1
|
Cintrón M, Clark B, Miranda E, Babady NE. Utility of digital images captured after 4 h of incubation on a microbiology laboratory automation system in guiding the work-up of subcultures from positive blood cultures. J Clin Microbiol 2025; 63:e0132024. [PMID: 39704521 PMCID: PMC11837544 DOI: 10.1128/jcm.01320-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/27/2024] [Indexed: 12/21/2024] Open
Abstract
Initial workup [e.g., identification (ID) and/or antimicrobial susceptibility testing (AST)] of bacterial growth on solid media traditionally occurs 16-24 h after sub-culturing of positive blood cultures (BC). Early ID and AST can be facilitated by reviewing digital images captured using a Microbiology Laboratory Automation (MLA) system. The goal of this study was to evaluate the utility of images captured at 4 h on the WASPLab MLA system for rapid bacterial ID and AST. Retrospective review of all positive BCs results between 1 January 2021 and 31 July 2022 was performed. WASPLab App data were extracted to determine the decision (e.g., perform ID and/or AST or re-incubate plates) made from the 4 h image. Culture results were extracted from the laboratory information system (LIS). A total of 6,845 BCs flagged positive during the study period. The 4 h images for 1,476 cultures (21.6%) were reviewed: 1,200 cultures were re-incubated due to insufficient growth and 276 cultures (4.0%) were sent for ID and/or AST. ID by mass spectrometry was in 100% agreement with that of the molecular BC identification panels. Overall categorical agreement between AST results from the 4 h and overnight growth was 98%. The 4 h images for the remaining 5,369 cultures (78.4%) were not available for review during the day shift. Implementing early reading times for BCs on MLA allows for rapid and accurate ID and AST results. However, optimization of the reading schedule to align with the laboratory's operation schedule is key to realizing the full potential of early reading times. IMPORTANCE In recent years, an increasing number of clinical microbiology laboratories have adopted laboratory automation for processing and incubation of specimens submitted for bacterial culture. At our institution, we implemented the Copan WASPLab in 2018 for all cultures, including positive blood cultures. Given that positive blood cultures start with a higher biomass of organisms, the first image capture was set up to occur after 4 h of incubation. In this study, we investigated the utility of this early 4 h image by capturing and calculating the percentage of useful actions taken based on growth identified on the image and the yield of both new identification by MALDI-TOF MS and valid and accurate antimicrobial susceptibility testing (AST) results. We found that while the 4-hour time point provided accurate, early identification and AST results, the overall yield was minimal. From a practical standpoint, this review prompted us to discontinue capture and review of this time point. While our staffing model is likely responsible for this low yield, we hope that our experience would help other laboratories decide how to implement WASPLab workflow for positive blood cultures. Thus, we believe that this information will be of interest to the readers of JCM.
Collapse
Affiliation(s)
- Melvilí Cintrón
- Clinical Microbiology Service, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Brenden Clark
- Clinical Microbiology Service, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Edwin Miranda
- Clinical Microbiology Service, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - N. Esther Babady
- Clinical Microbiology Service, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
2
|
Karadağ D, Ergon MC. Investigation of different methods in rapid microbial identification directly from positive blood culture bottles by MALDI-TOF MS. Microbiol Spectr 2024; 12:e0063824. [PMID: 38940589 PMCID: PMC11302275 DOI: 10.1128/spectrum.00638-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/21/2024] [Indexed: 06/29/2024] Open
Abstract
Many methods are being tried for rapid and accurate identification of sepsis-causing microorganisms. We analyzed the performance of three different preparation methods [MBT Sepsityper IVD Kit (Bruker Daltonics GmbH, Germany), sodium dodecyl sulfate (SDS) lysis, and differential centrifugation with protein extraction (Centrifugation +PE)] and compared in standard and Sepsityper modules of the Bruker Biotyper MALDI-TOF MS for direct identification of bacteria from 240 positive blood culture bottles of BACTEC FX (Becton Dickinson, USA). By using the standard module, correct identification at species level (score ≥2) was done in 46.7% of the samples with SDS lysis, 44.2% with centrifugation +PE, and 25.4% with the Sepsityper kit. These ratios at the genus level (score range 1.70-1.99) were 34.6%, 31.3%, and 32.5%, respectively. With SDS lysis (195), more bacteria were identified correctly than centrifugation +PE (181) and the Sepsityper kit (139). A statistically significant difference was found between SDS and the Sepsityper kit and Centrifugation +PE and the Sepsityper kit (P < 0.001, both). By using the Sepsityper module, correct identification at species level (score ≥1.8) was determined in 74.2% of the samples with SDS lysis and centrifugation +PE each and 55% with the Sepsityper kit. These ratios at the genus level (score range 1.60-1.79) were 16.3%, 10%, and 19.2%, respectively. SDS lysis (217) had significantly higher identification rates than centrifugation +PE (202) and the Sepsityper kit (178) (P = 0.028 and P < 0.001). A statistically significant difference was also observed between centrifugation +PE and the Sepsityper kit (P < 0.001). Best performance was obtained with SDS lysis among the methods. Although better performance was achieved by using Sepsityper software module, risk of misidentification should not be ignored. IMPORTANCE Sepsis is a life-threatening condition, and rapid and accurate identification of the causative microorganisms from blood cultures is crucial for timely and effective treatment. Although there are many studies on direct identification from blood cultures with MALDI-TOF MS, further standardization is still needed. In our study, we analyzed the performance of three different preparation methods and compared by using two analysis modules of the Bruker Biotyper MALDI-TOF MS for direct identification of bacteria from numerous positive blood culture bottles. The literature reports a limited number of studies that compare different preparation methods for direct blood culture identification, processing a large number of blood samples concurrently and evaluating the same samples as in our study. Moreover, although SDS is used very frequently in medical laboratories, there are few studies on direct identification from blood culture bottles. In our study, the highest correct identification rate was observed with the SDS method.
Collapse
Affiliation(s)
- Dilan Karadağ
- Department of Medical Microbiology, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
- IMD Labor Oderland, Frankfurt (Oder), Germany
| | - Mahmut Cem Ergon
- Department of Medical Microbiology, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| |
Collapse
|
3
|
Ali J, Johansen W, Ahmad R. Short turnaround time of seven to nine hours from sample collection until informed decision for sepsis treatment using nanopore sequencing. Sci Rep 2024; 14:6534. [PMID: 38503770 PMCID: PMC10951244 DOI: 10.1038/s41598-024-55635-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/26/2024] [Indexed: 03/21/2024] Open
Abstract
Bloodstream infections (BSIs) and sepsis are major health problems, annually claiming millions of lives. Traditional blood culture techniques, employed to identify sepsis-causing pathogens and assess antibiotic susceptibility, usually take 2-4 days. Early and accurate antibiotic prescription is vital in sepsis to mitigate mortality and antibiotic resistance. This study aimed to reduce the wait time for sepsis diagnosis by employing shorter blood culture incubation times for BD BACTEC™ bottles using standard laboratory incubators, followed by real-time nanopore sequencing and data analysis. The method was tested on nine blood samples spiked with clinical isolates from the six most prevalent sepsis-causing pathogens. The results showed that pathogen identification was possible at as low as 102-104 CFU/mL, achieved after just 2 h of incubation and within 40 min of nanopore sequencing. Moreover, all the antimicrobial resistance genes were identified at 103-107 CFU/mL, achieved after incubation for 5 h and only 10 min to 3 h of sequencing. Therefore, the total turnaround time from sample collection to the information required for an informed decision on the right antibiotic treatment was between 7 and 9 h. These results hold significant promise for better clinical management of sepsis compared with current culture-based methods.
Collapse
Affiliation(s)
- Jawad Ali
- Department of Biotechnology, Inland Norway University of Applied Sciences, Holsetgata 22, 2317, Hamar, Norway
| | - Wenche Johansen
- Department of Biotechnology, Inland Norway University of Applied Sciences, Holsetgata 22, 2317, Hamar, Norway
| | - Rafi Ahmad
- Department of Biotechnology, Inland Norway University of Applied Sciences, Holsetgata 22, 2317, Hamar, Norway.
- Institute of Clinical Medicine, Faculty of Health Sciences, UiT - The Arctic University of Norway, Hansine Hansens Veg 18, 9019, Tromsø, Norway.
| |
Collapse
|
4
|
Domashenko P, Foukarakis G, Kenanidis E, Tsiridis E. A Rare Case of Staphylococcus caprae-Caused Periprosthetic Joint Infection Following Total Hip Arthroplasty: A Literature Review and Antibiotic Treatment Algorithm Suggestion. Cureus 2023; 15:e39471. [PMID: 37362469 PMCID: PMC10290422 DOI: 10.7759/cureus.39471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
In this study, we discuss a case of a 59-year-old male who developed a periprosthetic joint infection (PJI) three months after a total hip arthroplasty (THA). The patient complained of groin and buttock pain, swelling, and high temperature. A palpable fluid collection, discomfort, edema, and elevated local temperature were present in the clinical examination. Laboratory analysis revealed elevated white blood cells, erythrocyte sedimentation rate (ESR), and C-reactive protein (CRP). The preoperative joint aspiration came up positive for Staphylococcus caprae (S. caprae) infection. Diagnosis and pathogen identification were confirmed by histological examination of six tissue samples obtained during surgery. We initially performed early debridement, antibiotics, and implant retention (DAIR) followed by antibiotic therapy suggested by an infectious disease specialist. DAIR failed two months later, and we proceeded to a two-stage revision. Following surgery, the patient was treated with intravenous antibiotic combination therapy for three weeks and thereafter with oral antibiotics for three months. Four months down the line, the patient is free of symptoms, and the inflammatory markers are normal. Finally, we will proceed with the second stage of revision. This study highlights a very rare case of PJI infection by S. caprae, reviews the limited literature, and provides the available evidence for surgical and antibiotic management.
Collapse
Affiliation(s)
- Philip Domashenko
- Department of Orthopedics, Tsiridis Orthopedic Institute - ICAROS Clinic, Thessaloniki, GRC
- Department of Orthopedics, Centre of Orthopedic and Regenerative Medicine Research (CORE) Center for Interdisciplinary Research and Innovation (CIRI) Aristotle University of Thessaloniki, Thessaloniki, GRC
| | - Georgios Foukarakis
- Department of Orthopedics, Tsiridis Orthopedic Institute - ICAROS Clinic, Thessaloniki, GRC
- Department of Orthopedics, Centre of Orthopedic and Regenerative Medicine Research (CORE) Center for Interdisciplinary Research and Innovation (CIRI) Aristotle University of Thessaloniki, Thessaloniki, GRC
| | - Eustathios Kenanidis
- Department of Orthopedics, Tsiridis Orthopedic Institute - ICAROS Clinic, Thessaloniki, GRC
- Department of Orthopedics, Centre of Orthopedic and Regenerative Medicine Research (CORE) Center for Interdisciplinary Research and Innovation (CIRI) Aristotle University of Thessaloniki, Thessaloniki, GRC
| | - Eleftherios Tsiridis
- Department of Orthopedics, Tsiridis Orthopedic Institute - ICAROS Clinic, Thessaloniki, GRC
- Department of Orthopedics, Centre of Orthopedic and Regenerative Medicine Research (CORE) Center for Interdisciplinary Research and Innovation (CIRI) Aristotle University of Thessaloniki, Thessaloniki, GRC
| |
Collapse
|
5
|
Zhou C, Li W, Zhao Y, Gu K, Liao Z, Guo B, Huang Z, Yang M, Wei H, Ma P, Li C, Li H, Tang Y, Lei C, Wang H. Sensitive detection of viable salmonella bacteria based on tertiary cascade signal amplification via splintR ligase ligation-PCR amplification-CRISPR/Cas12a cleavage. Anal Chim Acta 2023; 1248:340885. [PMID: 36813454 DOI: 10.1016/j.aca.2023.340885] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 01/04/2023] [Accepted: 01/22/2023] [Indexed: 01/24/2023]
Abstract
Several viable Salmonella bacteria are capable of causing severe human diseases and huge economic losses. In this regard, viable Salmonella bacteria detection techniques that can identify small numbers of microbial cells are highly valuable. Here, we present a detection method (referred to as SPC) based on the amplification of tertiary signals using splintR ligase ligation, PCR amplification and CRISPR/Cas12a cleavage. The detection limit of the SPC assay was 6 copies (HilA RNA) and 10 CFU (cell). Based on Intracellular HilA RNA detection, this assay can be used to distinguish between viable and dead Salmonella. In addition, it is able to detect multiple serotypes of Salmonella and has been successfully used to detect Salmonella in milk or isolated from farms. Overall, this assay is a promising test for viable pathogens detection and biosafety control.
