1
|
Mitsuhashi A, Nishioka Y. Fibrocytes in tumor microenvironment: Identification of their fraction and novel therapeutic strategy. Cancer Sci 2025; 116:21-28. [PMID: 39492802 PMCID: PMC11711040 DOI: 10.1111/cas.16385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/06/2024] [Accepted: 10/17/2024] [Indexed: 11/05/2024] Open
Abstract
Fibrocytes were identified as bone marrow-derived myeloid cells that also have fibroblast-like phenotypes, such as ECM production and differentiation to myofibroblasts. Although fibrocytes are known to contribute to various types of tissue fibrosis, their functions in the tumor microenvironment are unclear. We focused on fibrocytes as pivotal regulators of tumor progression. Our previous studies have indicated that fibrocytes induce angiogenesis and cancer stem cell-like phenotypes by secreting various growth factors. In contrast, immune checkpoint inhibitor (ICI)-treated fibrocytes demonstrated antigen-presenting capacity and enhanced antitumor T cell proliferation. Taken together, these findings indicate that fibrocytes have multiple effects on tumor progression. However, the detailed phenotypes of fibrocytes have not been fully elucidated because the isolation of distinct fibrocyte clusters has not been achieved without culturing in ECM-coated conditions or intracellular staining of ECM. The development of single-cell analyses partially resolves these problems. Single-cell RNA sequences in CD45+ immune cells from tumor tissue identified ECM-expressing myeloid-like cells as distinct fibrocyte clusters. In addition, these findings enabled the isolation of tumor-infiltrating fibrocytes as CD45+CD34+ cells. These tumor-infiltrating fibrocytes demonstrated both antigen-presenting ability and differentiation into myofibroblast-like cancer-associated fibroblasts. Considering these functions of fibrocytes in tumor progression, molecular-targeting agents for the migration, activity, and differentiation of fibrocytes are promising therapeutic strategies. Furthermore, identification of specific cell surface markers and master regulators of fibrocytes will advance novel fibrocyte-targeting therapies. In this review, we discuss the multiple roles of tumor-infiltrating fibrocytes and novel cancer therapeutic strategies.
Collapse
Affiliation(s)
- Atsushi Mitsuhashi
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical SciencesTokushima UniversityTokushimaJapan
| | - Yasuhiko Nishioka
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical SciencesTokushima UniversityTokushimaJapan
- Department of Community Medicine for Rheumatology, Graduate School of Biomedical SciencesTokushima UniversityTokushimaJapan
| |
Collapse
|
2
|
Zeng Y, Zhang R, Jiang Y, Li D, Chen L, Dong G, Zhang R, Niu Y, Chen W, Chen S. Interactions between fibroblasts and monocyte-derived cells in chronic lung injuries induced by real-ambient particulate matter exposure. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 899:503807. [PMID: 39326935 DOI: 10.1016/j.mrgentox.2024.503807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 09/28/2024]
Abstract
Long-term exposure to fine particulate matter (PM2.5) can lead to chronic lung injury, including inflammation, idiopathic pulmonary fibrosis, and cancer. Mesenchymal cells, such as fibroblasts, myeloid-derived suppressor cells (MDSCs), and interstitial macrophages (IMs), contribute to immune regulation in lung, yet their diversity and functions upon long-term exposure to particulate matter (PM) remain inadequately characterized. In this study, we conducted a 16-week real-ambient PM exposure experiment on C57BL/6 J male mice in Shijiazhuang, China. We used single-cell RNA sequencing to analyze the cellular and molecular changes in lung tissues. Notably, we revealed a significant increase in specific fibroblast (ATX+, Col5a1+Meg3+, universal fibroblasts) and monocyte-derived cell subpopulations (monocytic-MDSCs (M-MDSCs), Lyve1loMHC-Ⅱhi IMs, Lyve1hiMHC-Ⅱlo IMs) that exhibited pro-inflammatory and pro-fibrotic functions. These cell subpopulations engaged in immunosuppressive signaling pathways and interactions with various cytokines, shaping a pulmonary microenvironment similar to those associated with cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs). This altered immune environment may promote the development of pulmonary fibrosis caused by PM exposure, underscoring the intricate roles of mesenchymal cells in chronic lung injury and highlighting the cancer-causing potential of PM2.5 exposure.
Collapse
Affiliation(s)
- Youjin Zeng
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Rui Zhang
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yue Jiang
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Daochuan Li
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Liping Chen
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Guanghui Dong
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Yujie Niu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Wen Chen
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shen Chen
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
3
|
Ramos C, Gerakopoulos V, Oehler R. Metastasis-associated fibroblasts in peritoneal surface malignancies. Br J Cancer 2024; 131:407-419. [PMID: 38783165 PMCID: PMC11300623 DOI: 10.1038/s41416-024-02717-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Over decades, peritoneal surface malignancies (PSMs) have been associated with limited treatment options and poor prognosis. However, advancements in perioperative systemic chemotherapy, cytoreductive surgery (CRS), and hyperthermic intraperitoneal chemotherapy (HIPEC) have significantly improved clinical outcomes. PSMs predominantly result from the spread of intra-abdominal neoplasia, which then form secondary peritoneal metastases. Colorectal, ovarian, and gastric cancers are the most common contributors. Despite diverse primary origins, the uniqueness of the peritoneum microenvironment shapes the common features of PSMs. Peritoneal metastization involves complex interactions between tumour cells and the peritoneal microenvironment. Fibroblasts play a crucial role, contributing to tumour development, progression, and therapy resistance. Peritoneal metastasis-associated fibroblasts (MAFs) in PSMs exhibit high heterogeneity. Single-cell RNA sequencing technology has revealed that immune-regulatory cancer-associated fibroblasts (iCAFs) seem to be the most prevalent subtype in PSMs. In addition, other major subtypes as myofibroblastic CAFs (myCAFs) and matrix CAFs (mCAFs) were frequently observed across PSMs studies. Peritoneal MAFs are suggested to originate from mesothelial cells, submesothelial fibroblasts, pericytes, endothelial cells, and omental-resident cells. This plasticity and heterogeneity of CAFs contribute to the complex microenvironment in PSMs, impacting treatment responses. Understanding these interactions is crucial for developing targeted and local therapies to improve PSMs patient outcomes.
Collapse
Affiliation(s)
- Cristiano Ramos
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria
| | - Vasileios Gerakopoulos
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria
| | - Rudolf Oehler
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
4
|
Kuziel G, Moore BN, Haugstad GP, Xiong Y, Williams AE, Arendt LM. Alterations in the mammary gland and tumor microenvironment of formerly obese mice. BMC Cancer 2023; 23:1183. [PMID: 38041006 PMCID: PMC10693119 DOI: 10.1186/s12885-023-11688-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Obesity is a risk factor for breast cancer, and women with obesity that develop breast cancer have a worsened prognosis. Within the mammary gland, obesity causes chronic, macrophage-driven inflammation and adipose tissue fibrosis. Weight loss is a recommended intervention to resolve obesity, but the impact of weight loss on the mammary gland microenvironment and in tumors has not been well identified. METHODS To examine the effects of weight loss following obesity, mice were fed a high-fat diet for 16 weeks to induce obesity, then switched to a low-fat diet for 6 weeks. We examined changes in immune cells, including fibrocytes, which are myeloid lineage cells that have attributes of both macrophages and myofibroblasts, and collagen deposition within the mammary glands of non-tumor-bearing mice and within the tumors of mice that were transplanted with estrogen receptor alpha positive TC2 tumor cells. RESULTS In formerly obese mice, we observed reduced numbers of crown-like structures and fibrocytes in mammary glands, while collagen deposition was not resolved with weight loss. Following transplant of TC2 tumor cells into the mammary glands of lean, obese, and formerly obese mice, diminished collagen deposition and cancer-associated fibroblasts were observed in tumors from formerly obese mice compared to obese mice. Within tumors of obese mice, increased myeloid-derived suppressor cells and diminished CD8+ T cells were identified, while the microenvironment of tumors of formerly obese mice were more similar to tumors from lean mice. When TC2 tumor cells were mixed with CD11b+CD34+ myeloid progenitor cells, which are the cells of origin for fibrocytes, and transplanted into mammary glands of lean and obese mice, collagen deposition within the tumors of both lean and obese was significantly greater than when tumor cells were mixed with CD11b+CD34- monocytes or total CD45+ immune cells. CONCLUSIONS Overall, these studies demonstrate that weight loss resolved some of the microenvironmental conditions within the mammary gland that may contribute to tumor progression. Additionally, fibrocytes may contribute to early collagen deposition in mammary tumors of obese mice leading to the growth of desmoplastic tumors.
Collapse
Affiliation(s)
- Genevra Kuziel
- Cancer Biology Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Brittney N Moore
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Grace P Haugstad
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Yue Xiong
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Abbey E Williams
- Comparative Biomedical Sciences Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Lisa M Arendt
- Cancer Biology Program, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Comparative Biomedical Sciences Program, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- School of Veterinary Medicine, 2015 Linden Drive Rm 4354A, Madison, WI, 53706, USA.
| |
Collapse
|
5
|
Ma X, Geng Z, Wang S, Yu Z, Liu T, Guan S, Du S, Zhu C. The driving mechanism and targeting value of mimicry between vascular endothelial cells and tumor cells in tumor progression. Biomed Pharmacother 2023; 165:115029. [PMID: 37343434 DOI: 10.1016/j.biopha.2023.115029] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023] Open
Abstract
The difficulty and poor prognosis of malignant tumor have always been a difficult problem to be solved. The internal components of solid tumor are complex, including tumor cells, stromal cells and immune cells, which play an important role in tumor proliferation, migration, metastasis and drug resistance. Hence, targeting of only the tumor cells will not likely improve survival. Various studies have reported that tumor cells and endothelial cells have high plasticity, which is reflected in the fact that they can simulate each other's characteristics by endothelial-mesenchymal transition (EndMT) and vasculogenic mimicry (VM). In this paper, this mutual mimicry concept was integrated and reviewed for the first time, and their similarities and implications for tumor development are discussed. At the same time, possible therapeutic methods are proposed to provide new directions and ideas for clinical targeted therapy and immunotherapy of tumor.
