1
|
Latorre JI, Gonçalves MLL, González CSW, Kassa CT, Rodriguez MS, Tortamano ACAC, Magalhães FD, Kato IT, Bussadori SK, Prates RA. Evaluation of antimicrobial photodynamic therapy with erythrosine and blue light emitting diode for inactivation of Aggregatibacter actinomycetemcomitans. Lasers Med Sci 2025; 40:189. [PMID: 40227489 DOI: 10.1007/s10103-025-04434-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/26/2025] [Indexed: 04/15/2025]
Abstract
This study aims to analyze the effect of antimicrobial photodynamic therapy on Aggregatibacter actinomycetemcomitans using erythrosine as a photosensitizer and a blue light emitting-diode as a light source. Inoculum samples of A. actinomycetemcomitans with PBS were used in each of the groups, being the control group (C); light group (L) corresponding to light emitting-diode irradiation for 300 s; photosensitizing group (0) without irradiation; and the aPDT groups with different irradiation times (aPDT20) with 20s of irradiation; (aPDT40) with 40s of irradiation; (aPDT60) with 60s of irradiation; (aPDT180) with 180s; and (aPDT300) with 300s. Samples were used to determine colony forming units (CFU). Aliquots of 10 µL were plated through six serial dilutions on brain-heart infusion agar in Petri dishes. The plates were incubated at 37 °C for a period of up to 24-48 h under microaerophilic conditions to evaluate the total bacteria recovered. After this period, CFUs were counted, and the data was subjected to one-way analysis of variance. When aPDT was performed for 180 and 300 s, the mean log10 (CFU/ml) was equal to 0. In the aPDT60 group, a significant yet incomplete microbial reduction was observed. SEM images confirmed that membrane integrity was maintained, indicating that aPDT induced cellular alterations without causing membrane disruption. Antimicrobial photodynamic therapy employing erythrosine as a photosensitizer and blue light emitting-diode light-curing unit for composite resin polymerization used in dental practices demonstrated significant antimicrobial efficacy against A. actinomycetemcomitans, a principal pathogen in periodontitis, under the evaluated experimental conditions.
Collapse
Affiliation(s)
- Joaquin Isper Latorre
- Catholic University of Uruguay- Montevideo (UCU), Montevideo, Uruguay
- Biophotonics Medicine Postgraduate Program, Universidade Nove de Julho, São Paulo, Brazil
| | | | - Carolina Stéfani Wince González
- Catholic University of Uruguay- Montevideo (UCU), Montevideo, Uruguay
- Biophotonics Medicine Postgraduate Program, Universidade Nove de Julho, São Paulo, Brazil
| | - Claudio Teruo Kassa
- Biophotonics Medicine Postgraduate Program, Universidade Nove de Julho, São Paulo, Brazil.
| | - Mikelhy Silva Rodriguez
- Biophotonics Medicine Postgraduate Program, Universidade Nove de Julho, São Paulo, Brazil
- Center for Lasers and Applications, IPEN-CNEN/SP, São Paulo, Brazil
| | | | | | - Ilka Tiemy Kato
- Center of Engineering, Modeling and Applied Social Sciences, Federal University of ABC (UFABC), 09606-045, São Bernardo, Brazil
| | - Sandra Kalil Bussadori
- Biophotonics Medicine Postgraduate Program, Universidade Nove de Julho, São Paulo, Brazil
| | - Renato Araujo Prates
- Biophotonics Medicine Postgraduate Program, Universidade Nove de Julho, São Paulo, Brazil.
| |
Collapse
|
2
|
Alanazi AM, Khan AA, Siddiqui YTS, Leemani MJ, Shabbir T, Ali S. Photoactivated rose bengal-doped TiO 2 nanoparticles modified fifth-generation adhesive on the survival rate of Streptococcus mutants and mechanical properties of tooth-colored restorative material to carious dentin. Microsc Res Tech 2024; 87:2943-2953. [PMID: 39056241 DOI: 10.1002/jemt.24658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/20/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
Assessment of the antimicrobial, micro tensile bond strength (μTBS), and degree of conversion (DC) of fifth-generation adhesive modified using photoactivated 0.5% rose bengal (RB) and photoactivated RB-doped titanium dioxide nanoparticles (TiO2NPs) in different concentrations (2% and 5%) as compared with the unmodified adhesive bonded to the carious affected dentin (CAD). Forty mandibular molars with caries progression up to the middle third of the dentin, as per the International Caries Detection and Assessment System (ICDAS) score of 4 and 5 were included. Specimens were divided into four groups based on etch and rinse adhesive (ERA) modification group 1: unmodified ERA, group 2: photoactivated 0.5% RB photosensitizer (PS) modified ERA, group 3: photoactivated RB-doped 2 wt% TiO2NPs adhesive, group 4: photoactivated RB-doped 5 wt% TiO2NPs adhesive. Followed by adhesive and composite restoration on the CAD surface. All the specimens were thermocycled and an assessment of μTBS and failure pattern analysis was performed. The antibacterial potency of RB and RB-doped TiO2NPs (2% and 5%) followed by their activation using visible light against Streptococcus mutans (S.mutans) were tested. The survival rate of S.mutans was assessed using the Kruskal-Wallis test. The analysis of μTBS involved the use of ANOVA, followed by a post-hoc Tukey honestly significant difference (HSD) multiple comparisons test. Group 1 (Unmodified ERA) (0.52 ± 0.31 CFU/mL) treated samples unveiled the highest means of bacterial survival and lowest μTBS (11.32 ± 0.63 MPa). Nevertheless, group 4: photoactivated RB-doped 5 wt% TiO2NPs adhesive displayed the lowest outcomes of S.mutans survival (0.11 ± 0.02 CFU/mL) and highest bond strength (18.76 ± 1.45 MPa). The photoactivated RB-doped 2 wt% TiO2NPs in adhesive demonstrated promising enhancements in both μTBS and antibacterial efficacy against S.mutans. However, it is noteworthy that this modification led to a decrease in the DC of the adhesive. RESEARCH HIGHLIGHTS: Unmodified ERA-treated samples unveiled the highest bacterial survival and the lowest μTBS. Photoactivated RB-doped 5 wt% TiO2NPs adhesive displayed the lowest S.mutans survival rate and highest bond strength. DC decreased with an increase in concentration of TiO2.
Collapse
Affiliation(s)
- Amer M Alanazi
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | | | - Tooba Shabbir
- Altamash Institute Dental Medicine, Karachi, Pakistan
| | - Sadia Ali
- Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
3
|
Ahrari F, Nazifi M, Mazhari F, Ghazvini K, Menbari S, Fekrazad R, Babaei K, Banihashemrad A. Photoinactivation Effects of Curcumin, Nano-curcumin, and Erythrosine on Planktonic and Biofilm Cultures of Streptococcus mutans. J Lasers Med Sci 2024; 15:e7. [PMID: 38655044 PMCID: PMC11033858 DOI: 10.34172/jlms.2024.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/06/2023] [Indexed: 04/26/2024]
Abstract
Introduction: This in vitro study was conducted to assess the phototoxic effects of curcumin, nano-curcumin, and erythrosine on the viability of Streptococcus mutans (S. mutans) in suspension and biofilm forms. Methods: Various concentrations of curcumin (1.5 g/L, 3 g/L), nano-curcumin (3 g/L), and erythrosine (100 μM/L, 250 μM/L) were examined for their impact on planktonic and biofilm cultures of S. mutans, either individually or in conjunction with light irradiation (photodynamic therapy or PDT). A blue light-emitting diode (LED) with a central wavelength of 450 nm served as the light source. The results were compared to 0.12% chlorhexidine digluconate (CHX) as the positive control, and a solution containing neither a photosensitizer (PS) nor a light source as the negative control group. The dependent variable was the number of viable microorganisms per experiment (CFU/mL). Results: Antimicrobial PDT caused a significant reduction in the viability of S. mutans in both planktonic and biofilm forms, compared to the negative control group (P<0.05). The highest cell killing was observed in PDT groups with curcumin 3 g/L or erythrosine 250 μmol/L, although the difference with PDT groups using curcumin 1.5 g/L or erythrosine 100 μmol/L was not significant (P>0.05). Antimicrobial treatments were more effective against planktonic S. mutans than the biofilm form. Conclusion: PDT with either curcumin 1.5 g/L or erythrosine 100 μmol/L may be suggested as an alternative to CHX to inactivate the bacteria in dental plaque or deep cavities. Nano-curcumin, at the selected concentration, exhibited lower efficacy in killing S. mutans compared to Curcumin or erythrosine.
Collapse
Affiliation(s)
- Farzaneh Ahrari
- Dental Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Morteza Nazifi
- Student Research Committee, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Mazhari
- Dental Materials Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kiarash Ghazvini
- Antimicrobial Resistance Research Center, Department of Microbiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shaho Menbari
- Department of Medical Laboratory Sciences, School of Paramedical, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Fekrazad
- Radiation Sciences Research Center, AJA University of Medical Sciences, Tehran, Iran
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research, Network (USERN), Tehran, Iran
| | - Kourosh Babaei
- Student Research Committee, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahmad Banihashemrad
- Department of Restorative, Preventive, and Pediatric Dentistry, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Mendes RJS, de Sousa NM, Furtado GS, Paschoal MAB, Lago ADN. Association of Papacarie Duo® and low-level laser in antimicrobial photodynamic therapy (aPDT). Lasers Med Sci 2024; 39:25. [PMID: 38198068 DOI: 10.1007/s10103-024-03981-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/04/2024] [Indexed: 01/11/2024]
Abstract
Dental caries is a multifactorial, non-communicable disease. Effective treatment options for minimally invasive removal of carious tissue include Papacarie Duo® gel and antimicrobial photodynamic therapy (aPDT). aPDT involves a combination of a light source and photosensitizer. Given that Papacarie Duo® contains a percentage of blue dye, this study aims to explore the antimicrobial potential of Papacarie Duo® when associated with a light source against Streptococcus mutans strains. The chosen light source was a low-power diode laser (λ = 660 nm, E = 3 J, P = 100 mW, t = 30 s). To assess antimicrobial capacity, planktonic suspensions of Streptococcus mutans were plated on Brain Heart Infusion Agar (BHI) to observe the formation of inhibition halos. The studied groups included methylene blue (0.005%), Papacarie Duo®, distilled water (negative control), 2% chlorhexidine (positive control), Papacarie Duo® + laser, and methylene blue (0.005%) + laser. Following distribution onto plates, each group was incubated at 37 °C for 48 h under microaerophilic conditions. Inhibition halos were subsequently measured using a digital caliper. The results showed that chlorhexidine had the greatest antimicrobial effect followed by the group of irradiated methylene blue and irradiated Papacarie Duo®. All experimental groups demonstrated antimicrobial potential, excluding the negative control group. The study concludes that Papacarie Duo® exhibits antimicrobial properties when associated with a low-power diode laser.
