1
|
Trajano LADSN, Siqueira PB, Rodrigues MMDS, Pires BRB, da Fonseca ADS, Mencalha AL. Does photobiomodulation alter mitochondrial dynamics? Photochem Photobiol 2025; 101:21-37. [PMID: 38774941 DOI: 10.1111/php.13963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 01/18/2025]
Abstract
Mitochondrial dysfunction is one of the leading causes of disease development. Dysfunctional mitochondria limit energy production, increase reactive oxygen species generation, and trigger apoptotic signals. Photobiomodulation is a noninvasive, nonthermal technique involving the application of monochromatic light with low energy density, inducing non-thermal photochemical effects at the cellular level, and it has been used due to its therapeutic potential. This review focuses on the mitochondrial dynamic's role in various diseases, evaluating the possible therapeutic role of low-power lasers (LPL) and light-emitting diodes (LED). Studies increasingly support that mitochondrial dysfunction is correlated with severe neurodegenerative diseases such as Parkinson's, Huntington's, Alzheimer's, and Charcot-Marie-Tooth diseases. Furthermore, a disturbance in mitofusin activity is also associated with metabolic disorders, including obesity and type 2 diabetes. The effects of PBM on mitochondrial dynamics have been observed in cells using a human fibroblast cell line and in vivo models of brain injury, diabetes, spinal cord injury, Alzheimer's disease, and skin injury. Thus, new therapies aiming to improve mitochondrial dynamics are clinically relevant. Several studies have demonstrated that LPL and LED can be important therapies to improve health conditions when there is dysfunction in mitochondrial dynamics.
Collapse
Affiliation(s)
- Larissa Alexsandra da Silva Neto Trajano
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Pró-Reitoria de Pesquisa e pós-graduação, Mestrado Profissional em Ciências Aplicadas em Saúde, Universidade de Vassouras, Rio de Janeiro, Brazil
| | - Priscyanne Barreto Siqueira
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana Moreno de Sousa Rodrigues
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno Ricardo Barreto Pires
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adenilson de Souza da Fonseca
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Ciências Fisiológicas, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andre Luiz Mencalha
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Yousefifard M, Imani F, Mahjoubi B, Shamseddin J, Sarveazad S, Vazirizadeh-Mahabadi M, Yarahmadi M, Sarveazad A. The effect of low-level laser therapy on external anal sphincter repair and treatment of fecal incontinence: A double-blind randomized controlled clinical trial. INTERNATIONAL JOURNAL OF GASTROINTESTINAL INTERVENTION 2024; 13:114-121. [DOI: 10.18528/ijgii240062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/03/2024] [Accepted: 10/03/2024] [Indexed: 04/01/2025] Open
Affiliation(s)
- Mahmoud Yousefifard
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Farnad Imani
- Department of Anesthesiology and Pain Medicine, Pain Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Bahar Mahjoubi
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Jebreil Shamseddin
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Shahriar Sarveazad
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammadhossein Vazirizadeh-Mahabadi
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mobina Yarahmadi
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Arash Sarveazad
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
- Nursing Care Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Cárdenas-Sandoval RP, Bernal-Bernal LD, Cabrera-Salazar S, Gómez-Ramírez DM, González-Ballesteros LM, Hooker-Mendoza KM, Ospina-Piedrahíta LN, Hernández-Charry CX, Ardila-Rojas G, Velásquez-Durán AM, Cucarián-Hurtado JD, Ondo-Méndez AO, Barbosa-Santibañez J, Carvajal-Calderón LL, Navarrete-Jimenez ML. In-vitro study on type I collagen synthesis in low-level laser therapy on the early ligament fibroblasts' healing process. Lasers Med Sci 2024; 39:225. [PMID: 39207591 PMCID: PMC11362177 DOI: 10.1007/s10103-024-04151-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Low-level Laser Therapy (LLLT) has demonstrated its potential in promoting fiber matrix maturation, collagen synthesis, and fibroblast proliferation, contributing to tissue regeneration. Our study aimed to investigate the impact of LLLT on collagen type I synthesis, cell proliferation, and viability in human ligament fibroblasts derived from the Anterior Cruciate Ligament (ACL). METHODS Tissue samples were obtained from individuals undergoing arthroscopic ACL reconstruction surgery. Primary human fibroblasts were isolated, and immunohistochemical assays confirmed their characteristics. LLLT at 850 nm was administered in three groups: Low dose (1.0 J/cm²), High dose (5.0 J/cm²), and Control (0.0 J/cm²). Cell viability was calculated using a membrane integrity assay, proliferation was determined by automated counting, and collagen type I concentration in cell culture was measured using an immunoassay. RESULTS Fibroblasts showed decreased viability after low and high doses of LLLT, increased proliferation at the low dose, and increased collagen synthesis at the high dose on day 10 for both sexes after treatment. CONCLUSION Our study demonstrated that LLLT may improve the early ligament healing process by increasing cell proliferation at the low dose and enhancing collagen type I synthesis at the high dose in human ligament fibroblasts.
