1
|
Sun R, Chen Y, Pei Y, Wang W, Zhu Z, Zheng Z, Yang L, Sun L. The drug release of PLGA-based nanoparticles and their application in treatment of gastrointestinal cancers. Heliyon 2024; 10:e38165. [PMID: 39364250 PMCID: PMC11447355 DOI: 10.1016/j.heliyon.2024.e38165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024] Open
Abstract
The poly (lactic-co-glycolic acid) (PLGA) based nanoparticles have been applied for drug delivery due to their simple preparation, biodegradability, and ideal biocompatibility. In this study, the factors affecting the degradation of PLGA-based nanoparticles are reviewed, encompassing the ratio of PLA to PGA, relative molecular weight, crystallinity, and preparation process of PLGA nanoparticles. The drug release behavior of PLGA-based nanoparticles, such as the degradation environment, encapsulated drug properties of polymers, and drug loading rates, are also discussed. Since gastrointestinal cancer is one of the major global threats to human health, this paper comprehensively summarizes the application of PLGA nanoparticles in gastrointestinal cancers from diagnosis, chemotherapy, radiotherapy, and novel tumor treatment methods (immunotherapy, gene therapy, and photothermal therapy). Finally, the future application of PLGA-based drug delivery systems in treating gastrointestinal cancers is discussed. The bottleneck of application status and the prospect of PLGA-nanoparticles in gastrointestinal tumor application are presented. To truly realize the great and wide application of PLGA-based nanoparticles, collaborative progress in the field of nanomaterials and life sciences is needed.
Collapse
Affiliation(s)
- Rui Sun
- Department of Digestive Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, PR China
| | - Yanfei Chen
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, PR China
| | - Yanjiang Pei
- Department of Digestive Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, PR China
| | - Wenbin Wang
- Department of Digestive Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, PR China
| | - Zhi Zhu
- Department of Digestive Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, PR China
| | - Zhaohua Zheng
- Department of Digestive Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, PR China
| | - Limeng Yang
- School of Textile Science & Engineering, Xi'an Polytechnic University, Xi'an, 710048, PR China
| | - Li Sun
- Department of Digestive Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, PR China
| |
Collapse
|
2
|
Tavangari Z, Asadi M, Irajirad R, Sarikhani A, Alamzadeh Z, Ghaznavi H, Khoei S. 3D modeling of in vivo MRI-guided nano-photothermal therapy mediated by magneto-plasmonic nanohybrids. Biomed Eng Online 2023; 22:77. [PMID: 37528482 PMCID: PMC10394893 DOI: 10.1186/s12938-023-01131-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/26/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND Nano-photothermal therapy (NPTT) has gained wide attention in cancer treatment due to its high efficiency and selective treatment strategy. The biggest challenges in the clinical application are the lack of (i) a reliable platform for mapping the thermal dose and (ii) efficient photothermal agents (PTAs). This study developed a 3D treatment planning for NPTT to reduce the uncertainty of treatment procedures, based on our synthesized nanohybrid. METHODS This study aimed to develop a three-dimensional finite element method (FEM) model for in vivo NPTT in mice using magneto-plasmonic nanohybrids, which are complex assemblies of superparamagnetic iron oxide nanoparticles and gold nanorods. The model was based on Pennes' bio-heat equation and utilized a geometrically correct mice whole-body. CT26 colon tumor-bearing BALB/c mice were injected with nanohybrids and imaged using MRI (3 Tesla) before and after injection. MR images were segmented, and STereoLithography (STL) files of mice bodies and nanohybrid distribution in the tumor were established to create a realistic geometry for the model. The accuracy of the temperature predictions was validated by using an infrared (IR) camera. RESULTS The photothermal conversion efficiency of the nanohybrids was experimentally determined to be approximately 30%. The intratumoral (IT) injection group showed the highest temperature increase, with a maximum of 17 °C observed at the hottest point on the surface of the tumor-bearing mice for 300 s of laser exposure at a power density of 1.4 W/cm2. Furthermore, the highest level of tissue damage, with a maximum value of Ω = 0.4, was observed in the IT injection group, as determined through a simulation study. CONCLUSIONS Our synthesized nanohybrid shows potential as an effective agent for MRI-guided NPTT. The developed model accurately predicted temperature distributions and tissue damage in the tumor. However, the current temperature validation method, which relies on limited 2D measurements, may be too lenient. Further refinement is necessary to improve validation. Nevertheless, the presented FEM model holds great promise for clinical NPTT treatment planning.
Collapse
Affiliation(s)
- Zahed Tavangari
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Medical Physics Department, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Asadi
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Irajirad
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Sarikhani
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Alamzadeh
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Habib Ghaznavi
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Samideh Khoei
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Medical Physics Department, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Zhan Y, Zhou Z, Chen M, Gong X. Photothermal Treatment of Polydopamine Nanoparticles@Hyaluronic Acid Methacryloyl Hydrogel Against Peripheral Nerve Adhesion in a Rat Model of Sciatic Nerve. Int J Nanomedicine 2023; 18:2777-2793. [PMID: 37250473 PMCID: PMC10224687 DOI: 10.2147/ijn.s410092] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/06/2023] [Indexed: 05/31/2023] Open
Abstract
Purpose Peripheral nerve adhesion occurs following injury and surgery. Functional impairment leading by peripheral nerve adhesion remains challenging for surgeons. Local tissue overexpression of heat shock protein (HSP) 72 can reduce the occurrence of adhesion. This study aims to develop a photothermal material polydopamine nanoparticles@Hyaluronic acid methacryloyl hydrogel (PDA NPs@HAMA) and evaluate their efficacy for preventing peripheral nerve adhesion in a rat sciatic nerve adhesion model. Materials and Methods PDA NPs@HAMA was prepared and characterized. The safety of PDA NPs@HAMA was evaluated. Seventy-two rats were randomly assigned to one of the following four groups: the control group; the hyaluronic acid (HA) group; the polydopamine nanoparticles (PDA) group and the PDA NPs@HAMA group (n = 18 per group). Six weeks after surgery, the scar formation was evaluated by adhesion scores and biomechanical and histological examinations. Nerve function was assessed with electrophysiological examination, sensorimotor analysis and gastrocnemius muscle weight measurements. Results There were significant differences in the score on nerve adhesion between the groups (p < 0.001). Multiple comparisons indicated that the score was significantly lower in the PDA NPs@HAMA group (95% CI: 0.83, 1.42) compared with the control group (95% CI: 1.86, 2.64; p = 0.001). Motor nerve conduction velocity and muscle compound potential of the PDA NPs@HAMA group were higher than the control group's. According to immunohistochemical analysis, the PDA NPs@HAMA group expressed more HSP72, less α-smooth muscle actin (α-SMA), and had fewer inflammatory reactions than the control group. Conclusion In this study, a new type of photo-cured material with a photothermic effect was designed and synthesized-PDA NPs@HAMA. The photothermic effect of PDA NPs@HAMA protected the nerve from adhesion to preserve the nerve function in the rat sciatic nerve adhesion model. This effectively prevented adhesion-related damage.
