1
|
Navidifar T, Zare Banadkouki A, Parvizi E, Mofid M, Golab N, Beig M, Sholeh M. Global prevalence of macrolide-resistant Staphylococcus spp.: a comprehensive systematic review and meta-analysis. Front Microbiol 2025; 16:1524452. [PMID: 40182286 PMCID: PMC11967404 DOI: 10.3389/fmicb.2025.1524452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/22/2025] [Indexed: 04/05/2025] Open
Abstract
Background Staphylococcus is a genus of bacteria responsible for various infections ranging from mild skin to severe systemic diseases. Methicillin-resistant Staphylococcus aureus (MRSA) and coagulase-negative staphylococci (CoNS) are significant challenges owing to their resistance to multiple antibiotics, including macrolides, such as erythromycin, clarithromycin, and azithromycin. Objective This study aimed to systematically review and synthesize data on the prevalence of macrolide resistance in Staphylococcus spp., identify trends and changes in resistance patterns over time, and assess how testing methods and guidelines affect reported resistance rates. Methods The study conducted a systematic search of the Scopus, PubMed, Web of Science, and EMBASE databases. Studies have reported the proportion of macrolide-resistant Staphylococcus spp. Two authors independently extracted and analyzed the data using a random-effects model. Heterogeneity was assessed, and subgroup analyses were performed based on country, continent, species, AST guidelines, methods, and period. Results In total, 223 studies from 76 countries were included. The pooled prevalence of resistance to erythromycin, clarithromycin, and azithromycin were 57.3, 52.6, and 57.9%, respectively. Significant heterogeneity was observed across studies (I2 > 95%, p < 0.001). Oceania (72%) had the highest erythromycin resistance, whereas Europe had the lowest (40.7%). Subgroup analyses revealed variations in resistance based on the species, with higher resistance in MRSA than in MSSA and CoNS than in other species. Over time, a slight decrease in erythromycin resistance has been observed (59.6% from 2015-2019 to 55% from 2020-2023). Conclusion This study emphasizes the high prevalence of macrolide resistance in Staphylococcus spp. and its notable regional variation. These findings highlight the necessity for standardized methodologies and global surveillance to manage macrolide resistance effectively. Controlling antibiotic resistance should prioritize enhancing public health measures and updating treatment guidelines. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=557756, CRD42024557756.
Collapse
Affiliation(s)
- Tahereh Navidifar
- Department of Basic Sciences, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran
| | - Abbas Zare Banadkouki
- Department of Microbiology, Shahid Beheshti University, Tehran, Iran
- Quality Control Department of Temad Mfg, Co., Tehran, Iran
| | - Elnaz Parvizi
- Department of Microbiology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Mofid
- School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Narges Golab
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Beig
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Sholeh
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
2
|
Kleine LM, Kanu EM, Grebe T, Sesay DM, Loismann H, Sesay M, Theiler T, Rudolf V, Mellmann A, Kalkman LC, Grobusch MP, Schaumburg F. Nasopharyngeal carriage of Staphylococcus aureus in a rural population, Sierra Leone. Int J Med Microbiol 2025; 318:151643. [PMID: 39756087 DOI: 10.1016/j.ijmm.2024.151643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/22/2024] [Accepted: 12/30/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND Nasopharyngeal colonization with Staphylococcus aureus is a risk factor for subsequent infection. Isolates from colonization can therefore provide important information on virulence factors and antimicrobial resistance when data from clinical isolates are lacking. The aim of this study was to assess colonization rates, resistance patterns and selected virulence factors of S. aureus from rural Sierra Leone. METHODS Residents of randomly selected houses in Masanga, Sierra Leone were included in a cross-sectional study (8-11/2023). Participants were tested for nasopharyngeal S. aureus colonization using selective culture media. Risk factors for colonization were documented in a standardized questionnaire. Isolates were genotyped and tested for antimicrobial susceptibility and selected virulence factors (e.g. Panton-Valentine leukocidin, capsular types). RESULTS Of 300 participants (62.7 % females, median age: 16 years), 168 (56 %) were colonized with S. aureus-related complex; six participants carried two different S. aureus genotypes, resulting in a total number of 174 isolates. Resistance to penicillin was predominant (97.1 %, 169/174), followed by tetracycline (66.1 %, 115/174), co-trimoxazole (56.9 %, 99/174) and oxacillin (24.1 %, 42/174, all mecA-positive, mostly associated with ST8/PVL-negative). PVL gene was detected in 21.3 % of isolates (37/174) mainly associated with ST15 and ST152. Except for past use of antimicrobials (p = 0.019), no specific risk factors such as comorbidities including hemoglobin variants were associated with S. aureus nasopharyngeal colonization. CONCLUSION The prevalence of methicillin-resistant and PVL-positive methicillin-susceptible S. aureus (MRSA/MSSA) is high in a rural community of asymptomatic carriers in Sierra Leone. Measures to contain the spread of MRSA, also in the community, are needed.
