1
|
Sun K, Liu Y, Pan Y, Di D, Li J, Xu F, Li L, Mimata Y, Chen Y, Xie L, Wang S, Qi W, Tang Y, Sheng H, Wang B, Sun R, Tan D, Fu D, Yin Y, Xue A, Shi Y, Shao W, Gong L, Jiang Z, Zhang W, Wu Q, Wang Y, Lang M, Ye W, Xu W, Wei S, Shi W, Xu YJ. Non-invasive micro-test technology and applications. BIOPHYSICS REPORTS 2025; 11:96-111. [PMID: 40308937 PMCID: PMC12035745 DOI: 10.52601/bpr.2024.240009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 10/14/2024] [Indexed: 05/02/2025] Open
Abstract
Non-invasive micro-test technology (NMT) reveals dynamic ionic/molecular concentration gradients by measuring fluxes of ions and small molecules in liquid media in 1D, 2D or 3D fashions with sensitivity up to pico- (10-12) or femto- (10-15) moles per cm2 per second. NMT has been applied to study metabolism, signal transduction, genes and/or proteins physiological functions related to transmembrane ionic/molecular activities with live samples under normal conditions or stress. Data on ion and/or molecule homeostasis (IMH) by NMT in biomedical sciences, plant and crop sciences, environmental sciences, marine and space biology as well as traditional Chinese medicine are reviewed.
Collapse
Affiliation(s)
- Kai Sun
- College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Yunqi Liu
- Zhongguancun Xuyue NMT Industrial Alliance, Beijing 100080, China
- NMT International Alliance, Amherst, Massachusetts 01002, USA
| | - Yanshu Pan
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Dongwei Di
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jianfang Li
- College of Biological Science, China Agricultural University, Beijing 100193, China
| | - Feiyun Xu
- Center for Plant Water-use and Nutrition Regulation and College of Resources and Environment, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li Li
- Institute of Agricultural Resources and Environment, Tianjin Academy of Agricultural Sciences, Tianjin 300380, China
| | - Yoshiharu Mimata
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang 261000, Shandong, China
| | - Yingying Chen
- Guangxi Forestry Research Institute, Nanning 530002, China
| | - Lixia Xie
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Science, Jinan 250100, China
| | - Siqi Wang
- Key Laboratory of Wastewater Treatment Technology of Liaoning Province, Academy of Environmental and Chemical Engineering, Shenyang Ligong University, Shenyang 110159, China
| | - Wenqian Qi
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yan Tang
- Technical Institute of Physics and Chemistry, CAS, Beijing 100190, China
| | - Huachun Sheng
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu 610225, China
| | - Bing Wang
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang 550081, China
| | - Ruixue Sun
- College of Agriculture and Forestry, Hebei North University, Zhangjiakou 075000, Hebei, China
| | - Dingquan Tan
- Smart Health Institute, Chongqing Vocational College of Media, Chongqing 402560, China
| | - Daohong Fu
- Institute of Biology, Humboldt University of Berlin, Berlin 10099, Germany
| | - Ye Yin
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Ao Xue
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Yichao Shi
- Department of Gastroenterology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing 100049, China
| | - Wenjing Shao
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Gong
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou 730000, China
| | - Zhijian Jiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Wei Zhang
- Technical Institute of Physics and Chemistry, CAS, Beijing 100190, China
| | - Qiangsheng Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Yaosheng Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Minglin Lang
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenxiu Ye
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang 261000, Shandong, China