Collapse
Affiliation(s)
- Xiao Ma
- Department of Clinical Medicine, The First Hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang, Liaoning 110001, China
| | - Ziang Geng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Sanhao Street 36, Heping District, Shenyang, Liaoning 110004, China
| | - Siqi Wang
- Department of Radiation Oncology, The First Hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang, Liaoning 110001, China
| | - Zhongxue Yu
- Department of Cardiovascular Ultrasound, The First hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang, Liaoning 110001, China
| | - Tiancong Liu
- Department of Otolaryngology, Shengjing Hospital of China Medical University, Sanhao Street 36, Heping District, Shenyang, Liaoning 110004, China.
| | - Shu Guan
- Department of Surgical Oncology and Breast Surgery, The First Hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang, Liaoning 110001, China.
| | - Shaonan Du
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Sanhao Street 36, Heping District, Shenyang, Liaoning 110004, China.
| | - Chen Zhu
- Department of Neurosurgery, The First Hospital of China Medical University, Nanjing Street 155, Heping District, Shenyang, Liaoning 110001, China.
| |
Collapse
|
6
|
Kuziel G, Moore BN, Haugstad GP, Arendt LM. Fibrocytes enhance mammary gland fibrosis in obesity. FASEB J 2023; 37:e23049. [PMID: 37342915 PMCID: PMC10316715 DOI: 10.1096/fj.202300399rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/23/2023]
Abstract
Obesity rates continue to rise, and obese individuals are at higher risk for multiple types of cancer, including breast cancer. Obese mammary fat is a site of chronic, macrophage-driven inflammation, which enhances fibrosis within adipose tissue. Elevated fibrosis within the mammary gland may contribute to risk for obesity-associated breast cancer. To understand how inflammation due to obesity enhanced fibrosis within mammary tissue, we utilized a high-fat diet model of obesity and elimination of CCR2 signaling in mice to identify changes in immune cell populations and their impact on fibrosis. We observed that obesity increased a population of CD11b+ cells with the ability to form myofibroblast-like colonies in vitro. This population of CD11b+ cells is consistent with fibrocytes, which have been identified in wound healing and chronic inflammatory diseases but have not been examined in obesity. In CCR2-null mice, which have limited ability to recruit myeloid lineage cells into obese adipose tissue, we observed reduced mammary fibrosis and diminished fibrocyte colony formation in vitro. Transplantation of myeloid progenitor cells, which are the cells of origin for fibrocytes, into the mammary glands of obese CCR2-null mice resulted in significantly increased myofibroblast formation. Gene expression analyses of the myeloid progenitor cell population from obese mice demonstrated enrichment for genes associated with collagen biosynthesis and extracellular matrix remodeling. Together these results show that obesity enhances recruitment of fibrocytes to promote obesity-induced fibrosis in the mammary gland.
Collapse
Affiliation(s)
- Genevra Kuziel
- Cancer Biology Program, University of Wisconsin-Madison,
Madison WI 53706, U.S.A
| | - Brittney N. Moore
- Department of Comparative Biosciences, University of
Wisconsin-Madison, Madison WI 53706, U.S.A
| | - Grace P. Haugstad
- Department of Comparative Biosciences, University of
Wisconsin-Madison, Madison WI 53706, U.S.A
| | - Lisa M. Arendt
- Cancer Biology Program, University of Wisconsin-Madison,
Madison WI 53706, U.S.A
- Department of Comparative Biosciences, University of
Wisconsin-Madison, Madison WI 53706, U.S.A
| |
Collapse
|
7
|
Kuziel G, Moore BN, Haugstad GP, Xiong Y, Williams AE, Arendt LM. Alterations in the Mammary Gland and Tumor Microenvironment of Formerly Obese Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.14.545000. [PMID: 37398468 PMCID: PMC10312750 DOI: 10.1101/2023.06.14.545000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Obesity is a risk factor for breast cancer, and women with obesity that develop breast cancer have a worsened prognosis. Within the mammary gland, obesity causes chronic, macrophage-driven inflammation and adipose tissue fibrosis. To examine the impact of weight loss on the mammary microenvironment, mice were fed high-fat diet to induce obesity, then switched to a low-fat diet. In formerly obese mice, we observed reduced numbers of crown-like structures and fibrocytes in mammary glands, while collagen deposition was not resolved with weight loss. Following transplant of TC2 tumor cells into the mammary glands of lean, obese, and formerly obese mice, diminished collagen deposition and cancer-associated fibroblasts were observed in tumors from formerly obese mice compared to obese mice. When TC2 tumor cells were mixed with CD11b+CD34+ myeloid progenitor cells, collagen deposition within the tumors was significantly greater compared to when tumor cells were mixed with CD11b+CD34- monocytes, suggesting that fibrocytes contribute to early collagen deposition in mammary tumors of obese mice. Overall, these studies show that weight loss resolved some of the microenvironmental conditions within the mammary gland that may contribute to tumor progression.
Collapse
Affiliation(s)
- Genevra Kuziel
- Cancer Biology Program, University of Wisconsin-Madison, Madison WI 53705, U.S.A
| | - Brittney N. Moore
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison WI 53706, U.S.A
| | - Grace P. Haugstad
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison WI 53706, U.S.A
| | - Yue Xiong
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison WI 53706, U.S.A
| | - Abbey E. Williams
- Comparative Biomedical Sciences Program, University of Wisconsin-Madison, Madison WI 53706, U.S.A
| | - Lisa M. Arendt
- Cancer Biology Program, University of Wisconsin-Madison, Madison WI 53705, U.S.A
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison WI 53706, U.S.A
- Comparative Biomedical Sciences Program, University of Wisconsin-Madison, Madison WI 53706, U.S.A
| |
Collapse
|
8
|
Kuziel G, Moore BN, Arendt LM. Obesity and Fibrosis: Setting the Stage for Breast Cancer. Cancers (Basel) 2023; 15:cancers15112929. [PMID: 37296891 DOI: 10.3390/cancers15112929] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Obesity is a rising health concern and is linked to a worsened breast cancer prognosis. Tumor desmoplasia, which is characterized by elevated numbers of cancer-associated fibroblasts and the deposition of fibrillar collagens within the stroma, may contribute to the aggressive clinical behavior of breast cancer in obesity. A major component of the breast is adipose tissue, and fibrotic changes in adipose tissue due to obesity may contribute to breast cancer development and the biology of the resulting tumors. Adipose tissue fibrosis is a consequence of obesity that has multiple sources. Adipocytes and adipose-derived stromal cells secrete extracellular matrix composed of collagen family members and matricellular proteins that are altered by obesity. Adipose tissue also becomes a site of chronic, macrophage-driven inflammation. Macrophages exist as a diverse population within obese adipose tissue and mediate the development of fibrosis through the secretion of growth factors and matricellular proteins and interactions with other stromal cells. While weight loss is recommended to resolve obesity, the long-term effects of weight loss on adipose tissue fibrosis and inflammation within breast tissue are less clear. Increased fibrosis within breast tissue may increase the risk for tumor development as well as promote characteristics associated with tumor aggressiveness.
Collapse
Affiliation(s)
- Genevra Kuziel
- Cancer Biology Graduate Program, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI 53705, USA
| | - Brittney N Moore
- Department of Comparative Biosciences, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA
| | - Lisa M Arendt
- Cancer Biology Graduate Program, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI 53705, USA
- Department of Comparative Biosciences, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA
| |
Collapse
|
9
|
Fotsitzoudis C, Koulouridi A, Messaritakis I, Konstantinidis T, Gouvas N, Tsiaoussis J, Souglakos J. Cancer-Associated Fibroblasts: The Origin, Biological Characteristics and Role in Cancer-A Glance on Colorectal Cancer. Cancers (Basel) 2022; 14:cancers14184394. [PMID: 36139552 PMCID: PMC9497276 DOI: 10.3390/cancers14184394] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Tumor microenvironment is a major contributor to tumor growth, metastasis and resistance to therapy. It consists of many cancer-associated fibroblasts (CAFs), which derive from different types of cells. CAFs detected in different tumor types are linked to poor prognosis, as in the case of colorectal cancer. Although their functions differ according to their subtype, their detection is not easy, and there are no established markers for such detection. They are possible targets for therapeutic treatment. Many trials are ongoing for their use as a prognostic factor and as a treatment target. More research remains to be carried out to establish their role in prognosis and treatment. Abstract The therapeutic approaches to cancer remain a considerable target for all scientists around the world. Although new cancer treatments are an everyday phenomenon, cancer still remains one of the leading mortality causes. Colorectal cancer (CRC) remains in this category, although patients with CRC may have better survival compared with other malignancies. Not only the tumor but also its environment, what we call the tumor microenvironment (TME), seem to contribute to cancer progression and resistance to therapy. TME consists of different molecules and cells. Cancer-associated fibroblasts are a major component. They arise from normal fibroblasts and other normal cells through various pathways. Their role seems to contribute to cancer promotion, participating in tumorigenesis, proliferation, growth, invasion, metastasis and resistance to treatment. Different markers, such as a-SMA, FAP, PDGFR-β, periostin, have been used for the detection of cancer-associated fibroblasts (CAFs). Their detection is important for two main reasons; research has shown that their existence is correlated with prognosis, and they are already under evaluation as a possible target for treatment. However, extensive research is warranted.
Collapse
Affiliation(s)
- Charalampos Fotsitzoudis
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Asimina Koulouridi
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Ippokratis Messaritakis
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece
- Correspondence: ; Tel.: +30-2810-394926
| | | | | | - John Tsiaoussis
- Department of Anatomy, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - John Souglakos
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece
- Department of Medical Oncology, University Hospital of Heraklion, 71110 Heraklion, Greece
| |
Collapse
|
10
|
Deng L, Jiang N, Zeng J, Wang Y, Cui H. The Versatile Roles of Cancer-Associated Fibroblasts in Colorectal Cancer and Therapeutic Implications. Front Cell Dev Biol 2021; 9:733270. [PMID: 34660589 PMCID: PMC8517274 DOI: 10.3389/fcell.2021.733270] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/14/2021] [Indexed: 01/07/2023] Open
Abstract
The tumor microenvironment (TME) is populated by abundant cancer-associated fibroblasts (CAFs) that radically influence the disease progression across many cancers, including the colorectal cancer (CRC). In theory, targeting CAFs holds great potential in optimizing CRC treatment. However, attempts to translate the therapeutic benefit of CAFs into clinic practice face many obstacles, largely due to our limited understanding of the heterogeneity in their origins, functions, and mechanisms. In recent years, accumulating evidence has uncovered some cellular precursors and molecular markers of CAFs and also revealed their versatility in impacting various hallmarks of CRC, together helping us to better define the population of CAFs and also paving the way toward their future therapeutic targeting for CRC treatment. In this review, we outline the emerging concept of CAFs in CRC, with an emphasis on their origins, biomarkers, prognostic significance, as well as their functional roles and underlying mechanisms in CRC biology. At last, we discuss the prospect of harnessing CAFs as promising therapeutic targets for the treatment of patients with CRC.
