (OM) that is not present in their gram-positive counterpart; the latter instead hold a thicker peptidoglycan (PG) layer. This review covers the main structural and functional properties of cell wall polysaccharides (CWPs) and PG. Drugs targeting CWPs are discussed, both noncarbohydrate-related (β-lactams, fosfomycin, and lipopeptides) and carbohydrate-related (glycopeptides and lipoglycopeptides). Bacterial resistance to these drugs continues to evolve, which calls for novel antibacterial approaches to be developed. The use of carbohydrate-based vaccines as a valid strategy to prevent bacterial infections is also addressed.
Collapse
Affiliation(s)
- Federico Riu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy; (F.R.); (I.L.); (S.P.); (A.C.)
| | - Alessandro Ruda
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden; (A.R.); (G.W.)
| | - Roberta Ibba
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy; (F.R.); (I.L.); (S.P.); (A.C.)
| | - Simona Sestito
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy;
| | - Ilenia Lupinu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy; (F.R.); (I.L.); (S.P.); (A.C.)
| | - Sandra Piras
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy; (F.R.); (I.L.); (S.P.); (A.C.)
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden; (A.R.); (G.W.)
| | - Antonio Carta
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy; (F.R.); (I.L.); (S.P.); (A.C.)
| |
Collapse
|
5
|
King H, Ajay Castro S, Pohane AA, Scholte CM, Fischetti VA, Korotkova N, Nelson DC, Dorfmueller HC. Molecular basis for recognition of the Group A Carbohydrate backbone by the PlyC streptococcal bacteriophage endolysin. Biochem J 2021; 478:2385-2397. [PMID: 34096588 PMCID: PMC8555655 DOI: 10.1042/bcj20210158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/25/2021] [Accepted: 06/07/2021] [Indexed: 11/17/2022]
Abstract
Endolysins are peptidoglycan (PG) hydrolases that function as part of the bacteriophage (phage) lytic system to release progeny phage at the end of a replication cycle. Notably, endolysins alone can produce lysis without phage infection, which offers an attractive alternative to traditional antibiotics. Endolysins from phage that infect Gram-positive bacterial hosts contain at least one enzymatically active domain (EAD) responsible for hydrolysis of PG bonds and a cell wall binding domain (CBD) that binds a cell wall epitope, such as a surface carbohydrate, providing some degree of specificity for the endolysin. Whilst the EADs typically cluster into conserved mechanistic classes with well-defined active sites, relatively little is known about the nature of the CBDs and only a few binding epitopes for CBDs have been elucidated. The major cell wall components of many streptococci are the polysaccharides that contain the polyrhamnose (pRha) backbone modified with species-specific and serotype-specific glycosyl side chains. In this report, using molecular genetics, microscopy, flow cytometry and lytic activity assays, we demonstrate the interaction of PlyCB, the CBD subunit of the streptococcal PlyC endolysin, with the pRha backbone of the cell wall polysaccharides, Group A Carbohydrate (GAC) and serotype c-specific carbohydrate (SCC) expressed by the Group A Streptococcus and Streptococcus mutans, respectively.