Collapse
Affiliation(s)
- Yongxin Zhan
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China
- Jilin Province Key Laboratory on Tissue Repair, Reconstruction and Regeneration, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China
| | - Zekun Zhou
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China
- Jilin Province Key Laboratory on Tissue Repair, Reconstruction and Regeneration, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China
| | - Miao Chen
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China
- Jilin Province Key Laboratory on Tissue Repair, Reconstruction and Regeneration, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China
| | - Xu Gong
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China
- Jilin Province Key Laboratory on Tissue Repair, Reconstruction and Regeneration, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China
| |
Collapse
|
4
|
Ghalandari B, Asadollahi K, Ghorbani F, Ghalehbaghi S, Rafiee S, Komeili A, Kamrava SK. Determinants of gold nanoparticle interactions with Proteins: Off-Target effect study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 269:120736. [PMID: 34923375 DOI: 10.1016/j.saa.2021.120736] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/17/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Photothermal therapy is one of the promising approaches toward cancer treatment. To date, several compounds have been developed for this application, among which nanoparticles are attracting ever-increasing attention. One of the obstacles in developing efficient photothermal nanoparticle agents is their off-target effect which is mainly mediated via non-specific interactions with proteins. Such interaction not only reduces the bioavailability of the agent but also will cause protein aggregation that can be lethal. So, gaining knowledge on the mechanisms mediating such interactions will facilitate development of more effective agents. Our last studies showed the mechanism of action of two modified gold nanoparticles, folic acid functionalized gold nanoparticles (FA-AuNPs) and gold shelled Fe3O4 nanoparticles (AuFeNPs), as photothermal agents. In the current work, we focus on the interaction of these two NPs with human serum albumin (HSA) and human hemoglobin (Hb) as model proteins. The complex formation between NPs and proteins was investigated by fluorescence spectroscopy, dynamic light scattering and circular dichroism. Our data distinguishes the very distinct mode of interaction of charged and neutral NPs with proteins. While the interaction of neutral AuFeNP to proteins is protein dependent, charged nanoparticles FA-AuNP interact indistinguishably with all proteins via electrostatic interactions. Moreover, complexes obtained from FA-AuNPs with proteins are more stable than that of AuFeNP. However, the secondary structure content of proteins in the presence of NPs indicates the insignificant effect of NPs on the secondary structure of these proteins. Our data propose that the charge functionalization of the NPs is an effective way for modulating the interaction of nanoparticles with proteins.
Collapse
Affiliation(s)
- Behafarid Ghalandari
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Kazem Asadollahi
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Farnaz Ghorbani
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai 201399, China
| | - Suzan Ghalehbaghi
- Medical Engineering Department, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Saharnaz Rafiee
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Ali Komeili
- Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Kamran Kamrava
- Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
5
|
Veroniaina H, Pan X, Wu Z, Qi X. Apoferritin: a potential nanocarrier for cancer imaging and drug delivery. Expert Rev Anticancer Ther 2021; 21:901-913. [PMID: 33844625 DOI: 10.1080/14737140.2021.1910027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Introduction: As a protein-based biomaterial for potential cancer targeting delivery, apoferritin has recently attracted interest.Areas covered: In this review, we discuss the development of this cage-like protein as an endogenous nanocarrier that can hold molecules in its cavity. We present the specific characterizations and formulations of apoferritin nanocarriers, and outline the recent progress of the protein as an appropriate tumor-delivery vehicle in different therapeutic strategies to treat solid tumors. Finally, we propose how the application for cancer drug repurposing delivery within apoferritin could expand cancer treatment in the future.Expert opinion: Being a ubiquitous iron storage protein that exists in many living organisms, apoferritin is promising as a cancer tumor-targeting nanocarrier. By exploiting its versatility, apoferritin could be used for cancer repurposed drug delivery and could reduce the high cost of new drug discovery development and shorten the formulation process.
Collapse
Affiliation(s)
| | - Xiuhua Pan
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing, China
| | - Zhenghong Wu
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing, China
| | - Xiaole Qi
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
6
|
Kumar S, Singhal A, Narang U, Mishra S, Kumari P. Recent Progresses in Organic-Inorganic Nano Technological Platforms for Cancer Therapeutics. Curr Med Chem 2021; 27:6015-6056. [PMID: 30585536 DOI: 10.2174/0929867326666181224143734] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/27/2018] [Accepted: 12/03/2018] [Indexed: 12/24/2022]
Abstract
Nanotechnology offers promising tools in interdisciplinary research areas and getting an upsurge of interest in cancer therapeutics. Organic nanomaterials and inorganic nanomaterials bring revolutionary advancement in cancer eradication process. Oncology is achieving new heights under nano technological platform by expediting chemotherapy, radiotherapy, photo thermodynamic therapy, bio imaging and gene therapy. Various nanovectors have been developed for targeted therapy which acts as "Nano-bullets" for tumor cells selectively. Recently combinational therapies are catching more attention due to their enhanced effect leading towards the use of combined organicinorganic nano platforms. The current review covers organic, inorganic and their hybrid nanomaterials for various therapeutic action. The technological aspect of this review emphasizes on the use of inorganic-organic hybrids and combinational therapies for better results and also explores the future opportunities in this field.
Collapse
Affiliation(s)
- Sanjay Kumar
- Department of Chemistry, Himachal Pradesh University, Shimla, India,Department of Chemistry, Deshbandhu College, University of Delhi, New Delhi, India
| | - Anchal Singhal
- Department of chemistry, St. Joseph College, Banglore, India
| | - Uma Narang
- Department of Chemistry, University of Delhi, New Delhi, India
| | - Sweta Mishra
- Department of Chemistry, University of Delhi, New Delhi, India
| | - Pratibha Kumari
- Department of Chemistry, Deshbandhu College, University of Delhi, New Delhi, India
| |
Collapse
|
7
|
Shakeri-Zadeh A, Zareyi H, Sheervalilou R, Laurent S, Ghaznavi H, Samadian H. Gold nanoparticle-mediated bubbles in cancer nanotechnology. J Control Release 2020; 330:49-60. [PMID: 33340564 DOI: 10.1016/j.jconrel.2020.12.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 01/04/2023]
Abstract
Microbubbles (MBs) have been extensively investigated in the field of biomedicine for the past few decades. Ultrasound and laser are the most frequently used sources of energy to produce MBs. Traditional acoustic methods induce MBs with poor localized areas of action. A high energy level is required to generate MBs through the focused continuous laser, which can be harmful to healthy tissues. As an alternative, plasmonic light-responsive nanoparticles, such as gold nanoparticles (AuNPs), are preferably used with continuous laser to decrease the energy threshold and reduce the bubbles area of action. It is also well-known that the utilization of the pulsed lasers instead of the continuous lasers decreases the needed AuNPs doses as well as laser power threshold. When well-confined bubbles are generated in biological environments, they play their own unique mechanical and optical roles. The collapse of a bubble can mechanically affect its surrounding area. Such a capability can be used for cargo delivery to cancer cells and cell surgery, destruction, and transfection. Moreover, the excellent ability of light scattering makes the bubbles suitable for cancer imaging. This review firstly provides an overview of the fundamental aspects of AuNPs-mediated bubbles and then their emerging applications in the field of cancer nanotechnology will be reviewed. Although the pre-clinical studies on the AuNP-mediated bubbles have shown promising data, it seems that this technique would not be applicable to every kind of cancer. The clinical application of this technique may basically be limited to the good accessible lesions like the superficial, intracavity and intraluminal tumors. The other essential challenges against the clinical translation of AuNP-mediated bubbles are also discussed.