Collapse
Affiliation(s)
- Longfei Deng
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Nianfen Jiang
- Health Management Center, Southwest University Hospital, Chongqing, China
| | - Jun Zeng
- Department of Genetics and Cell Biology, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Yi Wang
- Department of General Surgery, The Ninth People's Hospital of Chongqing, Affiliated Hospital of Southwest University, Chongqing, China
| | - Hongjuan Cui
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China.,Department of General Surgery, The Ninth People's Hospital of Chongqing, Affiliated Hospital of Southwest University, Chongqing, China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| |
Collapse
|
11
|
Hachiya K, Masuya M, Kuroda N, Yoneda M, Tsuboi J, Nagaharu K, Nishimura K, Shiotani T, Ohishi K, Tawara I, Katayama N. Irbesartan, an angiotensin II type 1 receptor blocker, inhibits colitis-associated tumourigenesis by blocking the MCP-1/CCR2 pathway. Sci Rep 2021; 11:19943. [PMID: 34620946 PMCID: PMC8497524 DOI: 10.1038/s41598-021-99412-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/20/2021] [Indexed: 02/07/2023] Open
Abstract
The introduction of anti-inflammatory therapies has enabled substantial improvement of disease activity in patients with inflammatory bowel diseases (IBD). However, IBD can lead to serious complications such as intestinal fibrosis and colorectal cancer. Therefore, novel therapies reducing the development of these complications are needed. Angiotensin II (Ang II) promotes tissue inflammation by stimulating the production of monocyte chemoattractant protein-1 (MCP-1) or proinflammatory cytokines. It plays a pivotal role in IBD progression. Although blockade of Ang II has been reported to ameliorate experimental colitis and reduce colorectal cancer risk, the cellular and molecular mechanisms remain poorly understood. Our previous work showed that irbesartan, an Ang II type 1 receptor blocker, reduced the number of C-C chemokine receptor 2-positive (CCR2+) monocytic cells in the inflamed pancreas. This study aimed to investigate the possible antifibrotic and antitumour effects of irbesartan using the azoxymethane/dextran sodium sulphate mouse model. Irbesartan suppressed MCP-1 production and the accumulation of Ly6C+CCR2+ monocytes and fibrocytes in the inflamed colon, downregulated the expression of type 1 collagen and matrix metalloproteinase 9 and inhibited the development of intestinal fibrosis and tumours. Our observations suggest that blocking the MCP-1/CCR2 pathway using irbesartan might be beneficial in preventing colitis-associated colon tumours.
Collapse
Affiliation(s)
- Kensuke Hachiya
- Department of Haematology and Oncology, Mie University Graduate School of Medicine, Tsu, Mie, 514-8507, Japan
| | - Masahiro Masuya
- Department of Haematology and Oncology, Mie University Graduate School of Medicine, Tsu, Mie, 514-8507, Japan.
- Course of Nursing Science, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| | - Naoki Kuroda
- Department of Gastroenterology, Saiseikai Matsusaka General Hospital, Matsusaka, Mie, 515-8557, Japan
| | - Misao Yoneda
- Department of Clinical Nutrition Medical Technology Course, Suzuka University of Medical Science, Suzuka, Mie, 510-0293, Japan
| | - Junya Tsuboi
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, Tsu, Mie, 514-8507, Japan
| | - Keiki Nagaharu
- Department of Haematology and Oncology, Mie University Graduate School of Medicine, Tsu, Mie, 514-8507, Japan
| | - Komei Nishimura
- Department of Haematology and Oncology, Mie University Graduate School of Medicine, Tsu, Mie, 514-8507, Japan
| | - Takuya Shiotani
- Department of Haematology and Oncology, Mie University Graduate School of Medicine, Tsu, Mie, 514-8507, Japan
| | - Kohshi Ohishi
- Department of Transfusion Medicine and Cell Therapy, Mie University Hospital, Tsu, Mie, 514-8507, Japan
| | - Isao Tawara
- Department of Haematology and Oncology, Mie University Graduate School of Medicine, Tsu, Mie, 514-8507, Japan
| | - Naoyuki Katayama
- Department of Haematology and Oncology, Mie University Graduate School of Medicine, Tsu, Mie, 514-8507, Japan
- Faculty of Nursing, Suzuka University of Medical Science, Suzuka, Mie, 513-8670, Japan
| |
Collapse
|
12
|
Imlimthan S, Moon ES, Rathke H, Afshar-Oromieh A, Rösch F, Rominger A, Gourni E. New Frontiers in Cancer Imaging and Therapy Based on Radiolabeled Fibroblast Activation Protein Inhibitors: A Rational Review and Current Progress. Pharmaceuticals (Basel) 2021; 14:1023. [PMID: 34681246 PMCID: PMC8540221 DOI: 10.3390/ph14101023] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022] Open
Abstract
Over the past decade, the tumor microenvironment (TME) has become a new paradigm of cancer diagnosis and therapy due to its unique biological features, mainly the interconnection between cancer and stromal cells. Within the TME, cancer-associated fibroblasts (CAFs) demonstrate as one of the most critical stromal cells that regulate tumor cell growth, progression, immunosuppression, and metastasis. CAFs are identified by various biomarkers that are expressed on their surfaces, such as fibroblast activation protein (FAP), which could be utilized as a useful target for diagnostic imaging and treatment. One of the advantages of targeting FAP-expressing CAFs is the absence of FAP expression in quiescent fibroblasts, leading to a controlled targetability of diagnostic and therapeutic compounds to the malignant tumor stromal area using radiolabeled FAP-based ligands. FAP-based radiopharmaceuticals have been investigated strenuously for the visualization of malignancies and delivery of theranostic radiopharmaceuticals to the TME. This review provides an overview of the state of the art in TME compositions, particularly CAFs and FAP, and their roles in cancer biology. Moreover, relevant reports on radiolabeled FAP inhibitors until the year 2021 are highlighted-as well as the current limitations, challenges, and requirements for those radiolabeled FAP inhibitors in clinical translation.
Collapse
Affiliation(s)
- Surachet Imlimthan
- Department of Nuclear Medicine, the Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; (S.I.); (H.R.); (A.A.-O.); (A.R.)
| | - Euy Sung Moon
- Department of Chemistry—TRIGA Site, Johannes Gutenberg—University Mainz, 55128 Mainz, Germany; (E.S.M.); (F.R.)
| | - Hendrik Rathke
- Department of Nuclear Medicine, the Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; (S.I.); (H.R.); (A.A.-O.); (A.R.)
| | - Ali Afshar-Oromieh
- Department of Nuclear Medicine, the Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; (S.I.); (H.R.); (A.A.-O.); (A.R.)
| | - Frank Rösch
- Department of Chemistry—TRIGA Site, Johannes Gutenberg—University Mainz, 55128 Mainz, Germany; (E.S.M.); (F.R.)
| | - Axel Rominger
- Department of Nuclear Medicine, the Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; (S.I.); (H.R.); (A.A.-O.); (A.R.)
| | - Eleni Gourni
- Department of Nuclear Medicine, the Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; (S.I.); (H.R.); (A.A.-O.); (A.R.)
| |
Collapse
|
13
|
Díaz Del Arco C, Ortega Medina L, Estrada Muñoz L, García Gómez de Las Heras S, Fernández Aceñero MJ. Is there still a place for conventional histopathology in the age of molecular medicine? Laurén classification, inflammatory infiltration and other current topics in gastric cancer diagnosis and prognosis. Histol Histopathol 2021; 36:587-613. [PMID: 33565601 DOI: 10.14670/hh-18-309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Gastric cancer (GC) is the fifth most common cancer and the third cause of cancer-related deaths worldwide. In western countries, more than half of GC patients are diagnosed at advanced stages and 5-year survival rates range between 20-30%. The only curative treatment is surgery, and despite recent advances in oncological therapies, GC prognosis is still poor. The main prognostic tool for patient categorization and treatment selection is the TNM classification, but its limitations are being increasingly recognized. Early recurrences may occur in early-stage disease, and patients at the same stage show heterogeneous outcomes. Thus, there is a need to improve GC stratification and to identify new prognostic factors, which may allow us to select drug-susceptible populations, refine patient grouping for clinical trials and discover new therapeutic targets. Molecular classifications have been developed, but they have not been translated to the clinical practice. On the other hand, histological assessment is cheap and widely available, and it is still a mainstay in the era of molecular medicine. Furthermore, histological features are acquiring new roles as reflectors of the genotype-phenotype correlation, and their potential impact on patient management is currently being analyzed. The aim of this literature review is to provide a modern overview of the histological assessment of GC. In this study, we discuss recent topics on the histological diagnosis of GC, focusing on the current role of Laurén classification and the potential value of new histological features in GC, such as inflammatory infiltration and tumor budding.
Collapse
Affiliation(s)
- Cristina Díaz Del Arco
- Department of Surgical Pathology, Hospital Clínico San Carlos, Madrid, Spain.
- Complutense University of Madrid, Madrid, Spain
| | - Luis Ortega Medina
- Complutense University of Madrid, Madrid, Spain
- Department of Surgical Pathology, Hospital Clínico San Carlos, Madrid, Spain
| | | | | | - Mª Jesús Fernández Aceñero
- Complutense University of Madrid, Madrid, Spain
- Department of Surgical Pathology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| |
Collapse
|
14
|
Chen X, Zhi Y, Lin Z, Ma J, Mou W, Yu J. Prognosis prediction model for a special entity of gastric cancer, linitis plastica. J Gastrointest Oncol 2021; 12:307-327. [PMID: 34012628 DOI: 10.21037/jgo-20-264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Background Gastric linitis plastica (GLP) is characteristic by its poor prognosis and highly aggressive characteristics compared with other types of gastric cancer (GC). However, the guidelines have not yet been distinguished between GLP and non-GLP. Methods A total of 342 eligible patients with GLP identified in the Surveillance, Epidemiology, and End Results (SEER) dataset were randomly divided into training set (n=298) and validation set (n=153). A nomogram would be developed with the constructed predicting model based on the training cohort's data, and the validation cohort would be used to validate the model. Principal component analysis (PCA) was used to evaluate the differences between groups. Cox regression and LASSO (least absolute shrinkage and selection operator) were used to construct the models. Calibration curve, time-dependent receiver operating characteristic (ROC) curve, concordance index (C-index) and decision curve analysis (DCA) were used to evaluate the predicting performance. Restricted mean survival time (RMST) was used to analyze the curative effect of adjuvant therapy. Results For patients in training cohort, univariable and multivariable Cox analyses showed that age, examined lymph nodes (LN.E), positive lymph nodes (LN.P), lesion size, combined resection, and radiotherapy are independent prognostic factors for overall survival (OS), while chemotherapy can not meet the proportional hazards (PHs) assumption; age, race, lesion size, LN.E, LN.P, combined resection and marital status are independent prognostic factors for cancer-specific survival (CSS). The C-index of the nomogram was 0.678 [95% confidence interval (CI), 0.660-0.696] and 0.673 (95% CI, 0.630-0.716) in the training and validation cohort, respectively. Meanwhile, the C-index of the CSS nomogram was 0.671 (95% CI, 0.653-0.699) and 0.650 (95% CI, 0.601-0.691) in the training and validation cohort for CSS, respectively. Furthermore, the nomogram was well calibrated with satisfactory consistency. RMST analysis further determined that chemotherapy and radiotherapy might be beneficial for improving 1- and 3-year OS and CSS, but not the 5-year CSS. Conclusions We developed nomograms to help predict individualized prognosis for GLP patients. The new model might help guide treatment strategies for patients with GLP.