Collapse
Affiliation(s)
- Changyu Zhou
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Wenjing Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Yu Zhao
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Kui Gu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Ziwei Liao
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Boyan Guo
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Zheren Huang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Ming Yang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Hongcheng Wei
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Peng Ma
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Chao Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Hao Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Yizhi Tang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Changwei Lei
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China.
| | - Hongning Wang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
6
|
Kite KA, Loomba S, Elliott TJ, Yongblah F, Lightbown SL, Doyle TJ, Gates L, Alber D, Downey GA, McCurdy MT, Hill JA, Super M, Ingber DE, Klein N, Cloutman-Green E. FcMBL magnetic bead-based MALDI-TOF MS rapidly identifies paediatric blood stream infections from positive blood cultures. PLoS One 2022; 17:e0276777. [PMID: 36413530 PMCID: PMC9681079 DOI: 10.1371/journal.pone.0276777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/13/2022] [Indexed: 11/23/2022] Open
Abstract
Rapid identification of potentially life-threatening blood stream infections (BSI) improves clinical outcomes, yet conventional blood culture (BC) identification methods require ~24-72 hours of liquid culture, plus 24-48 hours to generate single colonies on solid media suitable for identification by mass spectrometry (MS). Newer rapid centrifugation techniques, such as the Bruker MBT-Sepsityper® IVD, replace culturing on solid media and expedite the diagnosis of BCs but frequently demonstrate reduced sensitivity for identifying clinically significant Gram-positive bacterial or fungal infections. This study introduces a protocol that utilises the broad-range binding properties of an engineered version of mannose-binding lectin linked to the Fc portion of immunoglobulin (FcMBL) to capture and enrich pathogens combined with matrix-assisted laser desorption-ionisation time-of-flight (MALDI-TOF) MS for enhanced infection identification in BCs. The FcMBL method identified 94.1% (64 of 68) of clinical BCs processed, with a high sensitivity for both Gram-negative and Gram-positive bacteria (94.7 and 93.2%, respectively). The FcMBL method identified more patient positive BCs than the Sepsityper® (25 of 25 vs 17 of 25), notably with 100% (3/3) sensitivity for clinical candidemia, compared to only 33% (1/3) for the Sepsityper®. Additionally, during inoculation experiments, the FcMBL method demonstrated a greater sensitivity, identifying 100% (24/24) of candida to genus level and 9/24 (37.5%) top species level compared to 70.8% (17/24) to genus and 6/24 to species (25%) using the Sepsityper®. This study demonstrates that capture and enrichment of samples using magnetic FcMBL-conjugated beads is superior to rapid centrifugation methods for identification of BCs by MALDI-TOF MS. Deploying the FcMBL method therefore offers potential clinical benefits in sensitivity and reduced turnaround times for BC diagnosis compared to the standard Sepsityper® kit, especially for fungal diagnosis.
Collapse
Affiliation(s)
- Kerry Anne Kite
- Great Ormond Street Institute of Child Health, London, United Kingdom
- * E-mail:
| | - Sahil Loomba
- Department of Mathematics, Imperial College London, London, United Kingdom
| | - Thomas J. Elliott
- Department of Mathematics, Imperial College London, London, United Kingdom
- Department of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
- Department of Mathematics, University of Manchester, Manchester, United Kingdom
| | | | - Shanda L. Lightbown
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States of America
| | - Thomas J. Doyle
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States of America
| | - Lily Gates
- Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Dagmar Alber
- Great Ormond Street Institute of Child Health, London, United Kingdom
| | | | | | - James A. Hill
- BOA Biomedical Inc., Cambridge, MA, United States of America
| | - Michael Super
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States of America
| | - Donald E. Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States of America
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States of America
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Nigel Klein
- Great Ormond Street Institute of Child Health, London, United Kingdom
- Great Ormond Street Hospital, London, United Kingdom
| | - Elaine Cloutman-Green
- Great Ormond Street Institute of Child Health, London, United Kingdom
- Great Ormond Street Hospital, London, United Kingdom
| |
Collapse
|
7
|
Evangelista AJ, Ferreira TL. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in the diagnosis of microorganisms. Future Microbiol 2022; 17:1409-1419. [PMID: 36169347 DOI: 10.2217/fmb-2022-0067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Microbiology culture is the gold standard method for identifying microorganisms. This identification protocol takes several days to complete. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a technique that can identify different microorganisms quickly and accurately. The objective of this work was to evaluate the use of MALDI-TOF MS in the routine of clinical laboratories to identify microorganisms and to identify their resistance to antimicrobials. This study evaluated the relevance of the MALDI-TOF MS technique for microbiological diagnosis through a literature review. The authors found that MALDI-TOF MS can identify bacteria, fungi, viruses and parasites, even in blood cultures, and also serves to assess antimicrobial resistance. Thus, MALDI-TOF MS can become an indispensable tool in laboratory diagnosis.
Collapse
|
8
|
Forster J, Kohlmorgen B, Haas J, Weis P, Breunig L, Turnwald D, Mizaikoff B, Schoen C. A streamlined method for the fast and cost-effective detection of bacterial pathogens from positive blood cultures for the BacT/ALERT blood culture system using the Vitek MS mass spectrometer. PLoS One 2022; 17:e0267669. [PMID: 35482712 PMCID: PMC9049335 DOI: 10.1371/journal.pone.0267669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/12/2022] [Indexed: 11/25/2022] Open
Abstract
Background and objective Prompt pathogen identification of blood stream infections is essential to provide appropriate antibiotic treatment. Therefore, the objective of this prospective single centre study was to establish an inexpensive, fast and accurate protocol for bacterial species identification with SDS protein-extraction directly from BacT/Alert® blood culture (BC) bottles by VitekMS®. Results Correct species identification was obtained for 198/266 (74.4%, 95%-CI = [68.8%, 79.6%]) of pathogens. The protocol was more successful in identifying 87/96 (91.4%, 95%-CI = [83.8%, 93.2%]) gram-negative bacteria than 110/167 (65.9%, 95%-CI = [58.1%, 73.0%]) gram-positive bacteria. The hands-on time for sample preparation and measurement was about 15 min for up to five samples. This is shorter than for most other protocols using a similar lysis-centrifugation approach for the combination of BacT/Alert® BC bottles and the Vitek® MS mass spectrometer. The estimated costs per sample were approx. 1.80€ which is much cheaper than for commercial kits. Conclusion This optimized protocol allows for accurate identification of bacteria directly from blood culture bottles for laboratories equipped with BacT/Alert® blood culture bottles and VitekMS® mass spectrometer.
Collapse
Affiliation(s)
- Johannes Forster
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
- * E-mail:
| | - Britta Kohlmorgen
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
- Institute of Hygiene and Environmental Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Julian Haas
- Hahn-Schickard- Society for Applied Research, Ulm, Germany
| | - Philipp Weis
- Department of Internal Medicine I, Caritas-Krankenhaus Bad Mergentheim, Bad Mergentheim, Germany
| | - Lukas Breunig
- Department of Internal Medicine – Cardiology, DRK Klinikum Berlin Westend, Berlin, Germany
| | - Doris Turnwald
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Boris Mizaikoff
- Hahn-Schickard- Society for Applied Research, Ulm, Germany
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany
| | - Christoph Schoen
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
9
|
Doualeh M, Payne M, Litton E, Raby E, Currie A. Molecular Methodologies for Improved Polymicrobial Sepsis Diagnosis. Int J Mol Sci 2022; 23:ijms23094484. [PMID: 35562877 PMCID: PMC9104822 DOI: 10.3390/ijms23094484] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 12/19/2022] Open
Abstract
Polymicrobial sepsis is associated with worse patient outcomes than monomicrobial sepsis. Routinely used culture-dependent microbiological diagnostic techniques have low sensitivity, often leading to missed identification of all causative organisms. To overcome these limitations, culture-independent methods incorporating advanced molecular technologies have recently been explored. However, contamination, assay inhibition and interference from host DNA are issues that must be addressed before these methods can be relied on for routine clinical use. While the host component of the complex sepsis host–pathogen interplay is well described, less is known about the pathogen’s role, including pathogen–pathogen interactions in polymicrobial sepsis. This review highlights the clinical significance of polymicrobial sepsis and addresses how promising alternative molecular microbiology methods can be improved to detect polymicrobial infections. It also discusses how the application of shotgun metagenomics can be used to uncover pathogen/pathogen interactions in polymicrobial sepsis cases and their potential role in the clinical course of this condition.
Collapse
Affiliation(s)
- Mariam Doualeh
- Centre for Molecular Medicine & Innovative Therapeutics, Murdoch University, Murdoch, WA 6150, Australia;
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, WA 6009, Australia
- Women and Infants Research Foundation, Perth, WA 6008, Australia;
| | - Matthew Payne
- Women and Infants Research Foundation, Perth, WA 6008, Australia;
- Division of Obstetrics and Gynaecology, University of Western Australia, Perth, WA 6008, Australia
| | - Edward Litton
- Intensive Care Unit, Fiona Stanley Hospital, Murdoch, WA 6150, Australia;
- Intensive Care Unit, St. John of God Hospital, Subiaco, WA 6009, Australia
| | - Edward Raby
- State Burns Unit, Fiona Stanley Hospital, Murdoch, WA 6150, Australia;
- Microbiology Department, Path West Laboratory Medicine, Murdoch, WA 6150, Australia
| | - Andrew Currie
- Centre for Molecular Medicine & Innovative Therapeutics, Murdoch University, Murdoch, WA 6150, Australia;
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, WA 6009, Australia
- Women and Infants Research Foundation, Perth, WA 6008, Australia;
- Correspondence: ; Tel.: +61-(08)-9360-7426
| |
Collapse
|
10
|
Kondori N, Kurtovic A, Piñeiro-Iglesias B, Salvà-Serra F, Jaén-Luchoro D, Andersson B, Alves G, Ogurtsov A, Thorsell A, Fuchs J, Tunovic T, Kamenska N, Karlsson A, Yu YK, Moore ERB, Karlsson R. Mass Spectrometry Proteotyping-Based Detection and Identification of Staphylococcus aureus, Escherichia coli, and Candida albicans in Blood. Front Cell Infect Microbiol 2021; 11:634215. [PMID: 34381737 PMCID: PMC8350517 DOI: 10.3389/fcimb.2021.634215] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 07/09/2021] [Indexed: 12/12/2022] Open
Abstract
Bloodstream infections (BSIs), the presence of microorganisms in blood, are potentially serious conditions that can quickly develop into sepsis and life-threatening situations. When assessing proper treatment, rapid diagnosis is the key; besides clinical judgement performed by attending physicians, supporting microbiological tests typically are performed, often requiring microbial isolation and culturing steps, which increases the time required for confirming positive cases of BSI. The additional waiting time forces physicians to prescribe broad-spectrum antibiotics and empirically based treatments, before determining the precise cause of the disease. Thus, alternative and more rapid cultivation-independent methods are needed to improve clinical diagnostics, supporting prompt and accurate treatment and reducing the development of antibiotic resistance. In this study, a culture-independent workflow for pathogen detection and identification in blood samples was developed, using peptide biomarkers and applying bottom-up proteomics analyses, i.e., so-called "proteotyping". To demonstrate the feasibility of detection of blood infectious pathogens, using proteotyping, Escherichia coli and Staphylococcus aureus were included in the study, as the most prominent bacterial causes of bacteremia and sepsis, as well as Candida albicans, one of the most prominent causes of fungemia. Model systems including spiked negative blood samples, as well as positive blood cultures, without further culturing steps, were investigated. Furthermore, an experiment designed to determine the incubation time needed for correct identification of the infectious pathogens in blood cultures was performed. The results for the spiked negative blood samples showed that proteotyping was 100- to 1,000-fold more sensitive, in comparison with the MALDI-TOF MS-based approach. Furthermore, in the analyses of ten positive blood cultures each of E. coli and S. aureus, both the MALDI-TOF MS-based and proteotyping approaches were successful in the identification of E. coli, although only proteotyping could identify S. aureus correctly in all samples. Compared with the MALDI-TOF MS-based approaches, shotgun proteotyping demonstrated higher sensitivity and accuracy, and required significantly shorter incubation time before detection and identification of the correct pathogen could be accomplished.