| | - Weifeng Xu
- Center for Plant Water-use and Nutrition Regulation and College of Resources and Environment, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuhe Wei
- Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Shenyang 110016, China
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yue Jeff Xu
- Zhongguancun Xuyue NMT Industrial Alliance, Beijing 100080, China
- NMT International Alliance, Amherst, Massachusetts 01002, USA
- Xuyue (Beijing) Sci. & Tech. Co., Ltd., Beijing 100080, China
- YoungerUSA LLC, Amherst, Massachusetts 01002, USA
| |
Collapse
|
2
|
Brival R, Ghafari N, Mingotaud AF, Fourquaux I, Gilard V, Collin F, Vicendo P, Balayssac S, Gibot L. Encapsulation of photosensitizer worsen cell responses after photodynamic therapy protocol and polymer micelles act as biomodulators on their own. Int J Pharm 2024; 663:124589. [PMID: 39147251 DOI: 10.1016/j.ijpharm.2024.124589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 08/17/2024]
Abstract
Photodynamic therapy (PDT) is a photochemical therapeutic modality used clinically for dermatological, ophthalmological and oncological applications. Pheo a was used as a model photosensitizer, either in its free form or encapsulated within poly(ethylene oxide)-block-poly(ε-caprolactone) (PEO-PCL) polymer micelles. Block copolymer micelles are water-soluble biocompatible nanocontainers with great potential for delivering hydrophobic drugs. Empty PEO-PCL micelles were also tested throughout the experiments. The goal was to conduct an in vitro investigation into human colorectal tumor HCT-116 cellular responses induced by free and encapsulated Pheo a in terms of cell architecture, plasma membrane exchanges, mitochondrial function, and metabolic disturbances. In a calibrated PDT protocol, encapsulation enhanced Pheo a penetration (flow cytometry, confocal microscopy) and cell death (Prestoblue assay), causing massive changes to cell morphology (SEM) and cytoskeleton organization (confocal), mitochondrial dysfunction and loss of integrity (TEM), rapid and massive ion fluxes across the plasma membrane (ICP-OES, ion chromatography), and metabolic alterations, including increased levels of amino acids and choline derivatives (1H NMR). The detailed investigation provides insights into the multifaceted effects of encapsulated Pheo-PDT, emphasizing the importance of considering both the photosensitizer and its delivery system in understanding therapeutic outcomes. The study also raises questions as to the broader impact of empty nanovectors per se, and encourages a more comprehensive exploration of their biological effects.
Collapse
Affiliation(s)
- Rachel Brival
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 31062 Toulouse, France; Centre de Microscopie Electronique Appliquée à la Biologie, Faculté de Médecine Toulouse Rangueil, Université de Toulouse, 133, route de Narbonne, 31062 Toulouse, France
| | - Nathan Ghafari
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 31062 Toulouse, France
| | - Anne-Françoise Mingotaud
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 31062 Toulouse, France
| | - Isabelle Fourquaux
- Centre de Microscopie Electronique Appliquée à la Biologie, Faculté de Médecine Toulouse Rangueil, Université de Toulouse, 133, route de Narbonne, 31062 Toulouse, France
| | - Véronique Gilard
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 31062 Toulouse, France
| | - Fabrice Collin
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 31062 Toulouse, France
| | - Patricia Vicendo
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 31062 Toulouse, France
| | - Stéphane Balayssac
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 31062 Toulouse, France
| | - Laure Gibot
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 31062 Toulouse, France.
