1
|
Li S, Zhou J, Wang S, Yang Q, Nie S, Ji C, Zhang X, Li S, Zhou X, Chu J, Wu X, Jiao J, Xu R, Xu Q, Huang M, Wang Q, Dou L, Hu Q, Jiang F, Dai X, Nan Z, Song X, Zhang D, Liu L. N 6-methyladenosine-regulated exosome biogenesis orchestrates an immunosuppressive pre-metastatic niche in gastric cancer peritoneal metastasis. Cancer Commun (Lond) 2025. [PMID: 40370322 DOI: 10.1002/cac2.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 04/20/2025] [Accepted: 04/28/2025] [Indexed: 05/16/2025] Open
Abstract
BACKGROUND Gastric cancer peritoneal metastasis is clinically challenging, given the limited treatment options and poor prognosis. The molecular mechanisms that precede gastric cancer peritoneal metastasis, known as the pre-metastatic niche (PMN), and its relationship with N6-methyladenosine (m6A) modification remain unclear. METHODS We used 87 resected gastric cancer tissues and 4 public datasets to explore the association between methyltransferase-like 3 (METTL3) expression and gastric cancer peritoneal metastasis. Roles of m6A, exosomes, or macrophages in PMN formation were explored in immunocompetent mouse models through exosome treatments or macrophage modifications. Key genes and regulatory mechanisms were uncovered using mass spectrometry, RNA/miRNA sequencing, RNA-immunoprecipitation, dual-luciferase assays, and point mutations in the ras-related protein Rab-27A (RAB27A) in cells. Macrophage and T-cell functions were assessed using enzyme-linked immunosorbent assay, flow cytometry, and cytotoxicity assays. RESULTS METTL3 overexpression in gastric cancer cells enhanced RAB27A translation by methylating its mRNA A502 base, facilitated by its m6A "reader" YTH N6-methyladenosine RNA binding protein F1 (YTHDF1), and led to increased exosome biogenesis. The miRNA-17-92 cluster was enriched in METTL3-overexpressed cell-derived exosomes and targeted SRC kinase signaling inhibitor 1 (SRCIN1) to activate SRC proto-oncogene, non-receptor tyrosine kinase (SRC) signaling in peritoneal macrophages. Macrophage activation skewed cytokine production towards an immunosuppressive profile in the peritoneum, elevating the levels of interleukin (IL)-10 and tumor necrosis factor (TNF) and reducing the levels of IL-1 and IL-6. These cytokine shifts inhibited T cell proliferation and cytotoxic activities, which created an immunosuppressive PMN and led to peritoneal metastasis. The association between METTL3, macrophages, and peritoneal metastasis was verified in clinical samples. CONCLUSIONS Our study identified an intricate m6A-regulated mechanism of peritoneal PMN development that is mediated by exosome-promoted macrophages. These insights into gastric cancer peritoneal metastasis offer promising directions for translational research.
Collapse
Affiliation(s)
- Song Li
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Jianyuan Zhou
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Shuang Wang
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Qian Yang
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Shulun Nie
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Chunwang Ji
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Xue Zhang
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, P. R. China
| | - Shuhan Li
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Xuanyu Zhou
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Jiahui Chu
- Department of Pharmacy, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Xuehui Wu
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Jianqiao Jiao
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Ruitao Xu
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Qian Xu
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Miao Huang
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Qiushi Wang
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Liliang Dou
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Qinqin Hu
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Fan Jiang
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Xin Dai
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
- Department of Medical Oncology, Shandong Provincial Hospital of Traditional Chinese Medicine, Jinan, Shandong, P. R. China
| | - Zhaodi Nan
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Xinyu Song
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Di Zhang
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Lian Liu
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| |
Collapse
|
2
|
Ng D, Cyr D, Khan S, Dossa F, Swallow C, Kazazian K. Molecular mechanisms of metastatic peritoneal dissemination in gastric adenocarcinoma. Cancer Metastasis Rev 2025; 44:50. [PMID: 40317360 PMCID: PMC12049340 DOI: 10.1007/s10555-025-10265-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 04/17/2025] [Indexed: 05/07/2025]
Abstract
Peritoneal dissemination portends a dismal prognosis in patients with gastric adenocarcinoma in the context of limited effective treatments. The underlying cellular processes that drive gastric peritoneal carcinomatosis remain unclear, limiting the application of novel targeted therapies. In this comprehensive review, we aimed to identify and summarize all existing context-dependent molecular mechanisms that have been implicated in peritoneal dissemination and peritoneal carcinomatosis establishment from primary gastric adenocarcinoma. We applied a multilevel examination including data from in vivo murine models using human gastric cancer cell lines, in vitro technique-based studies, ex vivo models, and genomic/proteomic and molecular profiling analyses to report on various aspects of gastric cancer peritoneal metastasis biology. Mechanisms promoting peritoneal dissemination were grouped into three main functional categories: (1) intrinsic cancer cell biology, (2) cancer cell-peritoneal surface adhesion, and (3) peritoneal tumor microenvironment. We identified significant overlap among the three categories, indicating a complex interplay between multiple molecular mechanisms. By interrupting these pathways, peritoneal-directed therapies have the potential to improve quality and length of life in patients with high-risk primary gastric cancer.