Collapse
Affiliation(s)
- Nahid Kondori
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Amra Kurtovic
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Francisco Salvà-Serra
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden
- Microbiology, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Daniel Jaén-Luchoro
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden
| | - Björn Andersson
- Bioinformatics Core Facility at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Gelio Alves
- National Center for Biotechnology Information (NCBI), Bethesda, MD, United States
| | - Aleksey Ogurtsov
- National Center for Biotechnology Information (NCBI), Bethesda, MD, United States
| | - Annika Thorsell
- Proteomics Core Facility at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johannes Fuchs
- Proteomics Core Facility at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Timur Tunovic
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Nina Kamenska
- Norra-Älvsborgs-Länssjukhus (NÄL), Trollhättan, Sweden
| | | | - Yi-Kuo Yu
- National Center for Biotechnology Information (NCBI), Bethesda, MD, United States
| | - Edward R. B. Moore
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden
| | - Roger Karlsson
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Nanoxis Consulting AB, Gothenburg, Sweden
| |
Collapse
|
11
|
Dai Y, Xu X, Yan X, Li D, Cao W, Tang L, Hu M, Jiang C. Evaluation of a Rapid and Simplified Protocol for Direct Identification of Microorganisms From Positive Blood Cultures by Using Matrix Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS). Front Cell Infect Microbiol 2021; 11:632679. [PMID: 33777845 PMCID: PMC7990877 DOI: 10.3389/fcimb.2021.632679] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/16/2021] [Indexed: 12/17/2022] Open
Abstract
Early and rapid identification of microorganisms is critical for reducing the mortality rate caused by bloodstream infections (BSIs). The accuracy and feasibility of directly identifying pathogens in positive blood cultures by matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been intensely confirmed. In this study, we combined density centrifugation and extra chemical lysis-extraction to develop an optimized method in the blood culture process, which significantly improved the effectiveness of direct identification by MALDI-TOF MS. The accuracy was evaluated by 2,032 positive blood culture samples (115 species of microorganism). The overall MALDI-TOF MS based identification rate with scores ≥ 1.700 was 87.60%. 94.06% of gram-negative bacteria were identified consistently to the genus level, followed by anaerobes (93.33%), gram-positive bacteria (84.46%), and fungi (60.87%). This protocol could obtain results within 10–20 min at a cost of less than $0.1 per sample, which saved up to 24 h in identifying 87.60% of the microorganism from positive blood cultures. This rapid and simplified protocol facilitates the direct identification of microorganism in positive blood cultures, and exhibits the advantages of cost-effective, time-saving, and easy-to-use. It could provide the causative organism of the patient to clinicians in time for targeted treatment and reduce mortality.
Collapse
Affiliation(s)
- Yufeng Dai
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xinyi Xu
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xue Yan
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Daming Li
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Cao
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lingli Tang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Clinical Molecular Diagnostic Center of Hunan Province, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Min Hu
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Clinical Molecular Diagnostic Center of Hunan Province, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chuanhao Jiang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Clinical Molecular Diagnostic Center of Hunan Province, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
12
|
Evaluation of a commercial microbial enrichment kit used prior DNA extraction to improve the molecular detection of vector-borne pathogens from naturally infected dogs. J Microbiol Methods 2021; 188:106163. [PMID: 33581169 DOI: 10.1016/j.mimet.2021.106163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 01/28/2023]
Abstract
Accurate detection of vector-borne pathogens (VBPs) is extremely important as the number of reported cases in humans and animals continues to rise in the US and abroad. Validated PCR assays are currently the cornerstone of molecular diagnostics and can achieve excellent analytical sensitivity and specificity. However, the detection of pathogens at low parasitemia still presents a challenge for VBP diagnosis, especially given the very low volume of specimens tested by molecular methods. The objective of this study is to determine if a commercially available microbial enrichment kit, used prior DNA extraction, is capable of expanding the overall microbial community and increasing detectable levels of VBPs in canine blood samples through host DNA depletion. This study used EDTA-whole blood samples from dogs naturally infected with varying parasitemia levels of either Anaplasma phagocytophilum, Babesia gibsoni, or Ehrlichia ewingii. For two VBPs, EDTA-blood samples were diluted to determine the effect of microbial concentration at low parasitemia. Paired EDTA-blood samples from each dog were subjected to traditional, automated DNA extraction with or without the microbial concentrating kit (MolYsis®) prior to DNA extraction. Relative amounts of pathogen DNA in paired samples were determined by real-time PCR and Next-Generation Sequencing targeting conserved regions of 16S rRNA (for bacteria) and 18S rRNA (for protozoa). Results from the three molecular methods suggest that the microbial concentrating kit did not improve the detection of VBPs, although significantly reduced the presence of host DNA. Alternative methods for VBP enrichment in clinical samples prior to molecular testing should continue to be investigated, as it may significantly improve clinical sensitivity and reduce the number of false-negative results.
Collapse
|
13
|
Irinyi L, Hu Y, Hoang MTV, Pasic L, Halliday C, Jayawardena M, Basu I, McKinney W, Morris AJ, Rathjen J, Stone E, Chen S, Sorrell TC, Schwessinger B, Meyer W. Long-read sequencing based clinical metagenomics for the detection and confirmation of Pneumocystis jirovecii directly from clinical specimens: A paradigm shift in mycological diagnostics. Med Mycol 2021; 58:650-660. [PMID: 31758176 DOI: 10.1093/mmy/myz109] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/26/2019] [Accepted: 11/19/2019] [Indexed: 11/14/2022] Open
Abstract
The advent of next generation sequencing technologies has enabled the characterization of the genetic content of entire communities of organisms, including those in clinical specimens, without prior culturing. The MinION from Oxford Nanopore Technologies offers real-time, direct sequencing of long DNA fragments directly from clinical samples. The aim of this study was to assess the ability of unbiased, genome-wide, long-read, shotgun sequencing using MinION to identify Pneumocystis jirovecii directly from respiratory tract specimens and to characterize the associated mycobiome. Pneumocystis pneumonia (PCP) is a life-threatening fungal disease caused by P. jirovecii. Currently, the diagnosis of PCP relies on direct microscopic or real-time quantitative polymerase chain reaction (PCR) examination of respiratory tract specimens, as P. jirovecii cannot be cultured readily in vitro. P. jirovecii DNA was detected in bronchoalveolar lavage (BAL) and induced sputum (IS) samples from three patients with confirmed PCP. Other fungi present in the associated mycobiome included known human pathogens (Aspergillus, Cryptococcus, Pichia) as well as commensal species (Candida, Malassezia, Bipolaris). We have established optimized sample preparation conditions for the generation of high-quality data, curated databases, and data analysis tools, which are key to the application of long-read MinION sequencing leading to a fundamental new approach in fungal diagnostics.
Collapse
Affiliation(s)
- Laszlo Irinyi
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, The University of Sydney, Sydney, NSW, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, NSW, Australia.,Westmead Institute for Medical Research, Westmead, NSW Australia
| | - Yiheng Hu
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Minh Thuy Vi Hoang
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, The University of Sydney, Sydney, NSW, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, NSW, Australia.,Westmead Institute for Medical Research, Westmead, NSW Australia
| | - Lana Pasic
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, The University of Sydney, Sydney, NSW, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, NSW, Australia.,Westmead Institute for Medical Research, Westmead, NSW Australia
| | - Catriona Halliday
- Centre for Infectious Diseases and Microbiology-Laboratory Services, Institute for Clinical Pathology and Medical Research, NSW Health Pathology, Westmead, NSW, Australia
| | - Menuk Jayawardena
- Centre for Infectious Diseases and Microbiology-Laboratory Services, Institute for Clinical Pathology and Medical Research, NSW Health Pathology, Westmead, NSW, Australia
| | - Indira Basu
- Microbiology Department, LabPLUS, Auckland City Hospital, Auckland, New Zealand
| | - Wendy McKinney
- Microbiology Department, LabPLUS, Auckland City Hospital, Auckland, New Zealand
| | - Arthur J Morris
- Microbiology Department, LabPLUS, Auckland City Hospital, Auckland, New Zealand
| | - John Rathjen
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Eric Stone
- Research School of Biology, Australian National University, Canberra, ACT, Australia.,ANU-CSIRO Centre for Genomics, Metabolomics and Bioinformatics, Canberra, ACT, Australia
| | - Sharon Chen
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, The University of Sydney, Sydney, NSW, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, NSW, Australia.,Centre for Infectious Diseases and Microbiology-Laboratory Services, Institute for Clinical Pathology and Medical Research, NSW Health Pathology, Westmead, NSW, Australia
| | - Tania C Sorrell
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, The University of Sydney, Sydney, NSW, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, NSW, Australia
| | - Benjamin Schwessinger
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, The University of Sydney, Sydney, NSW, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, NSW, Australia.,Westmead Institute for Medical Research, Westmead, NSW Australia.,Westmead Hospital (Research and Education Network), Westmead, NSW, Australia
| |
Collapse
|
14
|
Roncarati G, Foschi C, Ambretti S, Re MC. Rapid identification and detection of β-lactamase-producing Enterobacteriaceae from positive blood cultures by MALDI-TOF/MS. J Glob Antimicrob Resist 2021; 24:270-274. [PMID: 33401014 DOI: 10.1016/j.jgar.2020.12.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/04/2020] [Accepted: 12/20/2020] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVES Current evidence suggests that early diagnosis of sepsis and timely detection of antimicrobial resistance are crucial to improve mortality rates among patients. The aim of this study was to evaluate a rapid method for the identification of Gram-negative bacteria from positive blood cultures (BCs), combined with the detection of extended spectrum β-lactamases (ESβL) and carbapenemases production, by means of MALDI-TOF/MS analysis. METHODS During the study, all BCs positive for Gram-negative rods were selected. Starting from bacterial pellets obtained directly from BC broths, species identification and hydrolysis assays were achieved through MALDI-TOF/MS (Bruker). In particular, we performed a hydrolysis assays of cefotaxime (CTX) and ertapenem (ERT) for the rapid detection of resistance via ESβL and carbapenemases, respectively. These results were compared with the routine workflow, including BC subcultures and confirmation phenotypic methods. Finally, a comparison of the turnaround-time (TAT) between the two protocols was conducted. RESULTS Overall, 185 BCs positive for Enterobacteriaceae were collected. In terms of species identification, we observed a concordance of 95.9% comparing MALDI-TOF/MS results to the subculture-based method. The sensitivity and specificity for CTX hydrolysis assay were 91.1% and 92%, respectively; ERT hydrolysis assay showed a sensitivity of 96.2% and a specificity of 99.2%. The TAT of the proposed MALDI TOF/MS-based protocol was significantly lower compared with the routine workflow (P < 0.0001). CONCLUSIONS The proposed protocol can provide reliable bacterial identification and data concerning β-lactam resistance in only 3 hours, positively improving management of patients in terms of antimicrobial stewardship.
Collapse
Affiliation(s)
- Greta Roncarati
- Operative Unit of Clinical Microbiology, IRCCS S. Orsola-Malpighi University Hospital, Bologna, Italy.
| | - Claudio Foschi
- Operative Unit of Clinical Microbiology, IRCCS S. Orsola-Malpighi University Hospital, Bologna, Italy; Microbiology, DIMES, University of Bologna, Bologna, Italy
| | - Simone Ambretti
- Operative Unit of Clinical Microbiology, IRCCS S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Maria Carla Re
- Operative Unit of Clinical Microbiology, IRCCS S. Orsola-Malpighi University Hospital, Bologna, Italy; Microbiology, DIMES, University of Bologna, Bologna, Italy
| |
Collapse
|
15
|
Review on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for the rapid screening of microbial species: A promising bioanalytical tool. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105387] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Xu X, Xiao N, Yang M, Su Y, Guo Y. Discrimination of the microbial subspecies using the ribosomal protein spectra coupled with the metabolite high resolution mass spectra. Talanta 2020; 208:120361. [DOI: 10.1016/j.talanta.2019.120361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/01/2019] [Accepted: 09/14/2019] [Indexed: 10/26/2022]
|
17
|
Abstract
The clinical microbiology laboratory relies on traditional diagnostic methods such as culturing, Gram stains, and biochemical testing. Receipt of a high-quality specimen with an appropriate test order is integral to accurate testing. Recent technological advancements have led to decreased time to results and improved diagnostic accuracy. Examples of advancements discussed in this chapter include automation of bacterial culture processing and incubation, as well as introduction of mass spectrometry for the proteomic identification of microorganisms. In addition, molecular testing is increasingly common in the clinical laboratory. Commercially available multiplex molecular assays simultaneously test for a broad array of syndromic-related pathogens, providing rapid and sensitive diagnostic results. Molecular advancements have also transformed point-of-care (POC) microbiology testing, and molecular POC assays may largely supplant traditional rapid antigen testing in the future. Integration of new technologies with traditional testing methods has led to improved quality and value in the clinical microbiology laboratory. After reviewing this chapter, the reader will be able to:List key considerations for specimen collection for microbiology testing. Discuss the advantages and limitations of automation in the clinical microbiology laboratory. Describe the evolution of microorganism identification methods. Discuss the benefits and limitations of molecular microbiology point-of-care testing. Summarize currently available multiplex molecular microbiology testing options.