Collapse
Affiliation(s)
- R P Cárdenas-Sandoval
- Rehabilitation Science Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia.
| | - L D Bernal-Bernal
- Rehabilitation Science Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - S Cabrera-Salazar
- Rehabilitation Science Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - D M Gómez-Ramírez
- Rehabilitation Science Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - L M González-Ballesteros
- Rehabilitation Science Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - K M Hooker-Mendoza
- Rehabilitation Science Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - L N Ospina-Piedrahíta
- Rehabilitation Science Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - C X Hernández-Charry
- Rehabilitation Science Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - G Ardila-Rojas
- Rehabilitation Science Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - A M Velásquez-Durán
- Rehabilitation Science Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - J D Cucarián-Hurtado
- Neuroscience and Mental Health Institute and Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - A O Ondo-Méndez
- Clinical Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | | | | | - M L Navarrete-Jimenez
- Department of Microbiology, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
4
|
Nor Nazli NA, Muthuraju S, Ahmad F, Mohamed Yusoff AA, Jaafar H, Shamsuddin S, Abdullah JM. Characterisation of Primary Human Hippocampal Astrocyte Cell Culture Following Exposure to Hypoxia. Malays J Med Sci 2023; 30:92-106. [PMID: 36875187 PMCID: PMC9984107 DOI: 10.21315/mjms2023.30.1.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/01/2022] [Indexed: 03/05/2023] Open
Abstract
Background The present study aimed to understand the characterisation of human hippocampal astrocyte following hypoxia exposure. Based on the preliminary screening, 15 min was chosen as the time point and the cells were exposed to different oxygen percentages. Methods The Trypan blue viability assay used to examine cell death. Immunofluorescence assay, glial fibrillary acidic protein (GFAP) was used to portray the morphology of astrocytes. The hypoxia-inducible factor 1 (HIF-1) staining was performed to confirm hypoxia induced cell death and there was a dramatic expression of HIF-1α displayed in exposed astrocyte cells compared to the control. In molecular level, genes were chosen, such as glyceraldehyde 3-phosphate dehydrogenase (GAPDH), GFAP, HIF-1α and B-cell lymphoma 2 (Bcl-2) and ran the reverse transcription-polymerase chain reaction (RT-PCR). Results Microscope revealed a filamentous and clear nucleus appearance in a control whereas the rupture nuclei with no rigid structure of the cell were found in the 3% oxygen. The control and hypoxia cells were also stained with the annexin V-fluorescein isothiocyanate (annexin V-FITC). Fluorescence microscope reveals astrocyte cells after hypoxia showed higher expression of nuclei but not in control. Merging PI and FITC showed the differences of nuclei expression between the control and hypoxia. In the molecular analysis, there were significant changes of GFAP, HIF-1α and Bcl-2 in hypoxia exposed cells when compared to the control group. Conclusion Cells that were exposed to hypoxia (3% oxygen for 15 min) clearly showed damage. General view of human hippocampal astrocyte genomic response to hypoxia was obtained.
Collapse
Affiliation(s)
- Nurul Atikah Nor Nazli
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia.,Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Sangu Muthuraju
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia.,Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Farizan Ahmad
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia.,Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Abdul Aziz Mohamed Yusoff
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia.,Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Hasnan Jaafar
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Shaharum Shamsuddin
- Department of Biomedicine, School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Jafri Malin Abdullah
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia.,Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| |
Collapse
|
5
|
Golovynska I, Golovynskyi S, Qu J. Comparing the Impact of NIR, Visible and UV Light on ROS Upregulation via Photoacceptors of Mitochondrial Complexes in Normal, Immune and Cancer Cells. Photochem Photobiol 2023; 99:106-119. [PMID: 35689798 DOI: 10.1111/php.13661] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 06/06/2022] [Indexed: 01/25/2023]
Abstract
The effect of UV/visible/NIR light (380/450/530/650/808/1064 nm) on ROS generation, mitochondrial activity and viability is experimentally compared in human neuroblastoma cancer cells. The absorption of photons by mitochondrial photoacceptors in Complexes I, III and IV is in detail investigated by sequential blocking with selective pharmaceutical blockers. Complex I absorbs UV/blue light by heme P450, resulting in a very high rate (14 times) of ROS generation leading to cell death. Complex III absorbs green light, by cytochromes b, c1 and c, and possesses less ability for ROS production (seven times), so that only irradiation lower than 10 mW cm-2 causes an increase in cell viability. Complex IV is well-known as the primary photoacceptor for red/NIR light. Light of 650/808 nm at 10-100 mW cm-2 generates a physiological ROS level about 20% of a basal concentration, which enhance mitochondrial activity and cell survival, while 1064 nm light does not show any distinguished effects. Further, ROS generation induced by low-intensity red/NIR light is compared in neurons, immune and cancer cells. Red light seems to more rapidly stimulate ROS production, mitochondrial activity and cell survival than 808 nm. At the same time, different cell lines demonstrate slightly various rates of ROS generation, peculiar to their cellular physiology.