Collapse
Affiliation(s)
- Roberta Janaina Soares Mendes
- Department of Dentistry I, Federal University of Maranhão (UFMA), Avenida Dos Portugueses, 1966, Vila Bacanga, São Luís, MA, 65080-805, Brazil.
| | - Nayanna Matos de Sousa
- Department of Dentistry I, Federal University of Maranhão (UFMA), Avenida Dos Portugueses, 1966, Vila Bacanga, São Luís, MA, 65080-805, Brazil
| | - Guilherme Silva Furtado
- Department of Dentistry I, Federal University of Maranhão (UFMA), Avenida Dos Portugueses, 1966, Vila Bacanga, São Luís, MA, 65080-805, Brazil
| | | | | |
Collapse
|
5
|
Glowacka-Sobotta A, Ziental D, Czarczynska-Goslinska B, Michalak M, Wysocki M, Güzel E, Sobotta L. Nanotechnology for Dentistry: Prospects and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2130. [PMID: 37513141 PMCID: PMC10383982 DOI: 10.3390/nano13142130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
In the XXI century, application of nanostructures in oral medicine has become common. In oral medicine, using nanostructures for the treatment of dental caries constitutes a great challenge. There are extensive studies on the implementation of nanomaterials to dental composites in order to improve their properties, e.g., their adhesive strength. Moreover, nanostructures are helpful in dental implant applications as well as in maxillofacial surgery for accelerated healing, promoting osseointegration, and others. Dental personal care products are an important part of oral medicine where nanomaterials are increasingly used, e.g., toothpaste for hypersensitivity. Nowadays, nanoparticles such as macrocycles are used in different formulations for early cancer diagnosis in the oral area. Cancer of the oral cavity-human squamous carcinoma-is the sixth leading cause of death. Detection in the early stage offers the best chance at total cure. Along with diagnosis, macrocycles are used for photodynamic mechanism-based treatments, which possess many advantages, such as protecting healthy tissues and producing good cosmetic results. Application of nanostructures in medicine carries potential risks, like long-term influence of toxicity on body, which need to be studied further. The introduction and development of nanotechnologies and nanomaterials are no longer part of a hypothetical future, but an increasingly important element of today's medicine.
Collapse
Affiliation(s)
- Arleta Glowacka-Sobotta
- Chair and Department of Orthodontics and Temporomandibular Disorders, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland
| | - Daniel Ziental
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Beata Czarczynska-Goslinska
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Maciej Michalak
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Marcin Wysocki
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Emre Güzel
- Department of Engineering Fundamental Sciences, Sakarya University of Applied Sciences, 54050 Sakarya, Türkiye
- Biomedical Technologies Application and Research Center (BIYOTAM), Sakarya University of Applied Sciences, 54050 Sakarya, Türkiye
| | - Lukasz Sobotta
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| |
Collapse
|
6
|
AlSunbul H, Murriky A. Efficacy of methylene blue and curcumin mediated antimicrobial photodynamic therapy in the treatment of indirect pulp capping in permanent molar teeth. Photodiagnosis Photodyn Ther 2023; 42:103598. [PMID: 37150490 DOI: 10.1016/j.pdpdt.2023.103598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/09/2023]
Abstract
PURPOSE This study aimed to evaluate the adhesive bond strength and antibacterial efficacy of methylene blue (MB)-mediated antimicrobial photodynamic therapy (aPDT) and curcumin (CUR)-mediated aPDT versus the conventional disinfectants, such as chlorhexidine gluconate (CHX) gel and sodium hypochlorite (NaOCl), for indirect pulp capping (IPC) treatment of permanent molars. METHODS One Hundred grossly carious human permanent molars were collected through non-traumatic extraction. All specimens were embedded in polyvinyl cross-sections to the cemento-enamel junction. The cavity preparation was conducted by grinding the samples using silicon carbide discs. After culturing Streptococcus mutans (S. mutans), a 10 µL of S. mutans suspension (106 colony forming units/mL) was transferred in each tooth cavity and anaerobically incubated for 48 hours at 37°C. All specimens were randomly divided into 5 groups: Group-I: samples treated IPC; Group-II: samples treated with 2% CHX gel; Group-III: samples treated with 6% NaOCl; Group-IV: irradiation of prepared cavity with MB-mediated aPDT; and Group-V: irradiation of prepared cavity with CUR-mediated aPDT. After disinfection methods, the universal adhesive was used, and all specimens were restored using giomer. Eventually, confocal laser scanning microscopy, shear bond strength (SBS), micro-tensile bond strength (μTBS), four-point bending strength (4P-BS) analyses were performed, and the data were analyzed statistically. RESULTS At baseline, the highest SBS (48.8 ± 6.5 MPa), μTBS (54.3 ± 3.9 MPa), and 4P-BS (123 ± 32 MPa) scores were demonstrated by the samples treated with MB-mediated aPDT. However, after 12 months of storage, the highest SBS (42.3 ± 3.9 MPa) and μTBS (45.2 ± 6.6 MPa) scores were shown by samples treated with MB-mediated aPDT, while CUR-mediated aPDT treated samples demonstrated the highest 4P-BS scores (70 ± 18 MPa). Moreover, the highest antibacterial activity against S. mutans was shown by the samples treated with MB-mediated aPDT. CONCLUSIONS The application of aPDT, especially MB-mediated, demonstrated superior SBS, μTBS, and 4P-BS values as well as antibacterial activity against S. mutans as compared to 2% CHX gel and 6% NaOCl as cavity disinfectants for IPC treatment of permanent molars.
Collapse
Affiliation(s)
- Hanan AlSunbul
- Department of Restorative Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia.
| | - Afraa Murriky
- Department of Restorative Dentistry, College of Dentistry, Riyadh Elm University, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Alfawaz YF. Disinfection of caries affected dentin using Rose Bengal, Titanium Sapphire Laser; Ammonium Hexa-fluorosilicate, and ozonated water on resin dentin bond strength. Photodiagnosis Photodyn Ther 2022; 39:102912. [PMID: 35597443 DOI: 10.1016/j.pdpdt.2022.102912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
Abstract
AIM The present study intended to evaluate the shear bond strength (SBS) of resin cement bonded to caries affected dentin (CAD) after disinfection with rose Bengal (RB), Ti-Sapphire Laser, Ammonium Hexafluorosilicate (NH4)2[SiF6], and ozonated water (O3) MATERIAL AND METHODS: A total of 100 extracted human mandibular molars were acquired using caries severity code, 6 of the ICDAS criteria. To achieve homogeneity and prevent size-biased distributions, the average cavity preparation of all specimens had a depth of 2 mm and a breadth of 3 mm. Specimens were divided into five groups (n = 20) at random according to type of disinfection. Group 1: control group, Group 2: RB, Group 3: O3, Group 4: Ti-sapphire laser, and Group 5: (NH4)2[SiF6]. All specimens were etch and rinsed, bonding agent was applied and restored with resin cement. Estimation of SBS was performed by placing samples (10/group) in universal testing machine. Stereomicroscope under 40 × magnification was employed for failure mode analysis (FMA). Statistical analysis was executed using the ANOVA and the Tukey multiple test (p<0.05). RESULTS The highest SBS was demonstrated in the control group when CAD bonded to resin cement without disinfection (18.22±1.14 MPa). Likewise, the lowest SBS values were unveiled by CAD disinfection with O3 (12.44±1.36 MPa). Similarly, CAD when disinfected with RB (16.25±1.01 MPa) and Ti-sapphire laser (16.25±1.22 MPa) bonded to resin cement exhibited comparable bond results (p>0.05). CONCLUSION Caries affected dentin when treated with etch and rinse technique without the use of disinfectant displayed the highest SBS. However, it was seen that utilization of various disinfectants has altered the adhesion capacity or bonding efficacy of caries-affected dentin.
Collapse
Affiliation(s)
- Yasser F Alfawaz
- Department of restorative dental sciences, College of dentistry, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
8
|
Al-Saleh S, Albaqawi AH, Alrawi F, Tulbah HI, Al-Qahtani AS, Heer E, Nisar SS, Vohra F, Abduljabbar T. Effectiveness of synthetic and natural photosensitizers and different chemical disinfectants on the contaminated metal crown. Photodiagnosis Photodyn Ther 2021; 36:102601. [PMID: 34699981 DOI: 10.1016/j.pdpdt.2021.102601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 10/20/2022]
Affiliation(s)
- Samar Al-Saleh
- Department of Prosthetic Dental Sciences, College of Dentistry, King Saud University, PO Box 60169, Riyadh 11545, Saudi Arabia; Department of Prosthetic Dental Sciences, College of Dentistry, King Saud University, Riyadh, Saudi Arabia..
| | - Ahmed Heji Albaqawi
- Department of Restorative Dental Science, College of Dentistry, University of Ha'il, Ha'il, 55476, Saudi Arabia.
| | - Feras Alrawi
- Department of Prosthetic Dental Sciences, College of Dentistry, King Saud University, PO Box 60169, Riyadh 11545, Saudi Arabia; Department of Prosthetic Dental Sciences, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Huda I Tulbah
- Department of Prosthetic Dental Sciences, College of Dentistry, King Saud University, Riyadh, Saudi Arabia..
| | - Amal S Al-Qahtani
- Department of Prosthetic Dental Sciences, College of Dentistry, King Saud University, Riyadh, Saudi Arabia..
| | - Emal Heer
- Department of Pharmacology, Dr Ishrat Ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi, Pakistan
| | - Sidra Sadaf Nisar
- Department of Science of Dental Material, Dow International Dental College, Karachi, Pakistan
| | - Fahim Vohra
- Department of Prosthetic Dental Science, College of Dentistry, King Saud University; Research Chair for Biological Research in Dental Health, College of Dentistry, Riyadh 11545, Saudi Arabia.
| | - Tariq Abduljabbar
- Department of Prosthetic Dental Science, College of Dentistry, King Saud University; Research Chair for Biological Research in Dental Health, College of Dentistry, Riyadh 11545, Saudi Arabia.
| |
Collapse
|
9
|
Martins Antunes de Melo WDC, Celiešiūtė-Germanienė R, Šimonis P, Stirkė A. Antimicrobial photodynamic therapy (aPDT) for biofilm treatments. Possible synergy between aPDT and pulsed electric fields. Virulence 2021; 12:2247-2272. [PMID: 34496717 PMCID: PMC8437467 DOI: 10.1080/21505594.2021.1960105] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Currently, microbial biofilms have been the cause of a wide variety of infections in the human body, reaching 80% of all bacterial and fungal infections. The biofilms present specific properties that increase the resistance to antimicrobial treatments. Thus, the development of new approaches is urgent, and antimicrobial photodynamic therapy (aPDT) has been shown as a promising candidate. aPDT involves a synergic association of a photosensitizer (PS), molecular oxygen and visible light, producing highly reactive oxygen species (ROS) that cause the oxidation of several cellular components. This therapy attacks many components of the biofilm, including proteins, lipids, and nucleic acids present within the biofilm matrix; causing inhibition even in the cells that are inside the extracellular polymeric substance (EPS). Recent advances in designing new PSs to increase the production of ROS and the combination of aPDT with other therapies, especially pulsed electric fields (PEF), have contributed to enhanced biofilm inhibition. The PEF has proven to have antimicrobial effect once it is known that extensive chemical reactions occur when electric fields are applied. This type of treatment kills microorganisms not only due to membrane rupture but also due to the formation of reactive compounds including free oxygen, hydrogen, hydroxyl and hydroperoxyl radicals. So, this review aims to show the progress of aPDT and PEF against the biofilms, suggesting that the association of both methods can potentiate their effects and overcome biofilm infections.