Collapse
|
18
|
Ullberg M, Özenci V. Identification and antimicrobial susceptibility testing of Gram-positive and Gram-negative bacteria from positive blood cultures using the Accelerate Pheno™ system. Eur J Clin Microbiol Infect Dis 2019; 39:139-149. [PMID: 31641972 PMCID: PMC6962126 DOI: 10.1007/s10096-019-03703-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/04/2019] [Indexed: 12/03/2022]
Abstract
Rapid identification and antimicrobial susceptibility testing remain a crucial step for early efficient therapy of bloodstream infections. Traditional methods require turnaround times of at least 2 days, while rapid procedures are often associated with extended hands-on time. The Accelerate Pheno™ System provides microbial identification results within 90 min and susceptibility data in approximately 7 h directly from positive blood cultures with only few minutes of hands-on time. The aim of this study was, therefore, to evaluate the performance of the Accelerate Pheno™ System in identification and antimicrobial susceptibility testing of both Gram-positive and Gram-negative bacteria directly from clinical blood culture samples. We analyzed 108 and 67 blood culture bottles using the Accelerate PhenoTest™ BC kit with software version v1.0 and the FDA-cleared version v1.2, respectively. Reliable identification was achieved for Enterobacteriaceae, staphylococci, and enterococci, with 76/80 (95%), 42/46 (91%), and 10/11 (91%) correct identifications. Limitations were observed in the identification of streptococci, including Streptococcus pneumoniae and Streptococcus pyogenes, and coagulase-negative staphylococci. Antimicrobial susceptibility results for Enterobacteriaceae, for amikacin, ertapenem, ciprofloxacin, gentamicin, meropenem, and piperacillin-tazobactam ranged between 86 and 100% categorical agreement. Using v1.2, results for ceftazidime showed 100% concordance with the reference method. For staphylococci, the overall performance reached 92% using v1.2. Qualitative tests for detection of methicillin or macrolide-lincosamide-streptogramin B (MLSB) resistance caused major and very major errors for isolates. Overall, the present data show that the Accelerate Pheno™ system can, in combination with Gram stain, be used as a rapid complementation to standard microbial diagnosis of bloodstream infections.
Collapse
Affiliation(s)
- Måns Ullberg
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Microbiology, Karolinska University Hospital, Huddinge, SE 141 86, Stockholm, Sweden
| | - Volkan Özenci
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.
- Department of Clinical Microbiology, Karolinska University Hospital, Huddinge, SE 141 86, Stockholm, Sweden.
| |
Collapse
|
19
|
Freimann S, Shapira M, Athamna A. Serum separator tube method for matrix-assisted laser desorption/ionization time-of-flight analysis. Access Microbiol 2019; 1:e000011. [PMID: 32974509 PMCID: PMC7470352 DOI: 10.1099/acmi.0.000011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 02/08/2019] [Indexed: 01/13/2023] Open
Abstract
Background Without appropriate treatment, bloodstream infections have a high mortality rate. Quicker identification of the microbial pathogen allows the clinician to develop an initial strategy of antimicrobial therapy. Sample preparation protocols for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-ToF MS; Bruker Daltonics for Microflex LT spectrometer) technology were evaluated in an attempt to identify pathogens directly from positive blood culture bottles and thus shorten the time to identify them. This application requires preparatory processing because blood culture bottles contain undesirable proteins. This study aimed to evaluate two methods for microbial preparation for identification by MALDI-ToF MS. Methods This study evaluated two methods for microbial preparation from 200 positive blood culture samples, half prepared by the differential centrifugation method and half with the serum separator tube method for identification by MALDI-ToF MS. Both methods were compared to conventional methods such as VITEK II and ChromAgar culture plates. Results All Gram-negative bacteria tested were identified correctly by MALDI-ToF MS compared to conventional methods, regardless of the preparation method. However, more Gram-positive bacteria were identified when the serum separator tube method was used (83.3%) compared with the differential centrifugation method (65.3 %). Moreover, the serum separator tube protocol requires 12–15 min, while the differential centrifugation protocol requires 30–45 min. Conclusions Sample preparation using the serum separator tube method is easy to perform, fast and reliable for accurate microbial identification by MALDI-ToF MS technology.
Collapse
Affiliation(s)
- Sarit Freimann
- Clinical Microbiology Laboratory, Hillel Yaffe Medical Center, Hadera, Israel
| | - Maanit Shapira
- Laboratory Division, Hillel Yaffe Medical Center, Hadera, Israel
| | - Abed Athamna
- Clinical Microbiology Laboratory, Hillel Yaffe Medical Center, Hadera, Israel
| |
Collapse
|
20
|
Abstract
Matrix-assisted laser desorption time of flight mass spectrometry (MALDI-TOF MS), adapted for use in clinical microbiology laboratories, challenges current standards of microbial detection and identification. This article summarizes the capabilities of MALDI-TOF MS in diagnostic clinical microbiology laboratories and describes the underpinnings of the technology, highlighting topics such as sample preparation, spectral analysis, and accuracy. The use of MALDI-TOF MS in the clinical microbiology laboratory is growing, and, when properly deployed, can accelerate diagnosis and improve patient care.
Collapse
Affiliation(s)
- Donna M Wolk
- Clinical Microbiology, Department of Laboratory Medicine, Diagnostic Medicine Institute, Geisinger Health, 100 North Academy Avenue, Danville, PA 17822-1930, USA.
| | - Andrew E Clark
- Department of Veterinary Science and Microbiology, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
21
|
Enroth H, Retz K, Andersson S, Andersson C, Svensson K, Ljungström L, Tilevik D, Pernestig AK. Evaluation of QuickFISH and maldi Sepsityper for identification of bacteria in bloodstream infection. Infect Dis (Lond) 2019; 51:249-258. [PMID: 30729840 DOI: 10.1080/23744235.2018.1554258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Early detection of bacteria and their antibiotic susceptibility patterns are critical to guide therapeutic decision-making for optimal care of septic patients. The current gold standard, blood culturing followed by subculture on agar plates for subsequent identification, is too slow leading to excessive use of broad-spectrum antibiotic with harmful consequences for the patient and, in the long run, the public health. The aim of the present study was to assess the performance of two commercial assays, QuickFISH® (OpGen) and Maldi Sepsityper™ (Bruker Daltonics) for early and accurate identification of microorganisms directly from positive blood cultures. MATERIALS AND METHODS During two substudies of positive blood cultures, the two commercial assays were assessed against the routine method used at the clinical microbiology laboratory, Unilabs AB, at Skaraborg Hospital, Sweden. RESULTS The Maldi Sepsityper™ assay enabled earlier microorganism identification. Using the cut-off for definite species identification according to the reference method (>2.0), sufficiently accurate species identification was achieved, but only among Gram-negative bacteria. The QuickFISH® assay was time-saving and showed high concordance with the reference method, 94.8% (95% CI 88.4-98.3), when the causative agent was covered by the QuickFISH® assay. CONCLUSIONS The use of the commercial assays may shorten the time to identification of causative agents in bloodstream infections and can be a good complement to the current clinical routine diagnostics. Nevertheless, the performance of the commercial assays is considerably affected by the characteristics of the causative agents.
Collapse
Affiliation(s)
- Helena Enroth
- a Systems Biology Research Centre, School of Bioscience, University of Skövde , Skövde , Sweden.,b Department of Clinical Microbiology , Unilabs AB , Skövde , Sweden
| | - Karolina Retz
- a Systems Biology Research Centre, School of Bioscience, University of Skövde , Skövde , Sweden.,b Department of Clinical Microbiology , Unilabs AB , Skövde , Sweden
| | - Sofie Andersson
- b Department of Clinical Microbiology , Unilabs AB , Skövde , Sweden
| | - Carl Andersson
- a Systems Biology Research Centre, School of Bioscience, University of Skövde , Skövde , Sweden.,b Department of Clinical Microbiology , Unilabs AB , Skövde , Sweden
| | - Kristina Svensson
- b Department of Clinical Microbiology , Unilabs AB , Skövde , Sweden
| | - Lars Ljungström
- c Department of Infectious Diseases , Skaraborg Hospital , Skövde , Sweden
| | - Diana Tilevik
- a Systems Biology Research Centre, School of Bioscience, University of Skövde , Skövde , Sweden
| | - Anna-Karin Pernestig
- a Systems Biology Research Centre, School of Bioscience, University of Skövde , Skövde , Sweden
| |
Collapse
|
22
|
Lee JE, Jo SJ, Park KG, Suk HS, Ha SI, Shin JS, Park YJ. Evaluation of modified saponin preparation method for the direct identification and antimicrobial susceptibility testing from positive blood culture. J Microbiol Methods 2018; 154:118-123. [PMID: 30321566 DOI: 10.1016/j.mimet.2018.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/05/2018] [Accepted: 10/05/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND We evaluated the two in-house sample preparation methods (saponin method (SAP) and [saponin + Sputazyme] method (SSPZ)) for direct identification of microorganisms using MALDI-TOF MS from positive blood culture bottles. Also, we evaluated the [saponin + Sputazyme] method for direct antimicrobial susceptibility testing (AST) using Vitek 2 system. METHODS For direct identification, 163 prospective, monomicrobial positive blood culture bottles and 25 contrived blood culture bottles spiked with 25 infrequently isolated bacterial strains were included. For direct AST, pellets obtained by SSPZ method from 102 prospective blood culture bottles were tested. The results from the direct identification and AST were compared with those from the routine diagnostic method performed with colonies sub cultured on solid media. RESULTS In 163 prospective specimens, SAP method correctly identified 132/163 (81.0%) isolates and SSPZ method correctly identified 148/163 (90.8%) isolates (P = .018). Among the 92 Gram-positive isolates, the correct identification rate was significantly higher with the SSPZ method than the SAP method (92.4% vs. 81.5%), respectively (P = .041). However, the SSPZ method failed to identify Streptococcus pneumoniae. Among the 64 Gram-negative isolates, the correct identification rate was 82.8% (53/64) and 87.5% (56/64) for the former and the latter method, respectively (P = .491). Compared with standard methods direct AST showed 98.5% (1523/1547) agreement. CONCLUSION The addition of Sputazyme improved the identification of commonly isolated bacteria, especially for Gram-positive isolates and yeasts and can be applied for direct antimicrobial susceptibility testing of bacteria. Although SAP method showed better results for Campylobacter spp. and anaerobic bacteria, considering their very low incidence, routine use of SSPZ will be more practical.
Collapse
Affiliation(s)
- Ji Eun Lee
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung Jin Jo
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kang Gyun Park
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyun Soo Suk
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung Il Ha
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jeong Seob Shin
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yeon-Joon Park
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
23
|
Ruiz-Aragón J, Ballestero-Téllez M, Gutiérrez-Gutiérrez B, de Cueto M, Rodríguez-Baño J, Pascual Á. Direct bacterial identification from positive blood cultures using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry: A systematic review and meta-analysis. Enferm Infecc Microbiol Clin 2018; 36:484-492. [DOI: 10.1016/j.eimc.2017.08.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/24/2017] [Accepted: 08/25/2017] [Indexed: 11/16/2022]
|
24
|
Luethy PM, Johnson JK. The Use of Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) for the Identification of Pathogens Causing Sepsis. J Appl Lab Med 2018; 3:675-685. [PMID: 31639735 DOI: 10.1373/jalm.2018.027318] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/09/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Sepsis is a life-threatening condition with high rates of morbidity and mortality; effective and appropriate antibiotic therapy is essential for ensuring patient improvement. To aid in the diagnosis of sepsis, blood cultures are drawn and sent to the microbiology laboratory for pathogen growth, identification, and susceptibility testing. The clinical microbiology laboratory can assist the medical team by providing timely identification of the pathogen(s) causing the bloodstream infection through the use of rapid diagnostic technology. One of these rapid diagnostic technologies, MALDI-TOF MS, has been proven to reduce the time required for appropriate antibiotic therapy when used to identify pathogens grown in culture. This technology has also been used to identify pathogens directly from the positive blood cultures with great success. CONTENT In this minireview, we summarize the different methods that have been developed to directly identify pathogens from positive blood cultures by use of MALDI-TOF MS and the effect of this technology on patient outcomes. Additionally, we touch on current research in the field, including the identification of antimicrobial resistance directly from positive blood cultures by MALDI-TOF MS. SUMMARY Rapid identification of pathogens is important in the survival of patients undergoing a septic event. MALDI-TOF MS technology has played an important role in rapid identification, which has led to a reduction in the time to appropriate antibiotic therapy and contributed to the improvement of patient outcomes. The high sensitivity and specificity of MALDI-TOF MS identification, in combination with MALDI-TOF's rapid function and reduced labor costs, make this technology an attractive choice for clinical laboratories.