Collapse
Affiliation(s)
- Deanna Ng
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
| | - David Cyr
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
| | - Shawn Khan
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
| | - Fahima Dossa
- Complex General Surgical Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Carol Swallow
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
| | - Karineh Kazazian
- Department of Surgery, University of Toronto, Toronto, Canada.
- Department of Surgical Oncology, Toronto General Hospital, University Health Network, 200 Elizabeth Street, 10 Eaton North, Room 219, Toronto, M5G 2 C4, Canada.
| |
Collapse
|
3
|
Liu Q, Wang Y, Song M, Huang J, Shi J, Sun W, Ji X, Chang Y, Ma B, Zhang P, Yan Y, Zhang H. CCL20/CXCL5 Drives Crosstalk Between Anaplastic Thyroid Cancer Stem Cells and Tumor-Associated Macrophages to Promote Tumor Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2405399. [PMID: 40091357 PMCID: PMC12061268 DOI: 10.1002/advs.202405399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 02/26/2025] [Indexed: 03/19/2025]
Abstract
The dynamic interplay between tumor-associated macrophages (TAMs) and anaplastic thyroid cancer (ATC) shapes the tumor microenvironment and facilitates ATC progression. However, the mechanisms of communication between TAMs and anaplastic thyroid cancer stem cells (ATCSCs) remain largely unelucidated. Integrative analyses of single-cell RNA sequencing, cytokine/chemokine arrays, proteomics, and mRNA expression datasets are performed to reveal crosstalk between TAMs and ATCSCs and signaling pathways in ATCSCs. Subsequently, in vitro experiments are performed to validate the regulatory effects of key cytokines on ATCSC stemness. Last, xenogeneic orthotopic thyroid ATCSCs transplantation models are utilized to corroborate the regulatory effect of cytokines on stemness. CCL20 derived from THP-1-M2 activates the IRAK-1/NF-κB1/2 signaling pathway in ATCSCs, thereby positively regulating stemness characteristics and upregulating CXCL5 secretion. ATCSCs not only exhibit autocrine CXCL5 participation in the regulation of stemness but also demonstrate paracrine CXCL5 activity to recruit THP-1-Mφ and maintain the M2 phenotype. CCL20 and CXCL5 are involved in the crosstalk between TAMs and ATCSCs. The CCL20/CXCL5 axis plays a crucial role in the interaction between TAMs and ATCSCs, establishing a progressive tumor microenvironment.
Collapse
Affiliation(s)
- Qi Liu
- Department of Thyroid SurgeryThe First Hospital of China Medical UniversityShenyang110801P. R. China
| | - Yan Wang
- Department of PharmacologySchool of PharmacyChina Medical UniversityShenyang110122P. R. China
| | - Mingyuan Song
- Department of Thyroid SurgeryThe First Hospital of China Medical UniversityShenyang110801P. R. China
| | - Jiapeng Huang
- Department of Thyroid SurgeryThe First Hospital of China Medical UniversityShenyang110801P. R. China
| | - Jinyuan Shi
- Department of Thyroid SurgeryGeneral SurgeryQilu Hospital of Shandong UniversityJinan250012P. R. China
| | - Wei Sun
- Department of Thyroid SurgeryThe First Hospital of China Medical UniversityShenyang110801P. R. China
| | - Xiaoyu Ji
- Department of Thyroid SurgeryThe First Hospital of China Medical UniversityShenyang110801P. R. China
| | - Yuang Chang
- Department of Thyroid SurgeryThe First Hospital of China Medical UniversityShenyang110801P. R. China
| | - Bing Ma
- Department of Clinical Epidemiology and Evidence‐based MedicineThe First Hospital of China Medical UniversityShenyang110801P. R. China
| | - Ping Zhang
- Department of Thyroid SurgeryThe First Hospital of China Medical UniversityShenyang110801P. R. China
| | - Yuanyuan Yan
- Department of PharmacologySchool of PharmacyChina Medical UniversityShenyang110122P. R. China
| | - Hao Zhang
- Department of Thyroid SurgeryThe First Hospital of China Medical UniversityShenyang110801P. R. China
| |
Collapse
|
4
|
俞 佳, 周 薏, 钱 春, 穆 蓝, 阙 任. [Effects of liver fibrosis induced by iron overload on M2 polarization of macrophages in mice]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2025; 45:684-691. [PMID: 40294917 PMCID: PMC12037300 DOI: 10.12122/j.issn.1673-4254.2025.04.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Indexed: 04/30/2025]
Abstract
OBJECTIVES To observe the evolution of intrahepatic macrophage polarization in mice with liver fibrosis induced by iron overload. METHODS Thirty-two C57BL/6 mice (6-8 weeks) were randomized into control group (n=8) and liver fibrosis model group (n=24) induced by aidly intraperitoneal injection of iron dextran. At the 3rd, 5th, and 7th weeks of modeling, 8 mice in the model group were sacrificed for observing liver fibrosis using Masson, Sirius Red and immunohistochemical staining and detecting serum levels of ALT, AST and the levels of serum iron, ferritin, liver total Fe and ferrous Fe. iNOS+/F4/80+ cells and CD206+/F4/80+ cells were detected by double immunofluorescence assay to observe the proportion and distribution of M1 and M2 macrophages. The hepatic expressions of Arg-1, iNOS, IL-6, IL-10, and TNF‑α proteins were detected using Western blotting or ELISA, and the expression of CD206 mRNA was detected using RT-PCR. RESULTS The mice in the model group showed gradual increase of fibrous tissue hyperplasia in the portal area over time, structural destruction of the hepatic lobules and formation of pseudolobules. With the passage of time during modeling, the rat models showed significantly increased hepatic expressions of α-SMA and COL-1, elevated serum levels of ALT, AST, Fe, ferritin, and increased liver total Fe and ferrous Fe levels. The expressions of M1 polarization markers IL-6, TNF‑α, and iNOS all increased with time and reached their peak levels at the 3rd week; The expressions of M2 polarization markers (IL-10 and Arg-1 proteins and CD206 mRNA) significantly increased in the 3rd week and but decreased in the 5th and 7th weeks. CONCLUSIONS Iron overload promotes M1 polarization of macrophages in mice. Liver fibrosis in the early stage promotes M2 polarization of macrophages but negatively regulate M2 polarization at later stages.