Collapse
Affiliation(s)
- Iuliia Golovynska
- Center for Biomedical Optics and Photonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Sergii Golovynskyi
- Center for Biomedical Optics and Photonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Junle Qu
- Center for Biomedical Optics and Photonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
6
|
Duan J, Zhang F, Lu M, Deng W, Zhai Y, Zhao Y, He L, Bai Z, Wang Y, Zhang C. Swietenine and swietenolide from Swietenia macrophylla king improve insulin secretion and attenuate apoptosis in H 2 O 2 induced INS-1 cells. ENVIRONMENTAL TOXICOLOGY 2022; 37:2780-2792. [PMID: 36214338 DOI: 10.1002/tox.23636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/25/2022] [Accepted: 07/21/2022] [Indexed: 06/16/2023]
Abstract
Oxidative stress is an important factor that causes pancreatic β-cell dysfunction leading to the development and aggravation of diabetes. Swietenine (Stn) and swietenolide (Std) were isolated from the fruits of Swietenia macrophylla King and had the potential effects on treatment and prevention of diabetes. The aim of this study is to investigate the effects of Stn and Std on insulin secretion and apoptosis in H2 O2 induced insulinoma cell line (INS-1) cells. In the present study, INS-1 cells were treated with 300 μM H2 O2 for 4 h to establish the oxidative damage model. Cell apoptosis, insulin secretion, reactive oxygen species (ROS), superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione (GSH) levels, and Caspase-3 enzyme activity were measured via corresponding methods. Finally, pancreatic duodenal home box factor-1 (PDX-1), B cell lymphoma-2 (Bcl-2), and Bax protein expression were detected by western blot. Experimental results showed that Stn and Std could significantly improve the INS-1 cell viability, increase the secretion of insulin and reduce the ROS level in H2 O2 induced INS-1 cells. Furthermore, the SOD and GSH levels increased, and the MDA levels decreased compared with the model group after Stn and Std treatment. In addition, after treated with Stn and Std, cell apoptosis was improved, and the activity of Caspase 3 was also significantly inhibited. Meanwhile, Western blot results showed that Stn and Std could up-regulate the expression of PDX-1 protein, and affect the cell apoptosis pathway by up-regulating the expression of Bcl-2 protein and down-regulating the expression of Bax protein. In conclusion, Stn and Std can signifcantly improve the insulin secretion function, protect oxidative stress injury, and reduce apoptosis in H2 O2 induced INS-1 cells, which provides a research basis for Stn and Std to be new drug candidates for the treatment and prevention of diabetes.
Collapse
Affiliation(s)
- Jingyu Duan
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Fang Zhang
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, China
| | - Mengyuan Lu
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Wenhao Deng
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yutong Zhai
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yangqi Zhao
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Liangliang He
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Zhonghui Bai
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yongjian Wang
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Chunping Zhang
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
7
|
Effects of different protocols of defocused high-power laser on the viability and migration of myoblasts-a comparative in vitro study. Lasers Med Sci 2022; 37:3571-3581. [PMID: 36125659 DOI: 10.1007/s10103-022-03636-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 08/22/2022] [Indexed: 10/14/2022]
Abstract
The aim of the present study was to analyze for the first time the effect of photobiomodulation therapy (PBMT) using defocused high-power laser (DHPL) in myoblast cell line C2C12 viability and migration and compare them with low-power laser therapy. Cells were divided into 9 groups: Sham irradiation 10% fetal bovine serum (FBS); Sham irradiation 5%FBS; low-power laser 0.1 W; DHPL 810 1 W; DHPL 810 2 W; DHPL 980 1 W; DHPL 980 2 W; DHPL dual 1 W; DHPL dual 2 W. To simulate stress conditions, all groups exposed to irradiation were maintained in DMEM 5% FBS. The impact of therapies on cell viability was assessed through sulforhodamine B assay and on cells migration through scratch assays and time-lapse. Myoblast viability was not modified by PBMT protocols. All PBMT protocols were able to accelerate the scratch closure after 6 and 18 h of the first irradiation (p < 0.001). Also, an increase in migration speed, with a more pronounced effect of DHPL laser using dual-wavelength protocol with 2 W was observed (p < 0.001). In conclusion, the diverse PBMT protocols used in this study accelerated the C2C12 myoblasts migration, with 2-W dual-wavelength outstanding as the most effective protocol tested. Benefits from treating muscle injuries with PBMT appear to be related to its capacity to induce cell migration without notable impact on cell viability.