| |
Collapse
|
3
|
Aebisher D, Woźnicki P, Czarnecka-Czapczyńska M, Dynarowicz K, Szliszka E, Kawczyk-Krupka A, Bartusik-Aebisher D. Molecular Determinants for Photodynamic Therapy Resistance and Improved Photosensitizer Delivery in Glioma. Int J Mol Sci 2024; 25:8708. [PMID: 39201395 PMCID: PMC11354549 DOI: 10.3390/ijms25168708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Gliomas account for 24% of all the primary brain and Central Nervous System (CNS) tumors. These tumors are diverse in cellular origin, genetic profile, and morphology but collectively have one of the most dismal prognoses of all cancers. Work is constantly underway to discover a new effective form of glioma therapy. Photodynamic therapy (PDT) may be one of them. It involves the local or systemic application of a photosensitive compound-a photosensitizer (PS)-which accumulates in the affected tissues. Photosensitizer molecules absorb light of the appropriate wavelength, initiating the activation processes leading to the formation of reactive oxygen species and the selective destruction of inappropriate cells. Research focusing on the effective use of PDT in glioma therapy is already underway with promising results. In our work, we provide detailed insights into the molecular changes in glioma after photodynamic therapy. We describe a number of molecules that may contribute to the resistance of glioma cells to PDT, such as the adenosine triphosphate (ATP)-binding cassette efflux transporter G2, glutathione, ferrochelatase, heme oxygenase, and hypoxia-inducible factor 1. We identify molecular targets that can be used to improve the photosensitizer delivery to glioma cells, such as the epithelial growth factor receptor, neuropilin-1, low-density lipoprotein receptor, and neuropeptide Y receptors. We note that PDT can increase the expression of some molecules that reduce the effectiveness of therapy, such as Vascular endothelial growth factor (VEGF), glutamate, and nitric oxide. However, the scientific literature lacks clear data on the effects of PDT on many of the molecules described, and the available reports are often contradictory. In our work, we highlight the gaps in this knowledge and point to directions for further research that may enhance the efficacy of PDT in the treatment of glioma.
Collapse
Affiliation(s)
- David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of The Rzeszów University, 35-310 Rzeszów, Poland
| | - Paweł Woźnicki
- English Division Science Club, Medical College of The Rzeszów University, 35-310 Rzeszów, Poland;
| | - Magdalena Czarnecka-Czapczyńska
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia, Batorego 15 Street, 41-902 Bytom, Poland;
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of The University of Rzeszów, 35-310 Rzeszów, Poland;
| | - Ewelina Szliszka
- Department of Microbiology and Immunology, Medical University of Silesia, Poniatowskiego 15, 40-055 Katowice, Poland;
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia, Batorego 15 Street, 41-902 Bytom, Poland;
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of The Rzeszów University, 35-310 Rzeszów, Poland;
| |
Collapse
|
4
|
Li L, Wei KL, Liu MS, Wang QL, Zeng TF, Chen RZ, Xia XW, Zhang HT. Hematoporphyrin derivative-mediated photodynamic techniques for the diagnosis and treatment of chordoma. Photodiagnosis Photodyn Ther 2024; 48:104231. [PMID: 38821238 DOI: 10.1016/j.pdpdt.2024.104231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/10/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND Chordoma is a rare congenital low-grade malignant tumor characterized by infiltrative growth. It often tends to compress important intracranial nerves and blood vessels, making its surgical treatment extremely difficult. Besides, the efficacy of radiotherapy and chemotherapy is limited. The photosensitizer hematoporphyrin derivative (HPD) can emit red fluorescence under 405 nm excitation and produce reactive oxygen species for tumor therapy under 630 nm excitation. Herein, we investigated the effects of the photosensitizer hematoporphyrin derivative (HPD) on different cell lines of chordoma and xenograft tumors under 405 nm and 630 nm excitation. METHODS The photosensitizer hematoporphyrin derivative (HPD) and Two different chordoma cell lines (U-CH1, JHC7) were used for the test. The in vitro experiments were as follows: (1) the fluorescence intensity emitted by chordoma cells excited by different 405 nm light intensities was observed under a confocal microscope; (2) the Cell Counting Kit-8 (CCK-8) assay was performed to detect the effects of different photosensitizer concentrations and 630 nm light energy densities on the activity of chordoma cells. In the in vivo experiments, (3) Fluorescence visualization of chordoma xenograft tumors injected with photosensitizer via tail vein under 405 nm excitation; (4) Impact of 630 nm excitation of photosensitizer on the growth of chordoma xenograft tumors. RESULTS (1) The photosensitizers in chordoma cells and chordoma xenografts of nude mice were excited by 405 nm to emit red fluorescence; (2) 630 nm excitation photosensitizer reduces chordoma cell activity and inhibits chordoma xenograft tumor growth in chordoma nude mice. CONCLUSION Photodynamic techniques mediated by the photosensitizer hematoporphyrin derivatives can be used for the diagnosis and treatment of chordoma.