Collapse
Affiliation(s)
- Harley King
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, U.S.A
| | - Sowmya Ajay Castro
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, U.K
| | - Amol Arunrao Pohane
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, U.S.A
| | - Cynthia M Scholte
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, U.S.A
| | - Vincent A Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, NY, U.S.A
| | - Natalia Korotkova
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, U.S.A
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, U.S.A
| | - Daniel C Nelson
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, U.S.A
| | - Helge C Dorfmueller
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, U.K
| |
Collapse
|
6
|
Abstract
The development of a vaccine for group A streptococcus (GAS) is of paramount importance given that GAS infections cause more than 500,000 deaths annually across the world. This prospective passive surveillance laboratory study evaluated the potential coverage of the M protein-based vaccine currently under development. While a number of GAS strains isolated from this sub-Sahara African study were included in the current vaccine formulation, we nevertheless report that potential vaccine coverage for GAS infection in our setting was approximately 60%, with four of the most prevalent strains not included. This research emphasizes the need to reformulate the vaccine to improve coverage in areas where the burden of disease is high. Group A streptococcus (GAS) is responsible for a wide range of noninvasive group A streptococcal (non-iGAS) and invasive group A streptococcal (iGAS) infections. Information about the emm type variants of the M protein causing GAS disease is important to assess potential vaccine coverage of a 30-valent vaccine under development, particularly with respect to how they compare and contrast with non-iGAS isolates, especially in regions with a high burden of GAS. We conducted a prospective passive surveillance study of samples from patients attending public health facilities in Cape Town, South Africa. We documented demographic data and clinical presentation. emm typing was conducted using CDC protocols. GAS was commonly isolated from pus swabs, blood, deep tissue, and aspirates. Clinical presentations included wound infections (20%), bacteremia (15%), abscesses (9%), and septic arthritis (8%). Forty-six different emm types were identified, including M76 (16%), M81 (10%), M80 (6%), M43 (6%), and M183 (6%), and the emm types were almost evenly distributed between non-iGAS and iGAS isolates. There was a statistically significant association with M80 in patients presenting with noninvasive abscesses. Compared to the 30-valent vaccine under development, the levels of potential vaccine coverage for non-iGAS and iGAS infection were 60% and 58%, respectively, notably lower than the coverage in developed countries; five of the most prevalent emm types, M76, M81, M80, M43, and M183, were not included. The emm types from GAS isolated from patients with invasive disease did not differ significantly from those from noninvasive disease cases. There is low coverage of the multivalent M protein vaccine in our setting, emphasizing the need to reformulate the vaccine to improve coverage in areas where the burden of disease is high. IMPORTANCE The development of a vaccine for group A streptococcus (GAS) is of paramount importance given that GAS infections cause more than 500,000 deaths annually across the world. This prospective passive surveillance laboratory study evaluated the potential coverage of the M protein-based vaccine currently under development. While a number of GAS strains isolated from this sub-Sahara African study were included in the current vaccine formulation, we nevertheless report that potential vaccine coverage for GAS infection in our setting was approximately 60%, with four of the most prevalent strains not included. This research emphasizes the need to reformulate the vaccine to improve coverage in areas where the burden of disease is high.
Collapse
|
7
|
Ralph AP, Holt DC, Islam S, Osowicki J, Carroll DE, Tong SYC, Bowen AC. Potential for Molecular Testing for Group A Streptococcus to Improve Diagnosis and Management in a High-Risk Population: A Prospective Study. Open Forum Infect Dis 2019; 6:ofz097. [PMID: 31011589 PMCID: PMC6469435 DOI: 10.1093/ofid/ofz097] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/06/2019] [Accepted: 02/24/2019] [Indexed: 02/01/2023] Open
Abstract
Background In high-burden settings, guidelines recommend antibiotic treatment for all suspected group A Streptococcus (GAS) infections to prevent rheumatic fever and poststreptococcal glomerulonephritis. Highly sensitive rapid GAS tests could reduce unnecessary antibiotic use in these settings. Methods This was a prospective study of the Xpert Xpress Strep A (Cepheid) molecular test compared with culture of throat swab samples collected at a referral hospital in northern Australia. Demographic and clinical data and results of streptococcal serology and culture were collected. Results Of 164 throat swab samples, 145 (88%) were eligible for inclusion; 49 (34%) were molecular test positive and 24 (17%) were culture positive for GAS. The sensitivity, specificity, and positive and negative predictive values for the molecular test versus culture were 100.0%, 79.3%, 48.8%, and 100.0%, respectively. Among 25 samples testing positive with the molecular test and negative with culture, group C or G streptococci were cultured in 2, and a plausible clinical explanation, such as pharyngotonsillitis, or rheumatic fever with positive results of streptococcal serology, was apparent in 19 instances. In 25 patients with rheumatic fever or poststreptococcal glomerulonephritis diagnoses, molecular testing nearly trebled the detection of GAS in throat swab samples, from 3 (12%) detected with culture to 8 (32%) detected with molecular testing. Reasons for “false-positive” molecular test results could include the presence of GAS below the threshold of culture detection or persistence of nonviable organisms after infection. Conclusion Implementation of molecular testing could improve antibiotic use in this high-burden setting. The incremental yield in poststreptococcal syndromes, by which time cultures are negative, has high potential in the diagnostic workup of autoimmune poststreptococcal syndromes and warrants further investigation.