Collapse
Affiliation(s)
- Lisa Maria Kleine
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Emmanuel Marx Kanu
- Masanga Medical Research Unit, Masanga Hospital, Masanga, Sierra Leone; Centre of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam University Medical Centers, Location AMC, Amsterdam Infection and Immunity, Amsterdam Public Health, University of Amsterdam, Amsterdam, the Netherlands
| | - Tobias Grebe
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany.
| | | | - Henning Loismann
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Maxwell Sesay
- Masanga Medical Research Unit, Masanga Hospital, Masanga, Sierra Leone
| | - Tom Theiler
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Viktoria Rudolf
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | | | - Laura C Kalkman
- Centre of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam University Medical Centers, Location AMC, Amsterdam Infection and Immunity, Amsterdam Public Health, University of Amsterdam, Amsterdam, the Netherlands
| | - Martin P Grobusch
- Masanga Medical Research Unit, Masanga Hospital, Masanga, Sierra Leone; Centre of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam University Medical Centers, Location AMC, Amsterdam Infection and Immunity, Amsterdam Public Health, University of Amsterdam, Amsterdam, the Netherlands; Institute of Tropical Medicine & Deutsches Zentrum für Infektionsforschung, University of Tübingen, Tübingen, Germany; Centre de Recherches Médicales, Lambaréné, Gabon; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Frieder Schaumburg
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany; Masanga Medical Research Unit, Masanga Hospital, Masanga, Sierra Leone
| |
Collapse
|
3
|
Cuny C, Layer-Nicolaou F, Werner G, Witte W. A look at staphylococci from the one health perspective. Int J Med Microbiol 2024; 314:151604. [PMID: 38367509 DOI: 10.1016/j.ijmm.2024.151604] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 02/19/2024] Open
Abstract
Staphylococcus aureus and other staphylococcal species are resident and transient multihost colonizers as well as conditional pathogens. Especially S. aureus represents an excellent model bacterium for the "One Health" concept because of its dynamics at the human-animal interface and versatility with respect to host adaptation. The development of antimicrobial resistance plays another integral part. This overview will focus on studies at the human-animal interface with respect to livestock farming and to companion animals, as well as on staphylococci in wildlife. In this context transmissions of staphylococci and of antimicrobial resistance genes between animals and humans are of particular significance.
Collapse
Affiliation(s)
- Christiane Cuny
- Division of Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, National Reference Centre for Staphylococci and Enterococci, Wernigerode Branch, 38855 Wernigerode, Germany.
| | - Franziska Layer-Nicolaou
- Division of Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, National Reference Centre for Staphylococci and Enterococci, Wernigerode Branch, 38855 Wernigerode, Germany
| | - Guido Werner
- Division of Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, National Reference Centre for Staphylococci and Enterococci, Wernigerode Branch, 38855 Wernigerode, Germany
| | | |
Collapse
|
4
|
Dikoumba AC, Onanga R, Mangouka LG, Boundenga L, Ngoungou EB, Godreuil S. Molecular epidemiology of antimicrobial resistance in central africa: A systematic review. Access Microbiol 2023; 5:acmi000556.v5. [PMID: 37691840 PMCID: PMC10484317 DOI: 10.1099/acmi.0.000556.v5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 07/21/2023] [Indexed: 09/12/2023] Open
Abstract
Background In Central Africa, it is difficult to tackle antibiotic resistance, because of a lack of data and information on bacterial resistance, due to the low number of studies carried out in the field. To fill this gap, we carried out a systematic review of the various studies, and devised a molecular epidemiology of antimicrobial resistance from humans, animals and the environmental samples. Method A systematic search of all publications from 2005 to 2020 on bacterial resistance in Central Africa (Gabon, Cameroon, Democratic Republic of Congo, Central African Republic, Chad, Republic of Congo, Equatorial Guinea, São Tomé and Príncipe, Angola) was performed on Pubmed, Google scholar and African Journals Online (AJOL). All circulating resistance genes, prevalence and genetic carriers of these resistances were collected. The study area was limited to the nine countries of Central Africa. Results A total of 517 studies were identified through a literature search, and 60 studies carried out in eight countries were included. Among all articles included, 43 articles were from humans. Our study revealed not only the circulation of beta-lactamase and carbapenemase genes, but also several other types of resistance genes. To finish, we noticed that some studies reported mobile genetic elements such as integrons, transposons, and plasmids. Conclusion The scarcity of data poses difficulties in the implementation of effective strategies against antibiotic resistance, which requires a health policy in a 'One Health' approach.