Collapse
Affiliation(s)
- Lei Li
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, 541001 Guilin, China
| | - Kai-Lun Wei
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, 541001 Guilin, China
| | - Ming-Song Liu
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, 541001 Guilin, China
| | - Qi-Lin Wang
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, 541001 Guilin, China
| | - Tong-Fei Zeng
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, 541001 Guilin, China
| | - Rui-Zhe Chen
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, 541001 Guilin, China
| | - Xue-Wei Xia
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, 541001 Guilin, China
| | - Hong-Tian Zhang
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, 541001 Guilin, China.
| |
Collapse
|
5
|
Aebisher D, Przygórzewska A, Myśliwiec A, Dynarowicz K, Krupka-Olek M, Bożek A, Kawczyk-Krupka A, Bartusik-Aebisher D. Current Photodynamic Therapy for Glioma Treatment: An Update. Biomedicines 2024; 12:375. [PMID: 38397977 PMCID: PMC10886821 DOI: 10.3390/biomedicines12020375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Research on the development of photodynamic therapy for the treatment of brain tumors has shown promise in the treatment of this highly aggressive form of brain cancer. Analysis of both in vivo studies and clinical studies shows that photodynamic therapy can provide significant benefits, such as an improved median rate of survival. The use of photodynamic therapy is characterized by relatively few side effects, which is a significant advantage compared to conventional treatment methods such as often-used brain tumor surgery, advanced radiotherapy, and classic chemotherapy. Continued research in this area could bring significant advances, influencing future standards of treatment for this difficult and deadly disease.
Collapse
Affiliation(s)
- David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the Rzeszów University, 35-959 Rzeszów, Poland
| | - Agnieszka Przygórzewska
- English Division Science Club, Medical College of the Rzeszów University, 35-025 Rzeszów, Poland;
| | - Angelika Myśliwiec
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the Rzeszów University, 35-310 Rzeszów, Poland; (A.M.); (K.D.)
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the Rzeszów University, 35-310 Rzeszów, Poland; (A.M.); (K.D.)
| | - Magdalena Krupka-Olek
- Clinical Department of Internal Medicine, Dermatology and Allergology, Medical University of Silesia in Katowice, M. Sklodowskiej-Curie 10, 41-800 Zabrze, Poland; (M.K.-O.); (A.B.)
| | - Andrzej Bożek
- Clinical Department of Internal Medicine, Dermatology and Allergology, Medical University of Silesia in Katowice, M. Sklodowskiej-Curie 10, 41-800 Zabrze, Poland; (M.K.-O.); (A.B.)
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of the Rzeszów University, 35-025 Rzeszów, Poland;
| |
Collapse
|
6
|
Hsia T, Small JL, Yekula A, Batool SM, Escobedo AK, Ekanayake E, You DG, Lee H, Carter BS, Balaj L. Systematic Review of Photodynamic Therapy in Gliomas. Cancers (Basel) 2023; 15:3918. [PMID: 37568734 PMCID: PMC10417382 DOI: 10.3390/cancers15153918] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Over the last 20 years, gliomas have made up over 89% of malignant CNS tumor cases in the American population (NIH SEER). Within this, glioblastoma is the most common subtype, comprising 57% of all glioma cases. Being highly aggressive, this deadly disease is known for its high genetic and phenotypic heterogeneity, rendering a complicated disease course. The current standard of care consists of maximally safe tumor resection concurrent with chemoradiotherapy. However, despite advances in technology and therapeutic modalities, rates of disease recurrence are still high and survivability remains low. Given the delicate nature of the tumor location, remaining margins following resection often initiate disease recurrence. Photodynamic therapy (PDT) is a therapeutic modality that, following the administration of a non-toxic photosensitizer, induces tumor-specific anti-cancer effects after localized, wavelength-specific illumination. Its effect against malignant glioma has been studied extensively over the last 30 years, in pre-clinical and clinical trials. Here, we provide a comprehensive review of the three generations of photosensitizers alongside their mechanisms of action, limitations, and future directions.