Collapse
Affiliation(s)
- Xinhua Chen
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yunfei Zhi
- The First Clinical Medical School, Southern Medical University, Guangzhou, China
| | - Zhousheng Lin
- The First Clinical Medical School, Southern Medical University, Guangzhou, China
| | - Jinyuan Ma
- The Second Clinical Medical School, Southern Medical University, Guangzhou, China
| | - Weiming Mou
- The First Clinical Medical School, Southern Medical University, Guangzhou, China
| | - Jiang Yu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
15
|
Mehmeti-Ajradini M, Bergenfelz C, Larsson AM, Carlsson R, Riesbeck K, Ahl J, Janols H, Wullt M, Bredberg A, Källberg E, Björk Gunnarsdottir F, Rydberg Millrud C, Rydén L, Paul G, Loman N, Adolfsson J, Carneiro A, Jirström K, Killander F, Bexell D, Leandersson K. Human G-MDSCs are neutrophils at distinct maturation stages promoting tumor growth in breast cancer. Life Sci Alliance 2020; 3:3/11/e202000893. [PMID: 32958605 PMCID: PMC7536824 DOI: 10.26508/lsa.202000893] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 12/16/2022] Open
Abstract
This study shows that immunosuppressive primary breast cancer patient–derived G-MDSCs (PMN-MDSCs) are neutrophils at a range of maturations stages, and provides in vivo evidence for that human G-MDSCs also promote tumor growth and myeloid immune cell exclusion. Myeloid-derived suppressor cells (MDSCs) are known to contribute to immune evasion in cancer. However, the function of the human granulocytic (G)-MDSC subset during tumor progression is largely unknown, and there are no established markers for their identification in human tumor specimens. Using gene expression profiling, mass cytometry, and tumor microarrays, we here demonstrate that human G-MDSCs occur as neutrophils at distinct maturation stages, with a disease-specific profile. G-MDSCs derived from patients with metastatic breast cancer and malignant melanoma display a unique immature neutrophil profile, that is more similar to healthy donor neutrophils than to G-MDSCs from sepsis patients. Finally, we show that primary G-MDSCs from metastatic breast cancer patients co-transplanted with breast cancer cells, promote tumor growth, and affect vessel formation, leading to myeloid immune cell exclusion. Our findings reveal a role for human G-MDSC in tumor progression and have clinical implications also for targeted immunotherapy.
Collapse
Affiliation(s)
| | - Caroline Bergenfelz
- Division of Experimental Infection Medicine, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Anna-Maria Larsson
- Division of Oncology, Department of Clinical Sciences, Lund University, Skåne University Hospital, Lund, Sweden.,Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Robert Carlsson
- Translational Neurology, Department of Clinical Sciences and Wallenberg Centrum for Molecular Medicine, Lund University, Lund, Sweden
| | - Kristian Riesbeck
- Department of Translational Medicine, Clinical Microbiology, Lund University, Malmö, Sweden
| | - Jonas Ahl
- Department of Infectious Diseases, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Helena Janols
- Department of Infectious Diseases, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Marlene Wullt
- Department of Infectious Diseases, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Anders Bredberg
- Department of Translational Medicine, Clinical Microbiology, Lund University, Malmö, Sweden
| | - Eva Källberg
- Department of Translational Medicine, Cancer Immunology, Lund University, Malmö, Sweden
| | | | | | - Lisa Rydén
- Division of Oncology, Department of Clinical Sciences, Lund University, Skåne University Hospital, Lund, Sweden.,Department of Surgery and Gastroenterology, Skåne University Hospital, Lund, Sweden
| | - Gesine Paul
- Translational Neurology, Department of Clinical Sciences and Wallenberg Centrum for Molecular Medicine, Lund University, Lund, Sweden
| | - Niklas Loman
- Division of Oncology, Department of Clinical Sciences, Lund University, Skåne University Hospital, Lund, Sweden.,Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Jörgen Adolfsson
- Science for Life Laboratory Node at Linköping's University, Linköping, Sweden
| | - Ana Carneiro
- Division of Oncology, Department of Clinical Sciences, Lund University, Skåne University Hospital, Lund, Sweden.,Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Karin Jirström
- Department of Clinical Sciences, Oncology and Therapeutic Pathology, Lund University, Lund, Sweden
| | - Fredrika Killander
- Division of Oncology, Department of Clinical Sciences, Lund University, Skåne University Hospital, Lund, Sweden.,Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Daniel Bexell
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Karin Leandersson
- Department of Translational Medicine, Cancer Immunology, Lund University, Malmö, Sweden
| |
Collapse
|
16
|
Stromal CCL2 Signaling Promotes Mammary Tumor Fibrosis through Recruitment of Myeloid-Lineage Cells. Cancers (Basel) 2020; 12:cancers12082083. [PMID: 32731354 PMCID: PMC7465971 DOI: 10.3390/cancers12082083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 12/18/2022] Open
Abstract
Obesity is correlated with breast tumor desmoplasia, leading to diminished chemotherapy response and disease-free survival. Obesity causes chronic, macrophage-driven inflammation within breast tissue, initiated by chemokine ligand 2 (CCL2) signaling from adipose stromal cells. To understand how CCL2-induced inflammation alters breast tumor pathology, we transplanted oncogenically transformed human breast epithelial cells with breast stromal cells expressing CCL2 or empty vector into murine mammary glands and examined tumor formation and progression with time. As tumors developed, macrophages were rapidly recruited, followed by the emergence of cancer-associated fibroblasts (CAFs) and collagen deposition. Depletion of CD11b + myeloid lineage cells early in tumor formation reduced tumor growth, CAF numbers, and collagen deposition. CCL2 expression within developing tumors also enhanced recruitment of myeloid progenitor cells from the bone marrow into the tumor site. The myeloid progenitor cell population contained elevated numbers of fibrocytes, which exhibited platelet-derived growth factor receptor-alpha (PDGFRα)-dependent colony formation and growth in vitro. Together, these results suggest that chronic inflammation induced by CCL2 significantly enhances tumor growth and promotes the formation of a desmoplastic stroma through early recruitment of macrophages and fibrocytes into the tumor microenvironment. Fibrocytes may be a novel target in the tumor microenvironment to reduce tumor fibrosis and enhance treatment responses for obese breast cancer patients.
Collapse
|
17
|
Ikoma N, Agnes A, Chen HC, Wang X, Blum MM, Das P, Minsky B, Estrella JS, Mansfield P, Ajani JA, Badgwell BD. Linitis Plastica: a Distinct Type of Gastric Cancer. J Gastrointest Surg 2020; 24:1018-1025. [PMID: 31754987 DOI: 10.1007/s11605-019-04422-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 09/19/2019] [Indexed: 01/31/2023]
Abstract
BACKGROUND The prognosis of patients with linitis plastica (LP) gastric cancer is reported to be poor. The purpose of our retrospective study was to characterize the clinicopathologic features and survival outcomes of patients with LP, using a univocal definition. METHODS We defined LP as gastric cancer that involves more than 1/3 of the gastric wall macroscopically. We reviewed a prospectively maintained institutional database of gastric cancer patients and summarized and compared clinicopathologic factors of patients with and without LP who had undergone gastrectomy. Patients were matched 1:1 using propensity score matching, and their overall survival (OS) rates and durations were compared. Multivariable Cox regression analyses were conducted, using gastrectomy as a time-varying covariate. RESULTS We identified 740 patients with radiographically non-metastatic gastric cancer, 157 (21.2%) of whom had LP. Most patients with LP had advanced-stage disease (75.8% had stage IV disease, mainly due to peritoneal involvement). Patients with LP had significantly shorter OS durations than did those without LP in the entire cohort (median OS, 14.0 vs. 33.5 months; p value < 0.001) and in the surgical cohort (median OS after gastrectomy, 21.8 vs. 91.0 months; p < 0.001), as well as in the propensity-matched surgical cohort. In the LP cohort, chemotherapy (hazard ratio [HR] = 0.594; p = 0.076), chemoradiation therapy (HR = 0.346; p = 0.001), and gastrectomy (HR = 0.425; p = 0.003) were associated with a longer OS. CONCLUSIONS LP is a phenotype of gastric cancer that often presents at an advanced stage, with a high rate of peritoneal involvement. The survival durations of patients with LP were poor in our study, even in the surgical cohort. The use of preoperative chemotherapy, chemoradiation therapy, and gastrectomy appeared to be important in carefully selected patients with localized LP.
Collapse
Affiliation(s)
- Naruhiko Ikoma
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, FCT17.6010, Houston, TX, 77030, USA
| | - Annamaria Agnes
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, FCT17.6010, Houston, TX, 77030, USA
| | - Hsiang-Chun Chen
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xuemei Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mariela M Blum
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Prajnan Das
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bruce Minsky
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeannelyn S Estrella
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul Mansfield
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, FCT17.6010, Houston, TX, 77030, USA
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brian D Badgwell
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, FCT17.6010, Houston, TX, 77030, USA.
| |
Collapse
|
18
|
Ren Q, Zhu P, Zhang H, Ye T, Liu D, Gong Z, Xia X. Identification and validation of stromal-tumor microenvironment-based subtypes tightly associated with PD-1/PD-L1 immunotherapy and outcomes in patients with gastric cancer. Cancer Cell Int 2020; 20:92. [PMID: 32226313 PMCID: PMC7092673 DOI: 10.1186/s12935-020-01173-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 03/13/2020] [Indexed: 12/13/2022] Open
Abstract
Background Immunotherapies targeting programmed cell death 1 (PD-1) and programmed death-ligand 1 (PD-L1) have been approved for gastric cancer (GC) patients. However, a large proportion of patients with T-cell-inflamed tumor microenvironment do not respond to the PD-1/PD-L1 blockade. The stromal component of the tumor microenvironment has been associated with immunotherapy. This study aims to explore the clinical significance of the non-immune cells in the tumor microenvironment and their potential as biomarkers for immunotherapy. Methods A total of 383 patients with GC from the Cancer Genome Atlas (TCGA) cohort, 300 patients with GC from the GSE62254 cohort in Gene Expression Omnibus (GEO) were included in the study. A stromal score was generated using the ESTIMATE algorithm, and the likelihood of response to PD-1/PD-L1 immunotherapy of GC patients was predicted using the TIDE algorithm. The prognostic value of the stromal score from GC cases was evaluated by the Kaplan–Meier method and Cox regression analysis. Gene set enrichment analysis (GSEA) was also conducted. Results The stromal score showed significant differences in different molecular subtypes and T stages. Multivariate analyses further confirmed that the stromal score was an independent indicator of overall survival (OS) in the two cohorts. The low stromal score group showed higher tumor mutation burden (TMB) and micro-satellite instability (MSI), and was more sensitive to immune checkpoint inhibitor according to the TIDE algorithm. Activation of the transforming growth factor and epithelial–mesenchymal transition were observed in the high stromal score subtype, which is associated with T-cell suppression, and may be responsible for resistance to PD-1/PD-L1 therapy. BPIFB2 was confirmed as a hub gene relevant to immunotherapy. Conclusion The stromal score was associated with cancer progression and molecular subtypes, and may serve as a novel biomarker for predicting the prognosis and response to immunotherapy in patients with GC.