Collapse
Affiliation(s)
- Annicet-Clotaire Dikoumba
- Département de biologie médicale, Hôpital d’Instruction des Armées Omar Bongo Ondimba, B.P 20404 Libreville, Gabon
- Unité de recherche et d’Analyses Médicales (URAM), Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), B.P. 679 Franceville, Gabon
| | - Richard Onanga
- Unité de recherche et d’Analyses Médicales (URAM), Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), B.P. 679 Franceville, Gabon
| | - Laurette G. Mangouka
- Département de Médecine, Hôpital d’Instruction des Armées Omar Bongo Ondimba, B.P 20404 Libreville, Gabon
| | - Larson Boundenga
- Groupe Evolution et Transmission Inter-espèces des Pathogènes, Département de Parasitologie du Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
- Unité Maladies Émergentes Virales, Département de Virologie du Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
| | - Edgard-Brice Ngoungou
- Unité de Recherche en Epidémiologie des Maladies Chroniques et Santé Environnement (UREMCSE), Département d’Epidémiologie, Biostatistiques et Informatique Médicale (DEBIM), Faculté de Médecine, Université des Sciences de la Santé, BP 4009 Libreville, Gabon
| | - Sylvain Godreuil
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, 191 Avenue du Doyen Gaston Giraud, 34 295 Montpellier Cedex 5, France
- MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France
| |
Collapse
|
5
|
Monecke S, Akpaka PE, Smith MR, Unakal CG, Thoms Rodriguez CA, Ashraph K, Müller E, Braun SD, Diezel C, Reinicke M, Ehricht R. Clonal Complexes Distribution of Staphylococcus aureus Isolates from Clinical Samples from the Caribbean Islands. Antibiotics (Basel) 2023; 12:1050. [PMID: 37370368 DOI: 10.3390/antibiotics12061050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The aim of this study was to comprehensively characterise S. aureus from the Caribbean Islands of Trinidad and Tobago, and Jamaica. A total of 101 S. aureus/argenteus isolates were collected in 2020, mainly from patients with skin and soft tissue infections. They were characterised by DNA microarray allowing the detection of ca. 170 target genes and assignment to clonal complexes (CC)s and strains. In addition, the in vitro production of Panton-Valentine leukocidin (PVL) was examined by an experimental lateral flow assay. Two isolates were identified as S. argenteus, CC2596. The remaining S. aureus isolates were assigned to 21 CCs. The PVL rate among methicillin-susceptible S. aureus (MSSA) isolates was high (38/101), and 37 of the 38 genotypically positive isolates also yielded positive lateral flow results. The isolate that did not produce PVL was genome-sequenced, and it was shown to have a frameshift mutation in agrC. The high rate of PVL genes can be attributed to the presence of a known local CC8-MSSA clone in Trinidad and Tobago (n = 12) and to CC152-MSSA (n = 15). In contrast to earlier surveys, the USA300 clone was not found, although one MSSA isolate carried the ACME element, probably being a mecA-deficient derivative of this strain. Ten isolates, all from Trinidad and Tobago, were identified as MRSA. The pandemic ST239-MRSA-III strain was still common (n = 7), but five isolates showed a composite SCCmec element not observed elsewhere. Three isolates were sequenced. That showed a group of genes (among others, speG, crzC, and ccrA/B-4) to be linked to its SCC element, as previously found in some CC5- and CC8-MRSA, as well as in S. epidermidis. The other three MRSA belonged to CC22, CC72, and CC88, indicating epidemiological connections to Africa and the Middle East.
Collapse
Affiliation(s)
- Stefan Monecke
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
- Institute for Medical Microbiology and Virology, Dresden University Hospital, 01307 Dresden, Germany
| | - Patrick Eberechi Akpaka
- Department of Para-Clinical Sciences, Faculty of Medical Sciences, St. Augustine Campus, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Margaret R Smith
- Department of Para-Clinical Sciences, Faculty of Medical Sciences, St. Augustine Campus, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Chandrashekhar G Unakal
- Department of Para-Clinical Sciences, Faculty of Medical Sciences, St. Augustine Campus, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Camille-Ann Thoms Rodriguez
- Department of Microbiology, Faculty of Medical Sciences, Mona Campus, The University of the West Indies, Kgn7, Kingston, Jamaica
| | - Khalil Ashraph
- Department of Para-Clinical Sciences, Faculty of Medical Sciences, St. Augustine Campus, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Elke Müller
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Sascha D Braun
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Celia Diezel
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Martin Reinicke
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Ralf Ehricht
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
- Institute of Physical Chemistry, Friedrich-Schiller University, 07743 Jena, Germany
| |
Collapse
|
6
|
Staphylococcus aureus Host Spectrum Correlates with Methicillin Resistance in a Multi-Species Ecosystem. Microorganisms 2023; 11:microorganisms11020393. [PMID: 36838358 PMCID: PMC9964919 DOI: 10.3390/microorganisms11020393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/08/2023] Open
Abstract
Although antibiotic resistance is a major issue for both human and animal health, very few studies have investigated the role of the bacterial host spectrum in its dissemination within natural ecosystems. Here, we assessed the prevalence of methicillin resistance among Staphylococcus aureus (MRSA) isolates from humans, non-human primates (NHPs), micromammals and bats in a primatology center located in southeast Gabon, and evaluated the plausibility of four main predictions regarding the acquisition of antibiotic resistance in this ecosystem. MRSA strain prevalence was much higher in exposed species (i.e., humans and NHPs which receive antibiotic treatment) than in unexposed species (micromammals and bats), and in NHP species living in enclosures than those in captivity-supporting the assumption that antibiotic pressure is a risk factor in the acquisition of MRSA that is reinforced by the irregularity of drug treatment. In the two unexposed groups of species, resistance prevalence was high in the generalist strains that infect humans or NHPs, supporting the hypothesis that MRSA strains diffuse to wild species through interspecific transmission of a generalist strain. Strikingly, the generalist strains that were not found in humans showed a higher proportion of MRSA strains than specialist strains, suggesting that generalist strains present a greater potential for the acquisition of antibiotic resistance than specialist strains. The host spectrum is thus a major component of the issue of antibiotic resistance in ecosystems where humans apply strong antibiotic pressure.