Collapse
Affiliation(s)
- Tiffaney Hsia
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Julia L. Small
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
- Chan Medical School, University of Massachusetts, Worcester, MA 01605, USA
| | - Anudeep Yekula
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 554414, USA
| | - Syeda M. Batool
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ana K. Escobedo
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Emil Ekanayake
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Dong Gil You
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Bob S. Carter
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02215, USA
| | - Leonora Balaj
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
7
|
Zheng X, Lordon B, Mingotaud A, Vicendo P, Brival R, Fourquaux I, Gibot L, Gallot G. Terahertz Spectroscopy Sheds Light on Real-Time Exchange Kinetics Occurring through Plasma Membrane during Photodynamic Therapy Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300589. [PMID: 37096839 PMCID: PMC10288265 DOI: 10.1002/advs.202300589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/28/2023] [Indexed: 05/03/2023]
Abstract
Methods to follow in real time complex processes occurring along living cell membranes such as cell permeabilization are rare. Here, the terahertz spectroscopy reveals early events in plasma membrane alteration generated during photodynamic therapy (PDT) protocol, events which are not observable in any other conventional biological techniques performed in parallel as comparison. Photodynamic process is examined in Madin-Darby canine kidney cells using Pheophorbide (Pheo) photosensitizer alone or alternatively encapsulated in poly(ethylene oxide)-block-poly(ε-caprolactone) micelles for drug delivery purpose. Terahertz spectroscopy (THz) reveals that plasma membrane permeabilization starts simultaneously with illumination and is stronger when photosensitizer is encapsulated. In parallel, the exchange of biological species is assessed. Over several hours, this conventional approach demonstrates significant differences between free and encapsulated Pheo, the latter leading to high penetration of propidium iodide, Na+ and Ca2+ ions, and a high level of leakage of K+ , ATP, and lactate dehydrogenase. THz spectroscopy provides, in a single measurement, the relative number of defects per membrane surface created after PDT, which is not achieved by any other method, providing early, sensitive real-time information. THz spectroscopy is therefore a promising technique and can be applied to any biological topic requiring the examination of short-term plasma membrane permeabilization.
Collapse
Affiliation(s)
- Xiujun Zheng
- Laboratoire d'Optique et BiosciencesEcole PolytechniqueCNRSINSERMIP ParisPalaiseau91128France
| | - Blandine Lordon
- Laboratoire d'Optique et BiosciencesEcole PolytechniqueCNRSINSERMIP ParisPalaiseau91128France
| | - Anne‐Françoise Mingotaud
- Laboratoire des IMRCPUniversité de ToulouseCNRS UMR 5623Université Toulouse III ‐ Paul Sabatier118 Rte de NarbonneToulouse31062France
| | - Patricia Vicendo
- Laboratoire des IMRCPUniversité de ToulouseCNRS UMR 5623Université Toulouse III ‐ Paul Sabatier118 Rte de NarbonneToulouse31062France
| | - Rachel Brival
- Centre de Microscopie Electronique Appliquée à la BiologieFaculté de Médecine Toulouse RangueilUniversité de Toulouse133 route de NarbonneToulouse31062France
| | - Isabelle Fourquaux
- Centre de Microscopie Electronique Appliquée à la BiologieFaculté de Médecine Toulouse RangueilUniversité de Toulouse133 route de NarbonneToulouse31062France
| | - Laure Gibot
- Laboratoire des IMRCPUniversité de ToulouseCNRS UMR 5623Université Toulouse III ‐ Paul Sabatier118 Rte de NarbonneToulouse31062France
| | - Guilhem Gallot
- Laboratoire d'Optique et BiosciencesEcole PolytechniqueCNRSINSERMIP ParisPalaiseau91128France
| |
Collapse
|
8
|
Han M, Yang H, Yu G, Jiang P, You S, Zhang L, Lin H, Liu J, Shu Y. Application of Non-invasive Micro-test Technology (NMT) in environmental fields: A comprehensive review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 240:113706. [PMID: 35659702 DOI: 10.1016/j.ecoenv.2022.113706] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Non-invasive Micro-test Technology (NMT) is a selective microelectrode technique which can detect the flux rates and three-dimensional motion directions of ions or molecules into and out of living organisms in situ without damaging the sample. It has the advantages of maintaining sample integrity, high temporal and spatial resolution, and being able to measure multiple sites simultaneously. In this paper we provide a comprehensive review on the development of NMT in recent years. Its principles, characteristics, and the differences with other microelectrode techniques are introduced. We discuss the applications of NMT in the field of phytoremediation, plant resistance, water quality monitoring, and toxicity mechanisms of heavy metals on organisms. Furthermore, the challenges and future prospects of NMT in the environmental field are presented.