Collapse
Affiliation(s)
- Anna P Ralph
- Menzies School of Health Research, Charles Darwin University.,Division of Medicine, Royal Darwin Hospital, Northern Territory
| | - Deborah C Holt
- Menzies School of Health Research, Charles Darwin University
| | - Sharifun Islam
- Menzies School of Health Research, Charles Darwin University
| | - Joshua Osowicki
- Tropical Diseases, Murdoch Children's Research Institute, and Infectious Diseases Unit, Department of General Medicine, Royal Children's Hospital, Melbourne.,Department of Paediatrics, University of Melbourne
| | - David E Carroll
- Division of Medicine, Royal Darwin Hospital, Northern Territory
| | - Steven Y C Tong
- Menzies School of Health Research, Charles Darwin University.,Victorian Infectious Disease Service, Royal Melbourne Hospital, and Doherty Department, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Victoria
| | - Asha C Bowen
- Menzies School of Health Research, Charles Darwin University.,Department of Paediatric Infectious Diseases, Perth Children's Hospital.,Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Perth
| |
Collapse
|
8
|
Mistou MY, Sutcliffe IC, van Sorge NM. Bacterial glycobiology: rhamnose-containing cell wall polysaccharides in Gram-positive bacteria. FEMS Microbiol Rev 2016; 40:464-79. [PMID: 26975195 PMCID: PMC4931226 DOI: 10.1093/femsre/fuw006] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2016] [Indexed: 12/21/2022] Open
Abstract
The composition of the Gram-positive cell wall is typically described as containing peptidoglycan, proteins and essential secondary cell wall structures called teichoic acids, which comprise approximately half of the cell wall mass. The cell walls of many species within the genera Streptococcus, Enterococcus and Lactococcus contain large amounts of the sugar rhamnose, which is incorporated in cell wall-anchored polysaccharides (CWP) that possibly function as homologues of well-studied wall teichoic acids (WTA). The presence and chemical structure of many rhamnose-containing cell wall polysaccharides (RhaCWP) has sometimes been known for decades. In contrast to WTA, insight into the biosynthesis and functional role of RhaCWP has been lacking. Recent studies in human streptococcal and enterococcal pathogens have highlighted critical roles for these complex polysaccharides in bacterial cell wall architecture and pathogenesis. In this review, we provide an overview of the RhaCWP with regards to their biosynthesis, genetics and biological function in species most relevant to human health. We also briefly discuss how increased knowledge in this field can provide interesting leads for new therapeutic compounds and improve biotechnological applications. This review summarizes new insights into the genetics and function of rhamnose-containing cell wall polysaccharides expressed by lactic acid bacteria, which includes medically important pathogens, and discusses perspectives on possible future therapeutic and biotechnological applications.