Collapse
Affiliation(s)
- Ali Shakeri-Zadeh
- Finetech in Medicine Research Center, Iran University of Medical Science, Tehran, Iran
| | - Hajar Zareyi
- Department of Solid State, Faculty of Physics, K.N. Toosi University of Technology, Tehran, Iran
| | - Roghayeh Sheervalilou
- Pharmacology Research Center, Zahedan University of Medical Sciences (ZaUMS), Zahedan, Iran
| | - Sophie Laurent
- Laboratory of NMR and Molecular Imaging, University of Mons, Mons B-7000, Belgium; Center for Microscopy and Molecular Imaging (CMMI), Gosselies 6041, Belgium
| | - Habib Ghaznavi
- Pharmacology Research Center, Zahedan University of Medical Sciences (ZaUMS), Zahedan, Iran.
| | - Hadi Samadian
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
8
|
Recent advances in ultrasound-triggered drug delivery through lipid-based nanomaterials. Drug Discov Today 2020; 25:2182-2200. [PMID: 33010479 DOI: 10.1016/j.drudis.2020.09.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/24/2020] [Accepted: 09/22/2020] [Indexed: 12/28/2022]
Abstract
The high prescribed dose of anticancer drugs and their resulting adverse effects on healthy tissue are significant drawbacks to conventional chemotherapy (CTP). Ideally, drugs should have the lowest possible degree of interaction with healthy cells, which would diminish any adverse effects. Therefore, an ideal scenario to bring about improvements in CTP is the use of technological strategies to ensure the efficient, specific, and selective transport and/or release of drugs to the target site. One practical and feasible solution to promote the efficiency of conventional CTP is the use of ultrasound (US). In this review, we highlight the potential role of US in combination with lipid-based carriers to achieve a targeted CTP strategy in engineered smart drug delivery systems.
Collapse
|
9
|
Amani S, Mehdizadeh A, Movahedi MM, Keshavarz M, Koosha F. Investigation of the Dose-Enhancement Effects of Spherical and Rod-Shaped Gold Nanoparticles on the HeLa Cell Line. Galen Med J 2020; 9:e1581. [PMID: 34466556 PMCID: PMC8343815 DOI: 10.31661/gmj.v9i0.1581] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 05/31/2020] [Accepted: 06/15/2020] [Indexed: 01/05/2023] Open
Abstract
Background: Cervical cancer cells are known as radioresistant cells. Current treatment methods have not improved the patients’ survival efficiently; thus, new therapeutic strategies are needed to enhance the efficacy of radiotherapy. Gold nanomaterials with different shapes and sizes have been explored as radiosensitizers. The present study compared the radiosensitizing effects of gold nanorods (AuNRs) with spherical gold nanoparticles (AuNPs) on the HeLa cell line irradiated with megavoltage X-rays. Materials and Methods: The cytotoxicity of AuNRs and AuNPs on HeLa cells in the presence and absence of 6-MV X-ray was investigated using the MTT assay. For this aim, HeLa cells were incubated with and AuNPs and AuNRs at various concentrations (5, 10, and 15 µg/mL) for 6 hours. Afterward, HeLa cells were irradiated with 6-MV X-ray at a single dose of 2 Gy. Results: The results showed that the addition of AuNRs and AuNPs could enhance the radiosensitivity of HeLa cells. Both AuNRs and AuNPs showed low toxicity on HeLa cells, while AuNRs were more toxic than AuNPs at the examined concentrations. Moreover, it was found that AuNRs could enhance the radiosensitivity of HeLa cells more than spherical-shaped AuNPs. Conclusion: This study revealed that the shape of nanoparticles is an effective factor when they are used as radiosensitizing agents during radiotherapy.
Collapse
Affiliation(s)
- Samad Amani
- Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Mehdizadeh
- Department of Medical Physics and Medical Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Ionizing and Non-ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Mehdi Movahedi
- Department of Medical Physics and Medical Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Ionizing and Non-ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Keshavarz
- Department of Medical Physics and Medical Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Ionizing and Non-ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fereshteh Koosha
- Department of Radiology Technology, Faculty of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Correspondence to: Fereshteh Koosha, Ph.D, Assistant Professor, Department of Radiology Technology, Faculty of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Darband St, Ghods Sq., Tehran, Iran Telephone Number: +98-2122717503 Email Address:
| |
Collapse
|
10
|
Azadi Y, Ahmadpour E, Ahmadi A. Targeting Strategies in Therapeutic Applications of Toxoplasmosis: Recent Advances in Liposomal Vaccine Delivery Systems. Curr Drug Targets 2020; 21:541-558. [DOI: 10.2174/1389450120666191023151423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/10/2019] [Accepted: 10/15/2019] [Indexed: 11/22/2022]
Abstract
Toxoplasma gondii is a prevalent parasitic pathogen that infected over one-third of the global population. Toxoplasmosis is diagnosed by isolating the parasite and detecting host antibodies. In contrast, the main problem with diagnosis relates to the sensitivity and specificity of the tests. Currently, treatment with pyrimethamine and sulfadiazine is recommended, despite their side effects and toxicity to humans. Moreover, the absence of a vaccine to completely protect against this infection is the main obstacle to the effective treatment and prevention of toxoplasmosis. Recently, nanoparticles and nanomaterials have been studied as delivery systems for the immunization and treatment of T. gondii infections. One of the most important applications of liposomes is drug and vaccine delivery, due to their biodegradability, low inherent toxicity, and immunogenicity. Liposomes are flexible delivery systems and immunological adjuvants able not only to load diverse antigens, such as proteins, peptides, nucleic acids, and carbohydrates but also to combine them with immunostimulators. Liposomes have the incredible potential within the development of modern types of vaccines and numerous endeavors have been made to improve the effectiveness of vaccines in recent years. In this review, we concentrate on the viable targeting strategies of liposome-based vaccine delivery systems to prevent, control and treat toxoplasmosis.
Collapse
Affiliation(s)
- Yaghob Azadi
- Infectious and Tropical Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsan Ahmadpour
- Infectious and Tropical Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Ahmadi
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
11
|
Song C, Tang C, Xu W, Ran J, Wei Z, Wang Y, Zou H, Cheng W, Cai Y, Han W. Hypoxia-Targeting Multifunctional Nanoparticles for Sensitized Chemotherapy and Phototherapy in Head and Neck Squamous Cell Carcinoma. Int J Nanomedicine 2020; 15:347-361. [PMID: 32021184 PMCID: PMC6980849 DOI: 10.2147/ijn.s233294] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/09/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose Chemotherapy in head and neck squamous cell carcinoma (HNSCC) has many systemic side effects, as well as hypoxia-induced chemoresistance. To reduce side effects and enhance chemosensitivity are urgently needed. Methods We synthesized a drug delivery system (named CECMa NPs) based on cisplatin (CDDP) and metformin (chemotherapeutic sensitizer), of which chlorin e6 (Ce6) and polyethylene glycol diamine (PEG) were synthesized as the shell, an anti-LDLR antibody (which can target to hypoxic tumor cells) was modified on the surface to achieve tumor targeting. Results The NPs possessed a great synergistic effect of chemotherapy and phototherapy. After laser stimulation, both CDDP and metformin can be released in situ to achieve anti-tumor effects. Meanwhile, PDT and PTT triggered by a laser have anticancer effects. Furthermore, compared with free cisplatin, CECMa exhibits less systemic toxicity with laser irradiation in the xenograft mouse tumor model. Conclusion CECMa effectively destroyed the tumors via hypoxia targeting multimodal therapy both in vitro and in vivo, thereby providing a novel strategy for targeting head and neck squamous cell carcinoma.