Collapse
|
7
|
Monecke S, Roberts MC, Braun SD, Diezel C, Müller E, Reinicke M, Linde J, Joshi PR, Paudel S, Acharya M, Chalise MK, Feßler AT, Hotzel H, Khanal L, Koju NP, Schwarz S, Kyes RC, Ehricht R. Sequence Analysis of Novel Staphylococcus aureus Lineages from Wild and Captive Macaques. Int J Mol Sci 2022; 23:11225. [PMID: 36232529 PMCID: PMC9570271 DOI: 10.3390/ijms231911225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/24/2022] Open
Abstract
Staphylococcus aureus is a widespread and common opportunistic bacterium that can colonise or infect humans as well as a wide range of animals. There are a few studies of both methicillin-susceptible S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA) isolated from monkeys, apes, and lemurs, indicating a presence of a number of poorly or unknown lineages of the pathogen. In order to obtain insight into staphylococcal diversity, we sequenced strains from wild and captive individuals of three macaque species (Macaca mulatta, M. assamensis, and M. sylvanus) using Nanopore and Illumina technologies. These strains were previously identified by microarray as poorly or unknown strains. Isolates of novel lineages ST4168, ST7687, ST7688, ST7689, ST7690, ST7691, ST7692, ST7693, ST7694, ST7695, ST7745, ST7746, ST7747, ST7748, ST7749, ST7750, ST7751, ST7752, ST7753, and ST7754 were sequenced and characterised for the first time. In addition, isolates belonging to ST2990, a lineage also observed in humans, and ST3268, a MRSA strain already known from macaques, were also included into the study. Mobile genetic elements, genomic islands, and carriage of prophages were analysed. There was no evidence for novel host-specific virulence factors. However, a conspicuously high rate of carriage of a pathogenicity island harbouring edinB and etD2/etE as well as a higher number of repeat units within the gene sasG (encoding an adhesion factor) than in human isolates were observed. None of the strains harboured the genes encoding Panton-Valentine leukocidin. In conclusion, wildlife including macaques may harbour an unappreciated diversity of S. aureus lineages that may be of clinical relevance for humans, livestock, or for wildlife conservation, given the declining state of many wildlife populations.
Collapse
Affiliation(s)
- Stefan Monecke
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07745 Jena, Germany
- Institute for Medical Microbiology and Virology, Dresden University Hospital, 01307 Dresden, Germany
| | - Marilyn C. Roberts
- Department of Environmental and Occupational Health, School of Public Health, University of Washington, Seattle, WA 98195, USA
| | - Sascha D. Braun
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07745 Jena, Germany
| | - Celia Diezel
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07745 Jena, Germany
| | - Elke Müller
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07745 Jena, Germany
| | - Martin Reinicke
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07745 Jena, Germany
| | - Jörg Linde
- Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Institute of Bacterial Infections and Zoonoses, 07743 Jena, Germany
| | - Prabhu Raj Joshi
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Saroj Paudel
- Nepalese Farming Institute, Maitidevi, Kathmandu 44600, Nepal
| | - Mahesh Acharya
- Nepalese Farming Institute, Maitidevi, Kathmandu 44600, Nepal
| | - Mukesh K. Chalise
- Nepal Biodiversity Research Society, Central Department of Zoology, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| | - Andrea T. Feßler
- Institute of Microbiology and Epizootics, Freie Universität Berlin, 14163 Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, 14163 Berlin, Germany
| | - Helmut Hotzel
- Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Institute of Bacterial Infections and Zoonoses, 07743 Jena, Germany
| | - Laxman Khanal
- Central Department of Zoology, Institute of Science and Technology, Tribhuvan University, Kathmandu 44618, Nepal
| | - Narayan P. Koju
- Center for Postgraduate Studies, Nepal Engineering College, Pokhara University, Lalitpur 33700, Nepal
- Department of Psychology, University of Washington, Seattle, WA 98195, USA
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Freie Universität Berlin, 14163 Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, 14163 Berlin, Germany
| | - Randall C. Kyes
- Washington National Primate Research Center, Center for Global Field Study, Departments of Psychology, Global Health, Anthropology, University of Washington, Seattle, WA 98195, USA
| | - Ralf Ehricht
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07745 Jena, Germany
- Institute of Physical Chemistry, Friedrich-Schiller University, 07743 Jena, Germany
| |
Collapse
|
8
|
Lawal OU, Ayobami O, Abouelfetouh A, Mourabit N, Kaba M, Egyir B, Abdulgader SM, Shittu AO. A 6-Year Update on the Diversity of Methicillin-Resistant Staphylococcus aureus Clones in Africa: A Systematic Review. Front Microbiol 2022; 13:860436. [PMID: 35591993 PMCID: PMC9113548 DOI: 10.3389/fmicb.2022.860436] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Background Methicillin-resistant Staphylococcus aureus (MRSA) is a leading cause of hospital-associated (HA) and community-associated (CA) infections globally. The multi-drug resistant nature of this pathogen and its capacity to cause outbreaks in hospital and community settings highlight the need for effective interventions, including its surveillance for prevention and control. This study provides an update on the clonal distribution of MRSA in Africa. Methods A systematic review was conducted by screening for eligible English, French, and Arabic articles from November 2014 to December 2020, using six electronic databases (PubMed, EBSCOhost, Web of Science, Scopus, African Journals Online, and Google Scholar). Data were retrieved and analyzed according to the Preferred Reporting Items for Systematic Review and Meta-Analysis guidelines (registered at PROSPERO: CRD42021277238). Genotyping data was based primarily on multilocus sequence types (STs) and Staphylococcal Cassette Chromosome mec (SCCmec) types. We utilized the Phyloviz algorithm in the cluster analysis and categorization of the MRSA STs into various clonal complexes (CCs). Results We identified 65 studies and 26 publications from 16 of 54 (30%) African countries that provided sufficient genotyping data. MRSA with diverse staphylococcal protein A (spa) and SCCmec types in CC5 and CC8 were reported across the continent. The ST5-IV [2B] and ST8-IV [2B] were dominant clones in Angola and the Democratic Republic of Congo (DRC), respectively. Also, ST88-IV [2B] was widely distributed across the continent, particularly in three Portuguese-speaking countries (Angola, Cape Verde, and São Tomé and Príncipe). The ST80-IV [2B] was described in Algeria and Egypt, while the HA-ST239/ST241-III [3A] was only identified in Egypt, Ghana, Kenya, and South Africa. ST152-MRSA was documented in the DRC, Kenya, Nigeria, and South Africa. Panton-Valentine leukocidin (PVL)-positive MRSA was observed in several CCs across the continent. The median prevalence of PVL-positive MRSA was 33% (ranged from 0 to 77%; n = 15). Conclusion We observed an increase in the distribution of ST1, ST22, and ST152, but a decline of ST239/241 in Africa. Data on MRSA clones in Africa is still limited. There is a need to strengthen genomic surveillance capacity based on a "One-Health" strategy to prevent and control MRSA in Africa.