Collapse
Affiliation(s)
- Paul M Luethy
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD
| | - J Kristie Johnson
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD.
| |
Collapse
|
25
|
Comparison of three procedures for the rapid identification of bacteraemia-causing microorganisms. Evaluation of their effectiveness and applicability to microbiology laboratories. Enferm Infecc Microbiol Clin 2018; 37:319-323. [PMID: 30072283 DOI: 10.1016/j.eimc.2018.06.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/24/2018] [Accepted: 06/01/2018] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Three procedures for rapid identification of microorganisms in positive blood cultures were evaluated. METHODS We performed two methods based on direct extraction from a blood culture: Sepsityper® (Bruker Daltonics) (ST) and a non-commercial saponin method (MCS), and another method consisting of a short incubation subculture (SIC). Identification values obtained by spectrometry Matrix-Assisted Laser Desorption Ionization-Time of Flight (EM MALDI-TOF) were compared by applying the manufacturer's interpretation criteria and corrected cut-off points. RESULTS According to the manufacturer, 65.8%, 45.8% and 57.4% of microorganisms were identified at the species level by using ST, MCS and SIC, respectively. When applying corrected cut-off points, the values increased to 92.3%, 80.6% and 85.2%, respectively. ST offered significantly better results than MCS, and no significant differences were found between ST and SIC, except for with respect to yeast. CONCLUSIONS Better identification rates were obtained by using ST and SIC, which are easily applicable in any laboratory.
Collapse
|
26
|
Florio W, Tavanti A, Barnini S, Ghelardi E, Lupetti A. Recent Advances and Ongoing Challenges in the Diagnosis of Microbial Infections by MALDI-TOF Mass Spectrometry. Front Microbiol 2018; 9:1097. [PMID: 29896172 PMCID: PMC5986882 DOI: 10.3389/fmicb.2018.01097] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 05/08/2018] [Indexed: 12/25/2022] Open
Abstract
Timeliness and accuracy in the diagnosis of microbial infections are associated with decreased mortality and reduced length of hospitalization, especially for severe, life-threatening infections. A rapid diagnosis also allows for early streamlining of empirical antimicrobial therapies, thus contributing to limit the emergence and spread of antimicrobial resistance. The introduction of matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry (MS) for routine identification of microbial pathogens has profoundly influenced microbiological diagnostics, and is progressively replacing biochemical identification methods. Compared to currently used identification methods, MALDI-TOF MS has the advantage of identifying bacteria and yeasts directly from colonies grown on culture plates for primary isolation in a few minutes and with considerable material and labor savings. The reliability and accuracy of MALDI-TOF MS in identification of clinically relevant bacteria and yeasts has been demonstrated by several studies showing that the performance of MALDI-TOF MS is comparable or superior to phenotypic methods currently in use in clinical microbiology laboratories, and can be further improved by database updates and analysis software upgrades. Besides microbial identification from isolated colonies, new perspectives are being explored for MALDI-TOF MS, such as identification of pathogens directly from positive blood cultures, sub-species typing, and detection of drug resistance determinants. In this review, we summarize the state of the art in routine identification of microbial pathogens by MALDI-TOF MS, and highlight recent advancements of this technology in special applications, such as strain typing, assessment of drug susceptibility, and detection of virulence factors.
Collapse
Affiliation(s)
- Walter Florio
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | | | | | - Emilia Ghelardi
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | - Antonella Lupetti
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| |
Collapse
|
27
|
Broyer P, Perrot N, Rostaing H, Blaze J, Pinston F, Gervasi G, Charles MH, Dachaud F, Dachaud J, Moulin F, Cordier S, Dauwalder O, Meugnier H, Vandenesch F. An Automated Sample Preparation Instrument to Accelerate Positive Blood Cultures Microbial Identification by MALDI-TOF Mass Spectrometry (Vitek ®MS). Front Microbiol 2018; 9:911. [PMID: 29867822 PMCID: PMC5962758 DOI: 10.3389/fmicb.2018.00911] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/19/2018] [Indexed: 12/15/2022] Open
Abstract
Sepsis is the leading cause of death among patients in intensive care units (ICUs) requiring an early diagnosis to introduce efficient therapeutic intervention. Rapid identification (ID) of a causative pathogen is key to guide directed antimicrobial selection and was recently shown to reduce hospitalization length in ICUs. Direct processing of positive blood cultures by MALDI-TOF MS technology is one of the several currently available tools used to generate rapid microbial ID. However, all recently published protocols are still manual and time consuming, requiring dedicated technician availability and specific strategies for batch processing. We present here a new prototype instrument for automated preparation of Vitek®MS slides directly from positive blood culture broth based on an “all-in-one” extraction strip. This bench top instrument was evaluated on 111 and 22 organisms processed using artificially inoculated blood culture bottles in the BacT/ALERT® 3D (SA/SN blood culture bottles) or the BacT/ALERT VirtuoTM system (FA/FN Plus bottles), respectively. Overall, this new preparation station provided reliable and accurate Vitek MS species-level identification of 87% (Gram-negative bacteria = 85%, Gram-positive bacteria = 88%, and yeast = 100%) when used with BacT/ALERT® 3D and of 84% (Gram-negative bacteria = 86%, Gram-positive bacteria = 86%, and yeast = 75%) with Virtuo® instruments, respectively. The prototype was then evaluated in a clinical microbiology laboratory on 102 clinical blood culture bottles and compared to routine laboratory ID procedures. Overall, the correlation of ID on monomicrobial bottles was 83% (Gram-negative bacteria = 89%, Gram-positive bacteria = 79%, and yeast = 78%), demonstrating roughly equivalent performance between manual and automatized extraction methods. This prototype instrument exhibited a high level of performance regardless of bottle type or BacT/ALERT system. Furthermore, blood culture workflow could potentially be improved by converting direct ID of positive blood cultures from a batch-based to real-time and “on-demand” process.
Collapse
Affiliation(s)
- Patrick Broyer
- Innovation Unit, Technology Research Department, bioMérieux, Grenoble, France
| | - Nadine Perrot
- Innovation Unit, Biology Research Department, bioMérieux, La Balme Les Grottes, France
| | - Hervé Rostaing
- Innovation Unit, Technology Research Department, bioMérieux, Grenoble, France
| | - Jérome Blaze
- Innovation Unit, Technology Research Department, bioMérieux, Grenoble, France
| | - Frederic Pinston
- Innovation Unit, Technology Research Department, bioMérieux, Grenoble, France
| | - Gaspard Gervasi
- Innovation Unit, Technology Research Department, bioMérieux, Marcy-l'Étoile, France
| | - Marie-Hélène Charles
- Innovation Unit, Technology Research Department, bioMérieux, Marcy-l'Étoile, France
| | | | | | | | | | - Olivier Dauwalder
- Centre de Biologie et Pathologie Nord, Institut des Agents Infectieux, Hospices Civils de Lyon - Microbiologie 24/24, Lyon, France.,Centre International de Recherche en Infectiologie, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, École Normale Supérieure de Lyon, Université de Lyon, Lyon, France
| | - Hélène Meugnier
- Centre de Biologie et Pathologie Nord, Institut des Agents Infectieux, Hospices Civils de Lyon - Microbiologie 24/24, Lyon, France
| | - Francois Vandenesch
- Centre de Biologie et Pathologie Nord, Institut des Agents Infectieux, Hospices Civils de Lyon - Microbiologie 24/24, Lyon, France.,Centre International de Recherche en Infectiologie, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, École Normale Supérieure de Lyon, Université de Lyon, Lyon, France
| |
Collapse
|
28
|
Sandrin TR, Demirev PA. Characterization of microbial mixtures by mass spectrometry. MASS SPECTROMETRY REVIEWS 2018; 37:321-349. [PMID: 28509357 DOI: 10.1002/mas.21534] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/09/2017] [Accepted: 03/09/2017] [Indexed: 05/27/2023]
Abstract
MS applications in microbiology have increased significantly in the past 10 years, due in part to the proliferation of regulator-approved commercial MALDI MS platforms for rapid identification of clinical infections. In parallel, with the expansion of MS technologies in the "omics" fields, novel MS-based research efforts to characterize organismal as well as environmental microbiomes have emerged. Successful characterization of microorganisms found in complex mixtures of other organisms remains a major challenge for researchers and clinicians alike. Here, we review recent MS advances toward addressing that challenge. These include sample preparation methods and protocols, and established, for example, MALDI, as well as newer, for example, atmospheric pressure ionization (API) techniques. MALDI mass spectra of intact cells contain predominantly information on the highly expressed house-keeping proteins used as biomarkers. The API methods are applicable for small biomolecule analysis, for example, phospholipids and lipopeptides, and facilitate species differentiation. MS hardware and techniques, for example, tandem MS, including diverse ion source/mass analyzer combinations are discussed. Relevant examples for microbial mixture characterization utilizing these combinations are provided. Chemometrics and bioinformatics methods and algorithms, including those applied to large scale MS data acquisition in microbial metaproteomics and MS imaging of biofilms, are highlighted. Select MS applications for polymicrobial culture analysis in environmental and clinical microbiology are reviewed as well.
Collapse
Affiliation(s)
- Todd R Sandrin
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, Arizona
| | - Plamen A Demirev
- Applied Physics Laboratory, Johns Hopkins University, Laurel, Maryland
| |
Collapse
|
29
|
Florio W, Morici P, Ghelardi E, Barnini S, Lupetti A. Recent advances in the microbiological diagnosis of bloodstream infections. Crit Rev Microbiol 2017; 44:351-370. [PMID: 29185372 DOI: 10.1080/1040841x.2017.1407745] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Rapid identification (ID) and antimicrobial susceptibility testing (AST) of the causative agent(s) of bloodstream infections (BSIs) are essential for the prompt administration of an effective antimicrobial therapy, which can result in clinical and financial benefits. Immediately after blood sampling, empirical antimicrobial therapy, chosen on clinical and epidemiological data, is administered. When ID and AST results are available, the clinician decides whether to continue or streamline the antimicrobial therapy, based on the results of the in vitro antimicrobial susceptibility profile of the pathogen. The aim of the present study is to review and discuss the experimental data, advantages, and drawbacks of recently developed technological advances of culture-based and molecular methods for the diagnosis of BSI (including mass spectrometry, magnetic resonance, PCR-based methods, direct inoculation methods, and peptide nucleic acid fluorescence in situ hybridization), the understanding of which could provide new perspectives to improve and fasten the diagnosis and treatment of septic patients. Although blood culture remains the gold standard to diagnose BSIs, newly developed methods can significantly shorten the turnaround time of reliable microbial ID and AST, thus substantially improving the diagnostic yield.
Collapse
Affiliation(s)
- Walter Florio
- a Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia , Università di Pisa , Pisa , Italy
| | - Paola Morici
- a Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia , Università di Pisa , Pisa , Italy
| | - Emilia Ghelardi
- a Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia , Università di Pisa , Pisa , Italy
| | - Simona Barnini
- b U.O. Microbiologia Universitaria Azienda Ospedaliero-Universitaria Pisana , Pisa , Italy
| | - Antonella Lupetti
- a Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia , Università di Pisa , Pisa , Italy
| |
Collapse
|
30
|
Yang Y, Lin Y, Chen Z, Gong T, Yang P, Girault H, Liu B, Qiao L. Bacterial Whole Cell Typing by Mass Spectra Pattern Matching with Bootstrapping Assessment. Anal Chem 2017; 89:12556-12561. [PMID: 29086558 DOI: 10.1021/acs.analchem.7b03820] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Bacterial typing is of great importance in clinical diagnosis, environmental monitoring, food safety analysis, and biological research. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is now widely used to analyze bacterial samples. Identification of bacteria at the species level can be realized by matching the mass spectra of samples against a library of mass spectra of known bacteria. Nevertheless, in order to reasonably type bacteria, identification accuracy should be further improved. Herein, we propose a new framework to the identification and assessment for MALDI-MS based bacterial analysis. Our approach combines new measures for spectra similarity and a novel bootstrapping assessment. We tested our approach on a general data set containing the mass spectra of 1741 strains of bacteria and another challenging data set containing 250 strains, including 40 strains in the Bacillus cereus group that were previously claimed to be impossible to resolve by MALDI-MS. With the bootstrapping assessment, we achieved much more reliable predictions at both the genus and species level, and enabled to resolve the Bacillus cereus group. To the best of the authors' knowledge, our method is the first to provide a statistical assessment to MALDI-MS based bacterial typing that could lead to more reliable bacterial typing.