Collapse
Affiliation(s)
- Wanessa de Cassia Martins Antunes de Melo
- Department of Functional Materials and Electronics, Laboratory of Bioelectric, State Research Institute, Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Vilnius, Lithuania
| | - Raimonda Celiešiūtė-Germanienė
- Department of Functional Materials and Electronics, Laboratory of Bioelectric, State Research Institute, Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Vilnius, Lithuania
| | - Povilas Šimonis
- Department of Functional Materials and Electronics, Laboratory of Bioelectric, State Research Institute, Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Vilnius, Lithuania
| | - Arūnas Stirkė
- Department of Functional Materials and Electronics, Laboratory of Bioelectric, State Research Institute, Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Vilnius, Lithuania
| |
Collapse
|
10
|
Soni A, Samuelsson LM, Loveday SM, Gupta TB. Applications of novel processing technologies to enhance the safety and bioactivity of milk. Compr Rev Food Sci Food Saf 2021; 20:4652-4677. [PMID: 34427048 DOI: 10.1111/1541-4337.12819] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/16/2021] [Accepted: 07/07/2021] [Indexed: 01/20/2023]
Abstract
Bioactive compounds in food can have high impacts on human health, such as antioxidant, antithrombotic, antitumor, and anti-inflammatory activities. However, many of them are sensitive to thermal treatments incurred during processing, which can reduce their availability and activity. Milk, including ovine, caprine, bovine, and human is a rich source of bioactive compounds, including immunoglobulins, vitamins, and amino acids. However, processing by various novel thermal and non-thermal technologies has different levels of impacts on these compounds, according to the studies reported in the literature, predominantly in the last 10 years. The reported effect of these technologies either covers microbial inactivation or the bioactive composition; however, there is a lack of comprehensive compilation of studies that compare the effect of these technologies on bioactive compounds in milk (especially, caprine and ovine) to microbial inactivation at similar settings. This research gap makes it challenging to conclude on the specific processing parameters that could be optimized to achieve targets of microbial safety and nutritional quality at the same time. This review covers the effect of a wide range of thermal and non-thermal processing technologies including high-pressure processing, pressure-assisted thermal sterilization, pulsed-electric field treatment, cold plasma, microwave-assisted thermal sterilization, ultra-high-pressure homogenization, ultrasonication, irradiation on the bioactive compounds as well as on microbial inactivation in milk. Although a combination of more than one technology could improve the reduction of bacterial contaminants to meet the required food safety standards and retain bioactive compounds, there is still scope for research on these hurdle approaches to simultaneously achieve food safety and bioactivity targets.
Collapse
Affiliation(s)
- Aswathi Soni
- Food System Integrity, Consumer Food Interface, AgResearch Ltd, Palmerston North, New Zealand
| | - Linda M Samuelsson
- Smart Foods Innovation Centre of Excellence, AgResearch Ltd, Palmerston North, New Zealand
| | - Simon M Loveday
- Smart Foods Innovation Centre of Excellence, AgResearch Ltd, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Tanushree B Gupta
- Food System Integrity, Consumer Food Interface, AgResearch Ltd, Palmerston North, New Zealand
| |
Collapse
|
11
|
Alsaif A, Tahmassebi JF, Wood SR. Treatment of dental plaque biofilms using photodynamic therapy: a randomised controlled study. Eur Arch Paediatr Dent 2021; 22:791-800. [PMID: 34089515 PMCID: PMC8526452 DOI: 10.1007/s40368-021-00637-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 05/24/2021] [Indexed: 11/01/2022]
Abstract
INTRODUCTION Photodynamic therapy (PDT) is a treatment modality involving a dye that is activated by exposure to light of a specific wavelength in the presence of oxygen to form oxygen species causing localised damage to microorganisms. AIM To determine the most effective bactericidal incubation and irradiation times of erythrosine-based PDT on in vivo-formed dental plaque biofilms. METHODS A randomised controlled study; 18-healthy adult participants wearing intraoral appliances with human enamel slabs to collect dental plaque samples in two separate periods of two weeks each for use in arm-1 and arm-2. These accumulated dental plaque samples were treated with PDT under different experimental conditions. Incubation times with photosensitiser (erythrosine) of 15 min and 2 min were used in arm-1 and arm-2, respectively, followed by light irradiation for either 15 min (continuous) or as a fractionated dose (5 × 30 sec). Following treatment, percentage reductions of total bacterial counts were compared between the different groups. In addition, confocal laser scanning microscopy (CLSM) and LIVE/DEAD® BacLight™ Bacterial Viability Kit were used to visualise the effect of PDT on in vivo-formed biofilms. RESULTS Significant reductions in the percentage of total bacterial counts (~93-95%) of in vivo-formed biofilms were found when using either 2 min or 15min incubation times and applying 15 min continuous light. Although when applying fractionated light, there was more cell death when 15 min incubation time was used (~ 91%) compared with the 2 min incubation time (~ 64%). CLSM results supported these findings. CONCLUSION Improving the clinical usefulness of PDT by reducing its overall treatment time seems to be promising and effective in killing in vivo-formed dental plaque biofilms.
Collapse
Affiliation(s)
- A Alsaif
- Department of Paediatric Dentistry, University of Leeds, Leeds, UK. .,Paediatric Dentistry Department, Ministry of Health, Kuwait city, Kuwait.
| | - J F Tahmassebi
- Department of Paediatric Dentistry, University of Leeds, Leeds, UK
| | - S R Wood
- Department Oral Biology, University of Leeds, Leeds, UK
| |
Collapse
|
12
|
Alhenaki AM, Alqarawi FK, Tanveer SA, Alshahrani FA, Alshahrani A, AlHamdan EM, Alzahrani KM, Aldahiyan N, Naseem M, Vohra F, Abduljabbar T. Disinfection of acrylic denture resin polymer with Rose Bengal, Methylene blue and Porphyrin derivative in photodynamic therapy. Photodiagnosis Photodyn Ther 2021; 35:102362. [PMID: 34062305 DOI: 10.1016/j.pdpdt.2021.102362] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 11/26/2022]
Abstract
AIM The study aimed to assess the effect of in-vitro chlorhexidine and antimicrobial photodynamic therapy (aPDT) disinfection protocols against acrylic resin specimens colonized with S. mutans, S. aureus, E. coli, and C. albicans. MATERIAL AND METHODS Reference strains of S. mutans, S. aureus, E. coli, and C. albicans were tested. Sixteen blocks of acrylic specimens were prepared by heat-cure acrylic resin and contaminated by in-vitro biofilm growth. Specimens in group 1, group 2 and group 3 were treated with Rose Bengal (RB), methylene blue (MB) 500 mg/L and porphyrin derivative (PD) 5 ml respectively, for the sensitization of biofilms. All photosensitizers (PS) were activated by LED at different wavelength. CHX was prepared in sterile distilled water and applied for 60 s. Each contaminated specimen was sprayed on all its surfaces with the aforementioned photosensitizers and control CHX. One-way analysis of variance (ANOVA) model was used to test the effect of the treatments and Tukey multiple comparison tests to compare means OF CFU/mL (log10) for exposed E. coli, C. albicans, S aureus, and S. mutans RESULTS: Specimens treated with 0.12% CHX (control) demonstrated a significant reduction in CFU/mL (log10) for exposed E. coli; 2.04±0.07 CFU/mL, C. albicans; 2.09±0.85 CFU/mL, S aureus; 3.04±0.11 CFU/mL, and S. mutans; 2.54±0.91 CFU/mL. The intragroup comparison revealed E.coli did not exhibit a decrease in reduction CFU/mL (log10) when acrylic resin irradiated with RB 5 µm. Whereas, CFU/mL (log10) values of S.aureus; 3.62±0.68 and S.mutans; 3.41±0.13 plummeted (p<0.05). Intergroup comparison showed E.coli values to display comparable reduction when disinfected with MB 500 mg/L and 0.12% CHX; 3.16±0.34 and 2.04±0.07 CFU/mL (log10) (p<0.05). CONCLUSION Photosensitizers (RB, MB, PD) are selective in reducing bacterial count on acrylic resin blocks. CHX was found to be effective against all bacteria E.coli, C.albicans, S.aureus, and S.mutans at a concentration of 0.12%.
Collapse
Affiliation(s)
- Aasem M Alhenaki
- Prosthetic Dental Science Department, College Of Dentistry, King Saud University Riyadh, Saudi Arabia.
| | - Firas K Alqarawi
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
| | - Syeda A Tanveer
- Department of Oral Biology, College of Dentistry, Dow international Dental College. Karachi, Pakistan.
| | - Faris A Alshahrani
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
| | - Abdullah Alshahrani
- Prosthetic Dental Science Department, College Of Dentistry, King Saud University Riyadh, Saudi Arabia.
| | - Eman M AlHamdan
- Prosthetic Dental Science Department, College Of Dentistry, King Saud University Riyadh, Saudi Arabia.
| | - Khaled M Alzahrani
- Department of Prosthetic Dental sciences, College of Dentistry, Prince Sattam Bin AbdulAziz University, 11942 Alkharj Saudi Arabia.
| | - Nada Aldahiyan
- Post-Graduate Student. Department of Restorative Dental Science, College of Dentistry, King Saud University, Riyadh, Saudi Arabia.
| | - Mustafa Naseem
- Department of Community and Preventive Dental sciences, Dow International Dental College, Dow University of Health Sciences, Karachi, Pakistan.
| | - Fahim Vohra
- Prosthetic Dental Science Department, College Of Dentistry, King Saud University Riyadh, Saudi Arabia.
| | - Tariq Abduljabbar
- Prosthetic Dental Science Department, College Of Dentistry, King Saud University Riyadh, Saudi Arabia.
| |
Collapse
|
13
|
Wang D, Pan H, Yan Y, Zhang F. Rose bengal-mediated photodynamic inactivation against periodontopathogens in vitro. Photodiagnosis Photodyn Ther 2021; 34:102250. [PMID: 33711535 DOI: 10.1016/j.pdpdt.2021.102250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/25/2021] [Accepted: 03/05/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND The main goal of periodontal therapy is to eliminate the spread of infection in the periodontium. Antimicrobial photodynamic therapy (aPDT) is a bactericidal method that has been recently introduced for controlling periodontal infection. The aim of this in vitro study was to evaluate the effect of aPDT using a combination of medium-power blue light-emitting diodes (LEDs) and rose bengal (RB) on selected key periodontopathogens. METHODS Porphyromonas gingivalis ATCC33277, Aggregatibacter actinomycetemcomitans ATCC29523 and Fusobacterium nucleatum ATCC10953 were used in the experiments. Each bacterial suspension was irradiated with a blue LED (BL) (450-470 nm, output power density of 1.2 W/cm2) for 20-60 s (6-18 J/cm2), treated with RB (1 min), or subjected to a combination of RB treatment and BL irradiation (40 s, 12 J/cm2). All bacterial suspensions were serially diluted, plated and incubated anaerobically or microaerobically, and the numbers of colony-forming units (CFUs) were counted on day 7. One-way analysis of variance (ANOVA) and Tukey's HSD tests were used for statistical analysis. RESULTS Treatment with BL irradiation from 6 to 18 J/cm2 did not significantly reduce the number of CFUs, whereas treatment with RB alone induced a low-to-high reduction in the bacterial CFUs in a dye concentration-dependent manner. Furthermore, the difference in the effects obtained with 16 μg/mL and 160 μg/mL RB was not statistically significant. Treatment with the BL at 12 J/cm2 combined with 160 μg/mL RB yielded maximal log reductions of 3.03, 4.2 and 2.23 in P. gingivalis, A. actinomycetemcomitans and F. nucleatum CFUs, respectively. CONCLUSION Within the limits of this study, the three periodontal pathogens, especially A. actinomycetemcomitans, were susceptible to photodynamic inactivation by the combination of the BL and RB. RB-mediated aPDT may offer a viable alternative tool for periodontal pathogen treatment, especially for A. actinomycetemcomitans eradication. aPDT may be a valuable tool for the treatment of periodontal diseases, particularly those in which A. actinomycetemcomitans is a dominating pathogen.