Collapse
Affiliation(s)
- Opeyemi Uwangbaoje Lawal
- Laboratory of Bacterial Evolution and Molecular Epidemiology, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa (ITQB-NOVA), Oeiras, Portugal
| | - Olaniyi Ayobami
- Unit for Healthcare-Associated Infections, Surveillance of Antimicrobial Resistance and Consumption, Robert Koch Institute, Berlin, Germany
| | - Alaa Abouelfetouh
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.,Department of Microbiology and Immunology, Faculty of Pharmacy, AlAlamein International University, Alalamein, Egypt
| | - Nadira Mourabit
- Biotechnology, Environmental Technology and Valorisation of Bio-Resources Team, Department of Biology, Faculty of Sciences and Techniques of Al Hoceima, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Mamadou Kaba
- Division of Medical Microbiology, Department of Clinical Laboratory Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Beverly Egyir
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Shima M Abdulgader
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Adebayo Osagie Shittu
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria.,Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| |
Collapse
|
9
|
Monecke S, Schaumburg F, Shittu AO, Schwarz S, Mühldorfer K, Brandt C, Braun SD, Collatz M, Diezel C, Gawlik D, Hanke D, Hotzel H, Müller E, Reinicke M, Feßler AT, Ehricht R. Description of Staphylococcal Strains from Straw-Coloured Fruit Bat (Eidolon helvum) and Diamond Firetail (Stagonopleura guttata) and a Review of their Phylogenetic Relationships to Other Staphylococci. Front Cell Infect Microbiol 2022; 12:878137. [PMID: 35646742 PMCID: PMC9132046 DOI: 10.3389/fcimb.2022.878137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/16/2022] [Indexed: 12/30/2022] Open
Abstract
The phylogenetic tree of the Staphylococcus aureus complex consists of several distinct clades and the majority of human and veterinary S. aureus isolates form one large clade. In addition, two divergent clades have recently been described as separate species. One was named Staphylococcus argenteus, due to the lack of the “golden” pigment staphyloxanthin. The second one is S. schweitzeri, found in humans and animals from Central and West Africa. In late 2021, two additional species, S. roterodami and S. singaporensis, have been described from clinical samples from Southeast Asia. In the present study, isolates and their genome sequences from wild Straw-coloured fruit bats (Eidolon helvum) and a Diamond firetail (Stagonopleura guttata, an estrildid finch) kept in a German aviary are described. The isolates possessed staphyloxanthin genes and were closer related to S. argenteus and S. schweitzeri than to S. aureus. Phylogenetic analysis revealed that they were nearly identical to both, S. roterodami and S. singaporensis. We propose considering the study isolates, the recently described S. roterodami and S. singaporensis as well as some Chinese strains with MLST profiles stored in the PubMLST database as different clonal complexes within one new species. According to the principle of priority we propose it should be named S. roterodami. This species is more widespread than previously believed, being observed in West Africa, Southeast Asia and Southern China. It has a zoonotic connection to bats and has been shown to be capable of causing skin and soft tissue infections in humans. It is positive for staphyloxanthin, and it could be mis-identified as S. aureus (or S. argenteus) using routine procedures. However, it can be identified based on distinct MLST alleles, and “S. aureus” sequence types ST2470, ST3135, ST3952, ST3960, ST3961, ST3963, ST3965, ST3980, ST4014, ST4075, ST4076, ST4185, ST4326, ST4569, ST6105, ST6106, ST6107, ST6108, ST6109, ST6999 and ST7342 belong to this species.