Collapse
|
8
|
Photobiomodulation Using Different Infrared Light Sources Promotes Muscle Precursor Cells Migration and Proliferation. PHOTONICS 2022. [DOI: 10.3390/photonics9070469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Photobiomodulation (PBM) has demonstrated positive effects on the muscle repair process. The aim of the study was to evaluate the effects of infrared PBM using different light sources—low-level laser (LLL) at 780 nm (40 or 70 mW, 10 J/cm2, 0.4 J) or LED at 850 nm (40 or 70 mW, 0.13 J/cm2, 0.4 J)—and dosimetric parameters on the proliferation and migration of muscle cells. The results showed that LLL 40 mW and 70 mW, with the same radiation exposure, led to an increase in proliferation after 24 h, but no differences at 48 and 72 h. Cells irradiated with LED 70 mW exhibited an increase in proliferation in comparison to the control group and 40mW after 24 and 48 h, but not at 72 h. Moreover, cell migration was greater in comparison to the control after 6 and 24 h, and no differences were found at 12 h when LLL was used with an output power of 70 mW. Furthermore, no differences were found at 6 and 12 h with the 70 mW output power-LED, but an increase was observed in the cell migration after 24 h. In conclusion, PBM using different light sources and dosimetric parameters was able to modulate the proliferation of C2C12 myoblasts, but only PBM at 70 mW was able to modulate the migration of these cells.
Collapse
|
9
|
Effect of low power lasers on prokaryotic and eukaryotic cells under different stress condition: a review of the literature. Lasers Med Sci 2021; 36:1139-1150. [PMID: 33387079 DOI: 10.1007/s10103-020-03196-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022]
Abstract
Radiations emitted by low power radiation sources have been applied for therapeutic proposals due to their capacity of inactivating bacteria and cancer cells in photodynamic therapy and stimulating tissue cells in photobiomodulation. Exposure to these radiations could increase cell proliferation in bacterial cultures under stressful conditions. Cells in infected or not infected tissue injuries are also under stressful conditions and photobiomodulation-induced regenerative effect on tissue injuries could be related to effects on stressed cells. The understanding of the effects on cells under stressful conditions could render therapies based on photobiomodulation more efficient as well as expand them. Thus, the objective of this review was to update the studies reporting photobiomodulation on prokaryotic and eukaryotic cells under stress conditions. Exposure to radiations emitted by low power radiation sources could induce adaptive responses enabling cells to survive in stressful conditions, such as those experienced by bacteria in their host and by eukaryotic cells in injured tissues. Adaptive responses could be the basis for clinical photobiomodulation applications, either considering their contraindication for treatment of infected injuries or indication for treatment of injuries, inflammatory process resolution, or tissue regeneration.
Collapse
|
10
|
Bidirectional myofiber transition through altering the photobiomodulation condition. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 212:112041. [PMID: 33002778 DOI: 10.1016/j.jphotobiol.2020.112041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 08/09/2020] [Accepted: 09/22/2020] [Indexed: 11/20/2022]
Abstract
Despite remarkable advancements in modern medicine, muscular atrophy remains as an unsolved problem. It is well known that pathological characteristics of different atrophy types could vary according to the pathophysiological causes. In fact, the lesion of atrophy is not always homogenously distributed but often predominantly evident in either fast or slow myofibers. As the focalization of the atrophic lesions, the existence and the functional impairment of each fast and slow progenitor/satellite cell (SC) are suspected though there are still controversies about this hypothesis. In this study, we isolated Pax7 positive (Pax7+ve) SCs from the tibia anterior (fast) and soleus (slow) muscles respectively and successfully demonstrated, for the first time, the difference between optimal exposure durations of photobiomodulation (PBM) which was known as low level laser irradiation (LLLI) in promoting proliferation of Pax7+ve SC which were acquired from fast and slow muscles respectively. Moreover, a hypertrophy-accompanied bidirectional change in myofiber composition with neuromuscular junction alteration, either from slow to fast or fast to slow, were achieved by applying different PBM durations. Simultaneously, PBM exhibited a synergistic effect with muscle exercise on the increase in myofiber size. Our data suggested the existence of at least two different populations of Pax7+ve SC which possess distinct sensitivities towards PBM. As our data revealed the capability of PBM in bidirectional changes of skeletal muscle composition and neuromuscular junction constitution thereby strengthen its contractility through altering the irradiation condition, we believe PBM showed the potential to be as a promising clinical treatment for muscular atrophy.