Collapse
Affiliation(s)
- Mengxuan Han
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China
| | - Huan Yang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China
| | - Guo Yu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China.
| | - Pingping Jiang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China
| | - Shaohong You
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China; Technical Innovation Center of Mine Geological Environmental Restoration Engineering in Southern Karst Area, MNR, Guilin, China.
| | - Lei Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Canada
| | - Hua Lin
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China
| | - Jie Liu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China; Technical Innovation Center of Mine Geological Environmental Restoration Engineering in Southern Karst Area, MNR, Guilin, China
| | - Yi Shu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China
| |
Collapse
|
9
|
Soe TH, Nanjo T, Watanabe K, Ohtsuki T. Relation of Photochemical Internalization to Heat, pH and Ca 2+ Ions. Photochem Photobiol 2019; 95:1395-1402. [PMID: 31359440 DOI: 10.1111/php.13146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/26/2019] [Indexed: 12/18/2022]
Abstract
The inefficient endosomal escape of drugs or macromolecules is a major obstacle to achieving successful delivery to therapeutic targets. An efficient approach to circumvent this barrier is photochemical internalization (PCI), which uses light and photosensitizers for endosomal escape of the delivered macromolecules. The PCI mechanism is related to photogenerated singlet oxygen, but the mechanism is still unclear. In this study, we examined the relation of PCI to heat, pH and Ca2+ ions using cell penetrating peptide (CPP)-cargo-photosensitizer (Alexa546 or Alexa633) conjugates. A cell temperature changing experiment demonstrated that heat (thermal mechanism) does not significantly contribute to the photoinduced endosomal escape. Inhibition of V-ATPase proton pump activity and endosomal pH upregulation indicated that PCI-mediated endosomal escape needs endosomal acidification prior to photoirradiation. Imaging of the CPP-cargo-photosensitizer and Ca2+ ions during photostimulation showed that intracellular calcium increase is not the cause of the endosomal escape of the complex. The increment is mainly due to Ca2+ influx. These findings show the importance of extra- and intracellular milieu conditions in the PCI mechanism and enrich our understanding of PCI-related changes in cell.