Collapse
Affiliation(s)
- Stefan Monecke
- Leibniz Institute of Photonic Technology (IPHT), Jena, Germany
- InfectoGnostics Research Campus, Jena, Germany
- *Correspondence: Stefan Monecke,
| | - Frieder Schaumburg
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Adebayo O. Shittu
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
| | - Kristin Mühldorfer
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Christian Brandt
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
| | - Sascha D. Braun
- Leibniz Institute of Photonic Technology (IPHT), Jena, Germany
- InfectoGnostics Research Campus, Jena, Germany
| | - Maximilian Collatz
- Leibniz Institute of Photonic Technology (IPHT), Jena, Germany
- InfectoGnostics Research Campus, Jena, Germany
| | - Celia Diezel
- Leibniz Institute of Photonic Technology (IPHT), Jena, Germany
- InfectoGnostics Research Campus, Jena, Germany
| | | | - Dennis Hanke
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
| | - Helmut Hotzel
- Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), Institute of Bacterial Infections and Zoonoses, Jena, Germany
| | - Elke Müller
- Leibniz Institute of Photonic Technology (IPHT), Jena, Germany
- InfectoGnostics Research Campus, Jena, Germany
| | - Martin Reinicke
- Leibniz Institute of Photonic Technology (IPHT), Jena, Germany
- InfectoGnostics Research Campus, Jena, Germany
| | - Andrea T. Feßler
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
| | - Ralf Ehricht
- Leibniz Institute of Photonic Technology (IPHT), Jena, Germany
- InfectoGnostics Research Campus, Jena, Germany
- Institute of Physical Chemistry, Friedrich-Schiller-University, Jena, Germany
| |
Collapse
|
10
|
Akoua-Koffi C, Kacou N’Douba A, Djaman JA, Herrmann M, Schaumburg F, Niemann S. Staphylococcus schweitzeri—An Emerging One Health Pathogen? Microorganisms 2022; 10:microorganisms10040770. [PMID: 35456820 PMCID: PMC9026344 DOI: 10.3390/microorganisms10040770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 11/22/2022] Open
Abstract
The Staphylococcus aureus-related complex is formed by the Staphylococcus aureus, Staphylococcus schweitzeri, Staphylococcus argenteus, Staphylococcus roterodami and Staphylococcus singaporensis. Within this complex, S. schweitzeri is the only species mainly found in African wildlife, but it is rarely detected as a colonizer in humans or as a contaminant of fomites. The few detections in humans are most likely spillover events after contact with wildlife. However, since S. schweitzeri can be misidentified as S. aureus using culture-based routine techniques, it is likely that S. schweitzeri is under-reported in humans. The low number of isolates in humans, though, is consistent with the fact that the pathogen has typical animal adaptation characteristics (e.g., growth kinetics, lack of immune evasion cluster and antimicrobial resistance); however, evidence from selected in vitro assays (e.g., host cell invasion, cell activation, cytotoxicity) indicate that S. schweitzeri might be as virulent as S. aureus. In this case, contact with animals colonized with S. schweitzeri could constitute a risk for zoonotic infections. With respect to antimicrobial resistance, all described isolates were found to be susceptible to all antibiotics tested, and so far no data on the development of spontaneous resistance or the acquisition of resistance genes such the mecA/mecC cassette are available. In summary, general knowledge about this pathogen, specifically on the potential threat it may incur to human and animal health, is still very poor. In this review article, we compile the present state of scientific research, and identify the knowledge gaps that need to be filled in order to reliably assess S. schweitzeri as an organism with global One Health implications.
Collapse
Affiliation(s)
- Chantal Akoua-Koffi
- Centre Hospitalier Universitaire de Bouaké, Bouaké P.O. Box BP 1174, Côte d’Ivoire;
- Department of Biology, Université Alassane Ouattara de Bouaké, Bouaké P.O. Box BP V18, Côte d’Ivoire
| | - Adèle Kacou N’Douba
- Training and Research Unit of Medical Sciences, Félix Houphouët-Boigny University, Abidjan P.O. Box BP 44, Côte d’Ivoire;
- Centre Hospitalier Universitaire Angré, Abidjan P.O. Box BP 1530, Côte d’Ivoire
| | - Joseph Allico Djaman
- Training and Research Unit of Biosciences, Félix Houphouët Boigny University, Abidjan P.O. Box BP V 34, Côte d’Ivoire;
| | - Mathias Herrmann
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (M.H.); (F.S.)
| | - Frieder Schaumburg
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (M.H.); (F.S.)
| | - Silke Niemann
- Institute of Medical Microbiology, University Hospital Münster, 48149 Münster, Germany; (M.H.); (F.S.)
- Correspondence: ; Tel.: +49-251-835-5369
| |
Collapse
|
11
|
Senok A, Monecke S, Nassar R, Celiloglu H, Thyagarajan S, Müller E, Ehricht R. Lateral Flow Immunoassay for the Detection of Panton-Valentine Leukocidin in Staphylococcus aureus From Skin and Soft Tissue Infections in the United Arab Emirates. Front Cell Infect Microbiol 2021; 11:754523. [PMID: 34733796 PMCID: PMC8558463 DOI: 10.3389/fcimb.2021.754523] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/13/2021] [Indexed: 01/11/2023] Open
Abstract
Introduction Panton Valentine leukocidin (PVL) is a virulence factor which is associated with methicillin sensitive and resistant Staphylococcus aureus (MSSA/MRSA) causing skin and soft tissue infections (SSTI). This study aimed to evaluate a novel lateral flow immunoassay (LFI) for PVL detection in S. aureus cultures and to describe their genotypic characterization. Methods The study was carried out from January-August 2020 in Dubai, United Arab Emirates. S. aureus isolates associated with SSTI were tested for PVL detection using LFI. DNA microarray-based assays were used for molecular characterization including detection of pvl genes. Results One-hundred thirty-five patients with a clinical diagnosis of SSTIs were recruited. Sixty-six patients received antibiotics, mostly beta lactams (n=36) and topical fusidic acid (n=15). One-hundred twenty-nine isolates (MRSA: n=43; MSSA: n=86) were tested by LFI and DNA microarrays. All 76 (58.9%) isolates which were unambiguously negative for the PVL in LFI were negative for pvl genes using the DNA microarray. All the LFI PVL positive isolates (n=53) had pvl genes detected. This translates into 100% each for sensitivity, specificity, positive and negative predictive values for the LFI. The LFI typically takes about 15 min inclusive of a 10 min incubation period. Predominant S. aureus clonal complexes (CC) were CC30 (n=18), CC22 (n=13), CC5 (n=12), CC1 (n=11), CC152 (n=8), CC15 (n=7); CC97 (n=7); CC8 and CC20 (n=6 each). Among MRSA, the proportion of pvl-positives (35/43; 81%) was higher than among MSSA (n/N=18/86; 21%). The fusidic acid resistance gene fusC was detected in 14 MRSA (33%) compared to 8 MSSA (9%). A co-carriage of fusC and pvl genes was present in 7 MRSA and in one MSSA. Conclusion LFI shows excellent diagnostic accuracy indices for rapid identification of PVL in MSSA/MRSA in a setting with high prevalence of pvl+ve strains. The high occurrence of pvl and fusC genes in MRSA strains causing SSTI is of concern and needs constant surveillance.