Collapse
|
5
|
Zhang Y, Jia Z, Cao D, Zhong Y, Wu Y, Fu Y, Cui Y, Yu X, Liu Y, Jiang J. RGS1 can serve as a long-term prognostic marker in gastric cancer by promoting the infiltration and polarization of macrophages. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167711. [PMID: 39933597 DOI: 10.1016/j.bbadis.2025.167711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/13/2025]
Abstract
Gastric cancer (GC) remains a prevalent and aggressive malignancy worldwide, characterized by significant morbidity and mortality. The regulator of G-protein signaling 1 (RGS1) plays an oncogenic role in various cancers, including GC, but its clinical relevance and mechanisms remain underexplored. In this pilot study, we investigated RGS1 expression in GC tissues and its potential as a prognostic marker, laying the groundwork for future research. Our analysis of patient data from the TCGA data and our cohort of 375 surgically resected GC patients revealed that RGS1 was upregulated in GC tissues and had prognostic significance (TCGA: adjusted HR:1.49, 95%CI: 1.02-2.18; GC cohort: adjusted HR: 1.38, 95%CI: 1.02-1.85). GO function and KEGG enrichment analyses suggest that RGS1 is involved in macrophage-mediated immune responses in GC. We observed a positive correlation between RGS1 expression and M2 macrophage infiltration. Furthermore, co-occurrence of elevated RGS1 expression and M2 macrophage infiltration predicts a worse prognosis (adjusted HR: 1.73, 95%CI: 1.24-2.42 in our cohort). In vitro, RGS1 upregulation and the presence of M2 macrophages enhanced malignant phenotypes of GC cells. Additionally, we confirmed that RGS1 promoted macrophage recruitment and M2 polarization via upregulation of CCL4 expression in vivo. In conclusion, this study suggests that RGS1 could serve as a promising prognostic marker for GC and a potential target for immunotherapy. However, further investigation with more advanced experimental models is needed to confirm these preliminary findings.
Collapse
Affiliation(s)
- Yuzheng Zhang
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China; Department of Hospital Infection Management, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhifang Jia
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Donghui Cao
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Yanping Zhong
- Division of Pathology, First Hospital of Jilin University, Changchun, China
| | - Yanhua Wu
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Yingli Fu
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Yingnan Cui
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Xinyi Yu
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Yu Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Jing Jiang
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
6
|
Li N, Lin J, Wang C, Ran X, Zhao Z. Artificial intelligence-driven integration of single-cell RNA sequencing and transcriptome analysis to decipher APOE's role in gastric cancer prognosis and therapy. Discov Oncol 2025; 16:314. [PMID: 40082390 PMCID: PMC11906938 DOI: 10.1007/s12672-025-02100-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/10/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND Gastric cancer (GC) remains a global health challenge due to its high mortality rate and the lack of specific diagnostic methods. Tumor heterogeneity significantly hinders effective treatment, necessitating advanced techniques to dissect its complexity. Artificial intelligence (AI) offers transformative potential in uncovering intricate cellular dynamics and gene regulatory networks. This study leverages single-cell RNA sequencing (scRNA-seq) combined with transcriptome analysis, enhanced by AI-driven analytics, to explore the tumor microenvironment and identify novel prognostic markers and therapeutic targets in GC. METHODS scRNA-seq and transcriptome datasets of GC patients were analyzed using AI-enhanced methodologies to unravel tumor heterogeneity and microenvironmental dynamics. Macrophage subsets were identified as critical components within the GC microenvironment. High-variance gene screening in these subsets pinpointed apolipoprotein E (APOE) as a hub gene. Experimental validation of APOE expression in GC samples and functional studies in GC cell lines were conducted. RESULTS Bioinformatics and AI-enabled analyses confirmed the immunosuppressive role of APOE in GC. An immune-related survival model was developed to predict immunotherapy responses and patient prognoses. Mechanistically, APOE was found to induce immunosuppression through M2 macrophage polarization, promoting tumor progression and leading to poorer outcomes in GC patients. CONCLUSION This study highlights the potential of AI-driven approaches in elucidating the role of APOE in GC progression. APOE's regulatory effects on M2 macrophages underscore its value as a prognostic marker and therapeutic target, paving the way for precision medicine in GC management.