Collapse
Affiliation(s)
- Dongqing Wang
- VIP Clinic and Multi-Disciplinary Treatment Center, Beijing Stomatological Hospital & School of Stomotology, Capital Medical University, Beijing, China.
| | - Hui Pan
- Department of Periodontology, Beijing Stomatological Hospital & School of Stomotology, Capital Medical University, Beijing, China
| | - Yuwei Yan
- Department of Implantology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Fengqiu Zhang
- Department of Periodontology, Beijing Stomatological Hospital & School of Stomotology, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Kamran MA, Qasim M, Udeabor SE, Hameed MS, Mannakandath ML, Alshahrani I. Impact of riboflavin mediated photodynamic disinfection around fixed orthodontic system infected with oral bacteria. Photodiagnosis Photodyn Ther 2021; 34:102232. [PMID: 33631380 DOI: 10.1016/j.pdpdt.2021.102232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/15/2021] [Accepted: 02/19/2021] [Indexed: 12/20/2022]
Abstract
PURPOSE The aim of this laboratory study was to investigate the amount of bacterial destruction through riboflavin mediated photodynamic therapy (PDT) around fixed orthodontic devices by using the two strains of bacteria Streptococcus mutans and Streptococcus sanguinis. MATERIALS AND METHODS A total of 80 metallic brackets were divided into four groups consisting of 20 brackets each. Group-I: riboflavin + LED irradiation; Group-II: riboflavin alone; Group-III: immersion in 0.2 % chlorhexidine gluconate solution and Group-IV: not submitted to any treatment. All metallic brackets were immersed in the standard bacterial solutions and incubated at 48 h. All samples were subjected to MTT assay for microbial cell viability testing after treatment. After 24 h of incubation, biofilms adhered on the mesh of metallic brackets after treatment were assessed by confocal laser microscopy. The total CFU/mL was estimated, and the results were log-transformed (log10) and analyzed using one-way analysis of variance and Tukey-Kramer test. P-value was set to <0.05 that indicated statistical significance. RESULTS The samples from group-IV showed the highest amount of relative biofilm viability compared to any other group while group-I (PDT) showed the least viability of the two bacterial strains studied (p < 0.05). Group-I showed no significant difference when compared with group-III (chlorhexidine) (p > 0.05). The biofilms on the samples from group-II and group-IV were largely viable indicating thick green staining across the mesh of the brackets. Among the group-III samples, there were predominantly dead cells as compared to the live cell staining. A considerable amount of red staining was observed with noticeable less green staining in group-I samples. CONCLUSION This laboratory investigation revealed that riboflavin mediated PDT significantly reduced the amounts of S. mutans and S. sanguinis around the orthodontic brackets.
Collapse
Affiliation(s)
- Muhammad Abdullah Kamran
- Department of Pediatric and Orthodontic Sciences, College of Dentistry, King Khalid University, Abha, Saudi Arabia.
| | - Muhammad Qasim
- Department of Restorative Dental Sciences (Operative Dentistry), College of Dentistry, King Khalid University, Abha, Saudi Arabia
| | - Samuel Ebele Udeabor
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Shahul Hameed
- Department of Diagnostic Sciences and Oral Biology, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| | - Master Luqman Mannakandath
- Department of Oral Diagnosis and Oral Biology, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| | - Ibrahim Alshahrani
- Department of Pediatric and Orthodontic Sciences, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
15
|
Hirose M, Yoshida Y, Horii K, Hasegawa Y, Shibuya Y. Efficacy of antimicrobial photodynamic therapy with Rose Bengal and blue light against cariogenic bacteria. Arch Oral Biol 2020; 122:105024. [PMID: 33352361 DOI: 10.1016/j.archoralbio.2020.105024] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE We evaluated the effect of antimicrobial photodynamic therapy (a-PDT) with Rose Bengal and blue light LED on bacteria that initiate and promote dental caries. DESIGN Colony forming units of Streptococcus mutans, Streptococcus sobrinus, Streptococcus sanguinis, and Lactobacillus salivarius under planktonic and biofilm conditions were counted after a-PDT treatment using Rose Bengal and blue light LED. In addition, cariogenic bacteria from saliva and dental plaques from ten volunteers were used for evaluation of a-PDT treatment. RESULTS We found that a-PDT using Rose Bengal at > 10 μg/mL had antimicrobial effects on oral Gram-positive S. mutans, S. sobrinus, S. sanguinis, and L. salivarius under both planktonic and biofilm conditions. The effect was also observed for cariogenic bacteria that formed biofilms containing water-insoluble glucans, through which the bacteria are firmly attached to the tooth surface. Moreover, a-PDT led to a marked reduction in cariogenic bacteria in saliva and dental plaques. CONCLUSION a-PDT could be a useful approach for controlling dental caries in dental surgery.
Collapse
Affiliation(s)
- Marina Hirose
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan; Department of Oral and Maxillofacial Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yasuo Yoshida
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan.
| | - Kouichiro Horii
- Department of Oral and Maxillofacial Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yoshiaki Hasegawa
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Yasuyuki Shibuya
- Department of Oral and Maxillofacial Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
16
|
Effect of photodynamic therapy on microleakage of class V composite restorations in primary teeth. Photodiagnosis Photodyn Ther 2020; 32:101964. [DOI: 10.1016/j.pdpdt.2020.101964] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/14/2020] [Accepted: 08/03/2020] [Indexed: 11/19/2022]
|
17
|
TIȘLER CE, BADEA ME, BUDURU S, KUI A, FLORIA M, POPESCU Ș, MITARIU M, NEGUCIOIU M. Biofilm Inactivation using Photodynamic Therapy in Dentistry: a review of literature. BALNEO RESEARCH JOURNAL 2020. [DOI: 10.12680/balneo.2020.353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction: Photodynamic therapy (PDT) is a therapy involving light and a photosensitising chemical substance, used in conjunction with molecular oxygen in order to elicit cell death (photo-toxicity) and thus ability to kill microbial cells, including bacteria, fungi and viruses. Photodynamic therapy is an alternative method of biofilm disruption and it is considered a new way of microorganism inactivation. It is also an additional procedure to reduce the infection rate in patients, caused by the increasing antimicrobials resistance of bacteria. The aim of this literature review was to evaluate the specific effects and the antibacterial effectiveness of photodynamic therapy using different types of photosensitizers (Erythrosine, Rose Bengal, Toluidine blue, Methylene blue, Ozone, Riboflavin, Curcumin, Chlorhexidine, SAPYR) and a visible light of a specific wavelength for each photosensitizer and to reveal the applications of PDT in periodontics, endodontics, prosthodontics and dental caries. Methods: A research of literature was performed in an attempt to find all the articles published on this topic in the last 10 years. The articles was searched by using a certain combination of different keywords (photodynamic therapy ) and (diode laser ) and (teeth) in PubMed database. Results: A total number of 83 articles were found. After applying inclusion and exclusion criteria, 35 articles were taken into consideration for our study and among them 4 were a manuscript, 3 was a review of literature, 1 was an in vivo evaluation and 27 were in vitro studies. Conclusion: Considering that none of the disinfection methods can completely remove the biofilm, PDT is a therapeutic tool complementary to conventional disinfection, with great applicability in dentistry. PDT showed significantly efficacy in reduction of biofilms. Exposure to light in the presence of a photosensitizing chemical substance helps in the reduction of microbes and the protocols could be recommended for clinical usage, but only together with ‘classic ‘ disinfection.
Collapse
Affiliation(s)
- Corina-Elena TIȘLER
- 1. Prosthodontic Department, "Iuliu Haţieganu“ University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mîndra-Eugenia BADEA
- 2. Prevention in Dentistry Department, "Iuliu Haţieganu“ University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Smaranda BUDURU
- 1. Prosthodontic Department, "Iuliu Haţieganu“ University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Andreea KUI
- 1. Prosthodontic Department, "Iuliu Haţieganu“ University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihaela FLORIA
- 1. Prosthodontic Department, "Iuliu Haţieganu“ University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ștefan POPESCU
- 1. Prosthodontic Department, "Iuliu Haţieganu“ University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihai MITARIU
- 1. Prosthodontic Department, "Iuliu Haţieganu“ University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Marius NEGUCIOIU
- 1. Prosthodontic Department, "Iuliu Haţieganu“ University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
18
|
Bactericidal effect of antimicrobial photodynamic therapy (aPDT) on dentin plate infected with Lactobacillus acidophilus. Odontology 2020; 109:67-75. [PMID: 32556972 DOI: 10.1007/s10266-020-00532-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/05/2020] [Indexed: 10/24/2022]
Abstract
This study aimed to examine bactericidal effects of a new antimicrobial photodynamic therapy (aPDT) on dentin plates infected with Lactobacillus acidophilus (L. acidophilus). First, we measured the amount of reactive oxygen species (ROS) produced when new photosensitizer (PS), acid red (AR), and brilliant blue (BB) were irradiated with a semiconductor laser. ROS generated from each PS solution by laser irradiation was calculated as the total light emission amount (Relative Light Unit, RLU) using a chemiluminescence measuring device. Second, we examined bactericidal effects of the aPDT on dentin plates infected with L. acidophilus. The bactericidal effects on each group were evaluated by colony count assay and adenosine triphosphate assay. The experimental groups comprised two laser irradiation groups (650 nm laser, 650laser; and 940 nm laser, 940laser), two PS groups (BB and AR), four aPDT groups (650 nm laser irradiation with BB, 650laser-BB; 650 nm laser irradiation with AR, 650laser-AR; 940 nm laser irradiation with BB, 940laser-BB; 940 nm laser irradiation with AR, 940laser-AR), and a control. The ROS in all aPDT groups was significantly higher than in the control. RLU in all groups applied with laser irradiation was significantly lower than that in the control. However, only 650laser-BB showed significantly lower colony counts than the control. 650laser-BB was the most effective in sterilizing the infected dentin plates.
Collapse
|
19
|
Rose bengal photodynamic antimicrobial therapy to inhibit Pseudomonas aeruginosa keratitis isolates. Lasers Med Sci 2019; 35:861-866. [PMID: 31872325 DOI: 10.1007/s10103-019-02871-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 08/23/2019] [Indexed: 10/25/2022]
Abstract
To evaluate the in vitro efficacy of rose bengal and riboflavin photodynamic antimicrobial therapy for inhibition the growth of four Pseudomonas aeruginosa (P. aeruginosa) isolates. Four different clinical P. aeruginosa isolates were collected from patients with confirmed keratitis. Each strain was mixed with either sterile water, 0.1% riboflavin solution, or 0.1% rose bengal solution to yield a final bacteria concentration of 1.5 × 107 CFU/mL. Aliquots from each suspension were plated onto nutrient agar in triplicate. Plates were separated into two groups: (1) no irradiation and (2) 5.4 J/cm2 of radiant exposure with custom-made LED irradiation sources. Separate irradiation sources were used for each photosensitizer. The riboflavin groups used a UV-A light source (375 nm) and rose bengal groups used a green light source (525 nm). Plates were photographed at 72 h and custom software measured bacterial growth inhibition. Growth inhibition to riboflavin and rose bengal PDAT showed strain-dependent variability. All four strains of P. aeruginosa showed greatest growth inhibition (89-99%) in the green irradiated-rose bengal group. The UV-A-irradiated riboflavin showed inhibition of 24-44%. UV-A irradiation only showed minimal inhibition (7-14%). There was little inhibitory effect in the non-irradiated photosensitizer groups. Rose bengal PDAT had the greatest inhibitory effect on all four P. aeruginosa isolates. In the UV-A-irradiated riboflavin group, there was moderate inhibition within the irradiation zone; however, there was no inhibition in the non-irradiated groups. These results suggest that rose bengal PDAT may be an effective alternative treatment for Pseudomonas aeruginosa infections.
Collapse
|
20
|
Felix Gomez GG, Lippert F, Ando M, Zandona AF, Eckert GJ, Gregory RL. Photoinhibition of Streptococcus mutans Biofilm-Induced Lesions in Human Dentin by Violet-Blue Light. Dent J (Basel) 2019; 7:dj7040113. [PMID: 31835833 PMCID: PMC6960986 DOI: 10.3390/dj7040113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/29/2019] [Accepted: 11/28/2019] [Indexed: 01/13/2023] Open
Abstract
This in vitro study determined the effectiveness of violet-blue light on Streptococcus mutans (UA159) biofilm induced dentinal lesions. Biofilm was formed on human dentin specimens in a 96-well microtiter plate and incubated for 13 h in the presence of tryptic soy broth (TSB) or TSB supplemented with 1% sucrose (TSBS). Violet-blue light (405 nm) from quantitative light-induced fluorescence (QLFTM) was used to irradiate the biofilm. Supernatant liquid was removed, and the biofilm was irradiated continuously with QLF for 5 min twice daily with an interval of 6 h for 5 d, except with one treatment on the final day. Colony forming units (CFU) of the treated biofilm, changes in fluorescence (∆F; QLF-Digital BiluminatorTM), lesion depth (L), and integrated mineral loss (∆Z; both transverse microradiography) were quantified at the end of the fifth day. Statistical analysis used analysis of variance (ANOVA), testing at a 5% significance level. In the violet-blue light irradiated groups, there was a significant reduction (p < 0.05) of bacterial viability (CFU) of S. mutans with TSB and TSBS. Violet-blue light irradiation resulted in the reduction of ∆F and L of the dentinal surface with TSBS. These results indicate that violet-blue light has the capacity to reduce S. mutans cell numbers.