Collapse
Affiliation(s)
- Abiola Senok
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Stefan Monecke
- Department of Optical Molecular Diagnostics and System Technology, Leibniz Institute of Photonic Technology (IPHT), Jena, Germany.,InfectoGnostics Research Campus, Jena, Germany.,Institute for Medical Microbiology and Virology, Dresden University Hospital, Dresden, Germany
| | - Rania Nassar
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.,Oral and Biomedical Sciences, School of Dentistry, Cardiff University, Cardiff, United Kingdom
| | - Handan Celiloglu
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.,Department of Pathology & Laboratory Medicine, Mediclinic City Hospital, Dubai, United Arab Emirates
| | - Sreeraj Thyagarajan
- Department of Pathology & Laboratory Medicine, Mediclinic City Hospital, Dubai, United Arab Emirates
| | - Elke Müller
- Department of Optical Molecular Diagnostics and System Technology, Leibniz Institute of Photonic Technology (IPHT), Jena, Germany.,InfectoGnostics Research Campus, Jena, Germany
| | - Ralf Ehricht
- Department of Optical Molecular Diagnostics and System Technology, Leibniz Institute of Photonic Technology (IPHT), Jena, Germany.,InfectoGnostics Research Campus, Jena, Germany.,Institute of Physical Chemistry, Friedrich-Schiller University, Jena, Germany
| |
Collapse
|
12
|
Grossmann A, Froböse NJ, Mellmann A, Alabi AS, Schaumburg F, Niemann S. An in vitro study on Staphylococcus schweitzeri virulence. Sci Rep 2021; 11:1157. [PMID: 33442048 PMCID: PMC7806826 DOI: 10.1038/s41598-021-80961-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 12/24/2020] [Indexed: 02/05/2023] Open
Abstract
Staphylococcus schweitzeri belongs to the Staphylococcus aureus-related complex and is mainly found in African wildlife; no infections in humans are reported yet. Hence, its medical importance is controversial. The aim of this work was to assess the virulence of S. schweitzeri in vitro. The capacity of African S. schweitzeri (n = 58) for invasion, intra- and extracellular cytotoxicity, phagolysosomal escape, coagulase activity, biofilm formation and host cell activation was compared with S. aureus representing the most common clonal complexes in Africa (CC15, CC121, CC152). Whole genome sequencing revealed that the S. schweitzeri isolates belonged to five geographical clusters. Isolates from humans were found in two different clades. S. schweitzeri and S. aureus showed a similar host cell invasion (0.9 vs. 1.2 CFU/Vero cell), host cell activation (i.e. expression of pro-inflammatory cytokines, 4.1 vs. 1.7 normalized fold change in gene expression of CCL5; 7.3 vs. 9.9 normalized fold change in gene expression of IL8, A549 cells) and intracellular cytotoxicity (31.5% vs. 25% cell death, A549 cells). The extracellular cytotoxicity (52.9% vs. 28.8% cell death, A549 cells) was higher for S. schweitzeri than for S. aureus. Nearly all tested S. schweitzeri (n = 18/20) were able to escape from phagolysosomes. In conclusion, some S. schweitzeri isolates display virulence phenotypes comparable to African S. aureus. S. schweitzeri might become an emerging zoonotic pathogen within the genus Staphylococcus.
Collapse
Affiliation(s)
- Almut Grossmann
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Neele J Froböse
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Alexander Mellmann
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany.,Institute for Hygiene, University Hospital Münster, Münster, Germany
| | - Abraham S Alabi
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Frieder Schaumburg
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany.