Collapse
Affiliation(s)
- Michel-Yves Mistou
- Laboratory for Food Safety, Université Paris-Est, ANSES, F-94701 Maisons-Alfort, France
| | - Iain C Sutcliffe
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Nina M van Sorge
- Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
9
|
Yatsyshina S, Renteeva A, Deviatkin A, Vorobyeva N, Minenko A, Valdokhina A, Elkina M, Kuleshov K, Shipulin G. Molecular genetic analysis of the Influenza A(H1N1)pdm09 virus from lethal and recovered cases in Russia from 2009 to 2014: Deletions in the nucleoprotein. INFECTION GENETICS AND EVOLUTION 2015; 34:160-72. [PMID: 26190451 DOI: 10.1016/j.meegid.2015.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/15/2015] [Accepted: 07/16/2015] [Indexed: 10/23/2022]
Abstract
Influenza A(H1N1)pdm09 virus caused about 2000 laboratory confirmed lethal cases in Russia during 2009-2010 and 1302, 135 and 29 cases in the 2010-2011, 2012-2013 and 2013-2014 seasons respectively. The on average short duration (7.8±5 days) of lethal cases of Influenza A(H1N1)pdm09 infections in Russia suggests primary viral rather than secondary bacterial pneumonia. Hemorrhagic syndrome was recorded in 36.6% of patients. An examination of 221 lung samples from lethal influenza cases for the presence of bacterial DNA that could cause pneumonia did not reveal bacterial superinfections in 86% of cases. Molecular-genetic analyses of Influenza A(H1N1)pdm09 viruses from lethal and recovered cases were performed. Amino acids G and N at position 222 of the influenza virus hemagglutinin, which increase the affinity for the lower respiratory tract receptors, were detected more often in the lungs of patients who died than in respiratory swabs collected from recovered patients (p<0.0001 and p=0.007). Viruses harboring various mutations (222D/G/N/S) was significantly associated with lung samples compared with respiratory swabs from recovered patients (p<0.0001). Amino acid 222E, which increases the affinity for upper respiratory tract receptors, was found more frequently in recovered patients than in patients with lethal disease (27% versus 3%, p=0.005). Phylogenetic analysis identified an isolated cluster of viruses in the 2009-2010 season that harbored amino acid 222E, which could explain the high transmissibility of the virus at the beginning of the pandemic. Bayesian skyline plot implied a decline in the effective population size of Influenza A(H1N1)pdm09 viruses in Russia from 2010-2011 to 2011-2012, followed by an increase in 2012-2013; this trend was accompanied by the increased genetic diversity of the hemagglutinin antigenic sites. Mutations of viral RNA leading to oseltamivir resistance were found in 2.8% of tested patients during only 2010-2011 season. Deletions in the nucleoprotein cDNA were found in influenza viruses from two patients.
Collapse
Affiliation(s)
- Svetlana Yatsyshina
- The Central Research Institute for Epidemiology of Rospotrebnadzor (CRIE), Department of Molecular Diagnostics and Epidemiology, 3A Novogireyevskaya Str., Moscow 111123, Russian Federation.
| | - Anna Renteeva
- The Central Research Institute for Epidemiology of Rospotrebnadzor (CRIE), Department of Molecular Diagnostics and Epidemiology, 3A Novogireyevskaya Str., Moscow 111123, Russian Federation.
| | - Andrei Deviatkin
- The Central Research Institute for Epidemiology of Rospotrebnadzor (CRIE), Department of Molecular Diagnostics and Epidemiology, 3A Novogireyevskaya Str., Moscow 111123, Russian Federation.
| | - Nadezhda Vorobyeva
- The Central Research Institute for Epidemiology of Rospotrebnadzor (CRIE), Department of Molecular Diagnostics and Epidemiology, 3A Novogireyevskaya Str., Moscow 111123, Russian Federation.
| | - Angrey Minenko
- The Central Research Institute for Epidemiology of Rospotrebnadzor (CRIE), Department of Molecular Diagnostics and Epidemiology, 3A Novogireyevskaya Str., Moscow 111123, Russian Federation.
| | - Anna Valdokhina
- The Central Research Institute for Epidemiology of Rospotrebnadzor (CRIE), Department of Molecular Diagnostics and Epidemiology, 3A Novogireyevskaya Str., Moscow 111123, Russian Federation.
| | - Mariya Elkina
- The Central Research Institute for Epidemiology of Rospotrebnadzor (CRIE), Department of Molecular Diagnostics and Epidemiology, 3A Novogireyevskaya Str., Moscow 111123, Russian Federation.
| | - Konstantin Kuleshov
- The Central Research Institute for Epidemiology of Rospotrebnadzor (CRIE), Department of Molecular Diagnostics and Epidemiology, 3A Novogireyevskaya Str., Moscow 111123, Russian Federation.
| | - German Shipulin
- The Central Research Institute for Epidemiology of Rospotrebnadzor (CRIE), Department of Molecular Diagnostics and Epidemiology, 3A Novogireyevskaya Str., Moscow 111123, Russian Federation.