Collapse
Affiliation(s)
- Yi Yang
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University , Shanghai 200000, China
| | - Yu Lin
- Research School of Computer Science, College of Engineering and Computer Science, The Australian National University , Canberra, ACT 0200, Australia
| | - Zhuoxin Chen
- Institutes of Biomedical Sciences, Fudan University , Shanghai 200000, China
| | - Tianqi Gong
- Institutes of Biomedical Sciences, Fudan University , Shanghai 200000, China
| | - Pengyuan Yang
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University , Shanghai 200000, China.,Institutes of Biomedical Sciences, Fudan University , Shanghai 200000, China
| | - Hubert Girault
- Laboratoire d'Electrochimie Physique et Analytique, Ecole Polytechnique Fédérale de Lausanne , Industrie 17, CH-1951 Sion, Switzerland
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University , Shanghai 200000, China.,Institutes of Biomedical Sciences, Fudan University , Shanghai 200000, China
| | - Liang Qiao
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University , Shanghai 200000, China.,Institutes of Biomedical Sciences, Fudan University , Shanghai 200000, China
| |
Collapse
|
31
|
Impact of rapid diagnosis of Staphylococcus aureus bacteremia from positive blood cultures on patient management. Eur J Clin Microbiol Infect Dis 2017; 36:2469-2473. [DOI: 10.1007/s10096-017-3086-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 07/31/2017] [Indexed: 11/26/2022]
|
32
|
Kitagawa K, Shigemura K, Onuma KI, Nishida M, Fujiwara M, Kobayashi S, Yamasaki M, Nakamura T, Yamamichi F, Shirakawa T, Tokimatsu I, Fujisawa M. Improved bacterial identification directly from urine samples with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Clin Lab Anal 2017; 32. [PMID: 28737838 DOI: 10.1002/jcla.22301] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 06/22/2017] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) contributes to rapid identification of pathogens in the clinic but has not yet performed especially well for Gram-positive cocci (GPC) causing complicated urinary tract infection (UTI). The goal of this study was to investigate the possible clinical use of MALDI-TOF MS as a rapid method for bacterial identification directly from urine in complicated UTI. METHODS MALDI-TOF MS was applied to urine samples gathered from 142 suspected complicated UTI patients in 2015-2017. We modified the standard procedure (Method 1) for sample preparation by adding an initial 10 minutes of ultrasonication followed by centrifugation at 500 g for 1 minutes to remove debris such as epithelial cells and leukocytes from the urine (Method 2). RESULTS In 133 urine culture-positive bacteria, the rate of corresponded with urine culture in GPC by MALDI-TOF MS in urine with standard sample preparation (Method 1) was 16.7%, but the modified sample preparation (Method 2) significantly improved that rate to 52.2% (P=.045). Method 2 also improved the identification accuracy for Gram-negative rods (GNR) from 77.1% to 94.2% (P=.022). The modified Method 2 significantly improved the average MALDI score from 1.408±0.153 to 2.166±0.045 (P=.000) for GPC and slightly improved the score from 2.107±0.061 to 2.164±0.037 for GNR. CONCLUSION The modified sample preparation for MALDI-TOF MS can improve identification accuracy for complicated UTI causative bacteria. This simple modification offers a rapid and accurate routine diagnosis for UTI, and may possibly be a substitute for urine cultures.
Collapse
Affiliation(s)
- Koichi Kitagawa
- Division of Translational Research for Biologics, Department of Internal Medicine Related, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Katsumi Shigemura
- Department of Urology, Kobe University Graduate School of Medicine, Kobe, Japan.,Division of Infectious Diseases, Department of International Health, Kobe University Graduate School of Health Sciences, Kobe, Japan.,Infection Control and Prevention, Kobe University Hospital, Kobe, Japan
| | - Ken-Ichiro Onuma
- Department of Clinical Laboratory, Kobe University Hospital, Kobe, Japan
| | - Masako Nishida
- Department of Clinical Laboratory, Kobe University Hospital, Kobe, Japan
| | - Mayu Fujiwara
- Department of Clinical Laboratory, Kobe University Hospital, Kobe, Japan
| | - Saori Kobayashi
- Department of Clinical Laboratory, Kobe University Hospital, Kobe, Japan
| | - Mika Yamasaki
- Department of Clinical Laboratory, Kobe University Hospital, Kobe, Japan
| | - Tatsuya Nakamura
- Infection Control and Prevention, Kobe University Hospital, Kobe, Japan.,Department of Clinical Laboratory, Kobe University Hospital, Kobe, Japan
| | | | - Toshiro Shirakawa
- Division of Translational Research for Biologics, Department of Internal Medicine Related, Kobe University Graduate School of Medicine, Kobe, Japan.,Department of Urology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Issei Tokimatsu
- Infection Control and Prevention, Kobe University Hospital, Kobe, Japan
| | - Masato Fujisawa
- Department of Urology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
33
|
Lin JF, Ge MC, Liu TP, Chang SC, Lu JJ. A simple method for rapid microbial identification from positive monomicrobial blood culture bottles through matrix-assisted laser desorption ionization time-of-flight mass spectrometry. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2017; 51:659-665. [PMID: 28711436 DOI: 10.1016/j.jmii.2017.03.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/04/2017] [Accepted: 03/15/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND AND PURPOSE Rapid identification of microbes in the bloodstream is crucial in managing septicemia because of its high disease severity, and direct identification from positive blood culture bottles through matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) can shorten the turnaround time. Therefore, we developed a simple method for rapid microbiological identification from positive blood cultures by using MALDI-TOF MS. METHODS We modified previously developed methods to propose a faster, simpler and more economical method, which includes centrifugation and hemolysis. Specifically, our method comprises two-stage centrifugation with gravitational acceleration (g) at 600g and 3000g, followed by the addition of a lysis buffer and another 3000g centrifugation. RESULTS In total, 324 monomicrobial bacterial cultures were identified. The success rate of species identification was 81.8%, which is comparable with other complex methods. The identification success rate was the highest for Gram-negative aerobes (85%), followed by Gram-positive aerobes (78.2%) and anaerobes (67%). The proposed method requires less than 10 min, costs less than US$0.2 per usage, and facilitates batch processing. CONCLUSION We conclude that this method is feasible for clinical use in microbiology laboratories, and can serve as a reference for treatments or further complementary diagnostic testing.
Collapse
Affiliation(s)
- Jung-Fu Lin
- Division of Infectious Diseases, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Mao-Cheng Ge
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Tsui-Ping Liu
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Shih-Cheng Chang
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jang-Jih Lu
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
34
|
Impact of Organism Identification Method on Central Line-Associated Bloodstream Infection Designation. Infect Control Hosp Epidemiol 2017. [PMID: 28633680 DOI: 10.1017/ice.2017.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
35
|
Ashizawa K, Murata S, Terada T, Ito D, Bunya M, Watanabe K, Teruuchi Y, Tsuchida S, Satoh M, Nishimura M, Matsushita K, Sugama Y, Nomura F. Applications of copolymer for rapid identification of bacteria in blood culture broths using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. J Microbiol Methods 2017; 139:54-60. [PMID: 28461023 DOI: 10.1016/j.mimet.2017.04.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 01/12/2023]
Abstract
Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) can be used to identify pathogens in blood culture samples. However, sample pretreatment is needed for direct identification of microbes in blood culture bottles. Conventional protocols are complex and time-consuming. Therefore, in this study, we developed a method for collecting bacteria using polyallylamine-polystyrene copolymer for application in wastewater treatment technology. Using representative bacterial species Escherichia coli and Staphylococcus capitis, we found that polyallylamine-polystyrene can form visible aggregates with bacteria, which can be identified using MALDI-TOF MS. The processing time of our protocol was as short as 15min. Hemoglobin interference in MALDI spectra analysis was significantly decreased in our method compared with the conventional method. In a preliminary experiment, we evaluated the use of our protocol to identify clinical isolates from blood culture bottles. MALDI-TOF MS-based identification of 17 strains from five bacterial species (E. coli, Klebsiella pneumoniae, Enterococcus faecalis, S. aureus, and S. capitis) collected by our protocol was satisfactory. Prospective large-scale studies are needed to further evaluate the clinical application of this novel and simple method of collecting bacteria in blood culture bottles.
Collapse
Affiliation(s)
- Kazuho Ashizawa
- R&D Department, Nittobo Medical Co., Ltd., 1 Shiojima, Fukuhara, Fukuyama, Koriyama, Fukushima 963-8061, Japan
| | - Syota Murata
- Division of Laboratory Medicine, Clinical Genetics and Proteomics, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan; Division of Clinical Mass Spectrometry, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Takashi Terada
- R&D Department, Nittobo Medical Co., Ltd., 1 Shiojima, Fukuhara, Fukuyama, Koriyama, Fukushima 963-8061, Japan
| | - Daisuke Ito
- R&D Department, Nittobo Medical Co., Ltd., 1 Shiojima, Fukuhara, Fukuyama, Koriyama, Fukushima 963-8061, Japan
| | - Masaru Bunya
- Specialty Chemicals Division, Nittobo Medical Co., Ltd., 1, Shiojima, Fukuhara, Fukuyama, Koriyama, Fukushima 963-8061, Japan
| | - Koji Watanabe
- Specialty Chemicals Division, Nittobo Medical Co., Ltd., 1, Shiojima, Fukuhara, Fukuyama, Koriyama, Fukushima 963-8061, Japan
| | - Yoko Teruuchi
- Specialty Chemicals Division, Nittobo Medical Co., Ltd., 1, Shiojima, Fukuhara, Fukuyama, Koriyama, Fukushima 963-8061, Japan
| | - Sachio Tsuchida
- Division of Clinical Mass Spectrometry, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Mamoru Satoh
- Division of Clinical Mass Spectrometry, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Motoi Nishimura
- Division of Laboratory Medicine, Clinical Genetics and Proteomics, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan; Division of Clinical Mass Spectrometry, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Kazuyuki Matsushita
- Division of Laboratory Medicine, Clinical Genetics and Proteomics, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Yuji Sugama
- R&D Department, Nittobo Medical Co., Ltd., 1 Shiojima, Fukuhara, Fukuyama, Koriyama, Fukushima 963-8061, Japan.
| | - Fumio Nomura
- Division of Clinical Mass Spectrometry, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| |
Collapse
|
36
|
Tanner H, Evans JT, Gossain S, Hussain A. Evaluation of three sample preparation methods for the direct identification of bacteria in positive blood cultures by MALDI-TOF. BMC Res Notes 2017; 10:48. [PMID: 28100271 PMCID: PMC5241956 DOI: 10.1186/s13104-016-2366-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 12/28/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Patient mortality is significantly reduced by rapid identification of bacteria from sterile sites. MALDI-TOF can identify bacteria directly from positive blood cultures and multiple sample preparation methods are available. We evaluated three sample preparation methods and two MALDI-TOF score cut-off values. Positive blood culture bottles with organisms present in Gram stains were prospectively analysed by MALDI-TOF. Three lysis reagents (Saponin, SDS, and SepsiTyper lysis bufer) were applied to each positive culture followed by centrifugation, washing and protein extraction steps. Methods were compared using the McNemar test and 16S rDNA sequencing was used to assess discordant results. RESULTS In 144 monomicrobial cultures, using ≥2.000 as the cut-off value, species level identifications were obtained from 69/144 (48%) samples using Saponin, 86/144 (60%) using SDS, and 91/144 (63%) using SepsiTyper. The difference between SDS and SepsiTyper was not statistically significant (P = 0.228). Differences between Saponin and the other two reagents were significant (P < 0.01). Using ≥1.700 plus top three results matching as the cut-off value, species level identifications were obtained from 100/144 (69%) samples using Saponin, 103/144 (72%) using SDS, and 106/144 (74%) using SepsiTyper and there was no statistical difference between the methods. No true discordances between culture and direct MALDI-TOF identification were observed in monomicrobial cultures. In 32 polymicrobial cultures, MALDI-TOF identified one organism in 34-75% of samples depending on the method. CONCLUSIONS This study demonstrates two inexpensive in-house detergent lysis methods are non-inferior to a commercial kit for analysis of positive blood cultures by direct MALDI-TOF in a clinical diagnostic microbiology laboratory.
Collapse
Affiliation(s)
- Hannah Tanner
- Public Health England, Public Health Laboratory Birmingham, Heartlands Hospital, Bordesley Green East, Birmingham, B9 5SS, UK.
| | - Jason T Evans
- Public Health England, Public Health Laboratory Birmingham, Heartlands Hospital, Bordesley Green East, Birmingham, B9 5SS, UK.,Wales Centre for Mycobacteria, Public Health Wales, University Hospital Llandough, Penarth, CF64 2XX, UK
| | - Savita Gossain
- Public Health England, Public Health Laboratory Birmingham, Heartlands Hospital, Bordesley Green East, Birmingham, B9 5SS, UK
| | - Abid Hussain
- Public Health England, Public Health Laboratory Birmingham, Heartlands Hospital, Bordesley Green East, Birmingham, B9 5SS, UK
| |
Collapse
|
37
|
Abstract
MALDI-TOF MS has become the standard method for routine identification of most microbial organisms in clinical laboratories and has largely replaced biochemical assays. Classification relies on extensive well curated databases, ideally covering the full spectrum of microorganisms encountered in the specimens at hands. The protocols for harvesting cells and procuring material suitable for downstream MALDI-TOF MS analyses vary in specific details between the different groups of organisms, e.g., gram-positive or -negative bacteria, mycobacteria, or fungi. With respect to fungi, methods further vary between yeasts and moulds; and even among different mould genera if they do not lyse in a similar fashion. Purification of microbial materials from clinical specimen allows the direct identification of bacteria; however this is not yet fully adapted to fungi. In this chapter, I look into the differences between the underlying methods for yeast and moulds, and for production of samples suitable for MALDI-TOF MS species identification from cultures and different clinical materials.