Collapse
Affiliation(s)
- Tet Htut Soe
- Department of Medical Bioengineering, Okayama University, Okayama, Japan
| | - Tomotaka Nanjo
- Department of Medical Bioengineering, Okayama University, Okayama, Japan
| | - Kazunori Watanabe
- Department of Medical Bioengineering, Okayama University, Okayama, Japan.,Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Takashi Ohtsuki
- Department of Medical Bioengineering, Okayama University, Okayama, Japan.,Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| |
Collapse
|
10
|
Jia Y, Chen L, Chi D, Cong D, Zhou P, Jin J, Ji H, Liang B, Gao S, Hu S. Photodynamic therapy combined with temozolomide inhibits C6 glioma migration and invasion and promotes mitochondrial-associated apoptosis by inhibiting sodium-hydrogen exchanger isoform 1. Photodiagnosis Photodyn Ther 2019; 26:405-412. [PMID: 31085295 DOI: 10.1016/j.pdpdt.2019.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/23/2019] [Accepted: 05/09/2019] [Indexed: 10/26/2022]
Abstract
OBJECTIVE As a targeted therapeutic technique for glioma inhibition, photodynamic therapy (PDT) has gradually become a focus of basic research related to glioma treatment. The capacity of PDT to kill glioma cells involves varieties of pathways. In glioma cells, activated sodium-hydrogen exchanger isoform 1 (NHE1) can inhibit the cytotoxic effect of temozolomide (TMZ), promote cell migration and invasion, and inhibit cell apoptosis by changing the acid-base equilibrium. The purpose of our study was to explore if PDT combined with TMZ can effectively inhibit glioma cells by influencing NHE1 in vitro. METHODS We analyzed the expression levels of proteins such as NHE1, ezrin, vimentin, Bcl-2, and Bax by Western blot analysis, we assessed the migration and invasion of rat C6 glioma cells by Transwell assay, and we evaluated C6 cell apoptosis in vitro by flow cytometry. RESULTS Western blot results indicated that NHE1, ezrin and vimentin were downregulated after cotreatment of C6 cells, and intracellular acidification was detected by a fluorometric intracellular pH assay. The migration and invasion capacities of C6 cells were significantly hindered after cotreatment, as shown by the Transwell assay. Experimental data also revealed a significant increase in cell apoptosis after cotreatment, as detected by flow cytometry; corresponding proapoptotic changes in Bcl-2, Bax and caspase-3 were also observed in vitro. CONCLUSION These results demonstrate that PDT combined with TMZ can inhibit C6 cell migration and invasion and promote mitochondrial-associated apoptosis by inhibiting NHE1. Therefore, this study provides supporting evidence for a potential method for the treatment of glioma.
Collapse
Affiliation(s)
- Yulong Jia
- Department of Neurological Surgery, The Second Affiliated Hospital of the Harbin Medical University, Harbin, 150001, China
| | - Lei Chen
- Department of Neurological Surgery, The Second Affiliated Hospital of the Harbin Medical University, Harbin, 150001, China
| | - Dapeng Chi
- Department of Neurological Surgery, The Second Affiliated Hospital of the Harbin Medical University, Harbin, 150001, China
| | - Damin Cong
- Department of Neurological Surgery, The Second Affiliated Hospital of the Harbin Medical University, Harbin, 150001, China
| | - Peng Zhou
- Department of Neurological Surgery, The Second Affiliated Hospital of the Harbin Medical University, Harbin, 150001, China
| | - Jiaqi Jin
- Department of Neurological Surgery, The Second Affiliated Hospital of the Harbin Medical University, Harbin, 150001, China
| | - Hang Ji
- Department of Neurological Surgery, The Second Affiliated Hospital of the Harbin Medical University, Harbin, 150001, China
| | - Binbin Liang
- Department of Neurological Surgery, The Second Affiliated Hospital of the Harbin Medical University, Harbin, 150001, China
| | - Shuai Gao
- Department of Neurological Surgery, The Second Affiliated Hospital of the Harbin Medical University, Harbin, 150001, China
| | - Shaoshan Hu
- Department of Neurological Surgery, The Second Affiliated Hospital of the Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
11
|
Hoorelbeke D, Decrock E, Van Haver V, De Bock M, Leybaert L. Calcium, a pivotal player in photodynamic therapy? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1805-1814. [PMID: 30076858 DOI: 10.1016/j.bbamcr.2018.07.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/28/2018] [Accepted: 07/30/2018] [Indexed: 02/06/2023]
Abstract
Photodynamic therapy combines three non-toxic components: light, oxygen and a photosensitizer to generate singlet oxygen and/or other ROS molecules in order to target destruction of cancer cells. The damage induced in the targeted cells can furthermore propagate to non-exposed bystander cells thereby exacerbating the damage. Ca2+ signaling is strongly intertwined with ROS signaling and both play crucial roles in cell death. In this review we aimed to review current knowledge on the role of Ca2+ and ROS signaling, their effect on cell-cell propagation via connexin-linked mechanisms and the outcome in terms of cell death. In general, photodynamic therapy results in an increased cytosolic Ca2+ concentration originating from Ca2+ entry or Ca2+ release from internal stores. While photodynamic therapy can certainly induce cell death, the outcome depends on the cell type and the photosensitizer used. Connexin channels propagating the Ca2+ signal, and presumably regenerating ROS at distance, may play a role in spreading the effect to neighboring non-exposed bystander cells. Given the various cell types and photosensitizers used, there is currently no unified signaling scheme to explain the role of Ca2+ and connexins in the responses following photodynamic therapy. This article is part of a Special Issue entitled: Calcium signaling in health, disease and therapy edited by Geert Bultynck and Jan Parys.