Collapse
Affiliation(s)
- Chuanhui Song
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, People's Republic of China
| | - Chuanchao Tang
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, People's Republic of China
| | - Wenguang Xu
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, People's Republic of China
| | - Jianchuan Ran
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, People's Republic of China
| | - Zheng Wei
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, People's Republic of China.,Pediatric Dentistry, Nanjing Stomatology Hospital, Medical School of Nanjing University, Nanjing 210008, People's Republic of China
| | - Yufeng Wang
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, People's Republic of China
| | - Huihui Zou
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, People's Republic of China
| | - Wei Cheng
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, People's Republic of China
| | - Yu Cai
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, People's Republic of China
| | - Wei Han
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, People's Republic of China
| |
Collapse
|
12
|
Combined thermo-chemotherapy of cancer using 1 MHz ultrasound waves and a cisplatin-loaded sonosensitizing nanoplatform: an in vivo study. Cancer Chemother Pharmacol 2019; 84:1315-1321. [PMID: 31559450 DOI: 10.1007/s00280-019-03961-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 09/05/2019] [Indexed: 12/18/2022]
Abstract
PURPOSE The aim of the present study was to develop a new strategy for combined thermo-chemotherapy of cancer. For this purpose, we used ultrasound waves [1 MHz; 1 W/cm2; 10 min] in combination with a sonosensitizing nanoplatform, named ACA, made of alginate co-loaded with cisplatin and gold nanoparticles (AuNPs). METHODS Various combinatorial treatment regimens consisting of ultrasound, AuNPs, cisplatin, and ACA nanoplatform were studied in vivo. The CT26 colon adenocarcinoma cell line was used for tumor induction in BALB/c mice. During the ultrasound exposure, we monitored the temperature variations in each treatment group using infrared thermal imaging. Furthermore, tumor metabolism was assessed by [18F]FDG (2-deoxy-2-[18F]fluoro-D-glucose)-positron emission tomography (PET) imaging. RESULTS The combination of ultrasound with nanoplatform showed an improved therapeutic efficacy than free cisplatin or ultrasound alone. It was revealed that the examined thermo-chemotherapy protocol has the potential to intensively decrease the metabolic activity of CT26 tumors. CONCLUSIONS The data obtained in this study confirmed a potent anti-tumor efficacy caused by the ACA nanoplatform and ultrasound combination. It may provide a beneficial cancer therapy strategy in which the thermal and mechanical effects of ultrasound can intensify the therapeutic ratio of conventional chemotherapy methods.
Collapse
|
13
|
Redox interactions and genotoxicity of metal-based nanoparticles: A comprehensive review. Chem Biol Interact 2019; 312:108814. [PMID: 31509734 DOI: 10.1016/j.cbi.2019.108814] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/11/2019] [Accepted: 09/05/2019] [Indexed: 12/25/2022]
Abstract
Nanotechnology is a growing science that may provide several new applications for medicine, food preservation, diagnostic technologies, and sanitation. Despite its beneficial applications, there are several questions related to the safety of nanomaterials for human use. The development of nanotechnology is associated with some concerns because of the increased risk of carcinogenesis following exposure to nanomaterials. The increased levels of reactive oxygen species (ROS) that are due to exposure to nanoparticles (NPs) are primarily responsible for the genotoxicity of metal NPs. Not all, but most metal NPs are able to directly produce free radicals through the release of metal ions and through interactions with water molecules. Furthermore, the increased production of free radicals and the cell death caused by metal NPs can stimulate reduction/oxidation (redox) reactions, leading to the continuous endogenous production of ROS in a positive feedback loop. The overexpression of inflammatory mediators, such as NF-kB and STATs, the mitochondrial malfunction and the increased intracellular calcium levels mediate the chronic oxidative stress that occurs after exposure to metal NPs. In this paper, we review the genotoxicity of different types of metal NPs and the redox mechanisms that amplify the toxicity of these NPs.
Collapse
|
14
|
Yan S, Huang Q, Chen J, Song X, Chen Z, Huang M, Xu P, Zhang J. Tumor-targeting photodynamic therapy based on folate-modified polydopamine nanoparticles. Int J Nanomedicine 2019; 14:6799-6812. [PMID: 31692522 PMCID: PMC6711554 DOI: 10.2147/ijn.s216194] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 07/27/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Photodynamic therapy (PDT), a clinical anticancer therapeutic modality, has a long history in clinical cancer treatments since the 1970s. However, PDT has not been widely used largely because of metabolic problems and off-target phototoxicities of the current clinical photosensitizers. PURPOSE The objective of the study is to develop a high-efficiency and high-specificity carrier to precisely deliver photosensitizers to tumor sites, aiming at addressing metabolic problems, as well as the systemic damages current clinical photosensitizers are known to cause. METHODS We synthesized a polydopamine (PDA)-based carrier with the modification of folic acid (FA), which is to target the overexpressed folate receptors on tumor surfaces. We used this carrier to load a cationic phthalocyanine-type photosensitizer (Pc) and generated a PDA-FA-Pc nanomedicine. We determined the antitumor effects and the specificity to tumor cell lines in vitro. In addition, we established human cancer-xenografted mice models to evaluate the tumor-targeting property and anticancer efficacies in vivo. RESULTS Our PDA-FA-Pc nanomedicine demonstrated a high stability in normal physiological conditions, however, could specifically release photosensitizers in acidic conditions, eg, tumor microenvironment and lysosomes in cancer cells. Additionally, PDA-FA-Pc nanomedicine demonstrated a much higher cellular uptake and phototoxicity in cancer cell lines than in healthy cell lines. Moreover, the in vivo imaging data indicated excellent tumor-targeting properties of PDA-FA-Pc nanomedicine in human cancer-xenografted mice. Lastly, PDA-FA-Pc nanomedicine was found to significantly suppress tumor growth within two human cancer-xenografted mice models. CONCLUSION Our current study not only demonstrates PDA-FA-Pc nanomedicine as a highly potent and specific anticancer agent, but also suggests a strategy to address the metabolic and specificity problems of clinical photosensitizers.