Collapse
|
11
|
Sarveazad A, Babahajian A, Yari A, Rayner CK, Mokhtare M, Babaei-Ghazani A, Agah S, Mahjoubi B, Shamseddin J, Yousefifard M. Combination of laser and human adipose-derived stem cells in repair of rabbit anal sphincter injury: a new therapeutic approach. Stem Cell Res Ther 2019; 10:367. [PMID: 31791407 PMCID: PMC6889595 DOI: 10.1186/s13287-019-1477-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 12/20/2022] Open
Abstract
Background Anal sphincter injury leads to fecal incontinence. Based on the regenerative capability of laser and human adipose-derived stem cells (hADSCs), this study was designed to assess the effects of co-application of these therapies on anal sphincter recovery after injury. Design Male rabbits were assigned to equal groups (n = 7) including control, sphincterotomy, sphincterotomy treated with laser (660 nm, 90 s, immediately after sphincterotomy, daily, 14 days), hADSCs (2 × 106 hADSCs injected into injured area of the sphincter immediately after sphincterotomy), and laser + hADSCs. Ninety days after sphincterotomy, manometry and electromyography were performed, sphincter collagen content was evaluated, and Ki67, myosin heavy chain (MHC), skeletal muscle alpha-actin (ACTA1), vascular endothelial growth factor A (VEGFA), and vimentin mRNA gene expression were assessed. Results The laser + hADSCs group had a higher resting pressure compared with the sphincterotomy (p < 0.0001), laser (p < 0.0001), and hADSCs (p = 0.04) groups. Maximum squeeze pressure was improved in all treated animals compared with the sphincterotomized animals (p < 0.0001), without a significant difference between treatments (p > 0.05). In the laser + hADSCs group, motor unit numbers were higher than those in the laser group (p < 0.0001) but did not differ from the hADSCs group (p = 0.075). Sphincterotomy increased collagen content, but the muscle content (p = 0.36) and collagen content (p = 0.37) were not significantly different between the laser + hADSCs and control groups. Laser + hADSCs increased ACTA1 (p = 0.001) and MHC (p < 0.0001) gene expression compared with laser or hADSCs alone and was associated with increased VEGFA (p = 0.009) and Ki67 mRNA expression (p = 0.01) and decreased vimentin mRNA expression (p < 0.0001) compared with laser. Conclusion The combination of laser and hADSCs appears more effective than either treatment alone for promoting myogenesis, angiogenesis, and functional recovery after anal sphincterotomy.
Collapse
Affiliation(s)
- Arash Sarveazad
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Asrin Babahajian
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Abazar Yari
- Department of Anatomy, Faculty of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Chris K Rayner
- Discipline of Medicine, University of Adelaide, Adelaide, SA, Australia.,Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, SA, Australia
| | - Marjan Mokhtare
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Arash Babaei-Ghazani
- Neuromusculoskeletal Research Center, Department of Physical Medicine and Rehabilitation, Iran University of Medical Sciences, Tehran, Iran
| | - Shahram Agah
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Bahar Mahjoubi
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Jebreil Shamseddin
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mahmoud Yousefifard
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
He J, Zhang X, Lian C, Wu J, Fang Y, Ye X. Exendin-4 prevented pancreatic beta cells from apoptosis in (Type I) diabetic mouse via keap1-Nrf2 signaling. Exp Biol Med (Maywood) 2019; 244:28-35. [PMID: 30638057 PMCID: PMC6362529 DOI: 10.1177/1535370218823549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 12/05/2018] [Indexed: 01/11/2023] Open
Abstract
IMPACT STATEMENT Nrf2 is an essential part of the defense mechanism of vertebrates and protects them from surrounding stress via participation in stimulated expression of detoxification as well as antioxidant enzymes. It also exerts a role in defending hosts from different stress in the environment, including reactive oxygen species. Our study investigates the role of exendin-4 on Nrf2 pathway as well as cell death in pancreatic β-cell and in non-obese diabetic mice. Result of study indicates exendin-4 mediates activation of Keap1-Nrf2-ARE pathway and may serve as a potential agent to treat type I diabetes mellitus. In our research, we observed excessive reactive oxygen species production, low level of cell death, and PKC phosphorylation on exendine-4 treatment. Nrf2 knockdown led to suppression of reactive oxygen species generation as well as increasing apoptosis. Moreover, siRNA-mediated Nrf2 down-regulation attenuated the suppressive effect of exendin-4 in pancreatic β-cell viability, via modulating apoptosis promoting- and counteracting-proteins, Bax, and Bcl-2.