Collapse
Affiliation(s)
- Grace Gomez Felix Gomez
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN 46202, USA;
| | - Frank Lippert
- Department of Cariology, Operative Dentistry and Dental Public Health, Indiana University School of Dentistry, Indianapolis, IN 46202, USA; (F.L.); (M.A.)
| | - Masatoshi Ando
- Department of Cariology, Operative Dentistry and Dental Public Health, Indiana University School of Dentistry, Indianapolis, IN 46202, USA; (F.L.); (M.A.)
| | - Andrea F. Zandona
- Department of Comprehensive Care, Tufts School of Dental Medicine, Boston, MA 02111, USA;
| | - George J. Eckert
- Department of Biostatistics, Indiana University, Indianapolis, IN 46202, USA
| | - Richard L. Gregory
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN 46202, USA;
- Correspondence: ; Tel.: +1-317-274-9949
| |
Collapse
|
21
|
Exposure of Streptococcus mutans and Streptococcus sanguinis to blue light in an oral biofilm model. Lasers Med Sci 2019; 35:709-718. [PMID: 31713778 DOI: 10.1007/s10103-019-02903-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 10/18/2019] [Indexed: 10/25/2022]
Abstract
The potential anti-cariogenic effect of blue light was evaluated using an oral biofilm model. Two species, Streptococcus mutans and Streptococcus sanguinis, were cultivated ex vivo on bovine enamel blocks for 24 h, either separately or mixed together, then exposed to blue light (wavelengths 400-500 nm) using 112 J/cm2. Twenty four or 48 h after exposure to light the biofilm structure and biomass were characterized and quantified using SEM and qPCR, respectively. Bacterial viability was analyzed by CLSM using live/dead bacterial staining. Gene expression was examined by RT-qPCR. After exposure to light, S. mutans biomass in mono-species biofilm was increased mainly by dead bacteria, relative to control. However, the bacterial biomass of S. mutans when grown in mixed biofilm and of S. sanguinis in mono-species biofilm was reduced after light exposure, with no significant change in viability when compared to control. Furthermore, when grown separately, an upregulation of gene expression related to biofilm formation of S. mutans, and downregulation of similar genes of S. sanguinis, were measured 24 h after exposure to blue light. However, in mixed biofilm, a downregulation of those genes in both species was observed, although not significant in S. mutans. In conclusion, blue light seems to effectively alter the bacterial biomass by reducing the viability and virulence characteristics in both bacterial species and may promote the anti-cariogenic balance between them, when grown in a mixed biofilm. Therefore, exposure of oral biofilm to blue light has the potential to serve as a complementary approach in preventive dentistry.
Collapse
|
22
|
He Z, Huang Z, Jiang W, Zhou W. Antimicrobial Activity of Cinnamaldehyde on Streptococcus mutans Biofilms. Front Microbiol 2019; 10:2241. [PMID: 31608045 PMCID: PMC6773874 DOI: 10.3389/fmicb.2019.02241] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/12/2019] [Indexed: 12/18/2022] Open
Abstract
Streptococcus mutans is considered the most relevant bacteria in the transition of non-pathogenic commensal oral microbiota to biofilms which contribute to the dental caries process. The present study aimed to evaluate the antimicrobial activity of a natural plant product, cinnamaldehyde against S. mutans biofilms. Minimum inhibitory concentrations (MIC), minimal bactericidal concentration (MBC), and growth curves were determined to assess its antimicrobial effect against planktonic S. mutans. The biofilm biomass and metabolism with different concentrations of cinnamaldehyde and different incubation time points were assessed using the crystal violet and MTT assays. The biofilms were visualized using confocal laser scanning microscopy (CLSM). Bacterial cell surface hydrophobicity, aggregation, acid production, and acid tolerance were evaluated after cinnamaldehyde treatment. The gene expression of virulence-related factors (gtfB, gtfC, gtfD, gbpB, comDE, vicR, ciaH, ldh and relA) was investigated by real-time PCR. The MIC and MBC of cinnamaldehyde against planktonic S. mutans were 1000 and 2000 μg/mL, respectively. The results showed that cinnamaldehyde can decrease biofilm biomass and metabolism at sub-MIC concentrations. CLSM images revealed that the biofilm-covered surface areas decreased with increasing concentrations of cinnamaldehyde. Cinnamaldehyde increased cell surface hydrophobicity, reduced S. mutans aggregation, inhibited acid production, and acid tolerance. Genes expressions in the biofilms were down-regulated in the presence of cinnamaldehyde. Therefore, our data demonstrated that cinnamaldehyde at sub-MIC level suppressed the microbial activity on S. mutans biofilm by modulating hydrophobicity, aggregation, acid production, acid tolerance, and virulence gene expression.
Collapse
Affiliation(s)
- Zhiyan He
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Zhengwei Huang
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China.,Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Jiang
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China.,Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Zhou
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
23
|
Vanerio N, Stijnen M, de Mol BA, Kock LM. Biomedical Applications of Photo- and Sono-Activated Rose Bengal: A Review. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2019; 37:383-394. [DOI: 10.1089/photob.2018.4604] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Noemi Vanerio
- LifeTec Group BV, Eindhoven, The Netherlands
- Department of Cardiothoracic Surgery & Cardiovascular Sciences, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | | | - Bas A.J.M. de Mol
- Department of Cardiothoracic Surgery & Cardiovascular Sciences, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Linda M. Kock
- LifeTec Group BV, Eindhoven, The Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
24
|
Effects of photodynamic therapy with indocyanine green on Streptococcus mutans biofilm. Photodiagnosis Photodyn Ther 2019; 26:229-234. [DOI: 10.1016/j.pdpdt.2019.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 04/02/2019] [Accepted: 04/05/2019] [Indexed: 11/24/2022]
|
25
|
Lacerda Rangel Esper MÂ, Junqueira JC, Uchoa AF, Bresciani E, Nara de Souza Rastelli A, Navarro RS, de Paiva Gonçalves SE. Photodynamic inactivation of planktonic cultures and Streptococcus mutans biofilms for prevention of white spot lesions during orthodontic treatment: An in vitro investigation. Am J Orthod Dentofacial Orthop 2019; 155:243-253. [PMID: 30712696 DOI: 10.1016/j.ajodo.2018.03.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 03/01/2018] [Accepted: 03/01/2018] [Indexed: 12/27/2022]
Abstract
INTRODUCTION This study evaluated the efficacy of photodynamic inactivation (PDI) with hematoporphyrin IX (H) and modified hematoporphyrin IX (MH) at 10 μmol/L, using a blue light-emitting diode (LED), fluence of 75 J/cm,2 over planktonic cultures and biofilm of Streptococcus mutans (UA 159). METHODS Suspensions containing 107 cells/mL were tested under different experimental conditions: a) H and LED (H+L+), b) MH and LED (MH+L+), c) only LED (P-L+), d) only H (H+L-), e) only MH (MH+L-), and f) control group, no LED or photosensitizer treatment (P-L-). The study also evaluated the effect of PDI on S mutans biofilm on metallic or ceramic brackets bonded on specimens of human teeth. The strains were seeded onto Mitis salivarius-bacitracin-sacarose agar to determine the number of colony-forming units. RESULTS H and MH under LED irradiation were effective on planktonic cultures (P <0.0001). H and MH (H+L+ and MH+L+) caused a reduction of 3.80 and 6.78 log10 CFU/mL. PDI with the use of H or MH and LED exerted a strong antimicrobial effect over S mutans showing 54% and 100% reduction, respectively. PDI on S mutans biofilm on metallic and ceramic brackets with the use of H was not effective (P = 0.0162, P = 0.1669), however, MH caused a significant reduction of 44% and 53% of the cell count on metallic and ceramic brackets, respectively (P = 0.0020, P = 0.004). CONCLUSIONS In vitro planktonic cultures with the use of H or MH and LED exerted significant antimicrobial activity. No effect was observed on S mutans biofilm on either bracket type with the use of H, MH showed better results, suggesting a promising use against dental caries and white spot lesions.
Collapse
Affiliation(s)
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University, São Paulo, Brazil
| | | | - Eduardo Bresciani
- Department of Restorative Dentistry, Institute of Science and Technology, São Paulo State University, São Paulo, Brazil
| | | | | | | |
Collapse
|
26
|
Ghorbani J, Rahban D, Aghamiri S, Teymouri A, Bahador A. Photosensitizers in antibacterial photodynamic therapy: an overview. Laser Ther 2018; 27:293-302. [PMID: 31182904 DOI: 10.5978/islsm.27_18-ra-01] [Citation(s) in RCA: 209] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 08/24/2018] [Indexed: 12/26/2022]
Abstract
Antibacterial Photodynamic therapy (APDT) is a process utilizing light and light sensitive agents (named photosensitizer (PS)) and is usually applied in an oxygen-rich environment. The energy of the photons is absorbed by the photosensitizer and subsequently transferred to surrounding molecules. Consequently, reactive oxygen species and free radicals are formed. These oxidative molecules can damage bacterial macromolecules such as proteins, lipids and nucleic acids and may result in bacterial killing. Unlike antibiotics, APDT as a novel technique does not lead to the selection of mutant resistant strains, hence it has appealed to researchers in this field. The type of PS used in APDT is a major determinant regarding outcome. In this review, various types of PS that are used in antimicrobial Photodynamic therapy will be discussed. PSs are classified based on their chemical structure and origin. Synthetic dyes such as methylene blue and toluidine blue are the most commonly used photosensitizers in Antibacterial Photodynamic therapy (APDT). Other photosensitizers including natural PSs (e.g. curcumin and hypericin) and tetra-pyrrole structures like phthalocyanines and porphyrins have also been studied. Furthermore, nanostructures and their probable contribution to APDT will be discussed.
Collapse
Affiliation(s)
- Jaber Ghorbani
- Department of Microbiology, School of Medicine, Tehran University of Medical sciences, Tehran, Iran
| | - Dariush Rahban
- Department of Nanomedicine, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahin Aghamiri
- Department of Medical Biotechnology, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Teymouri
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical sciences, Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Laser Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Romão IQ, Cavalcante SIA, Leite HLA, Gonçalves LM, Branco-de-Almeida LS, Paschoal MAB. Effect of Combining Erythrosine with a High-Power Dental Curing Light Appliance on the Viability of a Planktonic Culture of Streptococcus mutans. Photomed Laser Surg 2018; 36:676-679. [DOI: 10.1089/pho.2018.4517] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
| | | | | | | | | | - Marco Aurelio Benini Paschoal
- Department of Dentistry, Pontifical Catholic University of Minas Gerais, Belo Horizonte–MG, Brazil
- Post Graduate Program in Dentistry, CEUMA University, São Luis–MA, Brazil
| |
Collapse
|
28
|
Alexandrino FJR, Bezerra EM, Da Costa RF, Cavalcante LRL, Sales FAM, Francisco TS, Rodrigues LKA, de Brito DHA, Ricardo NMPS, Costa SN, de Lima-Neto P, Barroso-Neto IL, Caetano EWS, Freire VN. Rose Bengal incorporated to α-cyclodextrin microparticles for photodynamic therapy against the cariogenic microorganism Streptococcus mutans. Photodiagnosis Photodyn Ther 2018; 25:111-118. [PMID: 30468898 DOI: 10.1016/j.pdpdt.2018.11.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 11/09/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022]
Abstract
Rose Bengal@α-cyclodextrin (RB@α-CD) microparticles (μPs) were prepared and the RB inclusion in α-CD was experimentally demonstrated through infrared, UV-VIS absorption spectroscopy and cyclic voltammetry. The RB inclusion in α-CD was theoretically investigated using classical molecular mechanics calculations, the simulation results showing that RB can be included in both the narrow and wide apertures of the α-cyclodextrin ring with configurations exhibiting average binding energies of about 27 kcal mol-1. The prepared RB@α-CD microparticles were characterized through Scanning Electron Microscopy (SEM) and it was demonstrated that they are highly efficient in the photodynamic therapy against a Streptococcus mutans (the main bacteria of cariogenic dental plaque) suspension, as a concentration of RB@α-CD μPs 10 times smaller than the usual concentration of pure RB is still capable to produce significant antibacterial activity.