| |
Collapse
|
10
|
van Sorge NM, Cole JN, Kuipers K, Henningham A, Aziz RK, Kasirer-Friede A, Lin L, Berends ETM, Davies MR, Dougan G, Zhang F, Dahesh S, Shaw L, Gin J, Cunningham M, Merriman JA, Hütter J, Lepenies B, Rooijakkers SHM, Malley R, Walker MJ, Shattil SJ, Schlievert PM, Choudhury B, Nizet V. The classical lancefield antigen of group a Streptococcus is a virulence determinant with implications for vaccine design. Cell Host Microbe 2015; 15:729-740. [PMID: 24922575 DOI: 10.1016/j.chom.2014.05.009] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 04/15/2014] [Accepted: 04/29/2014] [Indexed: 12/19/2022]
Abstract
Group A Streptococcus (GAS) is a leading cause of infection-related mortality in humans. All GAS serotypes express the Lancefield group A carbohydrate (GAC), comprising a polyrhamnose backbone with an immunodominant N-acetylglucosamine (GlcNAc) side chain, which is the basis of rapid diagnostic tests. No biological function has been attributed to this conserved antigen. Here we identify and characterize the GAC biosynthesis genes, gacA through gacL. An isogenic mutant of the glycosyltransferase gacI, which is defective for GlcNAc side-chain addition, is attenuated for virulence in two infection models, in association with increased sensitivity to neutrophil killing, platelet-derived antimicrobials in serum, and the cathelicidin antimicrobial peptide LL-37. Antibodies to GAC lacking the GlcNAc side chain and containing only polyrhamnose promoted opsonophagocytic killing of multiple GAS serotypes and protected against systemic GAS challenge after passive immunization. Thus, the Lancefield antigen plays a functional role in GAS pathogenesis, and a deeper understanding of this unique polysaccharide has implications for vaccine development.
Collapse
Affiliation(s)
- Nina M van Sorge
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA.,Medical Microbiology, University Medical Center Utrecht,3584 CX Utrecht, The Netherlands
| | - Jason N Cole
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA.,Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland,QLD 4072, Australia
| | - Kirsten Kuipers
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Anna Henningham
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Ramy K Aziz
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA.,Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University,11562 Cairo, Egypt
| | - Ana Kasirer-Friede
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Leo Lin
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Evelien T M Berends
- Medical Microbiology, University Medical Center Utrecht,3584 CX Utrecht, The Netherlands
| | - Mark R Davies
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland,QLD 4072, Australia.,The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, CB10 1SA,United Kingdom
| | - Gordon Dougan
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, CB10 1SA,United Kingdom
| | - Fan Zhang
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA 02115, USA
| | - Samira Dahesh
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Laura Shaw
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Jennifer Gin
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Madeleine Cunningham
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Joseph A Merriman
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Julia Hütter
- Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, 14476 Potsdam, Germany.,Freie Universität Berlin, Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, 14195 Berlin, Germany
| | - Bernd Lepenies
- Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, 14476 Potsdam, Germany.,Freie Universität Berlin, Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, 14195 Berlin, Germany
| | - Suzan H M Rooijakkers
- Medical Microbiology, University Medical Center Utrecht,3584 CX Utrecht, The Netherlands
| | - Richard Malley
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA 02115, USA
| | - Mark J Walker
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland,QLD 4072, Australia
| | - Sanford J Shattil
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Patrick M Schlievert
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Biswa Choudhury
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Victor Nizet
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA.,Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
11
|