Collapse
Affiliation(s)
- Ni Li
- Health Management Center, People's Hospital of Guilin, Guilin, 541002, Guangxi, China
| | - Jinquan Lin
- Department of Gastrointestinal and Hernia Surgery, People's Hospital of Guilin, Guilin, 541002, Guangxi, China
- Guilin Medical University, Guilin, 541199, Guangxi, China
| | - Chunyu Wang
- Guilin Medical University, Guilin, 541199, Guangxi, China
| | - Xiao Ran
- Guilin Medical University, Guilin, 541199, Guangxi, China
| | - Zhi Zhao
- Department of Gastrointestinal and Hernia Surgery, People's Hospital of Guilin, Guilin, 541002, Guangxi, China.
| |
Collapse
|
7
|
Zhang Y, Wang B, Chen J, Li T. Role of exosomal miRNAs and macrophage polarization in gastric cancer: A novel therapeutic strategy. Eur J Pharmacol 2025; 990:177268. [PMID: 39805486 DOI: 10.1016/j.ejphar.2025.177268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/09/2025] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
Gastric cancer (GC) is one of the most common gastrointestinal cancers worldwide, with consistently high morbidity and mortality rates and poor prognosis. Most patients are diagnosed at an advanced stage due to the lack of specific presentation in the early stages. Exosomes are a class of extracellular vesicles (EVs) widely found in body fluids and can release genetic material or multiple proteins to facilitate intercellular communication. In recent years, exosomal miRNAs have gained attention for their role in various cancers. These exosomal miRNAs can impact GC development and progression by targeting specific genes or influencing signaling pathways and cytokines involved in Angiogenesis, epithelial-mesenchymal transition (EMT), drug resistance, and immune regulation. They show great potential in terms of diagnosis, prognosis, and treatment of GC. Notably, the gastrointestinal tract has the largest number of macrophages, which play a significant role in GC progression. Tumor-associated macrophages (TAMs) are the most abundant immune cells in the tumor microenvironment (TME) and can influence macrophage programming through various mediators, including macrophage polarization. Macrophage polarization is involved in inflammatory responses and significantly impacts the GC process.
Collapse
Affiliation(s)
- Yun Zhang
- School of Clinical Medicine, Ningxia Medical University, Ningxia, China; General Hospital of Ningxia Medical University, Ningxia, China
| | - Baozhen Wang
- School of Clinical Medicine, Ningxia Medical University, Ningxia, China; General Hospital of Ningxia Medical University, Ningxia, China
| | - Jing Chen
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China.
| | - Tao Li
- Department of Surgical Oncology, Tumor Hospital, The General Hospital of Ningxia Medical University, Ningxia, China.
| |
Collapse
|
8
|
Ju Y, Xiao W, Mathis BJ, Shi Y. KLF4: a multifunctional nexus connecting tumor progression and immune regulation. Front Immunol 2025; 16:1514780. [PMID: 39995670 PMCID: PMC11848521 DOI: 10.3389/fimmu.2025.1514780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/17/2025] [Indexed: 02/26/2025] Open
Abstract
Krüppel-like factors (KLFs) regulate various biological processes such as cell proliferation, migration, invasion, and differentiation as gene transcription factors. Signaling pathways which mediated by KLF4 and KLF4 have a sophisticated role in tumors due to multiple factors, including the types or stage of tumors. KLF4 plays a promoter role in tumorigenesis and development, or tumor suppressor as a context-dependent anti- and pro-inflammatory factor. KLF4 over-expression increases CD8+T cell differentiation and enhances the antitumor immunity. This review aims to provide information about the relationship of KLF4 in immunity with tumors and to guide the future study.
Collapse
Affiliation(s)
- Yunjie Ju
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen Xiao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bryan James Mathis
- Clinical Research Manuscript Elevation Service, University of Tsukuba Institute of Medicine, Tsukuba, Japan
| | - Ying Shi
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Wang C, Zhang X, Li Q, Hou Y, Sun M, Sun J, Lou Z, Han X, Li Y. A review of carbohydrate polymer-synthesized nanoparticles in cancer immunotherapy: Past, present and future perspectives. Int J Biol Macromol 2025; 286:138195. [PMID: 39645110 DOI: 10.1016/j.ijbiomac.2024.138195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/19/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
Cancer continues to be a leading factor in mortality and tackling it has been made difficult by the development of immune escape. Furthermore, alternative treatments like surgery, chemotherapy, and radiation have been unsuccessful in eradicating cancer. Despite being effective, they have not succeeded in providing a full cancer treatment and exhibit several negative effects. The field of immunotherapy has been improved by utilizing cancer vaccines, immune checkpoint inhibitors (ICIs), and adoptive cell transfer to enhance immune responses to tumors. Nevertheless, cancer cells need to adapt and become immune to immune reactions, leading to the need for innovative treatment methods. Carbohydrate polymers and their nanoparticles have been beneficial in improving cancer immunotherapy by being customizable to specifically target the immune system. These nanoparticles can change the tumor microenvironment and accelerate immunotherapy by affecting immune cells such as T cells and dendritic cells. Incorporating both chemotherapy and phototherapy into nanoparticles can improve immunotherapy. Furthermore, besides controlling immune reactions, carbohydrate polymer nanoparticles can also be used for theranostic purposes, where they are used to image tumor cells and activate the immune system to eradicate cancer.