Collapse
Affiliation(s)
- Qianqian Ren
- 1Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022 China
| | - Peng Zhu
- Department of Hepatobiliary Surgery, Wuhan No.1 Hospital, Wuhan, 430022 China
| | - Hui Zhang
- Department of Internal Medicine, Wuhan Hankou Hospital, Wuhan, 430011 China
| | - Tianhe Ye
- 1Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022 China
| | - Dehan Liu
- 1Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022 China
| | - Zhao Gong
- Department of Hepatobiliary Surgery, Wuhan No.1 Hospital, Wuhan, 430022 China
| | - Xiangwen Xia
- 1Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022 China
| |
Collapse
|
19
|
Xue W, Ton H, Zhang J, Xie T, Chen X, Zhou B, Guo Y, Fang J, Wang S, Zhang W. Patient‑derived orthotopic xenograft glioma models fail to replicate the magnetic resonance imaging features of the original patient tumor. Oncol Rep 2020; 43:1619-1629. [PMID: 32323818 PMCID: PMC7107810 DOI: 10.3892/or.2020.7538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 02/12/2020] [Indexed: 12/14/2022] Open
Abstract
Patient-derived orthotopic glioma xenograft models are important platforms used for pre-clinical research of glioma. In the present study, the diagnostic ability of magnetic resonance imaging (MRI) was examined with regard to the identification of biomarkers obtained from patient-derived glioma xenografts and human tumors. Conventional MRI, diffusion weighted imaging and dynamic contrast-enhanced (DCE)-MRI were used to analyze seven pairs of high grade gliomas with their corresponding xenografts obtained from non-obese diabetic-severe-combined immunodeficiency nude mice. Tumor samples were collected for transcriptome sequencing and histopathological staining, and differentially expressed genes were screened between the original tumors and the corresponding xenografts. Gene Ontology (GO) analysis was performed to predict the functions of these genes. In 6 cases of xenografts with diffuse growth, the degree of enhancement was significantly lower compared with the original tumors. Histopathological staining indicated that the microvascular area and microvascular diameter of the xenografts were significantly lower compared with the original tumors (P=0.009 and P=0.007, respectively). In one case, there was evidence of nodular tumor growth in the mouse. Both MRI and histopathological staining showed a clear demarcation between the transplanted tumors and the normal brain tissues. The relative apparent diffusion coefficient values of the 7 cases examined were significantly higher compared with the corresponding original tumors (P=0.001) and transfer coefficient values derived from DCE-MRI of the tumor area was significantly lower compared with the original tumors (P=0.016). GO analysis indicated that the expression levels of extracellular matrix-associated genes, angiogenesis-associated genes and immune function-associated genes in the original tumors were higher compared with the corresponding xenografts. In conclusion, the data demonstrated that the MRI features of patient-derived xenograft glioma models in mice were different compared with those of the original patient tumors. Differential gene expression may underlie the differences noted in the MRI features between original tumors and corresponding xenografts. The results of the present study highlight the precautions that should be taken when extrapolating data from patient-derived xenograft studies, and their applicability to humans.
Collapse
Affiliation(s)
- Wei Xue
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Haipeng Ton
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Junfeng Zhang
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Tian Xie
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Xiao Chen
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Bo Zhou
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Yu Guo
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Jingqin Fang
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Shunan Wang
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Weiguo Zhang
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| |
Collapse
|
20
|
Cancer-associated fibroblasts-derived VCAM1 induced by H. pylori infection facilitates tumor invasion in gastric cancer. Oncogene 2020; 39:2961-2974. [PMID: 32034307 DOI: 10.1038/s41388-020-1197-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/13/2020] [Accepted: 01/27/2020] [Indexed: 12/13/2022]
Abstract
Cancer-associated fibroblasts (CAFs) play a major role in the progression of stomach cancer, but the related mechanisms are not fully understood. H. pylori infection is recognized as one of the strongest risk factors for gastric carcinoma, but its effects on CAFs remain unknown. We aimed to determine the causative relationship between H. pylori infection in fibroblasts and the promoted cancer pathogenesis and progression in gastric cancer. Primary CAFs and normal activated fibroblasts (NAFs) were generated from gastric cancer patients. Gene signature of H. pylori-infected human stomach fibroblasts was performed using the RNA-seq analysis. Spheroid cell invasion assay and zebrafish cell line-derived xenograft (zCDX) model were introduced to evaluate tumor invasion induced by CAFs. The molecule interactions were determined using the kinetic binding analysis with the Biolayer Interferometry (BLI). Clinical significance and relevance were also assessed using the database analyses. H. pylori infection activated stomach fibroblasts and caused multiple gene alterations, including vascular adhesion molecule 1 (VCAM1). H. pylori infection increased VCAM1 expression in CAFs in gastric carcinoma via activation of JAK/STAT1 signaling pathway, and VCAM1 levels were positively associated with tumor progression and dismal prognosis in stomach cancer patients. Furthermore, CAFs-derived VCAM1 molecularly interacted with integrin αvβ1/5 in gastric cancer cells facilitated tumor invasion in vitro and in vivo. Our results identify a novel mechanism underlying CAFs to promote tumor invasion during H. pylori infection. These studies facilitate us for a better understanding of the molecular process of gastric carcinoma progression, and provide the potential strategies for gastric cancer therapy.
Collapse
|
21
|
Roife D, Fleming JB, Gomer RH. Fibrocytes in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1224:79-85. [PMID: 32036606 PMCID: PMC7212529 DOI: 10.1007/978-3-030-35723-8_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Tumors have long been compared to chronic wounds that do not heal, since they share many of the same molecular and cellular processes. In normal wounds, healing processes lead to restoration of cellular architecture, while in malignant tumors, these healing processes become dysregulated and contribute to growth and invasion of neoplastic cells into the surrounding tissues. Fibrocytes are fibroblast-like cells that differentiate from bone marrow-derived CD14+ circulating monocytes and aid wound healing. Although most monocytes will differentiate into macrophages after extravasating into a tissue, signals present in a wound environment can cause some monocytes to differentiate into fibrocytes. The fibrocytes secrete matrix proteins and inflammatory cytokines, activate local fibroblasts to proliferate and increase extracellular matrix production, and promote angiogenesis, and because fibrocytes are contractile, they also help wound contraction. There is now emerging evidence that fibrocytes are present in the tumor microenvironment, attracted by the chronic tissue damage and cytokines from both cancer cells and other immune cells. Fibrocytes may aid in the survival and spread of neoplastic cells, so these wound-healing cells may be a promising target for anticancer research in future studies.
Collapse
Affiliation(s)
- David Roife
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL, USA
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Jason B Fleming
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Richard H Gomer
- Department of Biology/ILSB, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
22
|
Daniel SK, Seo YD, Pillarisetty VG. The CXCL12-CXCR4/CXCR7 axis as a mechanism of immune resistance in gastrointestinal malignancies. Semin Cancer Biol 2019; 65:176-188. [PMID: 31874281 DOI: 10.1016/j.semcancer.2019.12.007] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/03/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
Abstract
Single agent checkpoint inhibitor therapy has not been effective for most gastrointestinal solid tumors, but combination therapy with drugs targeting additional immunosuppressive pathways is being attempted. One such pathway, the CXCL12-CXCR4/CXCR7 chemokine axis, has attracted attention due to its effects on tumor cell survival and metastasis as well as immune cell migration. CXCL12 is a small protein that functions in normal hematopoietic stem cell homing in addition to repair of damaged tissue. Binding of CXCL12 to CXCR4 leads to activation of G protein signaling kinases such as P13K/mTOR and MEK/ERK while binding to CXCR7 leads to β-arrestin mediated signaling. While some gastric and colorectal carcinoma cells have been shown to make CXCL12, the primary source in pancreatic cancer and peritoneal metastases is cancer-associated fibroblasts. Binding of CXCL12 to CXCR4 and CXCR7 on tumor cells leads to anti-apoptotic signaling through Bcl-2 and survivin upregulation, as well as promotion of the epithelial-to-mesechymal transition through the Rho-ROCK pathway and alterations in cell adhesion molecules. High levels of CXCL12 seen in the bone marrow, liver, and spleen could partially explain why these are popular sites of metastases for many tumors. CXCL12 is a chemoattractant for lymphocytes at lower levels, but becomes chemorepellant at higher levels; it is unclear exactly what gradient exists in the tumor microenvironment and how this influences tumor-infiltrating lymphocytes. AMD3100 (Plerixafor or Mozobil) is a small molecule CXCR4 antagonist and is the most frequently used drug targeting the CXCL12-CXCR4/CXCR7 axis in clinical trials for gastrointestinal solid tumors currently. Other small molecules and monoclonal antibodies against CXCR4 are being trialed. Further understanding of the CXCL12- CXCR4/CXCR7 chemokine axis in the tumor microenvironment will allow more effective targeting of this pathway in combination immunotherapy.
Collapse
Affiliation(s)
- Sara K Daniel
- University of Washington, Dept. of Surgery, Seattle, WA, USA
| | - Y David Seo
- University of Washington, Dept. of Surgery, Seattle, WA, USA
| | | |
Collapse
|
23
|
Jia X, Gábris F, Jacobsen Ó, Bedics G, Botz B, Helyes Z, Kellermayer Z, Vojkovics D, Berta G, Nagy N, Jakus Z, Balogh P. Foliate Lymphoid Aggregates as Novel Forms of Serous Lymphocyte Entry Sites of Peritoneal B Cells and High-Grade B Cell Lymphomas. THE JOURNAL OF IMMUNOLOGY 2019; 204:23-36. [PMID: 31767783 DOI: 10.4049/jimmunol.1900851] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/25/2019] [Indexed: 11/19/2022]
Abstract
The cellular homeostasis of lymphoid tissues is determined by the continuous interactions of mobile hematopoietic cells within specialized microenvironments created by sessile stromal cells. In contrast to the lymph nodes and mucosal lymphoid tissues with well-defined entry and exit routes, the movement of leukocytes in the peritoneal cavity is largely unknown. In this study, we report that, in addition to the omental milky spots and fat-associated lymphoid clusters, in mice, the serous surface of the mesenteric adipose streaks contains lymphocyte-rich organoids comprised of a highly compacted leaf-like part connected to the adipose tissue that can also efficiently bind B cells and high-grade B cell lymphoma (diffuse large B cell lymphoma) cells. Denoted as foliate lymphoid aggregates (FLAgs), these structures show incomplete T/B segregation and a partially differentiated stromal architecture. LYVE-1-positive macrophages covering FLAgs efficiently bind i.p. injected normal B cells as well as different types of diffuse large B cell lymphoma cells. Within FLAgs, the lymphocytes compartmentalize according to their chemokine receptor pattern and subsequently migrate toward the mesenteric lymph nodes via the mesenteric lymphatic capillaries. The blood supply of FLAgs includes short vascular segments displaying peripheral lymph node addressin, and the extravasation of lymphocytes to the omental and mesenteric adipose tissues is partly mediated by L-selectin. The appearance of i.p. injected cells in mesenteric lymph nodes suggests that the mesentery-associated lymphatics may also collect leukocytes from the fat-associated lymphoid clusters and FLAgs, thus combining the mucosal and serous exit of mobile leukocytes and increasing the range of drainage sites for the peritoneal expansion of lymphoid malignancies.