Collapse
Affiliation(s)
- Shufeng Yan
- Medical Plant Exploitation and Utilization Engineering Research Center, Sanming University, Sanming, Fujian365004, People’s Republic of China
| | - Qingqing Huang
- Medical Plant Exploitation and Utilization Engineering Research Center, Sanming University, Sanming, Fujian365004, People’s Republic of China
| | - Jincan Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian350002, People’s Republic of China
| | - Xiaorong Song
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian350002, People’s Republic of China
| | - Zhuo Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian350002, People’s Republic of China
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian350116, People’s Republic of China
| | - Peng Xu
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore138673, Singapore
| | - Juncheng Zhang
- Medical Plant Exploitation and Utilization Engineering Research Center, Sanming University, Sanming, Fujian365004, People’s Republic of China
| |
Collapse
|
15
|
|
16
|
Abed Z, Beik J, Laurent S, Eslahi N, Khani T, Davani ES, Ghaznavi H, Shakeri-Zadeh A. Iron oxide-gold core-shell nano-theranostic for magnetically targeted photothermal therapy under magnetic resonance imaging guidance. J Cancer Res Clin Oncol 2019; 145:1213-1219. [PMID: 30847551 DOI: 10.1007/s00432-019-02870-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 02/19/2019] [Indexed: 12/14/2022]
Abstract
Recent efforts in the area of photothermal therapy (PTT) follow two important aims: (i) selective targeting of plasmonic nanoparticles to the tumor and (ii) real-time guidance of PTT operation through employing multimodal imaging modalities. In the present study, we utilized a multifunctional theranostic nanoplatform constructed from iron (III) oxide-gold (Fe2O3@Au) core-shell nanoparticles to fulfill these aims. The Au shell exhibits surface plasmon resonance, a property that is exploited to realize PTT. The magnetic core enables Fe2O3@Au to be employed as a magnetic resonance imaging (MRI) contrast agent. Furthermore, the magnetic core has the potential to establish a magnetic drug targeting strategy through which Fe2O3@Au can be directed to the tumor site by means of magnetic field. To test these potentials, Balb/c mice bearing CT26 colorectal tumor model were intravenously injected with Fe2O3@Au. Immediately after injection, a magnet was placed on the tumor site for 3 h to concentrate nanoparticles, followed by the near infrared (NIR) laser irradiation. MRI study confirmed the accumulation of nanoparticles within the tumor due to T2 enhancement capability of Fe2O3@Au. The in vivo thermometry results demonstrated that the tumors in magnetic targeting group had a significantly higher temperature elevation rate upon NIR irradiation than non-targeted group (~ 12 °C vs. 8.5 °C). The in vivo antitumor assessment revealed that systemic injection of Fe2O3@Au in combination with magnetic targeting and NIR irradiation resulted in complete remission of tumor growth. Therefore, Fe2O3@Au can establish a targeted PTT strategy for efficient eradication of tumor cells under the guidance of MRI.
Collapse
Affiliation(s)
- Ziaeddin Abed
- Finetech in Medicine Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Jaber Beik
- Finetech in Medicine Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Sophie Laurent
- General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Mons, Belgium
| | - Neda Eslahi
- Endometriosis Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Tahereh Khani
- Finetech in Medicine Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Elnaz S Davani
- Finetech in Medicine Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Habib Ghaznavi
- Zahedan University of Medical Sciences (ZaUMS), Zahedan, Iran.
| | - Ali Shakeri-Zadeh
- Finetech in Medicine Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
17
|
Hadi F, Tavakkol S, Laurent S, Pirhajati V, Mahdavi SR, Neshastehriz A, Shakeri-Zadeh A. Combinatorial effects of radiofrequency hyperthermia and radiotherapy in the presence of magneto-plasmonic nanoparticles on MCF-7 breast cancer cells. J Cell Physiol 2019; 234:20028-20035. [PMID: 30982979 DOI: 10.1002/jcp.28599] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/27/2019] [Accepted: 03/06/2019] [Indexed: 01/05/2023]
Abstract
Here, the effects of combinatorial cancer therapy including radiotherapy (RT) and radiofrequency (RF) hyperthermia in the presence of gold-coated iron oxide nanoparticles (Au@IONPs), as a thermo-radio-sensitizer, are reported. The level of cell death and the ratio of Bax/Bcl2 genes, involved in the pathway of apoptosis, were measured to evaluate the synergistic effect of Au@IONPs-mediated RF hyperthermia and RT. MCF-7 human breast adenocarcinoma cells were treated with different concentrations of Au@IONPs. After incubation with NPs, the cells were exposed to RF waves (13.56 MHz; 100 W; 15 min). At the same time, thermometry was performed with an infrared (IR) camera. Then, the cells were exposed to 6 MV X-ray at various doses of 2 and 4 Gy. MTT (3-[4,5-dimethylthiazol-2-y1]-2,5-diphenyltetrazolium bromide) assay was performed to evaluate cell viability and quantitative real-time polymerase chain reaction (qRT-PCR) was used to determine the expression ratio of Bax/Bcl2. Cellular uptake of nanoparticles was confirmed qualitatively and quantitatively. The results obtained from MTT assay and qRT-PCR studies showed that NPs and RF hyperthermia had no significant effect when applied separately, while their combination had synergistic effects on cell viability percentage and the level of apoptosis induction. A synergistic effect was also observed when the cancer cells were treated with a combination of NPs, RF hyperthermia, and RT. On the basis of the obtained results, it may be concluded that the use of magneto-plasmonic NPs in the process of hyperthermia and RT of cancer holds a great promise to develop a new combinatorial cancer therapy strategy.
Collapse
Affiliation(s)
- Fahimeh Hadi
- Radiation Biology Research Center, Iran University of Medical Science (IUMS), Tehran, Iran.,Radiation Science Department, Iran University of Medical Science (IUMS), Tehran, Iran
| | - Shima Tavakkol
- Cellular and Molecular Research Center, Iran University of Medical Science (IUMS), Tehran, Iran
| | - Sophie Laurent
- General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Mons, Belgium
| | - Vahid Pirhajati
- Cellular and Molecular Research Center, Iran University of Medical Science (IUMS), Tehran, Iran.,Neuroscience Research Center, Iran University of Medical Science (IUMS), Tehran, Iran
| | - Seied Rabi Mahdavi
- Radiation Biology Research Center, Iran University of Medical Science (IUMS), Tehran, Iran.,Finetech in Medicine Research Center, Iran University of Medical Science (IUMS), Tehran, Iran.,Medical Physics Department, School of Medicine, Iran University of Medical Science (IUMS), Tehran, Iran
| | - Ali Neshastehriz
- Radiation Biology Research Center, Iran University of Medical Science (IUMS), Tehran, Iran.,Radiation Science Department, Iran University of Medical Science (IUMS), Tehran, Iran
| | - Ali Shakeri-Zadeh
- Radiation Biology Research Center, Iran University of Medical Science (IUMS), Tehran, Iran.,Finetech in Medicine Research Center, Iran University of Medical Science (IUMS), Tehran, Iran.,Medical Physics Department, School of Medicine, Iran University of Medical Science (IUMS), Tehran, Iran
| |
Collapse
|
18
|
Mirrahimi M, Khateri M, Beik J, Ghoreishi FS, Dezfuli AS, Ghaznavi H, Shakeri‐Zadeh A. Enhancement of chemoradiation by co‐incorporation of gold nanoparticles and cisplatin into alginate hydrogel. J Biomed Mater Res B Appl Biomater 2019; 107:2658-2663. [DOI: 10.1002/jbm.b.34356] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/02/2019] [Accepted: 02/20/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Mehri Mirrahimi
- Finetech in Medicine Research CenterIran University of Medical Sciences (IUMS) Tehran Iran
- Medical Physics Department, School of MedicineIran University of Medical Sciences (IUMS) Tehran Iran
| | - Maziar Khateri
- Finetech in Medicine Research CenterIran University of Medical Sciences (IUMS) Tehran Iran
| | - Jaber Beik
- Finetech in Medicine Research CenterIran University of Medical Sciences (IUMS) Tehran Iran
- Medical Physics Department, School of MedicineIran University of Medical Sciences (IUMS) Tehran Iran
| | - Fatemeh S. Ghoreishi
- Finetech in Medicine Research CenterIran University of Medical Sciences (IUMS) Tehran Iran
| | | | - Habib Ghaznavi