Collapse
Affiliation(s)
- Chunyan Wang
- Department of Ultrasonic Diagnosis, The First Hospital of China Medical University, Shenyang, China
| | - Xueyao Zhang
- Department of Cardiology, First Hospital of China Medical University, Shenyang, China
| | - Qiaobei Li
- Department of Ultrasonic Diagnosis, The First Hospital of China Medical University, Shenyang, China
| | - Yuxin Hou
- Department of Ultrasonic Diagnosis, The Benxi Hospital of China Medical University, Benxi, China
| | - Minglu Sun
- Department of Ultrasonic Diagnosis, The Cancer Hospital of China Medical University, Shenyang, China
| | - Jun Sun
- Department of Intervention, the Fourth Hospital of China Medical University, Shenyang, China
| | - Zhe Lou
- Department of Cardiovascular Ultrasonic Diagnosis, The First Hospital of China Medical University, Shenyang, China.
| | - Xu Han
- Department of Traditional Chinese medicine, The First Hospital of China Medical University, Shenyang, China.
| | - Yinyan Li
- Department of Ultrasonic Diagnosis, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
10
|
Zhu AK, Li GY, Chen FC, Shan JQ, Shan YQ, Lv CX, Zhu ZQ, He YR, Zhai LL. Integrated Analysis of Single-Cell and Bulk RNA-Sequencing Based on EcoTyper Machine Learning Framework Identifies Cell-State-Specific M2 Macrophage Markers Associated with Gastric Cancer Prognosis. Immunotargets Ther 2024; 13:721-734. [PMID: 39678138 PMCID: PMC11646439 DOI: 10.2147/itt.s490075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/30/2024] [Indexed: 12/17/2024] Open
Abstract
Background Tumor is a complex and dynamic ecosystem formed by the interaction of numerous diverse cells types and the microenvironments they inhabit. Determining how cellular states change and develop distinct cellular communities in response to the tumor microenvironment is critical to understanding cancer progression. Tumour-associated macrophages (TAMs) are an important component of the tumour microenvironment and play a crucial role in cancer progression. This study was designed to identify cell-state-specific M2 macrophage markers associated with gastric cancer (GC) prognosis through integrative analysis of single-cell RNA sequencing (scRNA-seq) and bulk RNA-seq data using a machine learning framework named EcoTyper. Results The results showed that TAMs were classified into M1 macrophages, M2 macrophages, monocytes, undefined macrophages and dendritic cells, with M2 macrophages predominating. EcoTyper assigned macrophages to different cell states and ecotypes. A total of 168 cell-state-specific M2 macrophage markers were obtained by integrative analysis of scRNA-seq and bulk RNA-seq data. These markers could categorize GC patients into two clusters (clusters A and B) with different survival and M2 macrophages infiltration abundance. Cell adhesion molecules, cytokine-cytokine receptor interaction, JAK/STAT pathway, MAPK pathway were significantly enriched in cluster A, which had worse survival and higher M2 macrophages infiltration. Conclusion In conclusion, this study profiles a single-cell atlas of intratumor heterogeneity and defines the cell states and ecotypes of TAMs in GC. Furthermore, we have identified prognostically relevant cell-state-specific M2 macrophage markers. These findings provide novel insights into the tumor ecosystem and cancer progression.
Collapse
Affiliation(s)
- A-Kao Zhu
- Department of Colorectal Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, People’s Republic of China
| | - Guang-Yao Li
- Department of General Surgery, The Second People’s Hospital of Wuhu, Wuhu, 241000, People’s Republic of China
| | - Fang-Ci Chen
- The Fourth School of Clinical Medicine, Zhejiang University of Traditional Chinese Medicine, Hangzhou, 310006, People’s Republic of China
| | - Jia-Qi Shan
- The Fourth School of Clinical Medicine, Zhejiang University of Traditional Chinese Medicine, Hangzhou, 310006, People’s Republic of China
| | - Yu-Qiang Shan
- The Fourth School of Clinical Medicine, Zhejiang University of Traditional Chinese Medicine, Hangzhou, 310006, People’s Republic of China
- Department of Gastrointestinal Surgery, Hangzhou First People’s Hospital Affiliated to Westlake University School of Medicine, Hangzhou, 310006, People’s Republic of China
| | - Chen-Xi Lv
- The Fourth School of Clinical Medicine, Zhejiang University of Traditional Chinese Medicine, Hangzhou, 310006, People’s Republic of China
| | - Zhi-Qiang Zhu
- Department of General Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, People’s Republic of China
| | - Yi-Ren He
- Department of General Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, People’s Republic of China
| | - Lu-Lu Zhai
- Department of General Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, People’s Republic of China
| |
Collapse
|
11
|
Yi J, Ye Z, Xu H, Zhang H, Cao H, Li X, Wang T, Dong C, Du Y, Dong S, Zhou W. EGCG targeting STAT3 transcriptionally represses PLXNC1 to inhibit M2 polarization mediated by gastric cancer cell-derived exosomal miR-92b-5p. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156137. [PMID: 39566403 DOI: 10.1016/j.phymed.2024.156137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/07/2024] [Accepted: 10/07/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND M2-polarized tumor-associated macrophages (TAMs) predominate in tumor microenvironment (TME) and serve primary functions in tumor progression, including growth, angiogenesis, metastasis, immunosuppression, chemoresistance, and poor prognosis. The reversal of M2 polarization provides a new treatment strategy for cancer. Presently, the molecular mechanisms of M2 polarization have yet to be fully characterized, and there is a lack of effective therapeutic targets and drugs. Cancer cells initiate an immunosuppressive TME by recruiting macrophages and promoting M2 polarization through the secretion of inflammatory factors. Accordingly, blocking cancer cell-induced TAM M2 polarization may present a more effective strategy from the perspective of cancer cells. Hedyotis diffusa Willd (HDW) possesses immunomodulatory and antitumor properties, and is a precious and direct source of small molecule natural products with a dual function of inhibition of tumor growth and tumor cell-mediated M2 polarization. OBJECTIVE To identify a new target promoting gastric cancer (GC) cell growth and GC cell-mediated M2 polarization from mRNA profiles of GC cells treated with HDW injection (HDI) and to excavate a natural product from HDI that can regulate related mRNA and inhibit the aforementioned effects. METHODS RNA sequencing (RNA-seq) was used to analyze HDI-regulated differentially expressed mRNAs (HRmRNAs) in MKN45 cells. Weighted gene co-expression network analysis (WGCNA), univariate and multivariate Cox regression analysis, KM survival curves, and association analysis between HRmRNA and clinical characteristics/tumor infiltrating immune cells (TIICs) individually were utilized to screen out the target HRmRNA associated with prognosis and M2 macrophage infiltration in GC. shRNA lentiviral vectors were used for stably silencing, and transient overexpressing plasmids were constructed for overexpression. CCK8, EdU, colony formation, migration and invasion assays were used to validate the function of drugs and molecules in GC. HDI constituent analysis was performed using UHPLC-QE-MS. A network of HDI constituent-hub transcription factor (TF)-HRmRNA was constructed based on RNA-Seq, network pharmacology and TFs prediction. Exosome isolation and identification were performed using ultracentrifugation, NTA, TEM and western blot. Apoptosis and macrophage phenotypes were determined by flow cytometric analysis. Small RNA-Seq made exosomal miRNA identification. Small molecule interaction with targets were analyzed using molecular docking, SPR and CETSA. The direct relationship between transcription factors and promoters was verified using ChIP-QPCR and dual-luciferase reporter gene assay. A nude mice xenograft tumor model was established for vivo validation. RESULTS HDI inhibited MKN45 cell proliferation, migration, invasion and promoted apoptosis. RNA-Seq identified 2583 HRmRNAs. PLXNC1 was screened out as the target HRmRNA associated with prognosis and M2 macrophage infiltration in GC. PLXNC1 promoted GC cell proliferation and facilitated TAMs M2 polarization by transferring GC cell-derived exosomal miR-92b-5p, inhibiting SOCS7-STAT3 interactions and subsequently activating STAT3 in macrophages. M2 TAMs induced by PLXNC1-mediated GC cell-derived exosomes promoted GC cell migration and invasion. PLXNC1 regulated exosomal miR-92b-5p through the MEK1/MSK1/CREB1 pathway. STAT3 could transcriptionally regulate PLXNC1 expression in GC cells. The network of HDI constituent-hub TF-HRmRNA showed epigallocatechin gallate (EGCG) from HDI targeted STAT3 to transcriptionally regulate PLXNC1 expression. EGCG as a natural product directly bound to STAT3 to diminish its nuclear localization, resulting in the transcriptional repression of PLXNC1 and the reversal of M2 polarization induced by PLXNC1-mediated GC cell-derived exosomes. CONCLUSION PLXNC1 is a novel target exerting dual effects on GC cell proliferation and GC cell-mediated M2 polarization. EGCG derived from HDI inhibits GC cell proliferation and targets STAT3 to inhibit M2 polarization induced by PLXNC1-mediated exosomes derived from GC cells, which may be a multi-target therapeutic agent for GC cell proliferation and immune microenvironment.
Collapse
Affiliation(s)
- Jianfeng Yi
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu, PR China; The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, PR China
| | - Zhenzhen Ye
- The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, PR China; Gansu Provincial Key Laboratory for Mining and Innovation Transformation of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, PR China; Research Center of Traditional Chinese Medicine of Gansu Province, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, PR China
| | - Hao Xu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou 310006, Zhejiang, PR China; The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang, PR China
| | - Hui Zhang
- Department of General Surgery, The Second Hospital of Lanzhou University & The Second Clinical Medical School, Lanzhou University, Lanzhou 730000, Gansu, China; Gansu Province Key Laboratory of Environmental Oncology, Lanzhou 730000, Gansu, PR China
| | - Hongtai Cao
- Department of General Surgery, The Second Hospital of Lanzhou University & The Second Clinical Medical School, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Xin Li
- Department of General Surgery, The Second Hospital of Lanzhou University & The Second Clinical Medical School, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Tianming Wang
- The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, PR China
| | - Chunlu Dong
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu, PR China; Department of General Surgery, the First Hospital of Lanzhou University, Lanzhou 730000, Gansu, PR China
| | - Yan Du
- Department of General Surgery, The Second Hospital of Lanzhou University & The Second Clinical Medical School, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Shi Dong
- Department of General Surgery, The Second Hospital of Lanzhou University & The Second Clinical Medical School, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Wence Zhou
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu, PR China; Department of General Surgery, The Second Hospital of Lanzhou University & The Second Clinical Medical School, Lanzhou University, Lanzhou 730000, Gansu, China; Gansu Province Key Laboratory of Environmental Oncology, Lanzhou 730000, Gansu, PR China.