| | - Silke Niemann
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany.,Section of Medical and Geographical Infectiology, University Hospital Münster, Münster, Germany
| |
Collapse
|
13
|
Becker K, Schaumburg F, Kearns A, Larsen AR, Lindsay JA, Skov RL, Westh H. Implications of identifying the recently defined members of the Staphylococcus aureus complex S. argenteus and S. schweitzeri: a position paper of members of the ESCMID Study Group for Staphylococci and Staphylococcal Diseases (ESGS). Clin Microbiol Infect 2019; 25:1064-1070. [PMID: 30872103 DOI: 10.1016/j.cmi.2019.02.028] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/18/2019] [Accepted: 02/21/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Staphylococcus argenteus and Staphylococcus schweitzeri, previously known as divergent Staphylococcus aureus clonal lineages, have been recently established as novel, difficult-to-delimit, coagulase-positive species within the S. aureus complex. Methicillin-resistant strains of S. argenteus are known from Australia and the UK. Knowledge of their epidemiology, medical significance and transmission risk is limited and partly contradictory, hampering definitive recommendations. There is mounting evidence that the pathogenicity of S. argenteus is similar to that of 'classical' S. aureus, while as yet no S. schweitzeri infections have been reported. AIM To provide decision support on whether and how to distinguish and report both species. SOURCES PubMed, searched for S. argenteus and S. schweitzeri. CONTENT This position paper reviews the main characteristics of both species and draws conclusions for microbiological diagnostics and surveillance as well as infection prevention and control measures. IMPLICATIONS We propose not distinguishing within the S. aureus complex for routine reporting purposes until there is evidence that pathogenicity or clinical outcome differ markedly between the different species. Primarily for research purposes, suitably equipped laboratories are encouraged to differentiate between S. argenteus and S. schweitzeri. Caution is urged if these novel species are explicitly reported. In such cases, a specific comment should be added (i.e. 'member of the S.aureus complex') to prevent confusion with less- or non-pathogenic staphylococci. Prioritizing aspects of patient safety, methicillin-resistant isolates should be handled as recommended for methicillin-resistant Staphylococcus aureus (MRSA). In these cases, the clinician responsible should be directly contacted and informed by the diagnosing microbiological laboratory, as they would be for MRSA. Research is warranted to clarify the epidemiology, clinical impact and implications for infection control of such isolates.
Collapse
Affiliation(s)
- K Becker
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany.
| | - F Schaumburg
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - A Kearns
- HCAI and AMR Division, National Infection Service, Public Health England, London, UK
| | - A R Larsen
- National Center for Antimicrobial and Infection Control, Statens Serum Institut, Copenhagen, Denmark
| | - J A Lindsay
- Institute of Infection and Immunity, St George's, University of London, UK
| | - R L Skov
- Infectious Disease Preparedness, Statens Serum Institut, Copenhagen, Denmark
| | - H Westh
- Department of Clinical Microbiology, Hvidovre Hospital, University of Copenhagen, Denmark
| |
Collapse
|
14
|
|
15
|
Remitting infections due to community-acquired Panton–Valentine leukocidin-producing Staphylococcus aureus in the Milan area. J Infect Public Health 2018; 11:255-259. [DOI: 10.1016/j.jiph.2017.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 07/03/2017] [Accepted: 08/04/2017] [Indexed: 11/18/2022] Open
|
16
|
Olatimehin A, Shittu AO, Onwugamba FC, Mellmann A, Becker K, Schaumburg F. Staphylococcus aureus Complex in the Straw-Colored Fruit Bat ( Eidolon helvum) in Nigeria. Front Microbiol 2018; 9:162. [PMID: 29487577 PMCID: PMC5816944 DOI: 10.3389/fmicb.2018.00162] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/24/2018] [Indexed: 12/19/2022] Open
Abstract
Bats are economically important animals and serve as food sources in some African regions. They can be colonized with the Staphylococcus aureus complex, which includes Staphylococcus schweitzeri and Staphylococcus argenteus. Fecal carriage of S. aureus complex in the straw-colored fruit bat (Eidolon helvum) has been described. However, data on their transmission and adaptation in animals and humans are limited. The aim of this study was to investigate the population structure of the S. aureus complex in E. helvum and to assess the geographical spread of S. aureus complex among other animals and humans. Fecal samples were collected from E. helvum in Obafemi Awolowo University, Ile-Ife, Nigeria. The isolates were characterized by antimicrobial susceptibility testing, spa typing and multilocus sequence typing (MLST). Isolates were screened for the presence of lukS/lukF-PV and the immune evasion cluster (scn, sak, chp) which is frequently found in isolates adapted to the human host. A Neighbor-Joining tree was constructed using the concatenated sequences of the seven MLST genes. A total of 250 fecal samples were collected and 53 isolates were included in the final analysis. They were identified as S. aureus (n = 28), S. schweitzeri (n = 11) and S. argenteus (n = 14). Only one S. aureus was resistant to penicillin and another isolate was intermediately susceptible to tetracycline. The scn, sak, and chp gene were not detected. Species-specific MLST clonal complexes (CC) were detected for S. aureus (CC1725), S. argenteus (CC3960, CC3961), and S. schweitzeri (CC2463). STs of S. schweitzeri from this study were similar to STs from bats in Nigeria (ST2464) and Gabon (ST1700) or from monkey in Côte d'Ivoire (ST2058, ST2072). This suggests host adaptation of certain clones to wildlife mammals with a wide geographical spread in Africa. In conclusion, there is evidence of fecal carriage of members of S. aureus complex in E. helvum. S. schweitzeri from bats in Nigeria are closely related to those from bats and monkeys in West and Central Africa suggesting a cross-species transmission and wide geographical distribution. The low antimicrobial resistance rates and the absence of the immune evasion cluster suggests a limited exposure of these isolates to humans.
Collapse
Affiliation(s)
- Ayodele Olatimehin
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Adebayo O Shittu
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Francis C Onwugamba
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | | | - Karsten Becker
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Frieder Schaumburg
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| |
Collapse
|