Collapse
Affiliation(s)
- Jinshui He
- Department of Pediatrics, Affiliated Hospital of Zhangzhou, Fujian Medical University, Zhangzhou 363000, China
| | - Xu Zhang
- Department of Pediatrics, Affiliated Hospital of Zhangzhou, Fujian Medical University, Zhangzhou 363000, China
| | - Chaowei Lian
- Department of Pediatrics, Affiliated Hospital of Zhangzhou, Fujian Medical University, Zhangzhou 363000, China
| | - Jinzhi Wu
- Department of endocrinology, Affiliated Hospital of Zhangzhou, Fujian Medical University, Zhangzhou 363000, China
| | - Yanling Fang
- Department of Pediatrics, Affiliated Hospital of Zhangzhou, Fujian Medical University, Zhangzhou 363000, China
| | - Xiaoling Ye
- Department of Pediatrics, Affiliated Hospital of Zhangzhou, Fujian Medical University, Zhangzhou 363000, China
| |
Collapse
|
13
|
He J, Zhang X, Lian C, Wu J, Fang Y, Ye X. KEAP1/NRF2 axis regulates H 2O 2-induced apoptosis of pancreatic β-cells. Gene 2018; 691:8-17. [PMID: 30594636 DOI: 10.1016/j.gene.2018.11.100] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 01/06/2023]
Abstract
In human pancreatic β-cells, oxidative stress and cellular injures can be induced by H2O2 treatment. The KEAP1/NRF2 axis is a key antioxidant signaling pathway. The present study attempted to elucidate the mechanism by which the KEAP1/NRF2 axis mediates oxidative stress-induced death in pancreatic β-cells. Our data showed that H2O2 treatment obviously induced the apoptosis of β-cells. Further experiments demonstrated that KEAP1 expression was downregulated in H2O2-treated pancreatic β-cells and this change correlated with increase in the cellular abundance and nuclear translocation of NRF2. The restoration of KEAP1 expression in cells resulted in a recovery of cell proliferation and inhibition of apoptosis. Furthermore, we found that KEAP1 overexpression negatively regulated the abundance of NRF2, subsequently causing decreased antioxidant response element activation. This led to HO-1 protein downregulation in H2O2-treated human pancreatic β-cells, which was also observed in NRF2-silenced β-cells. Conversely, the silencing of KEAP1 led to NRF2 upregulation and inhibited ARE and HO-1 signaling in pancreatic β-cells. The increase in the abundance of NRF2 following treatment with H2O2 drastically elevated the production of BAX, FAS, FAS-L, CASP-3, and CASP-9, and this change was reversed by KEAP1 overexpression or NRF2 silencing. Taken together, H2O2 treatment activated KEAP1/NRF2 signaling to promote the production of pro-apoptotic factors and consequently led to the apoptosis of human pancreatic β-cells.
Collapse
Affiliation(s)
- Jinshui He
- Department of Pediatrics, Affiliated Hospital of Zhangzhou, Fujian Medical University, Zhangzhou, Fujian, China
| | - Xu Zhang
- Department of Pediatrics, Affiliated Hospital of Zhangzhou, Fujian Medical University, Zhangzhou, Fujian, China
| | - Chaowei Lian
- Department of Pediatrics, Affiliated Hospital of Zhangzhou, Fujian Medical University, Zhangzhou, Fujian, China
| | - Jinzhi Wu
- Department of Endocrinology, Affiliated Hospital of Zhangzhou, Fujian Medical University, Zhangzhou, Fujian, China
| | - Yanling Fang
- Department of Pediatrics, Affiliated Hospital of Zhangzhou, Fujian Medical University, Zhangzhou, Fujian, China
| | - Xiaoling Ye
- Department of Pediatrics, Affiliated Hospital of Zhangzhou, Fujian Medical University, Zhangzhou, Fujian, China.
| |
Collapse
|
14
|
da Silva Neto Trajano LA, Trajano ETL, da Silva Sergio LP, Teixeira AF, Mencalha AL, Stumbo AC, de Souza da Fonseca A. Photobiomodulation effects on mRNA levels from genomic and chromosome stabilization genes in injured muscle. Lasers Med Sci 2018; 33:1513-1519. [DOI: 10.1007/s10103-018-2510-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/17/2018] [Indexed: 01/09/2023]
|
15
|
Chaweewannakorn C, Tsuchiya M, Koide M, Hatakeyama H, Tanaka Y, Yoshida S, Sugawara S, Hagiwara Y, Sasaki K, Kanzaki M. Roles of IL-1α/β in regeneration of cardiotoxin-injured muscle and satellite cell function. Am J Physiol Regul Integr Comp Physiol 2018. [PMID: 29513560 DOI: 10.1152/ajpregu.00310.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Skeletal muscle regeneration after injury is a complex process involving interactions between inflammatory microenvironments and satellite cells. Interleukin (IL)-1 is a key mediator of inflammatory responses and exerts pleiotropic impacts on various cell types. Thus, we aimed to investigate the role of IL-1 during skeletal muscle regeneration. We herein show that IL-1α/β-double knockout (IL-1KO) mice exhibit delayed muscle regeneration after cardiotoxin (CTX) injection, characterized by delayed infiltrations of immune cells accompanied by suppressed local production of proinflammatory factors including IL-6 and delayed increase of paired box 7 (PAX7)-positive satellite cells postinjury compared with those of wild-type (WT) mice. A series of in vitro experiments using satellite cells obtained from the IL-1KO mice unexpectedly revealed that IL-1KO myoblasts have impairments in terms of both proliferation and differentiation, both of which were reversed by exogenous IL-1β administration in culture. Intriguingly, the delay in myogenesis was not attributable to the myogenic transcriptional program since MyoD and myogenin were highly upregulated in IL-1KO cells, instead appearing, at least in part, to be due to dysregulation of cellular fusion events, possibly resulting from aberrant actin regulatory systems. We conclude that IL-1 plays a positive role in muscle regeneration by coordinating the initial interactions among inflammatory microenvironments and satellite cells. Our findings also provide compelling evidence that IL-1 is intimately engaged in regulating the fundamental function of myocytes.