Dunne EM, Marshall JL, Baker CA, Manning J, Gonis G, Danchin MH, Smeesters PR, Satzke C, Steer AC. Detection of group a streptococcal pharyngitis by quantitative PCR. BMC Infect Dis 2013; 13:312. [PMID: 23844865 PMCID: PMC3711935 DOI: 10.1186/1471-2334-13-312] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 06/25/2013] [Indexed: 11/30/2022] Open
Abstract
Background Group A streptococcus (GAS) is the most common bacterial cause of sore throat. School-age children bear the highest burden of GAS pharyngitis. Accurate diagnosis is difficult: the majority of sore throats are viral in origin, culture-based identification of GAS requires 24–48 hours, and up to 15% of children are asymptomatic throat carriers of GAS. The aim of this study was to develop a quantitative polymerase chain reaction (qPCR) assay for detecting GAS pharyngitis and assess its suitability for clinical diagnosis. Methods Pharyngeal swabs were collected from children aged 3–18 years (n = 91) and adults (n = 36) located in the Melbourne area who presented with sore throat. Six candidate PCR assays were screened using a panel of reference isolates, and two of these assays, targeting speB and spy1258, were developed into qPCR assays. The qPCR assays were compared to standard culture-based methods for their ability to detect GAS pharyngitis. GAS isolates from culture positive swabs underwent emm-typing. Clinical data were used to calculate McIsaac scores as an indicator of disease severity. Results Twenty-four of the 127 samples (18.9%) were culture-positive for GAS, and all were in children (26%). The speB qPCR had 100% sensitivity and 100% specificity compared with gold-standard culture, whereas the spy1258 qPCR had 87% sensitivity and 100% specificity. Nine different emm types were found, of which emm 89, 3, and 28 were most common. Bacterial load as measured by qPCR correlated with culture load. There were no associations between symptom severity as indicated by McIsaac scores and GAS bacterial load. Conclusions The speB qPCR displayed high sensitivity and specificity and may be a useful tool for GAS pharyngitis diagnosis and research.
Collapse
Affiliation(s)
- Eileen M Dunne
- Pneumococcal Research, Murdoch Childrens Research Institute, Parkville, VIC, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Bille E, Dauphin B, Leto J, Bougnoux ME, Beretti JL, Lotz A, Suarez S, Meyer J, Join-Lambert O, Descamps P, Grall N, Mory F, Dubreuil L, Berche P, Nassif X, Ferroni A. MALDI-TOF MS Andromas strategy for the routine identification of bacteria, mycobacteria, yeasts, Aspergillus spp. and positive blood cultures. Clin Microbiol Infect 2011; 18:1117-25. [PMID: 22044600 DOI: 10.1111/j.1469-0691.2011.03688.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
All organisms usually isolated in our laboratory are now routinely identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) using the Andromas software. The aim of this study was to describe the use of this strategy in a routine clinical microbiology laboratory. The microorganisms identified included bacteria, mycobacteria, yeasts and Aspergillus spp. isolated on solid media or extracted directly from blood cultures. MALDI-TOF MS was performed on 2665 bacteria isolated on solid media, corresponding to all bacteria isolated during this period except Escherichia coli grown on chromogenic media. All acquisitions were performed without extraction. After a single acquisition, 93.1% of bacteria grown on solid media were correctly identified. When the first acquisition was not contributory, a second acquisition was performed either the same day or the next day. After two acquisitions, the rate of bacteria identified increased to 99.2%. The failures reported on 21 strains were due to an unknown profile attributed to new species (9) or an insufficient quality of the spectrum (12). MALDI-TOF MS has been applied to 162 positive blood cultures. The identification rate was 91.4%. All mycobacteria isolated during this period (22) were correctly identified by MALDI-TOF MS without any extraction. For 96.3% and 92.2% of yeasts and Aspergillus spp., respectively, the identification was obtained with a single acquisition. After a second acquisition, the overall identification rate was 98.8% for yeasts (160/162) and 98.4% (63/64) for Aspergillus spp. In conclusion, the MALDI-TOF MS strategy used in this work allows a rapid and efficient identification of all microorganisms isolated routinely.