Collapse
Affiliation(s)
- Xinkai Jia
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs, 7643 Pécs, Hungary
| | - Fanni Gábris
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs, 7643 Pécs, Hungary
| | - Óli Jacobsen
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs, 7643 Pécs, Hungary
| | - Gábor Bedics
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs, 7643 Pécs, Hungary
| | - Bálint Botz
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary.,Molecular Pharmacology Research Group, Szentágothai Research Center, University of Pécs, 7624 Pécs, Hungary.,Department of Radiology, Clinical Center, University of Pécs, 7624 Pécs, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary.,Molecular Pharmacology Research Group, Szentágothai Research Center, University of Pécs, 7624 Pécs, Hungary
| | - Zoltán Kellermayer
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs, 7643 Pécs, Hungary.,Lymphoid Organogenesis Research Group, Szentágothai Research Center, University of Pécs, 7624 Pécs, Hungary
| | - Dóra Vojkovics
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs, 7643 Pécs, Hungary.,Lymphoid Organogenesis Research Group, Szentágothai Research Center, University of Pécs, 7624 Pécs, Hungary
| | - Gergely Berta
- Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, University of Pécs, 7643 Pécs, Hungary
| | - Nándor Nagy
- Department of Anatomy, Histology and Embryology, Semmelweis University, 1085 Budapest, Hungary
| | - Zoltán Jakus
- MTA-SE Lendulet Lymphatic Physiology Research Group of the Hungarian Academy of Sciences and Semmelweis University, 1094 Budapest, Hungary; and.,Department of Physiology, Semmelweis University, 1094 Budapest, Hungary
| | - Péter Balogh
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs, 7643 Pécs, Hungary; .,Lymphoid Organogenesis Research Group, Szentágothai Research Center, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
24
|
Pastaki Khoshbin A, Eskian M, Keshavarz-Fathi M, Rezaei N. Roles of Myeloid-Derived Suppressor Cells in Cancer Metastasis: Immunosuppression and Beyond. Arch Immunol Ther Exp (Warsz) 2019; 67:89-102. [PMID: 30386868 DOI: 10.1007/s00005-018-0531-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 10/08/2018] [Indexed: 12/23/2022]
Abstract
Metastasis is the direst face of cancer, and it is not a feature solely dependent on cancer cells; however, a complex interaction between cancer cells and host causes this process. Investigating the mechanisms of metastasis can lead to its control. Myeloid-derived suppressor cells (MDSCs) are key components of tumor microenvironment that favor cancer progression. These cells result from altered myelopoiesis in response to the presence of tumor. The most recognized function of MDSCs is suppressing anti-tumor immune responses. Strikingly, these cells are among important players in cancer dissemination and metastasis. They can exert their effect on metastatic process by affecting anti-cancer immunity, epithelial-mesenchymal transition, cancer stem cell formation, angiogenesis, establishing premetastatic niche, and supporting cancer cell survival and growth in metastatic sites. In this article, we review and discuss the mechanisms by which MDSCs contribute to cancer metastasis.
Collapse
Affiliation(s)
- Amin Pastaki Khoshbin
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Eskian
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, Tehran, 14194, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahsa Keshavarz-Fathi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, Tehran, 14194, Iran
- Breast Cancer Association (BrCA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Sheffield, UK.
| |
Collapse
|
25
|
Kim HS, Yoon YM, Meang MK, Park YE, Lee JY, Lee TH, Lee JE, Kim IH, Youn BS. Reversion of in vivo fibrogenesis by novel chromone scaffolds. EBioMedicine 2019; 39:484-496. [PMID: 30611717 PMCID: PMC6355727 DOI: 10.1016/j.ebiom.2018.12.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 12/10/2018] [Accepted: 12/10/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Myofibroblasts are known to play a key role in the development of idiopathic pulmonary fibrosis (IPF). Two drugs, pirfenidone and nintedanib, are the only approved therapeutic options for IPF, but their applications are limited due to their side effects. Thus, curative IPF drugs represent a huge unmet medical need. METHODS A mouse hepatic stellate cell (HSC) line was established that could robustly differentiate into myofibroblasts upon treatment with TGF-β. Eupatilin was assessed in diseased human lung fibroblasts from IPF patients (DHLFs) as well as in human lung epithelial cells (HLECs). The drug's performance was extensively tested in a bleomycin-induced lung fibrosis model (BLM). Global gene expression studies and proteome analysis were performed. FINDINGS Eupatilin attenuated disease severity of BLM in both preventative and therapeutic studies. The drug inhibited the in vitro transdifferantiation of DHLFs to myofibroblasts upon stimulation with TGF-β. No such induction of the in vitro transdifferantiation was observed in TGF-β treated HLECs. Specific carbons of eupatilin were essential for its anti-fibrotic activity. Eupatilin was capable of dismantling latent TGF-β complex, specifically by eliminating expression of the latent TGF-β binding protein 1 (LTBP1), in ECM upon actin depolymerization. Unlike eupatilin, pirfenidone was unable to block fibrosis of DHLFs or HSCs stimulated with TGF-β. Eupatilin attenuated phosphorylation of Smad3 by TGF-β. Eupatilin induced myofibroblasts to dedifferentiate into intermediate HCS-like cells. INTERPRETATION Eupatilin may act directly on pathogenic myofibroblasts, disarming them, whereas the anti-fibrotic effect of pirfenidone may be indirect. Eupatilin could increase the efficacy of IPF treatment to curative levels.
Collapse
Affiliation(s)
- Han-Soo Kim
- Department of Biomedical Sciences, Catholic Kwandong University College of Medicine, Gangneung-si, Gangwon-do 25601, Republic of Korea; Basic Research Division, Biomedical Institute of Mycological Resource, College of Medicine,Catholic Kwandong University, Gangneung-si, Gangwon-do, 25601, Republic of Korea
| | | | - Moon Kee Meang
- OsteoNeuroGenInc, Seoul 08501, Republic of Korea; Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Yae Eun Park
- Center for Theragnosis, Biomedical Research Institute, Korean Institute of Science and Technology, Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Ji Yong Lee
- Department of Anatomy, Yonsei University Wonju College of Medicine, Wonju-si, Gangwon-do 26426, Republic of Korea
| | - Tae Hee Lee
- School of Oriental Medicine, Formulae Pharmacology Department, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Ji Eun Lee
- Center for Theragnosis, Biomedical Research Institute, Korean Institute of Science and Technology, Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Ik-Hwan Kim
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | | |
Collapse
|
26
|
Saito H, Fushida S, Harada S, Miyashita T, Oyama K, Yamaguchi T, Tsukada T, Kinoshita J, Tajima H, Ninomiya I, Ohta T. Importance of human peritoneal mesothelial cells in the progression, fibrosis, and control of gastric cancer: inhibition of growth and fibrosis by tranilast. Gastric Cancer 2018; 21:55-67. [PMID: 28540637 PMCID: PMC5741788 DOI: 10.1007/s10120-017-0726-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/16/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Scirrhous gastric cancer is an intractable disease with a high incidence of peritoneal dissemination and obstructive symptoms (e.g., ileus, jaundice, and hydronephrosis) arising from accompanying marked fibrosis. Microenvironmental interactions between cancer cells and cancer-associated fibroblasts are the suggested cause of the disease. We elucidated the mechanisms of tumor growth and fibrosis using human peritoneal mesothelial cells (HPMCs) and investigated the effects of tranilast treatment on cells and a xenograft mouse model of fibrosis. METHODS HPMCs were isolated from surgically excised omentum and their interaction with MKN-45 gastric cancer cells was investigated using co-culture. Furthermore, a fibrosis tumor model was developed based on subcutaneous transplantation of co-cultured cells into the dorsal side of nude mice to form large fibrotic tumors. Mice were subsequently treated with or without tranilast. RESULTS The morphology of HPMCs treated with transforming growth factor (TGF)-β1 changed from cobblestone to spindle-type. Moreover, E-cadherin was weakly expressed whereas high levels of α-smooth muscle actin expression were observed. TGF-β-mediated epithelial-mesenchymal transition-like changes in HPMCs were inhibited in a dose-dependent manner following tranilast treatment through inhibition of Smad2 phosphorylation. In the mouse model, tumor size decreased significantly and fibrosis was inhibited in the tranilast treatment group compared with that in the control group. CONCLUSIONS Tranilast acts on the TGF-β/Smad pathway to inhibit interactions between cancer cells and cancer-associated fibroblasts, thereby inhibiting tumor growth and fibrosis. This study supports the hypothesis that tranilast represents a novel strategy to prevent fibrous tumor establishment represented by peritoneal dissemination.
Collapse
Affiliation(s)
- Hiroto Saito
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8641 Japan
| | - Sachio Fushida
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8641 Japan
| | - Shinichi Harada
- Center for Biomedical Research and Education, School of Medicine, Kanazawa University, Kanazawa, Ishikawa 920-8641 Japan
| | - Tomoharu Miyashita
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8641 Japan
| | - Katsunobu Oyama
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8641 Japan
| | - Takahisa Yamaguchi
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8641 Japan
| | - Tomoya Tsukada
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8641 Japan
| | - Jun Kinoshita
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8641 Japan
| | - Hidehiro Tajima
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8641 Japan
| | - Itasu Ninomiya
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8641 Japan
| | - Tetsuo Ohta
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8641 Japan
| |
Collapse
|
27
|
Zhang Q, Peng C. Cancer-associated fibroblasts regulate the biological behavior of cancer cells and stroma in gastric cancer. Oncol Lett 2017; 15:691-698. [PMID: 29399141 DOI: 10.3892/ol.2017.7385] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 09/28/2017] [Indexed: 12/21/2022] Open
Abstract
Gastric cancer (GC) is a frequently diagnosed type of cancer in China, and is associated with a high mortality rate. The biological behavior of GC requires investigation in order to provide an evidence base for the development of strategies to prevent and treat GC. For this purpose, the present review outlines the process of tumor microenvironment (TME) evolution, including the dynamic biological behavior of different types of cancer cell and stroma. Cancer-associated fibroblasts (CAFs) serve as prominent stromal cellular components in the GC TME, and exhibit an essential function in GC progression. In the present study, the function of CAFs in cancer cell proliferation, cell migration, invasion, extracellular matrix remodeling, pathological angiogenesis and immune cell infiltration were investigated. The studies discussed in the present review demonstrate that the cross-talk between CAF, cancer cells and tumor stroma promotes GC progression.