Collapse
Affiliation(s)
- Chayanit Chaweewannakorn
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry , Sendai , Japan.,Tohoku University Graduate School of Biomedical Engineering , Sendai , Japan
| | | | - Masashi Koide
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine , Sendai , Japan
| | - Hiroyasu Hatakeyama
- Tohoku University Graduate School of Biomedical Engineering , Sendai , Japan.,Frontier Research Institute for Interdisciplinary Science, Tohoku University , Sendai , Japan
| | - Yukinori Tanaka
- Division of Oral Immunology, Tohoku University Graduate School of Dentistry , Sendai , Japan
| | - Shinichirou Yoshida
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine , Sendai , Japan
| | - Shunji Sugawara
- Division of Oral Immunology, Tohoku University Graduate School of Dentistry , Sendai , Japan
| | - Yoshihiro Hagiwara
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine , Sendai , Japan
| | - Keiichi Sasaki
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry , Sendai , Japan
| | - Makoto Kanzaki
- Tohoku University Graduate School of Biomedical Engineering , Sendai , Japan
| |
Collapse
|
16
|
Trajano LADSN, Sergio LPDS, Stumbo AC, Mencalha AL, Fonseca ADSD. Low power lasers on genomic stability. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 180:186-197. [DOI: 10.1016/j.jphotobiol.2018.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/02/2018] [Accepted: 02/07/2018] [Indexed: 12/11/2022]
|
17
|
Blázquez-Castro A. Direct 1O 2 optical excitation: A tool for redox biology. Redox Biol 2017; 13:39-59. [PMID: 28570948 PMCID: PMC5451181 DOI: 10.1016/j.redox.2017.05.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 04/30/2017] [Accepted: 05/20/2017] [Indexed: 12/28/2022] Open
Abstract
Molecular oxygen (O2) displays very interesting properties. Its first excited state, commonly known as singlet oxygen (1O2), is one of the so-called Reactive Oxygen Species (ROS). It has been implicated in many redox processes in biological systems. For many decades its role has been that of a deleterious chemical species, although very positive clinical applications in the Photodynamic Therapy of cancer (PDT) have been reported. More recently, many ROS, and also 1O2, are in the spotlight because of their role in physiological signaling, like cell proliferation or tissue regeneration. However, there are methodological shortcomings to properly assess the role of 1O2 in redox biology with classical generation procedures. In this review the direct optical excitation of O2 to produce 1O2 will be introduced, in order to present its main advantages and drawbacks for biological studies. This photonic approach can provide with many interesting possibilities to understand and put to use ROS in redox signaling and in the biomedical field.
Collapse
Affiliation(s)
- Alfonso Blázquez-Castro
- Department of Physics of Materials, Faculty of Sciences, Autonomous University of Madrid, Madrid, Spain; Formerly at Aarhus Institute of Advanced Studies (AIAS)/Department of Chemistry, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
18
|
Lin J, Jing L, Zhu H, Dong FS. Fundamental research on the action mechanism of the 800 nm semiconductor laser on skin blackheads and coarse pores. Exp Ther Med 2017; 13:235-241. [PMID: 28428827 PMCID: PMC5396829 DOI: 10.3892/etm.2016.3937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 11/09/2016] [Indexed: 01/17/2023] Open
Abstract
The aim of the study was to determine the mechanism of action of the 800 nm semiconductor laser on skin blackheads and coarse pores. A total of 24 healthy purebred short-haired male guinea pigs, weighing 350-400 g, were selected and smeared with 0.5 ml coal tar suspension evenly by injector once daily. Treatment was continued for 14 days to form an experimental area of 8×3 cm on the back of the guinea pigs. The animals were divided into the following groups: Normal control group (NC), low-dose laser treatment group (L-LS), high-dose laser treatment group (H-LS), and Q-switched Nd:YAG treatment group (QC). Samples were extracted 1, 7 and 14 days after surgery and hematoxylin and eosin staining was used to identify the following: Epidermis, dermis, sebaceous gland change and hair follicle damage; the expression of proliferating cell nuclear antigen (PCNA) of sebaceous gland cells using immunohistochemistry; sebaceous gland cell apoptosis using TUNEL; and the protein expression of caspase-3, Bax and Bcl-2 using western blot analysis. With the extension of time, we observed inflammatory cell infiltration, an increase in hair follicle distortion and necrosis of the surrounding hair follicles. The expression levels of PCNA of the L-LS, H-LS and QC groups decreased with time. Regarding the respective time points, the NC group was highest, the L-LS and H-LS groups were next highest and the H-LS group was lowest. The difference was statistically significant (P<0.05). The apoptotic rate of the L-LS, H-LS and QC groups increased with time. With regard to the respective time points, the NC group was lowest, the L-LS and QC groups were next lowest and the H-LS group was highest. The difference was statistically significant (P<0.05). The protein expression of caspase-3, Bax and Bcl-2 of the L-LS, H-LS and QC groups increased with time. Regarding the respective time points, caspase-3 and Bax protein expression of the NC group was lowest, the L-LS and QC groups were next lowest and the H-LS group was highest. Bcl-2 protein expression of the NC group was highest, protein expression of the NC group was next highest and the H-LS group was lowest. The difference was statistically significant (P<0.05). In conclusion, the low-dose 800 nm semiconductor laser is an effective treatment on skin blackheads and coarse pores, and promotes hair follicle cell apoptosis without reducing the expression of PCNA.