Collapse
Affiliation(s)
- Oliver Bader
- Institute for Medical Microbiology, University Medical Center Göttingen, Kreuzbergring 57, Göttingen, D-37075, Germany.
| |
Collapse
|
38
|
Direct identification of microorganisms from positive blood cultures by MALDI-TOF MS using an in-house saponin method. Int J Infect Dis 2016; 52:37-42. [PMID: 27658644 DOI: 10.1016/j.ijid.2016.09.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/11/2016] [Accepted: 09/09/2016] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVES Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a fast and reliable method for the identification of bacteria. A MALDI Sepsityper kit is generally used to prepare samples obtained directly from culture bottles. However, the relatively high cost of this kit is a major obstacle to introducing this method into routine clinical use. In this study, the accuracies of three different preparation methods for rapid direct identification of bacteria from positive blood culture bottles by MALDI-TOF MS analysis were compared. METHODS In total, 195 positive bottles were included in this study. RESULTS Overall, 78.5%, 68.7%, and 76.4% of bacteria were correctly identified to the genus level (score ≥1.7) directly from positive blood cultures using the Sepsityper, centrifugation, and saponin methods, respectively. The identification rates using the Sepsityper and saponin methods were significantly higher than that using the centrifugation method (Sepsityper vs. centrifugation, p<0.001; saponin vs. centrifugation, p=0.003). CONCLUSIONS These results suggest that the saponin method is superior to the centrifugation method and comparable to the Sepsityper method in the accuracy of rapid bacterial identification directly from blood culture bottles, and could be a less expensive alternative to the Sepsityper method.
Collapse
|
39
|
Chien JY, Lee TF, Du SH, Teng SH, Liao CH, Sheng WH, Teng LJ, Hsueh PR. Applicability of an in-House Saponin-Based Extraction Method in Bruker Biotyper Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry System for Identification of Bacterial and Fungal Species in Positively Flagged Blood Cultures. Front Microbiol 2016; 7:1432. [PMID: 27695442 PMCID: PMC5024563 DOI: 10.3389/fmicb.2016.01432] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 08/29/2016] [Indexed: 11/25/2022] Open
Abstract
We used an in-house saponin-based extraction method to evaluate the performance of the Bruker Biotyper matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS) system for the identification of bacteria and fungi in 405 positively flagged blood culture bottles. Results obtained from MALDI-TOF/MS were compared with those obtained using conventional phenotypic identification methods. Of the 405 positively flagged blood culture bottles, 365 showed monomicrobal growth and were correctly identified to the species (72.1%) or genus (89.6%) level using the Bruker Biotyper system. The remaining 40 positively flagged blood culture bottles showed polymicrobial growth. Of them, 82.5% (n = 33) of the isolates were correctly identified to the species level and 92.5% (n = 37) to the genus level using the Bruker Biotyper system. The overall accuracy of identification to the genus level in flagged blood cultures was 89.5% for Gram-positive organisms, 93.5% for Gram-negative pathogens and 71.9% for fungi. Confidence scores were ≥1.500 for 307 (75.8%) bottles, ≥1.700 for 249 (61.5%) bottles and ≥2.000 for 142 (35.1%) bottles. None of the yeast cultures yielded scores ≥1.700. Using an identification-score cutoff of ≥1.500, the MALDI Biotyper correctly identified 99.2% of Gram-positive bacteria, 97.6% of Gram-negative bacteria and 100% of yeast isolates to the genus level and 77.6% of Gram-positive bacteria, 87.1% of Gram-negative bacteria and 100.0% of yeast isolates to the species level. The overall rate of identification using our protocol was 89.9% (364/405) for genus level identification and 73.1% (296/405) for species level identification. Yeast isolates yielded the lowest confidence scores, which compromised the accuracy of identification. Further optimization of the protein extraction procedure in positive blood cultures is needed to improve the rate of identification.
Collapse
Affiliation(s)
- Jung-Yien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan UniversityTaipei, Taiwan; Departments of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan UniversityTaipei, Taiwan
| | - Tai-Fen Lee
- Departments of Laboratory Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan UniversityTaipei, Taiwan; Departments of Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan UniversityTaipei, Taiwan
| | - Shin-Hei Du
- Departments of Laboratory Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University Taipei, Taiwan
| | - Shih-Hua Teng
- Department of Graduate Institute of Biomedical Sciences, Chang Gung UniversityTao-Yuan, Taiwan; Bruker Taiwan Co., Ltd.Taipei, Taiwan
| | - Chun-Hsing Liao
- Department of Internal Medicine, Far Eastern Memorial Hospital Taipei, Taiwan
| | - Wang-Hui Sheng
- Departments of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University Taipei, Taiwan
| | - Lee-Jene Teng
- Departments of Laboratory Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan UniversityTaipei, Taiwan; Departments of Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan UniversityTaipei, Taiwan
| | - Po-Ren Hsueh
- Departments of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan UniversityTaipei, Taiwan; Departments of Laboratory Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan UniversityTaipei, Taiwan
| |
Collapse
|
40
|
Dekter HE, Orelio CC, Morsink MC, Tektas S, Vis B, Te Witt R, van Leeuwen WB. Antimicrobial susceptibility testing of Gram-positive and -negative bacterial isolates directly from spiked blood culture media with Raman spectroscopy. Eur J Clin Microbiol Infect Dis 2016; 36:81-89. [PMID: 27638006 DOI: 10.1007/s10096-016-2773-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/30/2016] [Indexed: 11/24/2022]
Abstract
Patients suffering from bacterial bloodstream infections have an increased risk of developing systematic inflammatory response syndrome (SIRS), which can result in rapid deterioration of the patients' health. Diagnostic methods for bacterial identification and antimicrobial susceptibility tests are time-consuming. The aim of this study was to investigate whether Raman spectroscopy would be able to rapidly provide an antimicrobial susceptibility profile from bacteria isolated directly from positive blood cultures. First, bacterial strains (n = 133) were inoculated in tryptic soy broth and incubated in the presence or absence of antibiotics for 5 h. Antimicrobial susceptibility profiles were analyzed by Raman spectroscopy. Subsequently, a selection of strains was isolated from blood cultures and analyzed similarly. VITEK®2 technology and broth dilution were used as the reference methods. Raman spectra from 67 antibiotic-susceptible strains showed discriminatory spectra in the absence or at low concentrations of antibiotics as compared to high antibiotic concentrations. For 66 antibiotic-resistant strains, no antimicrobial effect was observed on the bacterial Raman spectra. Full concordance with VITEK®2 data and broth dilution was obtained for the antibiotic-susceptible strains, 68 % and 98 %, respectively, for the resistant strains. Discriminative antimicrobial susceptibility testing (AST) profiles were obtained for all bacterial strains isolated from blood cultures, resulting in full concordance with the VITEK®2 data. It can be concluded that Raman spectroscopy is able to detect the antimicrobial susceptibility of bacterial species isolated from a positive blood culture bottle within 5 h. Although Raman spectroscopy is cheap and rapid, further optimization is required, to fulfill a great promise for future AST profiling technology development.
Collapse
Affiliation(s)
- H E Dekter
- Research Department of Innovative Molecular Diagnostics, University of Applied Sciences Leiden, J. H. Oortweg 21, 2333 CH, Leiden, The Netherlands
| | - C C Orelio
- Research Department of Innovative Molecular Diagnostics, University of Applied Sciences Leiden, J. H. Oortweg 21, 2333 CH, Leiden, The Netherlands
| | - M C Morsink
- Research Department of Innovative Molecular Diagnostics, University of Applied Sciences Leiden, J. H. Oortweg 21, 2333 CH, Leiden, The Netherlands
| | - S Tektas
- Research Department of Innovative Molecular Diagnostics, University of Applied Sciences Leiden, J. H. Oortweg 21, 2333 CH, Leiden, The Netherlands
| | - B Vis
- Research Department of Innovative Molecular Diagnostics, University of Applied Sciences Leiden, J. H. Oortweg 21, 2333 CH, Leiden, The Netherlands
| | - R Te Witt
- Netherlands Molecular Diagnostic Laboratory B.V. (NMDL), Visseringlaan 25, 2288 ER, Rijswijk, The Netherlands
| | - W B van Leeuwen
- Research Department of Innovative Molecular Diagnostics, University of Applied Sciences Leiden, J. H. Oortweg 21, 2333 CH, Leiden, The Netherlands.
| |
Collapse
|
41
|
Angeletti S. Matrix assisted laser desorption time of flight mass spectrometry (MALDI-TOF MS) in clinical microbiology. J Microbiol Methods 2016; 138:20-29. [PMID: 27613479 DOI: 10.1016/j.mimet.2016.09.003] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 09/01/2016] [Accepted: 09/03/2016] [Indexed: 10/21/2022]
Abstract
The microbiological management of patients with suspected bacterial infection includes the identification of the pathogen and the determination of the antibiotic susceptibility. These traditional approaches, based on the pure culture of the microorganism, require at least 36-48h. A new method, Matrix Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry (MALDI-TOF MS), has been recently developed to profile bacterial proteins from whole cell extracts and obtain a bacterial fingerprint able to discriminate microorganisms from different genera and species. By whole cell-mass spectrometry, microbial identification can be achieved within minutes from cultured isolate, rather than traditional phenotypic or genotypic characterizations. From the year 2009 an explosion of applications of this technology has been observed with promising results. Several studies have been performed and showed that MALDI-TOF represents a reliable alternative method for rapid bacteria and fungi identification in clinical setting. A future area of expansion is represented by the application of MALDI-TOF technology to the antibiotic susceptibility test. In conclusion, the revision of the literature available up to date demonstrated that MALDI-TOF MS represents an innovative technology for the rapid and accurate identification of bacterial and fungal isolates in clinical settings. By an earlier microbiological diagnosis, MALDI-TOF MS contributes to a reduced mortality and hospitalization time of the patients and consequently has a significant impact on cost savings and public health.
Collapse
Affiliation(s)
- Silvia Angeletti
- Clinical Pathology and Microbiology Unit, University Campus Bio-Medico of Rome, Italy.
| |
Collapse
|
42
|
Sparbier K, Schubert S, Kostrzewa M. MBT-ASTRA: A suitable tool for fast antibiotic susceptibility testing? Methods 2016; 104:48-54. [DOI: 10.1016/j.ymeth.2016.01.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/12/2016] [Accepted: 01/19/2016] [Indexed: 01/10/2023] Open
|
43
|
Thoendel M, Jeraldo PR, Greenwood-Quaintance KE, Yao JZ, Chia N, Hanssen AD, Abdel MP, Patel R. Comparison of microbial DNA enrichment tools for metagenomic whole genome sequencing. J Microbiol Methods 2016; 127:141-145. [PMID: 27237775 DOI: 10.1016/j.mimet.2016.05.022] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/23/2016] [Accepted: 05/24/2016] [Indexed: 02/07/2023]
Abstract
Metagenomic whole genome sequencing for detection of pathogens in clinical samples is an exciting new area for discovery and clinical testing. A major barrier to this approach is the overwhelming ratio of human to pathogen DNA in samples with low pathogen abundance, which is typical of most clinical specimens. Microbial DNA enrichment methods offer the potential to relieve this limitation by improving this ratio. Two commercially available enrichment kits, the NEBNext Microbiome DNA Enrichment Kit and the Molzym MolYsis Basic kit, were tested for their ability to enrich for microbial DNA from resected arthroplasty component sonicate fluids from prosthetic joint infections or uninfected sonicate fluids spiked with Staphylococcus aureus. Using spiked uninfected sonicate fluid there was a 6-fold enrichment of bacterial DNA with the NEBNext kit and 76-fold enrichment with the MolYsis kit. Metagenomic whole genome sequencing of sonicate fluid revealed 13- to 85-fold enrichment of bacterial DNA using the NEBNext enrichment kit. The MolYsis approach achieved 481- to 9580-fold enrichment, resulting in 7 to 59% of sequencing reads being from the pathogens known to be present in the samples. These results demonstrate the usefulness of these tools when testing clinical samples with low microbial burden using next generation sequencing.