Collapse
Affiliation(s)
- F J R Alexandrino
- Departamento de Patologia e Medicina Legal, Programa de Pós-graduação em Microbiologia Médica, Universidade Federal do Ceará, 50430-275 Fortaleza - CE, Brazil; Faculdade Paulo Picanço, 60135-218, Fortaleza-CE, Brazil
| | - E M Bezerra
- Departamento de Ciências Naturais, Matemática e Estatística, Universidade Federal Rural do Semi-Árido, 59625-900 Mossoró - RN, Brazil
| | - R F Da Costa
- Departamento de Ciências Naturais, Matemática e Estatística, Universidade Federal Rural do Semi-Árido, 59625-900 Mossoró - RN, Brazil
| | - L R L Cavalcante
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60440-970 Fortaleza - CE, Brazil
| | - F A M Sales
- Departamento de Ensino, Instituto Federal de Educação, Ciência e Tecnologia do Ceará, Campus de Aracati, 62800-000 Aracati - CE, Brazil
| | - T S Francisco
- Departamento de Ciências Naturais, Matemática e Estatística, Universidade Federal Rural do Semi-Árido, 59625-900 Mossoró - RN, Brazil
| | - L K A Rodrigues
- Departamento de Odontologia Restauradora, Faculdade de Farmácia, Odontologia e Enfermagem, Universidade Federal do Ceará, 60430370 Fortaleza - CE, Brazil
| | - D H Almeida de Brito
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, CP 12100, Campus do Pici, 60451-970 Fortaleza - CE, Brazil
| | - N M P S Ricardo
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, CP 12100, Campus do Pici, 60451-970 Fortaleza - CE, Brazil
| | - S N Costa
- Departamento de Engenharia Metalúrgica e de Materiais, Programa de Pós-graduação em Engenharia e Ciência de Materiais, Universidade Federal do Ceará, 60440-554 Fortaleza- CE, Brazil
| | - P de Lima-Neto
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, 60440900, Fortaleza- CE, Brazil
| | - I L Barroso-Neto
- Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, Campus do Pici, 60440-900 Fortaleza - CE, Brazil
| | - E W S Caetano
- Instituto Federal de Educação, Ciência e Tecnologia do Ceará, 60040-531 Fortaleza - CE, Brazil.
| | - V N Freire
- Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, Campus do Pici, 60440-900 Fortaleza - CE, Brazil
| |
Collapse
|
29
|
Tokubo LM, Rosalen PL, de Cássia Orlandi Sardi J, Freires IA, Fujimaki M, Umeda JE, Barbosa PM, Tecchio GO, Hioka N, de Freitas CF, Suga Terada RS. Antimicrobial effect of photodynamic therapy using erythrosine/methylene blue combination on Streptococcus mutans biofilm. Photodiagnosis Photodyn Ther 2018; 23:94-98. [DOI: 10.1016/j.pdpdt.2018.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 02/26/2018] [Accepted: 05/07/2018] [Indexed: 01/28/2023]
|
30
|
Palma ALDR, Paula-Ramos LD, Domingues N, Back-Brito GN, de Oliveira LD, Pereira CA, Jorge AOC. Biofilms of Candida albicans and Streptococcus sanguinis and their susceptibility to antimicrobial effects of photodynamic inactivation. Photodiagnosis Photodyn Ther 2018; 24:95-101. [PMID: 29990641 DOI: 10.1016/j.pdpdt.2018.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 05/30/2018] [Accepted: 07/06/2018] [Indexed: 01/10/2023]
Abstract
This study evaluated the effects of photodynamic inactivation (PDI) on single and multi-species biofilms, compounds by Candida albicans and Streptococcus sanguinis. Biofilms were formed, on microplate of 96 wells, by suspensions of C. albicans (ATCC 18804) and S. sanguinis (ATCC 7073) adjusted in 107 cells/mL, followed by incubation of 48 h (with 5% CO2). The effects of the photosensitizer erythrosine (ER) at 400 μM for 5 min and green light-emitting diode (LED - 532 ± 10 nm) for 3 min, alone and conjugated, were evaluated. After normality test, results was analysed by Tukey´s test (P < 0.05). PDI group promoted reductions of 1.07 and 0.39 log10, respectively, in biofilms of C. albicans alone and in association with S. sanguinis. Biofilms of S. sanguinis alone were more sensitive, with reduction of 4.48 log10. When in association with the yeast, S. sanguinis have a decrease of 2.67 log10. SEM analysis revealed a decrease in bacterial and fungal structures of biofilms treated with PDI. In conclusion PDI promoted significant microbial reductions in both species of microorganisms grown on mixed biofilms. This study is one of the pioneers to evaluate the antimicrobial action of PDI on biofilms of S. sanguinis and C. albicans, demonstrating a way to control these microorganisms of clinical importance.
Collapse
Affiliation(s)
- Ana Luiza do Rosário Palma
- São Paulo State University (Unesp), Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo, Brazil.
| | - Lucas de Paula-Ramos
- São Paulo State University (Unesp), Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo, Brazil.
| | - Nádia Domingues
- São Paulo State University (Unesp), Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo, Brazil.
| | - Graziella Nuernberg Back-Brito
- São Paulo State University (Unesp), Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo, Brazil.
| | - Luciane Dias de Oliveira
- São Paulo State University (Unesp), Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo, Brazil.
| | - Cristiane Aparecida Pereira
- São Paulo State University (Unesp), Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo, Brazil.
| | - Antonio Olavo Cardoso Jorge
- São Paulo State University (Unesp), Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo, Brazil.
| |
Collapse
|
31
|
Hu X, Huang YY, Wang Y, Wang X, Hamblin MR. Antimicrobial Photodynamic Therapy to Control Clinically Relevant Biofilm Infections. Front Microbiol 2018; 9:1299. [PMID: 29997579 PMCID: PMC6030385 DOI: 10.3389/fmicb.2018.01299] [Citation(s) in RCA: 282] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/28/2018] [Indexed: 12/15/2022] Open
Abstract
Biofilm describes a microbially-derived sessile community in which microbial cells are firmly attached to the substratum and embedded in extracellular polymeric matrix. Microbial biofilms account for up to 80% of all bacterial and fungal infections in humans. Biofilm-associated pathogens are particularly resistant to antibiotic treatment, and thus novel antibiofilm approaches needed to be developed. Antimicrobial Photodynamic therapy (aPDT) had been recently proposed to combat clinically relevant biofilms such as dental biofilms, ventilator associated pneumonia, chronic wound infections, oral candidiasis, and chronic rhinosinusitis. aPDT uses non-toxic dyes called photosensitizers (PS), which can be excited by harmless visible light to produce reactive oxygen species (ROS). aPDT is a multi-stage process including topical PS administration, light irradiation, and interaction of the excited state with ambient oxygen. Numerous in vitro and in vivo aPDT studies have demonstrated biofilm-eradication or substantial reduction. ROS are produced upon photo-activation and attack adjacent targets, including proteins, lipids, and nucleic acids present within the biofilm matrix, on the cell surface and inside the microbial cells. Damage to non-specific targets leads to the destruction of both planktonic cells and biofilms. The review aims to summarize the progress of aPDT in destroying biofilms and the mechanisms mediated by ROS. Finally, a brief section provides suggestions for future research.
Collapse
Affiliation(s)
- Xiaoqing Hu
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Dermatology, Harvard Medical School, Boston, MA, United States
| | - Ying-Ying Huang
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Dermatology, Harvard Medical School, Boston, MA, United States
| | - Yuguang Wang
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Dermatology, Harvard Medical School, Boston, MA, United States
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Michael R. Hamblin
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Dermatology, Harvard Medical School, Boston, MA, United States
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, United States
| |
Collapse
|
32
|
de Araújo Neto EV, Pacífico Feitosa APO, Martins Pontes GI, Madeira Alves LCC. Antimicrobial photodynamic therapy associated with partial removal of carious tissue in a patient with amyotrophic lateral sclerosis. Photodiagnosis Photodyn Ther 2018; 23:55-57. [PMID: 29800713 DOI: 10.1016/j.pdpdt.2018.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 04/30/2018] [Accepted: 05/21/2018] [Indexed: 10/16/2022]
|
33
|
Effect of Violet-Blue Light on Streptococcus mutans-Induced Enamel Demineralization. Dent J (Basel) 2018; 6:dj6020006. [PMID: 29565266 PMCID: PMC6023538 DOI: 10.3390/dj6020006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 11/26/2022] Open
Abstract
Background: This in vitro study determined the effectiveness of violet-blue light (405 nm) on inhibiting Streptococcus mutans-induced enamel demineralization. Materials and Methods: S. mutans UA159 biofilm was grown on human enamel specimens for 13 h in 5% CO2 at 37 °C with/without 1% sucrose. Wet biofilm was treated twice daily with violet-blue light for five minutes over five days. A six-hour reincubation was included daily between treatments excluding the final day. Biofilms were harvested and colony forming units (CFU) were quantitated. Lesion depth (L) and mineral loss (∆Z) were quantified using transverse microradiography (TMR). Quantitative light-induced fluorescence Biluminator (QLF-D) was used to determine mean fluorescence loss. Data were analyzed using one-way analysis of variance (ANOVA) to compare differences in means. Results: The results demonstrated a significant reduction in CFUs between treated and non-treated groups grown with/without 1% sucrose. ∆Z was significantly reduced for specimens exposed to biofilms grown without sucrose with violet-blue light. There was only a trend on reduction of ∆Z with sucrose and with L on both groups. There were no differences in fluorescence-derived parameters between the groups. Conclusions: Within the limitations of the study, the results indicate that violet-blue light can serve as an adjunct prophylactic treatment for reducing S. mutans biofilm formation and enamel mineral loss.
Collapse
|
34
|
Thandu MM, Cavalli S, Rossi G, Rizzardini CB, Goi D, Comuzzi C. Biological evaluation of a Porphyrin-SPION nanoconjugate as an antimicrobial magnetic photosensitizer. J PORPHYR PHTHALOCYA 2017. [DOI: 10.1142/s1088424617500560] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The present work describes the use of a magnetic porphyin (5-(4-carboxy-phenyl)-10,15,20-triphenyl-21H, 23H-porphyrin TPP) nanoconjugate (SPION-TPP) for destroying pathogenic bacteria followed by the recovery of the magnetic photosensitizer. SPION-TPP was tested for its activity against two different gram-positive bacterial strains (Staphylococcus aureus and Steptoccoccus mutans). It is observed that SPION-TPP at a very low concentration of 0.5 [Formula: see text]M is effective in destroying gram-positive bacteria (10[Formula: see text]–10[Formula: see text] CFU ml[Formula: see text] S. aureus with several orders reduction and few orders in S. mutans. The aim of this work is to combine photoactivity against microorganisms imparted by the photosensitizer with the possibility of recovering the nanoconstruct with magnets for disposal/reuse.