| |
Collapse
|
12
|
Yang M, Lin W, Huang J, Mannucci A, Luo H. Novel immunotherapeutic approaches in gastric cancer. PRECISION CLINICAL MEDICINE 2024; 7:pbae020. [PMID: 39397869 PMCID: PMC11467695 DOI: 10.1093/pcmedi/pbae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/08/2024] [Accepted: 09/08/2024] [Indexed: 10/15/2024] Open
Abstract
Gastric cancer is a malignant tumor that ranks third in cancer-related deaths worldwide. Early-stage gastric cancer can often be effectively managed through surgical resection. However, the majority of cases are diagnosed in advanced stages, where outcomes with conventional radiotherapy and chemotherapy remain unsatisfactory. Immunotherapy offers a novel approach to treating molecularly heterogeneous gastric cancer by modifying the immunosuppressive tumor microenvironment. Immune checkpoint inhibitors and adoptive cell therapy are regarded as promising modalities in cancer immunotherapy. Food and Drug Administration-approved programmed death-receptor inhibitors, such as pembrolizumab, in combination with chemotherapy, have significantly extended overall survival in gastric cancer patients and is recommended as a first-line treatment. Despite challenges in solid tumor applications, adoptive cell therapy has demonstrated efficacy against various targets in gastric cancer treatment. Among these approaches, chimeric antigen receptor-T cell therapy research is the most widely explored and chimeric antigen receptor-T cell therapy targeting claudin18.2 has shown acceptable safety and robust anti-tumor capabilities. However, these advancements primarily remain in preclinical stages and further investigation should be made to promote their clinical application. This review summarizes the latest research on immune checkpoint inhibitors and adoptive cell therapy and their limitations, as well as the role of nanoparticles in enhancing immunotherapy.
Collapse
Affiliation(s)
- Meng Yang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China
| | - Wuhao Lin
- Department of Molecular Diagnostics, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jiaqian Huang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China
| | - Alessandro Mannucci
- Gastroenterology and Gastrointestinal Emndoscopy Unit, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Milan 20132, Italy
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope; Monrovia, CA 91016, USA
| | - Huiyan Luo
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China
| |
Collapse
|
13
|
Allen J, Meglan A, Vaccaro K, Velarde J, Chen V, Ribeiro J, Blandin J, Gupta S, Mishra R, Ho R, Love J, Reinhardt F, Bell GW, Chen J, Weinberg R, Yang D, Weissman J, Weiskopf K. CD47 predominates over CD24 as a macrophage immune checkpoint in cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.625185. [PMID: 39651307 PMCID: PMC11623506 DOI: 10.1101/2024.11.25.625185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Macrophages hold tremendous promise as effectors of cancer immunotherapy, but the best strategies to provoke these cells to attack tumors remain unknown. Here, we evaluated the therapeutic potential of targeting two distinct macrophage immune checkpoints: CD47 and CD24. We found that antibodies targeting these antigens could elicit maximal levels of phagocytosis when combined together in vitro. However, to our surprise, via unbiased genome-wide CRISPR screens, we found that CD24 primarily acts as a target of opsonization rather than an immune checkpoint. In a series of in vitro and in vivo genetic validation studies, we found that CD24 was neither necessary nor sufficient to protect cancer cells from macrophage phagocytosis in most mouse and human tumor models. Instead, anti-CD24 antibodies exhibit robust Fc-dependent activity, and as a consequence, they cause significant on-target hematologic toxicity in mice. To overcome these challenges and leverage our findings for therapeutic purposes, we engineered a collection of 77 novel bispecific antibodies that bind to a tumor antigen with one arm and engage macrophages with the second arm. We discovered multiple novel bispecifics that maximally activate macrophage-mediated cytotoxicity and reduce binding to healthy blood cells, including bispecifics targeting macrophage immune checkpoint molecules in combination with EGFR, TROP2, and CD71. Overall, our findings indicate that CD47 predominates over CD24 as a macrophage immune checkpoint in cancer, and that the novel bispecifics we created may be optimal immunotherapies to direct myeloid cells to eradicate solid tumors.