Collapse
Affiliation(s)
- E Bille
- Assistance Publique-Hôpitaux de Paris, Laboratoire de Microbiologie, Hôpital Necker-Enfants Malades, 149 rue de Sèvres, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
McMillan DJ, Kaul SY, Bramhachari PV, Smeesters PR, Vu T, Karmarkar MG, Shaila MS, Sriprakash KS. Recombination drives genetic diversification of Streptococcus dysgalactiae subspecies equisimilis in a region of streptococcal endemicity. PLoS One 2011; 6:e21346. [PMID: 21857905 PMCID: PMC3153926 DOI: 10.1371/journal.pone.0021346] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 05/29/2011] [Indexed: 12/02/2022] Open
Abstract
Infection of the skin or throat by Streptococcus dysgalactiae subspecies equisimilis (SDSE) may result in a number of human diseases. To understand mechanisms that give rise to new genetic variants in this species, we used multi-locus sequence typing (MLST) to characterise relationships in the SDSE population from India, a country where streptococcal disease is endemic. The study revealed Indian SDSE isolates have sequence types (STs) predominantly different to those reported from other regions of the world. Emm-ST combinations in India are also largely unique. Split decomposition analysis, the presence of emm-types in unrelated clonal complexes, and analysis of phylogenetic trees based on concatenated sequences all reveal an extensive history of recombination within the population. The ratio of recombination to mutation (r/m) events (11∶1) and per site r/m ratio (41∶1) in this population is twice as high as reported for SDSE from non-endemic regions. Recombination involving the emm-gene is also more frequent than recombination involving housekeeping genes, consistent with diversification of M proteins offering selective advantages to the pathogen. Our data demonstrate that genetic recombination in endemic regions is more frequent than non-endemic regions, and gives rise to novel local SDSE variants, some of which may have increased fitness or pathogenic potential.
Collapse
Affiliation(s)
- David J McMillan
- Bacterial Pathogenesis Laboratory, Queensland Institute of Medical Research, Brisbane, Queensland, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Shimomura Y, Okumura K, Murayama SY, Yagi J, Ubukata K, Kirikae T, Miyoshi-Akiyama T. Complete genome sequencing and analysis of a Lancefield group G Streptococcus dysgalactiae subsp. equisimilis strain causing streptococcal toxic shock syndrome (STSS). BMC Genomics 2011; 12:17. [PMID: 21223537 PMCID: PMC3027156 DOI: 10.1186/1471-2164-12-17] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 01/11/2011] [Indexed: 11/10/2022] Open
Abstract
Background Streptococcus dysgalactiae subsp. equisimilis (SDSE) causes invasive streptococcal infections, including streptococcal toxic shock syndrome (STSS), as does Lancefield group A Streptococcus pyogenes (GAS). We sequenced the entire genome of SDSE strain GGS_124 isolated from a patient with STSS. Results We found that GGS_124 consisted of a circular genome of 2,106,340 bp. Comparative analyses among bacterial genomes indicated that GGS_124 was most closely related to GAS. GGS_124 and GAS, but not other streptococci, shared a number of virulence factor genes, including genes encoding streptolysin O, NADase, and streptokinase A, distantly related to SIC (DRS), suggesting the importance of these factors in the development of invasive disease. GGS_124 contained 3 prophages, with one containing a virulence factor gene for streptodornase. All 3 prophages were significantly similar to GAS prophages that carry virulence factor genes, indicating that these prophages had transferred these genes between pathogens. SDSE was found to contain a gene encoding a superantigen, streptococcal exotoxin type G, but lacked several genes present in GAS that encode virulence factors, such as other superantigens, cysteine protease speB, and hyaluronan synthase operon hasABC. Similar to GGS_124, the SDSE strains contained larger numbers of clustered, regularly interspaced, short palindromic repeats (CRISPR) spacers than did GAS, suggesting that horizontal gene transfer via streptococcal phages between SDSE and GAS is somewhat restricted, although they share phage species. Conclusion Genome wide comparisons of SDSE with GAS indicate that SDSE is closely and quantitatively related to GAS. SDSE, however, lacks several virulence factors of GAS, including superantigens, SPE-B and the hasABC operon. CRISPR spacers may limit the horizontal transfer of phage encoded GAS virulence genes into SDSE. These findings may provide clues for dissecting the pathological roles of the virulence factors in SDSE and GAS that cause STSS.
Collapse
Affiliation(s)
- Yumi Shimomura
- Department of Infectious Diseases, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | | | | | | | | | | | | |
Collapse
|