Collapse
Affiliation(s)
- Merlyn M. Thandu
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università Degli Studi di Udine, Via Delle Scienze 99, Udine 33100, Italy
| | - Silvia Cavalli
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università Degli Studi di Udine, Via Delle Scienze 99, Udine 33100, Italy
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci, 53, Naples, 80125, Italy
| | - Giada Rossi
- Dipartimento Politecnico di Ingegneria e Architettura, Università Degli Studi di Udine, Via Del Cotonificio, Degli Studi di Udine, Via Del Cotonificio, 108, 33100, Udine, Italy
| | - Claudia B. Rizzardini
- Dipartimento Politecnico di Ingegneria e Architettura, Università Degli Studi di Udine, Via Del Cotonificio, Degli Studi di Udine, Via Del Cotonificio, 108, 33100, Udine, Italy
| | - Daniele Goi
- Dipartimento Politecnico di Ingegneria e Architettura, Università Degli Studi di Udine, Via Del Cotonificio, Degli Studi di Udine, Via Del Cotonificio, 108, 33100, Udine, Italy
| | - Clara Comuzzi
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università Degli Studi di Udine, Via Delle Scienze 99, Udine 33100, Italy
| |
Collapse
|
35
|
Nagai Y, Suzuki A, Katsuragi H, Shinkai K. Effect of antimicrobial photodynamic therapy (aPDT) on the sterilization of infected dentin in vitro. Odontology 2017; 106:154-161. [PMID: 29071451 DOI: 10.1007/s10266-017-0321-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 08/09/2017] [Indexed: 10/18/2022]
Abstract
The aim of this study was to evaluate the bactericidal effect of antimicrobial photodynamic therapy (aPDT) on an infected dentin model. Dentin plates were prepared from extracted human molars and infected through immersion in a solution of Streptococcus mutans. The nine experimental groups consisted of two laser irradiation groups (650 nm laser: 650 laser and 940 nm laser: 940 laser), two photosensitizer groups (methylene blue: MB, and azulenocyanine: Azc), four aPDT groups (650 nm laser irradiation of MB: 650 laser-MB, 650 nm laser irradiation of Azc: 650 laser-Azc, 940 nm laser irradiation of MB: 940 laser-MB and 940 nm laser irradiation of Azc: 940 laser-Azc) and a control. The bactericidal effects on each group were evaluated by colony count and adenosine triphosphate (ATP) assays. Based on the results of the colony count assay, the 650 laser-MB and 940 laser-MB groups formed significantly fewer colonies than the other experimental groups. Significantly fewer colonies were observed in the 940 laser-Azc group than in the control, but significant differences in the numbers of colonies were not observed between the 650 laser-Azc and control groups. The 940 laser group formed slightly fewer colonies than the 650 laser group, but the difference was not significant. In addition, the number of colonies in the MB group was significantly less than the number in the Azc group. The results of the ATP assay were similar to those of the colony count assay. aPDT with MB showed a significant bactericidal effect on dentin plates infected with S. mutans.
Collapse
Affiliation(s)
- Yuta Nagai
- Advanced Operative Dentistry-Endodontics, The Nippon Dental University Graduate School of Life Dentistry at Niigata, Niigata, Japan
| | - Anri Suzuki
- Department of Microbiology, The Nippon Dental University School of Life Dentistry at Niigata, Niigata, Japan
| | - Hiroaki Katsuragi
- Department of Microbiology, The Nippon Dental University School of Life Dentistry at Niigata, Niigata, Japan
| | - Koichi Shinkai
- Department of Operative Dentistry, The Nippon Dental University School of Life Dentistry at Niigata, 1-8 Hamaura-cho, Chuo-ku, Niigata, 951-8580, Japan.
| |
Collapse
|
36
|
de Araújo Neto EV, de Albuquerque Dias R. Use of antimicrobial photodynamic therapy in the conservative clinical management of caries lesions on a permanent tooth. Photodiagnosis Photodyn Ther 2017; 20:207-209. [PMID: 28986294 DOI: 10.1016/j.pdpdt.2017.09.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 11/27/2022]
|
37
|
Pérez-Laguna V, Pérez-Artiaga L, Lampaya-Pérez V, López SC, García-Luque I, Revillo MJ, Nonell S, Gilaberte Y, Rezusta A. Comparative effect of photodynamic therapy on separated or mixed cultures of Streptococcus mutans and Streptococcus sanguinis. Photodiagnosis Photodyn Ther 2017; 19:98-102. [DOI: 10.1016/j.pdpdt.2017.05.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/28/2017] [Accepted: 05/20/2017] [Indexed: 12/20/2022]
|
38
|
Wahy AHE, Ismail AR, Kana MTA, Negm NA. Synthesis and characterization of novel bis-(4-methylcoumarin) derivatives as photosensitizers in antimicrobial photodynamic therapy. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
39
|
Varela Kellesarian S, Abduljabbar T, Vohra F, Malmstrom H, Yunker M, Varela Kellesarian T, Romanos GE, Javed F. Efficacy of antimicrobial photodynamic therapy in the disinfection of acrylic denture surfaces: A systematic review. Photodiagnosis Photodyn Ther 2017; 17:103-110. [DOI: 10.1016/j.pdpdt.2016.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 11/25/2016] [Accepted: 12/02/2016] [Indexed: 12/13/2022]
|
40
|
de Figueiredo Freitas LS, Rossoni RD, Jorge AOC, Junqueira JC. Repeated applications of photodynamic therapy on Candida glabrata biofilms formed in acrylic resin polymerized. Lasers Med Sci 2017; 32:549-555. [PMID: 28091850 DOI: 10.1007/s10103-017-2147-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 01/05/2017] [Indexed: 11/28/2022]
Abstract
Previous studies have been suggested that photodynamic therapy (PDT) can be used as an adjuvant treatment for denture stomatitis. In this study, we evaluated the effects of multiple sessions of PDT on Candida glabrata biofilms in specimens of polymerized acrylic resin formed after 5 days. Subsequently, four applications of PDT were performed on biofilms in 24-h intervals (days 6-9). Also, we evaluated two types of PDT, including application of laser and methylene blue or light-emitting diode (LED) and erythrosine. The control groups were treated with physiological solution. The effects of PDT on biofilm were evaluated after the first and fourth application of PDT. The biofilm analysis was performed by counting the colony-forming units. The results showed that between the days 6 and 9, the biofilms not treated by PDT had an increase of 5.53 to 6.05 log (p = 0.0271). Regarding the treatments, after one application of PDT, the biofilms decreased from 5.53 to 0.89 log. When it was done four applications, the microbial reduction ranged from 6.05 log to 0.11 log. We observed that one application of PDT with laser or LED caused a reduction of 3.36 and 4.64 compared to the control groups, respectively (p = 0.1708). When it was done four applications of PDT, the reductions achieved were 1.57 for laser and 5.94 for LED (p = 0.0001). It was concluded that repeated applications of PDT on C. glabrata biofilms showed higher antimicrobial activity compared to single application. PDT mediated by LED and erythrosine was more efficient than the PDT mediated by laser and methylene blue.
Collapse
Affiliation(s)
- Lírian Silva de Figueiredo Freitas
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, UNESP - Univ. Estadual Paulista, Avenida Francisco José Longo 777, São José dos Campos, 12245-000, São Paulo, Brazil
| | - Rodnei Dennis Rossoni
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, UNESP - Univ. Estadual Paulista, Avenida Francisco José Longo 777, São José dos Campos, 12245-000, São Paulo, Brazil
| | - Antonio Olavo Cardoso Jorge
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, UNESP - Univ. Estadual Paulista, Avenida Francisco José Longo 777, São José dos Campos, 12245-000, São Paulo, Brazil
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, UNESP - Univ. Estadual Paulista, Avenida Francisco José Longo 777, São José dos Campos, 12245-000, São Paulo, Brazil.
| |
Collapse
|
41
|
Effect of photodynamic therapy with two photosensitizers on Streptococcus mutants: In vitro study. Photodiagnosis Photodyn Ther 2016; 16:66-71. [DOI: 10.1016/j.pdpdt.2016.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 08/02/2016] [Accepted: 08/07/2016] [Indexed: 11/22/2022]
|
42
|
Streptococcus mutans photoinactivation using a combination of a high potency photopolymerizer and rose bengal. Photodiagnosis Photodyn Ther 2016; 15:11-2. [DOI: 10.1016/j.pdpdt.2016.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/30/2016] [Accepted: 05/03/2016] [Indexed: 01/25/2023]
|
43
|
Gomez GF, Huang R, MacPherson M, Ferreira Zandona AG, Gregory RL. Photo Inactivation of Streptococcus mutans Biofilm by Violet-Blue light. Curr Microbiol 2016; 73:426-433. [PMID: 27278805 DOI: 10.1007/s00284-016-1075-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/23/2016] [Indexed: 11/26/2022]
Abstract
Among various preventive approaches, non-invasive phototherapy/photodynamic therapy is one of the methods used to control oral biofilm. Studies indicate that light at specific wavelengths has a potent antibacterial effect. The objective of this study was to determine the effectiveness of violet-blue light at 380-440 nm to inhibit biofilm formation of Streptococcus mutans or kill S. mutans. S. mutans UA159 biofilm cells were grown for 12-16 h in 96-well flat-bottom microtiter plates using tryptic soy broth (TSB) or TSB with 1 % sucrose (TSBS). Biofilm was irradiated with violet-blue light for 5 min. After exposure, plates were re-incubated at 37 °C for either 2 or 6 h to allow the bacteria to recover. A crystal violet biofilm assay was used to determine relative densities of the biofilm cells grown in TSB, but not in TSBS, exposed to violet-blue light. The results indicated a statistically significant (P < 0.05) decrease compared to the non-treated groups after the 2 or 6 h recovery period. Growth rates of planktonic and biofilm cells indicated a significant reduction in the growth rate of the violet-blue light-treated groups grown in TSB and TSBS. Biofilm viability assays confirmed a statistically significant difference between violet-blue light-treated and non-treated groups in TSB and TSBS. Visible violet-blue light of the electromagnetic spectrum has the ability to inhibit S. mutans growth and reduce the formation of S. mutans biofilm. This in vitro study demonstrated that violet-blue light has the capacity to inhibit S. mutans biofilm formation. Potential clinical applications of light therapy in the future remain bright in preventing the development and progression of dental caries.
Collapse
Affiliation(s)
- Grace F Gomez
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, 1121 West Michigan Street, Indianapolis, IN, 46202, USA.
| | - Ruijie Huang
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, 1121 West Michigan Street, Indianapolis, IN, 46202, USA
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, No. 14, 3rd Section of South Renmin Rd, Chengdu, Sichuan, 610041, China
| | - Meoghan MacPherson
- Department of Bioengineering, College of Engineering, Temple University, 1947 North 12th Street, Philadelphia, PA, 19122, USA
| | - Andrea G Ferreira Zandona
- Department of Operative Dentistry, The University of North Carolina at Chapel Hill - School of Dentistry, 436 Brauer Hall, Room 447, Chapel Hill, NC, 27599-7450, USA
| | - Richard L Gregory
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, 1121 West Michigan Street, Indianapolis, IN, 46202, USA
| |
Collapse
|
44
|
Mirzaie M, Yassini E, Ashnagar S, Hadadi A, Chiniforush N. Evaluation of temperature change during antimicrobial photodynamic therapy with two different photosensitizers in dental caries. Photodiagnosis Photodyn Ther 2016; 14:115-8. [PMID: 27012319 DOI: 10.1016/j.pdpdt.2016.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 03/14/2016] [Accepted: 03/16/2016] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Many attempts have been made in elimination of bacteria in infected and demineralized dentin to not only provide efficient bactericidal potential, but to have minimal damage for tooth structure. The aim of this study was to assess the temperature change during aPDT with ICG and TBO compared with conventional Diode laser irradiation. MATERIALS AND METHODS 48 premolar teeth which were selected for this study. A class I cavity was drilled in each teeth, with dimensions of 2mm width, 4mm length and depth of 2.5-3.5mm, providing a dentinal wall of approximately 0.5mm for pulp chamber. Then teeth were randomly allocated in 4 experimental groups (n=12); Group 1: TBO+LED, Group 2: ICG+Diode Laser, Group 3: Diode laser with output power of 0.5W, Group 4: Diode laser with output power of 1W. Thermocouple device was held by experimenter hand and the sensor was in pulp chamber of the teeth. Heat generated during irradiation was reported on LCD screen by NUX Plus software. Repeated measure ANOVA was used in order to compare the temperature before and after laser application. Tukey HSD was used to compare the results between groups. RESULTS Temperature was risen for about 0.54±0.05°C for group 1, 1.67±0.14°C for group 2, 4.21±0.83°C for group 3, and 4. 50±0.32°C for group 4. The difference between group 1 & 2, 1 & 3 and 1 & 4 was significant (p<0.0001). CONCLUSION According to results of this study, Diode (with or without photosensitizer- 0.5 and 1W) can be safely used as alternative approach for disinfection after caries removal in thermal point of view.