Collapse
Affiliation(s)
- Matthew Thoendel
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Patricio R Jeraldo
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA; Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Janet Z Yao
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Nicholas Chia
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA; Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Arlen D Hanssen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Matthew P Abdel
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Robin Patel
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, MN, USA; Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
44
|
Zhu Y, Qiao L, Prudent M, Bondarenko A, Gasilova N, Möller SB, Lion N, Pick H, Gong T, Chen Z, Yang P, Lovey LT, Girault HH. Sensitive and fast identification of bacteria in blood samples by immunoaffinity mass spectrometry for quick BSI diagnosis. Chem Sci 2016; 7:2987-2995. [PMID: 29997787 PMCID: PMC6004777 DOI: 10.1039/c5sc04919a] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 01/06/2016] [Indexed: 12/22/2022] Open
Abstract
Bloodstream infections rank among the most serious causes of morbidity and mortality in hospitalized patients, partly due to the long period (up to one week) required for clinical diagnosis. In this work, we have developed a sensitive method to quickly and accurately identify bacteria in human blood samples by combining optimized matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MS) and efficient immunoaffinity enrichment/separation. A library of bacteria reference mass spectra at different cell numbers was firstly built. Due to a reduced sample spot size, the reference spectra could be obtained from as few as 10 to 102 intact bacterial cells. Bacteria in human blood samples were then extracted using antibodies-modified magnetic beads for MS fingerprinting. By comparing the sample spectra with the reference spectra based on a cosine correlation, bacteria with concentrations as low as 500 cells per mL in blood serum and 8000 cells per mL in whole blood were identified. The proposed method was further applied to positive clinical blood cultures (BCs) provided by a local hospital, where Escherichia coli and Staphylococcus aureus were identified. Because of the method's high sensitivity, the BC time required for diagnosis can be greatly reduced. As a proof of concept, whole blood spiked with a low initial concentration (102 or 103 cells per mL) of bacteria was cultured in commercial BC bottles and analysed by the developed method after different BC times. Bacteria were successfully identified after 4 hours of BC. Therefore, an entire diagnostic process could be accurately accomplished within half a day using the newly developed method, which could facilitate the timely determination of appropriate anti-bacterial therapy and decrease the risk of mortality from bloodstream infections.
Collapse
Affiliation(s)
- Yingdi Zhu
- Laboratoire d'Electrochimie Physique et Analytique , École Polytechnique Fedérale de Lausanne , Rue de l'industrie 17 , CH-1951 Sion , Switzerland .
| | - Liang Qiao
- Laboratoire d'Electrochimie Physique et Analytique , École Polytechnique Fedérale de Lausanne , Rue de l'industrie 17 , CH-1951 Sion , Switzerland .
- Institute of Biomedical Sciences , Fudan University , Dong'an Road 131 , 200032 Shanghai , China
| | - Michel Prudent
- Transfusion Interrégionale CRS , Laboratoire de Recherche sur les Produits Sanguins , CH-1015 Lausanne , Switzerland
| | - Alexandra Bondarenko
- Laboratoire d'Electrochimie Physique et Analytique , École Polytechnique Fedérale de Lausanne , Rue de l'industrie 17 , CH-1951 Sion , Switzerland .
| | - Natalia Gasilova
- Laboratoire d'Electrochimie Physique et Analytique , École Polytechnique Fedérale de Lausanne , Rue de l'industrie 17 , CH-1951 Sion , Switzerland .
| | - Siham Beggah Möller
- Department of Fundamental Microbiology , University of Lausanne , CH-1015 Lausanne , Switzerland
| | - Niels Lion
- Transfusion Interrégionale CRS , Laboratoire de Recherche sur les Produits Sanguins , CH-1015 Lausanne , Switzerland
| | - Horst Pick
- Laboratoire de Chimie Physique des Polymères et Membranes , École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| | - Tianqi Gong
- Institute of Biomedical Sciences , Fudan University , Dong'an Road 131 , 200032 Shanghai , China
| | - Zhuoxin Chen
- Institute of Biomedical Sciences , Fudan University , Dong'an Road 131 , 200032 Shanghai , China
| | - Pengyuan Yang
- Institute of Biomedical Sciences , Fudan University , Dong'an Road 131 , 200032 Shanghai , China
| | | | - Hubert H Girault
- Laboratoire d'Electrochimie Physique et Analytique , École Polytechnique Fedérale de Lausanne , Rue de l'industrie 17 , CH-1951 Sion , Switzerland .
| |
Collapse
|
45
|
Fitzgerald C, Stapleton P, Phelan E, Mulhare P, Carey B, Hickey M, Lynch B, Doyle M. Rapid identification and antimicrobial susceptibility testing of positive blood cultures using MALDI-TOF MS and a modification of the standardised disc diffusion test: a pilot study. J Clin Pathol 2016; 69:jclinpath-2015-203436. [PMID: 27122186 DOI: 10.1136/jclinpath-2015-203436] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 03/31/2016] [Indexed: 11/04/2022]
Abstract
AIMS In an era when clinical microbiology laboratories are under increasing financial pressure, there is a need for inexpensive, yet effective, rapid microbiology tests. The aim of this study was to evaluate a novel modification of standard methodology for the identification and antimicrobial susceptibility testing (AST) of pathogens in positive blood cultures, reducing the turnaround time of laboratory results by 24 h. METHODS 277 positive blood cultures had a Gram stain performed and were subcultured and incubated at 37°C in a CO2 atmosphere for 4-6 h. Identification of the visible growth was performed using matrix-assisted laser desorption time of flight mass spectrometry (MALDI-TOF MS). Taking a modified approach to the Clinical and Laboratory Standards Institute-standardised AST methodology, an inoculum density of 0.5 McFarland was prepared from the early growth for disc diffusion testing. The standard AST method was also performed on the 18-24 h culture. RESULTS 96% (n=73/76) of gram-negative organisms were correctly identified by MALDI-TOF MS. Comparative analysis of the rapid and standard AST results showed an overall interpretive category error rate of 7.7% (6.7% minor errors, 0.6% major errors and 0.4% very major errors). 100% of Staphylococcus aureus (n=41) and enterococcus isolates (n=9) were correctly identified after 4-6 h incubation. The overall AST categorical agreement was also 100% for these isolates. CONCLUSIONS An incubation of 4-6 h directly from positive blood cultures allowed for both a rapid species identification and an antimicrobial susceptibility result approximately 24 h earlier than is possible using standard methodology.
Collapse
Affiliation(s)
- C Fitzgerald
- Microbiology Laboratory, University Hospital Waterford, Waterford, Ireland
| | - P Stapleton
- Microbiology Laboratory, University Hospital Waterford, Waterford, Ireland
| | - E Phelan
- Microbiology Laboratory, University Hospital Waterford, Waterford, Ireland
| | - P Mulhare
- Microbiology Laboratory, University Hospital Waterford, Waterford, Ireland
| | - B Carey
- Microbiology Laboratory, University Hospital Waterford, Waterford, Ireland
| | - M Hickey
- Microbiology Laboratory, University Hospital Waterford, Waterford, Ireland
| | - B Lynch
- Microbiology Laboratory, University Hospital Waterford, Waterford, Ireland
| | - M Doyle
- Microbiology Laboratory, University Hospital Waterford, Waterford, Ireland
| |
Collapse
|
46
|
Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Microbial Identification in Clinical Microbiology. Mol Microbiol 2016. [DOI: 10.1128/9781555819071.ch8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
47
|
Loonen AJM, Wolffs PFG, de Bresser M, Habraken M, Bruggeman CA, Hermans MHA, van den Brule AJC. Tuf mRNA rather than 16S rRNA is associated with culturable Staphylococcus aureus. World J Clin Infect Dis 2015; 5:86-93. [DOI: 10.5495/wjcid.v5.i4.86] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/20/2015] [Accepted: 06/11/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the presence of various nucleic acids targets of Staphylococcus aureus (S. aureus) during bacterial growth and antibiotic induced killing in relation to viability.
METHODS: S. aureus was cultured to log phase and spiked in Todd Hewitt (TH) broth and whole blood of healthy human volunteers. Viability of S. aureus after flucloxacillin treatment (0, 1, 3 and 6 d) was assessed by culture on bloodagar plates. DNA and RNA were isolated from 200 μL. cDNA synthesis was performed by using random primers. The presence of S. aureus DNA, rRNA, and mRNA were determined by real-time polymerase chain reaction of the 16S rDNA and tuf gene (elongation factor Tu).
RESULTS: S. aureus spiked in TH broth without antibiotics grew from day 0-6 and DNA (tuf and 16S), and 16S rRNA remained detectable during this whole period. During flucloxacillin treatment S. aureus lost viability from day 3 onwards, while the 16S rRNA-gene and its RNA transcripts remained detectable. DNA and rRNA can be detected in flucloxacillin treated S. aureus cultures that do not further contain culturable bacteria. However, tuf mRNA became undetectable from day 3 onwards. Tuf mRNA can only be detected from samples with culturable bacteria. When spiking S. aureus in whole blood instead of broth no bacterial growth was seen, neither in the absence nor in the presence of flucloxacillin. Accordingly, no increase in DNA and RNA levels of both 16S rDNA and the tuf gene were detected.
CONCLUSION: Tuf mRNA expression is associated with culturable S. aureus and might be used to monitor antibiotic effects.
Collapse
|
48
|
van Belkum A, Chatellier S, Girard V, Pincus D, Deol P, Dunne WM. Progress in proteomics for clinical microbiology: MALDI-TOF MS for microbial species identification and more. Expert Rev Proteomics 2015; 12:595-605. [DOI: 10.1586/14789450.2015.1091731] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
49
|
Frédéric Ric S, Antoine M, Bodson A, Lissoir B. Bacterial rapid identification with matrix assisted laser desorption/ionization time-of-flight mass spectrometry: development of an 'in-house method' and comparison with Bruker Sepsityper(®) kit. Acta Clin Belg 2015; 70:325-30. [PMID: 25946409 DOI: 10.1179/2295333715y.0000000026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE The objective of this study was to compare an in-house matrix-assisted laser desorption ionization with time of flight (MALDI-TOF) method and a commercial MALDI-TOF kit (Sepsityper(®) kit) for direct bacterial identification in positive blood cultures. We also evaluated the time saved and the cost associated with the rapid identification techniques. METHODS We used the BACTEC(®) automated system for detecting positive blood cultures. Direct identification using Sepsityper kit and the in-house method were compared with conventional identification by MALDI-TOF using pure bacterial culture on the solid phase. We also evaluated different cut-off scores for rapid bacterial identification. RESULTS In total, 127 positive blood vials were selected. The rate of rapid identification with the MALDI Sepsityper kit was 25.2% with the standard cut-off and 33.9% with the enlarged cut-off, while the results for the in-house method were 44.1 and 61.4%, respectively. Error rates with the enlarged cut-off were 6.98 (n = 3) and 2.56% (n = 2) for Sepsityper and the in-house method, respectively. Identification rates were higher for gram-negative bacteria. DISCUSSION Direct bacterial identification succeeded in supplying rapid identification of the causative organism in cases of sepsis. The time taken to obtain a result was nearly 24 hours shorter for the direct bacterial identification methods than for conventional MALDI-TOF on solid phase culture. Compared with the Sepsityper kit, the in-house method offered better results and fewer errors, was more cost-effective and easier to use.
Collapse
Affiliation(s)
- S Frédéric Ric
- Trainee in Laboratory Medicine, Université Catholique de Louvain , Belgique
| | | | | | | |
Collapse
|
50
|
Barnini S, Ghelardi E, Brucculeri V, Morici P, Lupetti A. Rapid and reliable identification of Gram-negative bacteria and Gram-positive cocci by deposition of bacteria harvested from blood cultures onto the MALDI-TOF plate. BMC Microbiol 2015; 15:124. [PMID: 26084329 PMCID: PMC4471905 DOI: 10.1186/s12866-015-0459-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 06/01/2015] [Indexed: 01/14/2023] Open
Abstract
Background Rapid identification of the causative agent(s) of bloodstream infections using the matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) methodology can lead to increased empirical antimicrobial therapy appropriateness. Herein, we aimed at establishing an easier and simpler method, further referred to as the direct method, using bacteria harvested by serum separator tubes from positive blood cultures and placed onto the polished steel target plate for rapid identification by MALDI-TOF. The results by the direct method were compared with those obtained by MALDI-TOF on bacteria isolated on solid media. Results Identification of Gram-negative bacilli was 100 % concordant using the direct method or MALDI-TOF on isolated bacteria (96 % with score > 2.0). These two methods were 90 % concordant on Gram-positive cocci (32 % with score > 2.0). Identification by the SepsiTyper method of Gram-positive cocci gave concordant results with MALDI-TOF on isolated bacteria in 87 % of cases (37 % with score > 2.0). Conclusions The direct method herein developed allows rapid identification (within 30 min) of Gram-negative bacteria and Gram-positive cocci from positive blood cultures and can be used to rapidly report reliable and accurate results, without requiring skilled personnel or the use of expensive kits.
Collapse
Affiliation(s)
- Simona Barnini
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Via San Zeno 35-39, 56127, Pisa, Italy.
| | - Emilia Ghelardi
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Via San Zeno 35-39, 56127, Pisa, Italy.
| | - Veronica Brucculeri
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Via San Zeno 35-39, 56127, Pisa, Italy.
| | - Paola Morici
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Via San Zeno 35-39, 56127, Pisa, Italy.
| | - Antonella Lupetti
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Via San Zeno 35-39, 56127, Pisa, Italy.
| |
Collapse
|