- Zahedan University of Medical Sciences (ZaUMS) Zahedan Iran
| | - Ali Shakeri‐Zadeh
- Finetech in Medicine Research CenterIran University of Medical Sciences (IUMS) Tehran Iran
- Medical Physics Department, School of MedicineIran University of Medical Sciences (IUMS) Tehran Iran
| |
Collapse
|
19
|
Farashahi A, Zare-Sadeghi A, Shakeri-Zadeh A, Kamran Kamrava S, Maleki S, Ghaznavi H, Faeghi F. Real-time mapping of heat generation and distribution in a laser irradiated agar phantom loaded with gold nanoparticles using MR temperature imaging. Photodiagnosis Photodyn Ther 2019; 25:66-73. [DOI: 10.1016/j.pdpdt.2018.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 09/29/2018] [Accepted: 11/13/2018] [Indexed: 01/30/2023]
|
20
|
Hosseini V, Mirrahimi M, Shakeri-Zadeh A, Koosha F, Ghalandari B, Maleki S, Komeili A, Kamrava SK. Multimodal cancer cell therapy using Au@Fe 2O 3 core-shell nanoparticles in combination with photo-thermo-radiotherapy. Photodiagnosis Photodyn Ther 2018; 24:129-135. [PMID: 30077650 DOI: 10.1016/j.pdpdt.2018.08.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 06/18/2018] [Accepted: 08/01/2018] [Indexed: 11/30/2022]
Abstract
In this study, gold coated iron oxide nanoparticle (Au@Fe2O3 NP) was synthesized in a core-shell structure. Photothermal and radiosensitization effects of Au@Fe2O3 NPs were investigated on KB human mouth epidermal carcinoma cell line. Cell death and apoptosis were measured to study the effects of nanoparticles in combination with both radiotherapy (RT) and photothermal therapy (PTT). The KB cells were treated with Au@Fe2O3 NPs (20 μg/ml; 4 h) and then received different treatment regimens of PTT and/or RT using laser (808 nm, 6 W/cm2, 10 min) and/or 6 MV X-ray (single dose of 2 Gy). Following the various treatments, MTT assay was performed to evaluate the cell survival rate. Also, the mode of cell death was determined by flow cytometry using an annexinV-fluorescein isothiocyanate/propidium iodide apoptosis detection kit. No significant cell death was observed due to laser irradiation. The viability of the cells firstly incubated with NPs and then exposed to the laser was significantly decreased. Additionally, our results demonstrated that Au@Fe2O3 NP is a good radiosensitizer at megavoltage energies of X-ray. When nanoparticles loaded KB cells were received both laser and X-ray, the cell viability substantially decreased. Following such a combinatorial treatment, flow cytometry determined that the majority of cell death relates to apoptosis. In conclusion, Au@Fe2O3 NP has a great potential to be applied as a photo-thermo-radiotherapy sensitizer for treatment of head and neck tumors.
Collapse
Affiliation(s)
- Vahid Hosseini
- ENT and Head & Neck Research Center and Department, Iran University of Medical Sciences (IUMS), Tehran, Iran; Medical Physics Department, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mehri Mirrahimi
- ENT and Head & Neck Research Center and Department, Iran University of Medical Sciences (IUMS), Tehran, Iran; Medical Physics Department, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Ali Shakeri-Zadeh
- ENT and Head & Neck Research Center and Department, Iran University of Medical Sciences (IUMS), Tehran, Iran; Medical Physics Department, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Fereshteh Koosha
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behafarid Ghalandari
- Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shayan Maleki
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Ali Komeili
- Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - S Kamran Kamrava
- Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
21
|
Khademi S, Sarkar S, Shakeri-Zadeh A, Attaran N, Kharrazi S, Ay MR, Ghadiri H. Folic acid-cysteamine modified gold nanoparticle as a nanoprobe for targeted computed tomography imaging of cancer cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 89:182-193. [PMID: 29752088 DOI: 10.1016/j.msec.2018.03.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 01/06/2018] [Accepted: 03/17/2018] [Indexed: 11/26/2022]
Abstract
Development of various cost-effective multifunctional nanoprobes for efficient targeted molecular imaging of tumors remains a great challenge in medicine. Herein, we report a simple method of forming folic acid-targeted multifunctional gold nanoparticles via cost-effective cysteamine as a template for tumor molecular computed tomography (CT) imaging technique. The formed multifunctional cysteamine-folic acid conjugated gold nanoparticles (FA-Cys-AuNPs) were characterized via different techniques. Colony assay, hematoxylin and eosin (H&E), MTT, and flow cytometry analysis were used to evaluate the cytocompatibility of the particles. We showed that the formed FA-Cys-AuNPs with an Au core size of ~15 nm are non-cytotoxic in a given concentration range and revealed greater X-ray attenuation intensity than iodine-based contrast agent under the same concentration of the active element. At 80 kVp, FA-Cys-AuNPs enable 1.77-times greater contrast per unit mass compared with iodine at a concentration of 2000 μg/ml, and importantly, the developed FA-Cys-AuNPs can be used as a contrast media for targeted CT imaging of folic acid receptor-expressing cancer cells in vitro. CT values of the targeted cells were 2-times higher than that of non-targeted cells at 80 kVp. These findings propose that the designed FA-Cys-AuNPs can be used as a promising contrast agent for molecular CT imaging. This data can be also considered for the application of gold nanostructures in radiation dose enhancement where nanoparticles with high X-ray attenuation are applied.
Collapse
Affiliation(s)
- Sara Khademi
- Department of Radiology Technology, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Sarkar
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Shakeri-Zadeh
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Neda Attaran
- Department of Medical Nanotechnology, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sharmin Kharrazi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Ay
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Molecular and Cellular Imaging (RCMCI), Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Ghadiri
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Molecular and Cellular Imaging (RCMCI), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Jafarzadeh N, Mani-Varnosfaderani A, Gilany K, Eynali S, Ghaznavi H, Shakeri-Zadeh A. The molecular cues for the biological effects of ionizing radiation dose and post-irradiation time on human breast cancer SKBR3 cell line: A Raman spectroscopy study. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 180:1-8. [PMID: 29413692 DOI: 10.1016/j.jphotobiol.2018.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 01/08/2018] [Accepted: 01/15/2018] [Indexed: 10/18/2022]
Abstract
Radiotherapy is one of the main modalities of cancer treatment. The utility of Raman spectroscopy (RS) for detecting the distinct radiobiological responses in human cancer cells is currently under investigation. RS holds great promises to provide good opportunities for personalizing radiotherapy treatments. Here, we report the effects of the radiation dose and post-irradiation time on the molecular changes in the human breast cancer SKBR3 cells, using RS. The SKBR3 cells were irradiated by gamma radiation with different doses of 0, 1, 2, 4, and 6 Gy. The Raman signals were acquired 24 and 48 h after the gamma radiation. The collected Raman spectra were analyzed by different statistical methods such as principal component analysis, linear discriminant analysis, and genetic algorithm. A thorough analysis of the obtained Raman signals revealed that 2 Gy of gamma radiation induces remarkable molecular and structural changes in the SKBR3 cells. We found that the wavenumbers in the range of 1000-1400 cm-1 in Raman spectra are selective for discriminating between the effects of the different doses of irradiation. The results also revealed that longer post-irradiation time leads to the relaxation of the cells to their initial state. The molecular changes that occurred in the 2Gy samples were mostly reversible. On the other hand, the exposure to doses higher than 4Gy induced serious irreversible changes, mainly seen in 2700-2800 cm-1 in Raman spectra. The classification models developed in this study would help to predict the radiation-based molecular changes induced in the cancer cells by only using RS. Also, this designed framework may facilitate the process of biodosimetry.