Collapse
Affiliation(s)
- Qian Zhang
- Department of The Second Clinical College, Wuhan University, Wuchang, Wuhan 430071, P.R. China
| | - Chunwei Peng
- Department of Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, Wuchang, Wuhan 430071, P.R. China
| |
Collapse
|
28
|
Sun F, Feng M, Guan W. Mechanisms of peritoneal dissemination in gastric cancer. Oncol Lett 2017; 14:6991-6998. [PMID: 29344127 DOI: 10.3892/ol.2017.7149] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 03/21/2017] [Indexed: 12/15/2022] Open
Abstract
Peritoneal dissemination is the most frequent metastatic pattern of gastric cancer, but the mechanisms underlying peritoneal dissemination are yet to be elucidated. Paget's 'seed and soil' hypothesis is recognized as the fundamental theory of metastasis. The 'seeding' theory proposes that the formation of peritoneal dissemination is a multistep process, including detachment from the primary tumour, transmigration and attachment to the distant peritoneum, invasion into subperitoneal tissue and proliferation with blood vascular neogenesis. In the present review, the progress of each step is discussed. Milky spots, as a lymphatic apparatus, are indicative of lymphatic orifices on the surface of the peritoneum. These stomata are open gates for peritoneal-free cancer cells to migrate into the submesothelial space. Therefore, milky spots provide suitable 'soil' for cancer cells to implant. Other theories have also been proposed to clarify the peritoneal dissemination process, including the transvessel metastasis theory, which suggests that the peritoneal metastasis of gastric cancer develops via a vascular network mediated by hypoxia inducible factor-1α.
Collapse
Affiliation(s)
- Feng Sun
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Min Feng
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Wenxian Guan
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
29
|
Agnes A, Estrella JS, Badgwell B. The significance of a nineteenth century definition in the era of genomics: linitis plastica. World J Surg Oncol 2017; 15:123. [PMID: 28679451 PMCID: PMC5498981 DOI: 10.1186/s12957-017-1187-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 06/22/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Linitis plastica due to gastric adenocarcinoma is a condition with a long history, but still lacks a standardized definition and is commonly confused with Borrmann type IV, Lauren diffuse, and signet-cell type gastric cancer. The absence of a clear definition is a problem when investigating its biological characteristics and role as a possible independent factor for prognosis. Nevertheless, the biological behavior for linitis plastica, which is unique, may be valuable in risk stratification and have implications for treatment. A definition of linitis plastica based on molecular or genomic criteria could represent a useful starting point for investigating new targeted therapies. MAIN BODY This literature review of linitis plastica will focus on the current classifications for gastric cancer, illustrating how the concept of linitis plastica relates to them in most cases and identifying a clear and reproducible definition. Moreover, the review will highlight the diagnostic challenges associated with linitis plastica, its prognostic implications, and the therapeutic options available. Future perspectives for its management are also addressed. CONCLUSION Linitis plastica is a carcinoma with a scirrhous stroma, involving the submucosal and muscular layers of the stomach even in the absence of mucosal alteration. In most cases, the primary cancer cells are signet-ring cells or scattered cells in the context of a poorly differentiated carcinoma. Diagnosis is challenging. Staging should be thorough, including diagnostic laparoscopy in all cases due to the high incidence of peritoneal involvement. The prognostic significance of linitis plastica is still controversial. Curative-intent surgery, when feasible, should be performed, with a multimodality treatment approach. Cancer-stroma interactions are important features of this disease, and represent attaining potential target for future therapies. Future pathologic assessments of gastric cancer should report the stromal reaction in order to allow better characterization of the tumor.
Collapse
Affiliation(s)
- Annamaria Agnes
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Unit 1484, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Jeannelyn S Estrella
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brian Badgwell
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Unit 1484, 1515 Holcombe Blvd., Houston, TX, 77030, USA.
| |
Collapse
|
30
|
Ahluwalia N, Grasberger PE, Mugo BM, Feghali-Bostwick C, Pardo A, Selman M, Lagares D, Tager AM. Fibrogenic Lung Injury Induces Non-Cell-Autonomous Fibroblast Invasion. Am J Respir Cell Mol Biol 2017; 54:831-42. [PMID: 26600305 DOI: 10.1165/rcmb.2015-0040oc] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pathologic accumulation of fibroblasts in pulmonary fibrosis appears to depend on their invasion through basement membranes and extracellular matrices. Fibroblasts from the fibrotic lungs of patients with idiopathic pulmonary fibrosis (IPF) have been demonstrated to acquire a phenotype characterized by increased cell-autonomous invasion. Here, we investigated whether fibroblast invasion is further stimulated by soluble mediators induced by lung injury. We found that bronchoalveolar lavage fluids from bleomycin-challenged mice or patients with IPF contain mediators that dramatically increase the matrix invasion of primary lung fibroblasts. Further characterization of this non-cell-autonomous fibroblast invasion suggested that the mediators driving this process are produced locally after lung injury and are preferentially produced by fibrogenic (e.g., bleomycin-induced) rather than nonfibrogenic (e.g., LPS-induced) lung injury. Comparison of invasion and migration induced by a series of fibroblast-active mediators indicated that these two forms of fibroblast movement are directed by distinct sets of stimuli. Finally, knockdown of multiple different membrane receptors, including platelet-derived growth factor receptor-β, lysophosphatidic acid 1, epidermal growth factor receptor, and fibroblast growth factor receptor 2, mitigated the non-cell-autonomous fibroblast invasion induced by bronchoalveolar lavage from bleomycin-injured mice, suggesting that multiple different mediators drive fibroblast invasion in pulmonary fibrosis. The magnitude of this mediator-driven fibroblast invasion suggests that its inhibition could be a novel therapeutic strategy for pulmonary fibrosis. Further elaboration of the molecular mechanisms that drive non-cell-autonomous fibroblast invasion consequently may provide a rich set of novel drug targets for the treatment of IPF and other fibrotic lung diseases.
Collapse
Affiliation(s)
- Neil Ahluwalia
- 1 Division of Pulmonary and Critical Care Medicine and the Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Paula E Grasberger
- 1 Division of Pulmonary and Critical Care Medicine and the Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Brian M Mugo
- 1 Division of Pulmonary and Critical Care Medicine and the Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Carol Feghali-Bostwick
- 2 Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Annie Pardo
- 3 Universidad Nacional Autónoma de México, Mexico City, Mexico; and
| | - Moisés Selman
- 4 Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - David Lagares
- 1 Division of Pulmonary and Critical Care Medicine and the Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Andrew M Tager
- 1 Division of Pulmonary and Critical Care Medicine and the Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
31
|
Karakurt N, Aksu T, Koksal Y, Yarali N, Tunc B, Uckan-Cetinkaya D, Ozguner M. Angiopoietins in the bone marrow microenvironment of acute lymphoblastic leukemia. ACTA ACUST UNITED AC 2016; 21:325-31. [PMID: 26901808 DOI: 10.1080/10245332.2015.1125078] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Angiogenesis have implications in leukemia biology. Angiopoietin 1 (Ang 1) is an angiogenic cytokine which is essential in survival and proliferation of endothelial cells. Angiopoietin 2 (Ang 2) promotes dissociation of pericytes and increases vascular permeability and stromal derived factor 1 alpha (SDF 1α) which is a key player in stem cell traffic in the bone marrow (BM), has stimulating effects on angiogenesis as well. Here, we investigated the role of the leukemic BM microenvironment and specifically, the role of SDF 1α-CXCR4 and Ang 1/Ang 2-Tie 2 axes. METHODS Here, Ang 1, Ang 2, and SDF 1α levels were measured in the BM plasma and in supernatants of mesenchymal stem/stromal cells (MSCs) of patients with ALL and compared with those of healthy controls. RESULTS The results showed that at diagnosis, BM plasma levels of Ang 1 and SDF 1α were significantly low and Ang 2 was high when compared to control values. Remission induction was associated with an increase in Ang 1/Ang 2 ratio and SDF levels in BM plasma. DISCUSSION The results suggest that BM microenvironment and leukemic cell-stroma interaction influences the secretion of Ang 1, 2 and SDF 1α, thus, may affect both angiogenesis, homing and mobilization of leukemic blasts.
Collapse
Affiliation(s)
- Neslihan Karakurt
- a Deparment of Pediatric Hematology/Oncology , Ankara Childrens' Hematology/Oncology Education and Research Hospital , Ankara , Turkey
| | - Tekin Aksu
- a Deparment of Pediatric Hematology/Oncology , Ankara Childrens' Hematology/Oncology Education and Research Hospital , Ankara , Turkey
| | - Yasin Koksal
- b Deparment of Pediatric Hematology/Oncology, Stem Cell Laboratory , Ankara Childrens' Hematology/Oncology Education and Research Hospital , Ankara , Turkey
| | - Nese Yarali
- a Deparment of Pediatric Hematology/Oncology , Ankara Childrens' Hematology/Oncology Education and Research Hospital , Ankara , Turkey
| | - Bahattin Tunc
- a Deparment of Pediatric Hematology/Oncology , Ankara Childrens' Hematology/Oncology Education and Research Hospital , Ankara , Turkey
| | - Duygu Uckan-Cetinkaya
- c Department of Pediatric Bone Marrow Transplantation , Hacettepe School of Medicine Ihsan Dogramaci Childrens' Hospital , Ankara , Turkey
| | - Meltem Ozguner
- b Deparment of Pediatric Hematology/Oncology, Stem Cell Laboratory , Ankara Childrens' Hematology/Oncology Education and Research Hospital , Ankara , Turkey
| |
Collapse
|
32
|
Tang D, Gao J, Wang S, Ye N, Chong Y, Huang Y, Wang J, Li B, Yin W, Wang D. Cancer-associated fibroblasts promote angiogenesis in gastric cancer through galectin-1 expression. Tumour Biol 2016; 37:1889-1899. [PMID: 26323258 DOI: 10.1007/s13277-015-3942-9] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 08/17/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Galectin-1, an evolutionarily conserved glycan-binding protein with angiogenic potential, was recently identified as being overexpressed in cancer-associated fibroblasts (CAFs) of gastric cancer. The role of endogenous CAF-derived galectin-1 on angiogenesis in gastric cancer and the mechanism involved remain unknown. METHODS Immunohistochemical staining was used to investigate the correlation between galectin-1 and vascular endothelial growth factor (VEGF) and CD31 expression in gastric cancer tissues and normal gastric tissues. Galectin-1 was knocked down in CAFs isolated from gastric cancer using small interfering ribonucleic acid (RNA), or overexpressed using recombinant lentiviruses, and the CAFs were co-cultured with human umbilical vein endothelial cells (HUVECs) or cancer cells. Subsequently, proliferation, migration, tube formation, and VEGF/VEGF receptor (VEGFR) 2 expression were detected. The role of CAF-derived galectin-1 in tumor angiogenesis in vivo was studied using the chick chorioallantoic membrane (CAM) assay. RESULTS Galectin-1 was highly expressed in the CAFs and was positively associated with VEGF and CD31 expression. In the co-culture, high expression of galectin-1 in the CAFs increased HUVEC proliferation, migration, tube formation, and VEGFR2 phosphorylation and enhanced VEGF expression in gastric cancer cells. The CAM assay indicated that high expression of galectin-1 in the CAFs accelerated tumor growth and promoted angiogenesis. In contrast, galectin-1 knockdown in the CAFs significantly inhibited this effect. CONCLUSION CAF-derived galectin-1 significantly promotes angiogenesis in gastric cancer and may be a target for angiostatic therapy.