Collapse
Affiliation(s)
| | - Elke Decrock
- Physiology group, Dept. of Basic Medical Sciences, UGent, Ghent, Belgium
| | - Valérie Van Haver
- Physiology group, Dept. of Basic Medical Sciences, UGent, Ghent, Belgium
| | - Marijke De Bock
- Physiology group, Dept. of Basic Medical Sciences, UGent, Ghent, Belgium
| | - Luc Leybaert
- Physiology group, Dept. of Basic Medical Sciences, UGent, Ghent, Belgium.
| |
Collapse
|
12
|
Lin LY, Yeh YH, Hung GY, Lin CH, Hwang PP, Horng JL. Role of Calcium-Sensing Receptor in Mechanotransducer-Channel-Mediated Ca 2+ Influx in Hair Cells of Zebrafish Larvae. Front Physiol 2018; 9:649. [PMID: 29899708 PMCID: PMC5988855 DOI: 10.3389/fphys.2018.00649] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 05/14/2018] [Indexed: 01/16/2023] Open
Abstract
The calcium-sensing receptor (CaSR) is an extracellular Ca2+ sensor that plays a critical role in maintaining Ca2+ homeostasis in several organs, including the parathyroid gland and kidneys. In this study, through in situ hybridization, the expression of CaSR mRNA was found in the neuromasts of zebrafish larvae. Immunohistochemistry further demonstrated that the CaSR protein was present in neuromast hair cell stereocilia and basolateral membranes. Based on the expression and subcellular localization of the CaSR in hair cells, we hypothesized that the CaSR is expressed in zebrafish lateral-line hair cells to regulate mechanotransducer (MET)-channel-mediated Ca2+ entry. Using the scanning ion-selective electrode technique, MET-channel-mediated Ca2+ influx at the stereocilia of hair cells was measured in intact larvae. Ca2+ influx was suppressed after larvae were pretreated with a CaSR activator (R-568) or high-Ca2+ (HCa) medium. Gene knockdown by using morpholino oligonucleotides decreased CaSR expression in hair cells and eliminated the effects of R-568 and HCa on Ca2+ influx. In addition, we found that treatment with R-568 attenuated neomycin-induced hair cell death. This study is the first to demonstrate that the CaSR is involved in mechanotransduction in zebrafish hair cells.
Collapse
Affiliation(s)
- Li-Yih Lin
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ya-Hsin Yeh
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Giun-Yi Hung
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan.,Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Pediatrics, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chia-Hao Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.,Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Pung-Pung Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Jiun-Lin Horng
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
13
|
Neginskaya M, Berezhnaya E, Uzdensky AB, Abramov AY. Reactive Oxygen Species Produced by a Photodynamic Effect Induced Calcium Signal in Neurons and Astrocytes. Mol Neurobiol 2017; 55:96-102. [DOI: 10.1007/s12035-017-0721-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|