Collapse
Affiliation(s)
- Naser Jafarzadeh
- Department of Medical Physics, Tarbiat Modares University, Tehran, Iran
| | | | - Kambiz Gilany
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Samira Eynali
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Habib Ghaznavi
- Department of Pharmacology, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Ali Shakeri-Zadeh
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran; Medical Physics Department, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
23
|
Mirrahimi M, Hosseini V, Kamrava SK, Attaran N, Beik J, Kooranifar S, Ghaznavi H, Shakeri-Zadeh A. Selective heat generation in cancer cells using a combination of 808 nm laser irradiation and the folate-conjugated Fe2O3@Au nanocomplex. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:241-253. [DOI: 10.1080/21691401.2017.1420072] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Mehri Mirrahimi
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Vahid Hosseini
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - S. Kamran Kamrava
- Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
- ENT and Head & Neck Research Center and Department, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Neda Attaran
- Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Jaber Beik
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Siavash Kooranifar
- Department of Pulmonary Medicine, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Habib Ghaznavi
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences (ZaUMS), Zahedan, Iran
| | - Ali Shakeri-Zadeh
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
24
|
Ghaznavi H, Hosseini-Nami S, Kamrava SK, Irajirad R, Maleki S, Shakeri-Zadeh A, Montazerabadi A. Folic acid conjugated PEG coated gold-iron oxide core-shell nanocomplex as a potential agent for targeted photothermal therapy of cancer. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1594-1604. [PMID: 28994325 DOI: 10.1080/21691401.2017.1384384] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This study reports the synthesis and characterization of poly(ethylene glycol) coated gold@iron oxide core-shell nanoparticles conjugated with folic acid (FA-PEG-Au@IONP). Also, targeted therapeutic properties of such a nanocomplex were studied on human nasopharyngeal carcinoma cell line KB and human breast adenocarcinoma cell line MCF-7 in vitro. The synthesized nanocomplex was characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS), UV-Vis spectroscopy, vibrating sample magnetometry (VSM), and Fourier transform infrared (FTIR) spectroscopy. The photothermal effects of nanocomplex on both KB and MCF-7 cell lines were studied. Cell death and apoptosis were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry using an annexin V-fluorescein isothiocyanate/propidiumiodide apoptosis detection kit. It was found that nanocomplex is spherical in shape and its size is approximately 60 nm. UV-vis spectrum showed that nanocomplex has appropriate absorption near infrared region. FTIR spectra obtained from nanocomplex before and after conjugation with FA confirmed the formation of folate conjugated nanocomplex. Significant cell lethality was observed for KB (∼62%) and MCF-7 (∼33%) cells following photothermal therapy. Also, it was found that majority of the cell deaths were related to apoptosis process. It can be concluded that, the synthesized nanocomplex is an effective and promising multifunctional nanoplatform for targeted photothermal therapy of cancer.
Collapse
Affiliation(s)
- Habib Ghaznavi
- a Health Promotion Research Centre, Zahedan University of Medical Sciences , Zahedan , Iran
| | - Samira Hosseini-Nami
- b Department of Medical Physics , School of Medicine, Iran University of Medical Sciences , Tehran , Iran
| | - S Kamran Kamrava
- c Department of ENT, Head and Neck Research Centre , Iran University of Medical Sciences , Tehran , Iran
| | - Rasoul Irajirad
- d Département de chimie, faculté des sciences et technologies , Université Claude Bernard Lyon 1 , Lyon , France
| | - Shayan Maleki
- c Department of ENT, Head and Neck Research Centre , Iran University of Medical Sciences , Tehran , Iran
| | - Ali Shakeri-Zadeh
- b Department of Medical Physics , School of Medicine, Iran University of Medical Sciences , Tehran , Iran.,e Radiation Biology Research Centre, Iran University of Medical Sciences , Tehran , Iran
| | - Alireza Montazerabadi
- f Department of Medical Physics, School of Medicine , Gonabad University of Medical Sciences , Gonabad, Iran
| |
Collapse
|
25
|
Eyvazzadeh N, Shakeri-Zadeh A, Fekrazad R, Amini E, Ghaznavi H, Kamran Kamrava S. Gold-coated magnetic nanoparticle as a nanotheranostic agent for magnetic resonance imaging and photothermal therapy of cancer. Lasers Med Sci 2017; 32:1469-1477. [PMID: 28674789 DOI: 10.1007/s10103-017-2267-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 06/16/2017] [Indexed: 12/14/2022]
Abstract
Because of their great scientific and technological potentials, iron oxide nanoparticles (IONPs) have been the focus of extensive investigations in biomedicine over the past decade. Additionally, the surface plasmon resonance effect of gold nanoparticles (AuNPs) makes them a good candidate for photothermal therapy applications. The unique properties of both IONPs (magnetic) and AuNPs (surface plasmon resonance) may lead to the development of a multi-modal nanoplatform to be used as a magnetic resonance imaging (MRI) contrast agent and as a nanoheater for photothermal therapy. Herein, core-shell gold-coated IONPs (Au@IONPs) were synthesized and investigated as an MRI contrast agent and as a light-responsive agent for cancer photothermal therapy.The synthesized Au@IONPs were characterized by UV-visible spectroscopy, transmission electron microscopy (TEM), dynamic light scattering (DLS), and zeta potential analysis. The transverse relaxivity (r 2) of the Au@IONPs was measured using a 3-T clinical MRI scanner. Through a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, the cytotoxicity of the Au@IONs was examined on a KB cell line, derived from the epidermal carcinoma of a human mouth. Moreover, the photothermal effects of Au@IONPs in the presence of a laser beam (λ = 808 nm; 6.3 W/cm2; 5 min) were studied.The results show that the Au@IONPs are spherical with a hydrodynamic size of 33 nm. A transverse relaxivity of 95 mM-1 S-1 was measured for the synthesized Au@IONPs. It is evident from the MTT results that no significant cytotoxicity in KB cells occurs with Au@IONPs. Additionally, no significant cell damage induced by the laser is observed. Following the photothermal treatment using Au@IONPs, approximately 70% cell death is achieved. It is found that cell lethality depended strongly on incubation period and the Au@IONP concentration.The data highlight the potential of Au@IONPs as a dual-function MRI contrast agent and photosensitizer for cancer photothermal therapy.
Collapse
Affiliation(s)
- Nazila Eyvazzadeh
- Radiation Research Center, Allied Medical Sciences School, AJA University of Medical Sciences, Tehran, Iran
| | - Ali Shakeri-Zadeh
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Reza Fekrazad
- Department of Periodontology, Dental Faculty - Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Elahe Amini
- ENT and Head & Neck Research Center and Department, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Habib Ghaznavi
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences (ZaUMS), Zahedan, Iran.