Collapse
Affiliation(s)
- Mansoreh Mirzaie
- Restorative Dentistry Department, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Esmael Yassini
- Restorative Dentistry Department, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajjad Ashnagar
- Department of Periodontics and Oral Medicine, Michigan School of Dentistry, MI, USA
| | | | - Nasim Chiniforush
- Laser Research Center of Dentistry, Dental Research Institute, Tehran University of Medial Sciences, Tehran, Iran.
| |
Collapse
|
45
|
NEVES PAM, LIMA LA, RODRIGUES FCN, LEITÃO TJ, RIBEIRO CCC. Clinical effect of photodynamic therapy on primary carious dentin after partial caries removal. Braz Oral Res 2016; 30:S1806-83242016000100246. [DOI: 10.1590/1807-3107bor-2016.vol30.0047] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 01/20/2016] [Indexed: 11/22/2022] Open
|
46
|
Soria-Lozano P, Gilaberte Y, Paz-Cristobal MP, Pérez-Artiaga L, Lampaya-Pérez V, Aporta J, Pérez-Laguna V, García-Luque I, Revillo MJ, Rezusta A. In vitro effect photodynamic therapy with differents photosensitizers on cariogenic microorganisms. BMC Microbiol 2015; 15:187. [PMID: 26410025 PMCID: PMC4584123 DOI: 10.1186/s12866-015-0524-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 09/21/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Antimicrobial photodynamic therapy has been proposed as an alternative to suppress subgingival species. This results from the balance among Streptococcus sanguis, Streptococcus mutans and Candida albicans in the dental biofilm. Not all the photosensitizers have the same photodynamic effect against the different microorganims. The objective of this study is to compare in vitro the photodynamic effect of methylene blue (MB), rose Bengal (RB) and curcumin (CUR) in combination with white light on the cariogenic microorganism S. mutans, S. sanguis and C. albicans. RESULTS Photodynamic therapy with MB, RB and CUR inhibited 6 log 10 the growth of both bacteria but at different concentrations: 0.31-0.62 μg/ml and 0.62-1.25 μg/ml RB were needed to photoinactivate S. mutans and S. sanguis, respectively; 1.25-2.5 μg/ml MB for both species; whereas higher CUR concentrations (80-160 μg/ml and 160-320 μg/ml) were required to obtain the same reduction in S. mutans and S. sanguis viability respectively. The minimal fungicidal concentration of MB for 5 log10 CFU reduction (4.5 McFarland) was 80-160 μg/ml, whereas for RB it ranged between 320 and 640 μg/ml. For CUR, even the maximum studied concentration (1280 μg/ml) did not reach that inhibition. Incubation time had no effect in all experiments. CONCLUSIONS Photodynamic therapy with RB, MB and CUR and white light is effective in killing S. mutans and S. sanguis strains, although MB and RB are more efficient than CUR. C. albicans required higher concentrations of all photosensitizers to obtain a fungicidal effect, being MB the most efficient and CUR ineffective.
Collapse
Affiliation(s)
- P Soria-Lozano
- Department of Microbiology, Hospital Universitario Miguel Servet, Zaragoza, Spain.
| | - Y Gilaberte
- Department of Dermatology, Hospital San Jorge, Huesca, Spain. .,Health Science Institute of Aragón, Zaragoza, Spain.
| | | | | | | | - J Aporta
- Department of Applied Physics. Faculty of Science, University of Zaragoza, Zaragoza, Spain.
| | | | - I García-Luque
- Department of Microbiology, University of Sevilla, Sevilla, Spain.
| | - M J Revillo
- Department of Microbiology, Hospital Universitario Miguel Servet, Zaragoza, Spain.
| | - A Rezusta
- Department of Microbiology, Hospital Universitario Miguel Servet, Zaragoza, Spain. .,Health Science Institute of Aragón, Zaragoza, Spain. .,Department of Microbiology, University of Zaragoza, Zaragoza, Spain.
| |
Collapse
|
47
|
Pereira CA, Domingues N, Silva MP, Costa ACBP, Junqueira JC, Jorge AOC. Photodynamic inactivation of virulence factors of Candida strains isolated from patients with denture stomatitis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 153:82-9. [PMID: 26398815 DOI: 10.1016/j.jphotobiol.2015.08.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 08/02/2015] [Accepted: 08/30/2015] [Indexed: 01/12/2023]
Abstract
Candida species are major microorganisms isolated in denture stomatitis (DS), an inflammatory process of the mucosa underlying removable dental prostheses, and express a variety of virulence factors that can increase their pathogenicity. The potential of Photodynamic inactivation (PDI) in planktonic culture, biofilms and virulence factors of Candida strains was evaluated. A total of 48 clinical Candida isolates from individuals wearing removable maxillary prostheses with DS were included in the study. The effects of erythrosine (ER, 200 μM) and a green LED (λ 532 ± 10 nm, 237 mW/cm(2) and 42.63 J/cm(2)) in a planktonic culture were evaluated. The effect of the addition of ER at a concentration of 400 μM together with a green LED was evaluated in biofilms. The virulence factors of all of the Candida strains were evaluated before and after the PDI process in cells derived from biofilm and planktonic assays. All of the Candida species were susceptible to ER and green LED. However, the biofilm structures were more resistant to PDI than the planktonic cultures. PDI also promoted slight reductions in most of the virulence factors of C. albicans and some of the Candida tropicalis strains. These results suggest that the addition of PDI is effective for reducing yeasts and may also reduce the virulence of certain Candida species and decrease their pathogenicity.
Collapse
Affiliation(s)
- Cristiane Aparecida Pereira
- UNESP, Univ Estadual Paulista, Institute of Science and Technology, School of Dentistry, Department of Biosciences and Oral Diagnosis, Francisco José Longo 777, São Dimas, São José dos Campos, CEP: 12245-000 SP, Brazil.
| | - Nádia Domingues
- UNESP, Univ Estadual Paulista, Institute of Science and Technology, School of Dentistry, Department of Biosciences and Oral Diagnosis, Francisco José Longo 777, São Dimas, São José dos Campos, CEP: 12245-000 SP, Brazil.
| | - Michelle Peneluppi Silva
- UNESP, Univ Estadual Paulista, Institute of Science and Technology, School of Dentistry, Department of Biosciences and Oral Diagnosis, Francisco José Longo 777, São Dimas, São José dos Campos, CEP: 12245-000 SP, Brazil.
| | - Anna Carolina Borges Pereira Costa
- UNESP, Univ Estadual Paulista, Institute of Science and Technology, School of Dentistry, Department of Biosciences and Oral Diagnosis, Francisco José Longo 777, São Dimas, São José dos Campos, CEP: 12245-000 SP, Brazil.
| | - Juliana Campos Junqueira
- UNESP, Univ Estadual Paulista, Institute of Science and Technology, School of Dentistry, Department of Biosciences and Oral Diagnosis, Francisco José Longo 777, São Dimas, São José dos Campos, CEP: 12245-000 SP, Brazil.
| | - Antonio Olavo Cardoso Jorge
- UNESP, Univ Estadual Paulista, Institute of Science and Technology, School of Dentistry, Department of Biosciences and Oral Diagnosis, Francisco José Longo 777, São Dimas, São José dos Campos, CEP: 12245-000 SP, Brazil.
| |
Collapse
|
48
|
Ricatto LGO, Conrado LAL, Turssi CP, França FMG, Basting RT, Amaral FLB. Comparative evaluation of photodynamic therapy using LASER or light emitting diode on cariogenic bacteria: An in vitro study. Eur J Dent 2014; 8:509-514. [PMID: 25512733 PMCID: PMC4253108 DOI: 10.4103/1305-7456.143634] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVE The aim of this study was to evaluate in vitro the effect of photodynamic therapy (PDT) using LASER or light emitting diode (LED) on cariogenic bacteria (Streptococcus mutans [SM] and Lactobacillus casei [LC]) in bovine dentin. MATERIALS AND METHODS Twenty five fragments of dentin were contaminated with SM and LC strands and divided into five experimental groups according to the therapy they received (n = 5): C - control (no treatment), SCLED - no dye/LED application (94 J/cm(2)), SCLASER - no dye/LASER application (94 J/cm(2)), CCLED - dye/LED application (94 J/cm(2)) and CCLASER - dye/LASER application (94 J/cm(2)). The dye used was methylene blue at 10 mM. Dentin scrapes were harvested from each fragment and prepared for counts of colony forming units (CFU)/mL. The data were analyzed using Kruskal-Wallis, followed by Student-Newman-Keuls (α =0.05). RESULTS Regarding SM, groups CCLASER and CCLED showed a significant reduction in CFU/mL, which was statistically superior to the SCLASER, SCLED and C groups. Regarding LC, the groups CCLASER and CCLED caused a significant reduction in CFU/mL when compared with SCLASER, which showed intermediate values. SCLED and C had a lesser effect on reducing CFU/mL, where the former showed values similar to those of SCLASER. CONCLUSIONS In conclusion, PDT combined with LASER or LED and methylene blue had a significant antimicrobial effect on cariogenic bacteria in the dentin.
Collapse
Affiliation(s)
| | | | - Cecilia Pedroso Turssi
- Department of Restorative Dentistry, São Leopoldo Mandic Institute and Research Center, Campinas, São Paulo, Brazil
| | | | - Roberta Tarkany Basting
- Department of Restorative Dentistry, São Leopoldo Mandic Institute and Research Center, Campinas, São Paulo, Brazil
| | | |
Collapse
|
49
|
Antimicrobial photodynamic therapy and dental plaque: a systematic review of the literature. ScientificWorldJournal 2014; 2014:824538. [PMID: 25379545 PMCID: PMC4212597 DOI: 10.1155/2014/824538] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/09/2014] [Indexed: 11/18/2022] Open
Abstract
Background. The aim of this study was to perform a systematic review of the literature on the efficacy of antimicrobial photodynamic therapy (PDTa) on cariogenic dental biofilm. Types of Studies Reviewed. Studies in vivo, in vitro, and in situ were included. Articles that did not address PDTa, those that did not involve cariogenic biofilm, those that used microorganisms in the plankton phase, and reviews were excluded. Data extraction and quality assessments were performed independently by two raters using a scale. Results. Two hundred forty articles were retrieved; only seventeen of them met the eligibility criteria and were analyzed in the present review. Considerable variability was found regarding the methodologies and application protocols for antimicrobial PDTa. Two articles reported unfavorable results. Practical Implications. The present systematic review does not allow drawing any concrete conclusions regarding the efficacy of antimicrobial PDTa, although this method seems to be a promising option.
Collapse
|
50
|
Dworniczek E, Piwowarczyk J, Seniuk A, Gościniak G. Enterococcus – virulence and susceptibility to photodynamic therapy of clinical isolates from Lower Silesia, Poland. ACTA ACUST UNITED AC 2014; 46:846-53. [DOI: 10.3109/00365548.2014.952244] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|