Collapse
Affiliation(s)
- Dong Tang
- Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University (Subei People's Hospital of Jiangsu Province), Yangzhou, 225001, People's Republic of China
| | - Jun Gao
- Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University (Subei People's Hospital of Jiangsu Province), Yangzhou, 225001, People's Republic of China
| | - Sen Wang
- College of Clinical Medicine, Nanjing Medical University (the First Affiliated Hospital of Nanjing Medical University), Nanjing, 211166, People's Republic of China
| | - Nianyuan Ye
- Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University (Subei People's Hospital of Jiangsu Province), Yangzhou, 225001, People's Republic of China
| | - Yang Chong
- Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University (Subei People's Hospital of Jiangsu Province), Yangzhou, 225001, People's Republic of China
| | - Yuqin Huang
- Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University (Subei People's Hospital of Jiangsu Province), Yangzhou, 225001, People's Republic of China
| | - Jie Wang
- Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University (Subei People's Hospital of Jiangsu Province), Yangzhou, 225001, People's Republic of China
| | - Bin Li
- Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University (Subei People's Hospital of Jiangsu Province), Yangzhou, 225001, People's Republic of China
| | - Wei Yin
- Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University (Subei People's Hospital of Jiangsu Province), Yangzhou, 225001, People's Republic of China
| | - Daorong Wang
- Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University (Subei People's Hospital of Jiangsu Province), Yangzhou, 225001, People's Republic of China.
| |
Collapse
|
33
|
Tumor-associated macrophages of the M2 phenotype contribute to progression in gastric cancer with peritoneal dissemination. Gastric Cancer 2016; 19:1052-1065. [PMID: 26621525 PMCID: PMC5034006 DOI: 10.1007/s10120-015-0579-8] [Citation(s) in RCA: 204] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/13/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) of the M2 phenotype are known to promote tumor proliferation and to be associated with a poor prognosis in numerous cancers. Here, we investigated whether M2 macrophages participate in the development of peritoneal dissemination in gastric cancer. METHODS The characteristics of peritoneal macrophages in gastric cancer patients with or without peritoneal dissemination were examined by flow cytometry and the real-time quantitative polymerase chain reaction. The effects of M2 macrophages on phenotypic changes of the gastric cancer cell line MKN45 were assessed with a direct or indirect co-culture system in vitro and an in vivo mouse xenograft model. RESULTS The number of peritoneal macrophages with the M2 phenotype (CD68(+)CD163(+) or CD68(+)CD204(+)) was significantly higher in gastric cancer patients with peritoneal dissemination than in those without peritoneal dissemination. Higher expression of the M2-related messenger RNAs (IL-10, vascular endothelial growth factor A, vascular endothelial growth factor C, matrix metalloproteinase 1, and amphiregulin) and lower expression of M1-related messenger RNAs (TNF-α, CD80, CD86, and IL-12p40) were also confirmed in the TAMs. Macrophage co-culture with gastric cancer cells converted M1 phenotype into M2 phenotype. Moreover, the coexistence of MKN45 cells with M2 macrophages resulted in cancer cell proliferation and an acceleration of tumor growth in the xenograft model. CONCLUSIONS Intraperitoneal TAMs in gastric cancer patients with peritoneal dissemination were polarized to the M2 phenotype, and could contribute to tumor proliferation and progression. Therefore, intraperitoneal TAMs are expected to be a promising target in the treatment of peritoneal dissemination in gastric cancer.
Collapse
|
34
|
Bone marrow-derived stromal cells are associated with gastric cancer progression. Br J Cancer 2015; 113:443-52. [PMID: 26125445 PMCID: PMC4522640 DOI: 10.1038/bjc.2015.236] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 05/23/2015] [Accepted: 05/27/2015] [Indexed: 12/20/2022] Open
Abstract
Background: The aim of this study was to clarify the role of bone marrow-derived stromal cells (BM-SCs) expressing CD271 in the development of gastric cancer. Methods: The effect of human BM-SCs on the proliferation and motility of six gastric cancer cell lines, OCUM-2M, OCUM-2MD3, OCUM-12, KATO-III, NUGC-3, and MKN-74, was examined. CD271 expression levels in BM-SCs were analysed by flow cytometry. We also generated a gastric tumour model by orthotopic inoculation of OCUM-2MLN cells in mice that had received transplantation of bone marrow from the CAG-EGFP mice. The correlation between the clinicopathological features of 279 primary gastric carcinomas and CD271 expression in tumour stroma was examined by immunohistochemistry. Results: Numerous BM-SCs infiltrated the gastric tumour microenvironment; CD271 expression was found in ∼25% of BM-SCs. Conditioned medium from BM-SCs significantly increased the proliferation of gastric cancer cell lines. Furthermore, conditioned medium from gastric cancer cells significantly increased the number of BM-SCs, whereas migration of OCUM-12 and NUGC-3 cells was significantly increased by conditioned medium from BM-SCs. CD271 expression in stromal cells was significantly associated with macroscopic type-4 cancers, diffuse-type tumours, and tumour invasion depth. The overall survival of patients (n=279) with CD271-positive stromal cells was significantly worse compared with that of patients with CD271-negative stromal cells. This is the first report of the significance of BM-SCs in gastric cancer progression. Conclusions: Bone marrow-derived stromal cells might have an important role in gastric cancer progression, and CD271-positive BM-SCs might be a useful prognostic factor for gastric cancer patients.
Collapse
|
35
|
Yoshimoto M, Higaki K, Nanba E, Ikeguchi M. Anti-Proliferation Activity of Fucoidan in MKN45 Gastric Cancer Cells and Downregulation of Phosphorylated ASK1, a Cell Cycle-Regulated Kinase. Yonago Acta Med 2015; 58:1-7. [PMID: 26190891 PMCID: PMC4495266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 11/27/2014] [Indexed: 06/04/2023]
Abstract
BACKGROUND Fucoidan is a high-molecular polysaccharide whose main constituent is sulfated fucose. We specifically focused on the anti-proliferation activity of fucoidan and examined the underlying mechanism in MKN45 gastric cancer cells. METHODS MKN45 cell proliferation was analyzed by BrdU assay and fucoidan cytotoxicity was examined by LDH and clonogenic assays. The Agilent Human microarray kit was used to identify upregulated and downregulated genes in response to fucoidan, and western blot analyses evaluated cell cycle proteins. RESULTS Fucoidan impeded the MKN45 cell cycle by approximately 50%, and inhibited cell proliferation.LDH assays showed no immediate cytotoxic effects of fucoidan at 24 h exposure, however longer time courses revealed cell growth inhibition at 4 days in a dose-dependent manner. Microarray analysis identified MAP3K5, or ASK1 (apoptosis signal-regulating kinase),which was upregulated by 1.38-fold upon fucoidan treatment.Fucoidan increased ASK1 protein levels, while reducing phosphorylated ASK1 levels. Reduction of ASK1 by siRNA decreased proliferation of MKN45 cells. CONCLUSION Our findings show that fucoidan may suppress cellular proliferation and DNA synthesis in MKN45 cells by suppressing the ASK1-p38 signaling pathway through reduction of phosphorylated ASK1 levels.
Collapse
Affiliation(s)
- Miwa Yoshimoto
- Division of Surgical Oncology, Department of Surgery, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504,Japan
| | - Katsumi Higaki
- †Division of Functional Genomics, Research Center for Bioscience and Technology, Tottori University, Yonago 683-8503,Japan
| | - Eiji Nanba
- †Division of Functional Genomics, Research Center for Bioscience and Technology, Tottori University, Yonago 683-8503,Japan
| | - Masahide Ikeguchi
- Division of Surgical Oncology, Department of Surgery, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504,Japan
| |
Collapse
|
36
|
SHINBO TOSHIFUMI, FUSHIDA SACHIO, TSUKADA TOMOYA, HARADA SHINICHI, KINOSHITA JUN, OYAMA KATSUNOBU, OKAMOTO KOICHI, NINOMIYA ITASU, TAKAMURA HIROYUKI, KITAGAWA HIROHISA, FUJIMURA TAKESHI, YASHIRO MASAKAZU, HIRAKAWA KOUSEI, OHTA TETSUO. Protein-bound polysaccharide K suppresses tumor fibrosis in gastric cancer by inhibiting the TGF-β signaling pathway. Oncol Rep 2015; 33:553-558. [PMID: 25435013 PMCID: PMC4306268 DOI: 10.3892/or.2014.3636] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/07/2014] [Indexed: 12/22/2022] Open
Abstract
Peritoneal carcinomatosis (PC) is the most frequent metastatic pattern of gastric cancer and its prognosis is extremely poor. PC is characterized by rich fibrosis and the development of obstructive disorders such as ileus, jaundice and hydronephrosis. Epithelial-mesenchymal transition (EMT) is one of the major causes of tissue fibrosis and transforming growth factor β (TGF-β) has a pivotal function in the progression of EMT. Protein-bound polysaccharide K (PSK) is a biological response modifier that can modulate the TGF-β/Smad signaling pathway in vitro. In the present study, we established a fibrotic tumor model using human peritoneal mesothelial cells (HPMCs) and a human gastric cancer cell line to evaluate whether PSK attenuates tumor fibrosis. HPMCs exposed to PSK did not undergo the morphological change from a cobblestone-like pattern to a spindle-shape pattern normally induced by treatment with TGF-β. Immunofluorescence further demonstrated that PSK suppressed TGF-β-induced overexpression of α-SMA in the HPMCs. We further showed that HPMCs contributed to the proliferation of tumor fibrosis by using a mouse xenograft model. Additionally, PSK treatment of these mice significantly reduced the area of observable tumor fibrosis. These results suggest that seeded cancer cells transformed HPMCs into myofibroblast-like cells through their release of TGF-β in the microenvironment, facilitating the development of fibrous tumors in organs covered with HPMCs. Therefore, our study indicates that PSK has potential utility as an anti-fibrotic agent in the treatment of gastric cancer patients with PC.
Collapse
Affiliation(s)
- TOSHIFUMI SHINBO
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - SACHIO FUSHIDA
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - TOMOYA TSUKADA
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - SHINICHI HARADA
- Center for Biomedical Research and Education, School of Medicine, Kanazawa University, Kanazawa 920-8641, Japan
| | - JUN KINOSHITA
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - KATSUNOBU OYAMA
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - KOICHI OKAMOTO
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - ITASU NINOMIYA
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - HIROYUKI TAKAMURA
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - HIROHISA KITAGAWA
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - TAKESHI FUJIMURA
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - MASAKAZU YASHIRO
- Department of Surgical Oncology, Osaka City University, Graduate School of Medicine, Abeno-ku, Osaka 545-8585, Japan
| | - KOUSEI HIRAKAWA
- Department of Surgical Oncology, Osaka City University, Graduate School of Medicine, Abeno-ku, Osaka 545-8585, Japan
| | - TETSUO OHTA
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8641, Japan
| |
Collapse
|