| | - S Kamran Kamrava
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
26
|
Photothermal therapy using folate conjugated gold nanoparticles enhances the effects of 6 MV X-ray on mouth epidermal carcinoma cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 172:52-60. [DOI: 10.1016/j.jphotobiol.2017.05.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/25/2017] [Accepted: 05/09/2017] [Indexed: 12/21/2022]
|
27
|
Measurements of nanoparticle-enhanced heating from 1MHz ultrasound in solution and in mice bearing CT26 colon tumors. J Therm Biol 2016; 62:84-89. [DOI: 10.1016/j.jtherbio.2016.10.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/21/2016] [Accepted: 10/24/2016] [Indexed: 12/11/2022]
|
28
|
Samadian H, Hosseini-Nami S, Kamrava SK, Ghaznavi H, Shakeri-Zadeh A. Folate-conjugated gold nanoparticle as a new nanoplatform for targeted cancer therapy. J Cancer Res Clin Oncol 2016; 142:2217-29. [PMID: 27209529 DOI: 10.1007/s00432-016-2179-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 05/09/2016] [Indexed: 01/17/2023]
Abstract
Conventional cancer treatment methods suffer from many limitations such as non-specificity and low efficacy in discrimination between healthy and cancer cells. Recent developments in nanotechnology have introduced novel and smart therapeutic nanomaterials that basically take advantage of various targeting approaches. Targeted nanomaterials selectively bind to the cancer cells and affect them with minor effects on healthy cells. Folic acid (folate) is an essential molecule in DNA synthesis pathway which is highly needed for cancer cell duplication. Some certain cancer cells overexpress folate receptors higher than normal cells, and this fact is the basis of folate targeting strategy. There are many publications reporting various folate conjugated nanomaterials among which folate-conjugated gold nanoparticles hold great promises in targeted cancer therapy. Gold nanoparticles have been identified as promising candidates for new cancer therapy modalities because of biocompatibility, easy synthesis and functionalization, chemo-physical stability, and optical tunable characteristics. In the last decade, there has been a significant explosion in gold nanoparticles research, with a rapid increase in publications related to the area of biomedicine. Although there are many reports published on "gold nanoparticles" and "folate targeting," there are a few reports on "folate-conjugated gold nanoparticles" in biomedical literature. This paper intends to review and illustrate the recent advances in biomedicine which have been designed on the basis of folate-conjugated gold nanoparticles.
Collapse
Affiliation(s)
- Hadi Samadian
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Samira Hosseini-Nami
- Clinical Nanomedicine Laboratory, ENT and Head and Neck Surgery Research Center, Rasoul Akram Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Seyed Kamran Kamrava
- Clinical Nanomedicine Laboratory, ENT and Head and Neck Surgery Research Center, Rasoul Akram Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Habib Ghaznavi
- Zahedan University of Medical Sciences (ZaUMS), Zahedan, Iran.
| | - Ali Shakeri-Zadeh
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Diagnostic Nanoparticles Research Core, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
29
|
Abed Z, Beik J, Khoee S, Khoei S, Shakeri-Zadeh A, Shiran MB. Effects of Ultrasound Irradiation on the Release Profile of 5-fluorouracil from Magnetic Polylactic co-glycolic Acid Nanocapsules. J Biomed Phys Eng 2016; 6:183-194. [PMID: 27853726 PMCID: PMC5106551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Indexed: 11/02/2022]
Abstract
BACKGROUND Drug nano-carriers are one of the most important tools for targeted cancer therapy so that undesired side effects of chemotherapy drugs are minimized. In this area, the use of ultrasound can be helpful in controlling drug release from nanoparticles to achieve higher treatment efficiency. OBJECTIVE Here, we studies the effects of ultrasound irradiation on the release profile of 5-fluorouracil (5-Fu) loaded magnetic poly lactic co-glycolic acid (PLGA) nanocapsules. METHODS 5-Fu loaded magnetic PLGA nanocapsules were synthesized by multiple emulsification method. Particle size was measured by dynamic light scattering (DLS) and transmission electron microscope (TEM). The pattern of drug release was assessed with and without 3 MHz ultrasound waves at intensities of 0.3, 0.5 and 1 w/cm2 for exposure time of 5 and 10 min in phosphate-buffered saline (PBS). RESULTS The size of nanoparticles was about 70 nm. Electron microscope images revealed the spherical shape of nanoparticles. The results demonstrated that the intensity and exposure time of ultrasound irradiation have significant effects on the profile of drug release from nanoparticles. CONCLUSION It may be concluded that the application of ultrasound to control the release profile of drug loaded nanocapsules would be a promising method to develop a controlled drug delivery strategy in cancer therapy.
Collapse
Affiliation(s)
- Z Abed
- Medical Physics Department, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - J Beik
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - S Khoee
- Polymer Chemistry Department, School of Sciences, University of Tehran, Tehran, Iran
| | - S Khoei
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - A Shakeri-Zadeh
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - M B Shiran
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
30
|
Beik J, Mehdizadeh AR, Shakeri-Zadeh A. Ultrasound in Cancer Treatment through Nanotechnology. J Biomed Phys Eng 2016; 6:123-126. [PMID: 27853719 PMCID: PMC5106544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Indexed: 06/06/2023]
Affiliation(s)
- J Beik
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - A R Mehdizadeh
- Editor in Chief, Journal of Biomedical Physics and Engineering
| | - A Shakeri-Zadeh
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
31
|
Beik J, Abed Z, Ghoreishi FS, Hosseini-Nami S, Mehrzadi S, Shakeri-Zadeh A, Kamrava SK. Nanotechnology in hyperthermia cancer therapy: From fundamental principles to advanced applications. J Control Release 2016; 235:205-221. [DOI: 10.1016/j.jconrel.2016.05.062] [Citation(s) in RCA: 333] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 05/28/2016] [Accepted: 05/30/2016] [Indexed: 01/05/2023]
|
32
|
Fritz MA, Amin MR. In-Office Laryngeal Laser Treatment. CURRENT OTORHINOLARYNGOLOGY REPORTS 2015. [DOI: 10.1007/s40136-015-0091-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
33
|
Shakeri-Zadeh A, Khoee S, Shiran MB, Sharifi AM, Khoei S. Synergistic effects of magnetic drug targeting using a newly developed nanocapsule and tumor irradiation by ultrasound on CT26 tumors in BALB/c mice. J Mater Chem B 2015; 3:1879-1887. [PMID: 32262260 DOI: 10.1039/c4tb01708k] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aim of the current study was to magnetically target the 5-fluorouracil (5-Fu) loaded magnetic poly lactic-co-glycolic acid (PLGA) nanocapsules towards CT26 colon tumor model in BALB/c mice. In addition, we ultrasonicated the tumors impregnated by nanocapsules with the goal of aiding them in magnetic drug targeting (MDT) procedure. Newly synthesized 5-Fu-loaded PLGA magnetic nanocapsules were characterized. Various treatment modalities with the use of nanocapsules, magnetic fields, and ultrasound were applied to the tumors and appropriate controls were considered. Magnetic resonance imaging (MRI) and Prussian blue (PB) staining were performed to analyze the distribution of nanocapsules within the CT26 tumor. Finally, anti-tumor and pro-apoptotic effects of each treatment modality on CT26 tumors were investigated. The effective diameter of nanocapsules was approximately 70 nm. The histological staining of the tumor tissue with PB as well as MRI revealed a broad distribution of magnetic nanocapsules within the tumor and confirmed the targeting of nanocapsules to the tumors. Anti-tumor studies demonstrated that the combination of nanocapsules-MDT-ultrasound effectively inhibits the growth of CT26 tumors compared with injection of 5-Fu alone (P < 0.01). The present study exhibits potentials of the newly synthesized magnetic nanocapsule and suggests that the combination of MDT and ultrasound might help this new nanotechnology-based cancer chemotherapy agent in vivo.
Collapse
Affiliation(s)
- Ali Shakeri-Zadeh
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences (IUMS), Associate Professor of Biophysics, Razi Drug Research Centre, P.O. Box: 14155-5983, Tehran, Iran.
| | | | | | | | | |
Collapse
|