Collapse
Affiliation(s)
- Jie Lin
- Department of Surgery, Hebei Medical University,
Shijiazhuang, Hebei 050017, P.R. China
| | - Li Jing
- Department of Oncology, The Fourth Hospital of
Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Hao Zhu
- Department of Medical Cosmetology, Hebei General
Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Fu-Sheng Dong
- Department of Oral and Maxillofacial Surgery,
Stomatological Hospital of Hebei Medical University, Shijiazhuang, Hebei 050017, P.R.
China
| |
Collapse
|
19
|
CO2 laser increases the regenerative capacity of human adipose-derived stem cells by a mechanism involving the redox state and enhanced secretion of pro-angiogenic molecules. Lasers Med Sci 2016; 32:117-127. [DOI: 10.1007/s10103-016-2093-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 09/29/2016] [Indexed: 01/08/2023]
|
20
|
da Silva Neto Trajano LA, Stumbo AC, da Silva CL, Mencalha AL, Fonseca AS. Low-level infrared laser modulates muscle repair and chromosome stabilization genes in myoblasts. Lasers Med Sci 2016; 31:1161-7. [PMID: 27220530 DOI: 10.1007/s10103-016-1956-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/02/2016] [Indexed: 10/21/2022]
Abstract
Infrared laser therapy is used for skeletal muscle repair based on its biostimulative effect on satellite cells. However, shortening of telomere length limits regenerative potential in satellite cells, which occurs after each cell division cycle. Also, laser therapy could be more effective on non-physiologic tissues. This study evaluated low-level infrared laser exposure effects on mRNA expression from muscle injury repair and telomere stabilization genes in myoblasts in normal and stressful conditions. Laser fluences were those used in clinical protocols. C2C12 myoblast cultures were exposed to low-level infrared laser (10, 35, and 70 J/cm(2)) in standard or normal (10 %) and reduced (2 %) fetal bovine serum concentrations; total RNA was extracted for mRNA expression evaluation from muscle injury repair (MyoD and Pax7) and chromosome stabilization (TRF1 and TRF2) genes by real time quantitative polymerization chain reaction. Data show that low-level infrared laser increases the expression of MyoD and Pax7 in 10 J/cm(2) fluence, TRF1 expression in all fluences, and TRF2 expression in 70 J/cm(2) fluence in both 10 and 2 % fetal bovine serum. Low-level infrared laser increases mRNA expression from genes related to muscle repair and telomere stabilization in myoblasts in standard or normal and stressful conditions.
Collapse
Affiliation(s)
- Larissa Alexsandra da Silva Neto Trajano
- Laboratório de Pesquisa em Células Tronco, Departamento de Histologia e Embriologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87, fundos, Vila Isabel, Rio de Janeiro, 20551030, Brazil
| | - Ana Carolina Stumbo
- Laboratório de Pesquisa em Células Tronco, Departamento de Histologia e Embriologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87, fundos, Vila Isabel, Rio de Janeiro, 20551030, Brazil
| | - Camila Luna da Silva
- Laboratório de Pesquisa em Células Tronco, Departamento de Histologia e Embriologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87, fundos, Vila Isabel, Rio de Janeiro, 20551030, Brazil
| | - Andre Luiz Mencalha
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87, fundos, 4° andar, Vila Isabel, Rio de Janeiro, 20551030, Brazil
| | - Adenilson S Fonseca
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87, fundos, 4° andar, Vila Isabel, Rio de Janeiro, 20551030, Brazil. .,Departamento de Ciências Fisiológicas, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rua Frei Caneca, 94, Rio de Janeiro, 20211040, Brazil.
| |
Collapse
|