Collapse
|
14
|
Dong D, Yu X, Xu J, Yu N, Liu Z, Sun Y. Cellular and molecular mechanisms of gastrointestinal cancer liver metastases and drug resistance. Drug Resist Updat 2024; 77:101125. [PMID: 39173439 DOI: 10.1016/j.drup.2024.101125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024]
Abstract
Distant metastases and drug resistance account for poor survival of patients with gastrointestinal (GI) malignancies such as gastric cancer, pancreatic cancer, and colorectal cancer. GI cancers most commonly metastasize to the liver, which provides a unique immunosuppressive tumour microenvironment to support the development of a premetastatic niche for tumor cell colonization and metastatic outgrowth. Metastatic tumors often exhibit greater resistance to drugs than primary tumors, posing extra challenges in treatment. The liver metastases and drug resistance of GI cancers are regulated by complex, intertwined, and tumor-dependent cellular and molecular mechanisms that influence tumor cell behavior (e.g. epithelial-to-mesenchymal transition, or EMT), tumor microenvironment (TME) (e.g. the extracellular matrix, cancer-associated fibroblasts, and tumor-infiltrating immune cells), tumor cell-TME interactions (e.g. through cytokines and exosomes), liver microenvironment (e.g. hepatic stellate cells and macrophages), and the route and mechanism of tumor cell dissemination (e.g. circulating tumor cells). This review provides an overview of recent advances in the research on cellular and molecular mechanisms that regulate liver metastases and drug resistance of GI cancers. We also discuss recent advances in the development of mechanism-based therapy for these GI cancers. Targeting these cellular and molecular mechanisms, either alone or in combination, may potentially provide novel approaches to treat metastatic GI malignancies.
Collapse
Affiliation(s)
- Daosong Dong
- Department of Pain, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Xue Yu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Molecular Pathology and Epidemiology of Gastric Cancer in the Universities of Liaoning Province, Shenyang, Liaoning 110001, China
| | - Jingjing Xu
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Na Yu
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Zhe Liu
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| | - Yanbin Sun
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
15
|
Oršolić N, Jazvinšćak Jembrek M. Potential Strategies for Overcoming Drug Resistance Pathways Using Propolis and Its Polyphenolic/Flavonoid Compounds in Combination with Chemotherapy and Radiotherapy. Nutrients 2024; 16:3741. [PMID: 39519572 PMCID: PMC11547968 DOI: 10.3390/nu16213741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Conventional cancer treatments include surgical resection, chemotherapy, hyperthermia, immunotherapy, hormone therapy, and locally targeted therapies such as radiation therapy. Standard cancer therapies often require the use of multiple agents, which can activate nuclear factor kappa B (NF-κB) in tumor cells, leading to reduced cell death and increased drug resistance. Moreover, the use of multiple agents also contributes to added toxicity, resulting in poor treatment outcomes. Cancer cells gradually develop resistance to almost all chemotherapeutics through various mechanisms, such as drug efflux, alterations in drug metabolism and transport, changes in signal transduction pathways, enhanced DNA repair capacity, evasion of apoptosis, increased mutations, reactivation of drug targets, interaction with the cancer microenvironment, cancer cell-stroma interactions, epithelial-mesenchymal transition (EMT)-mediated chemoresistance, epigenetic modifications, metabolic alterations, and the effect of cancer stem cells (CSCs). Developing new strategies to improve chemotherapy sensitivity while minimizing side effects is essential for achieving better therapeutic outcomes and enhancing patients' quality of life. One promising approach involves combining conventional cancer treatments with propolis and its flavonoids. These natural compounds may enhance tumor response to treatment while reducing toxicity. Propolis and its components can sensitize cancer cells to chemotherapeutic agents, likely by inhibiting NF-κB activation, reprogramming tumor-associated macrophages (TAMs; an M2-like phenotype), and thereby reducing the release of matrix metalloproteinase (MMP)-9, cytokines, chemokines, and the vascular endothelial growth factor (VEGF). By reducing TAMs, propolis and its components may also overcome EMT-mediated chemoresistance, disrupt the crosstalk between macrophages and CSCs, inhibit the maintenance of stemness, and reverse acquired immunosuppression, thus promoting an antitumor response mediated by cytotoxic T-cells. This review highlights the potential of flavonoids to modulate the responsiveness of cancer to conventional treatment modalities. The evidence suggests that novel therapeutic strategies incorporating flavonoids could be developed to improve treatment outcomes. The positive effects of combining propolis with chemotherapeutics include reduced cytotoxicity to peripheral blood leukocytes, liver, and kidney cells. Therefore, polyphenolic/flavonoid components may hold potential for use in combination with chemotherapeutic agents in the clinical treatment of various types of cancers.
Collapse
Affiliation(s)
- Nada Oršolić
- Division of Animal Physiology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, HR-10000 Zagreb, Croatia
| | - Maja Jazvinšćak Jembrek
- Division of Molecular Medicine, Laboratory for Protein Dynamics, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia;
- School of Medicine, Catholic University of Croatia, Ilica 244, HR-10000 Zagreb, Croatia
| |
Collapse
|
16
|
Yu X, Zhang Y, Luo F, Zhou Q, Zhu L. The role of microRNAs in the gastric cancer tumor microenvironment. Mol Cancer 2024; 23:170. [PMID: 39164671 PMCID: PMC11334576 DOI: 10.1186/s12943-024-02084-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/13/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the deadliest malignant tumors with unknown pathogenesis. Due to its treatment resistance, high recurrence rate, and lack of reliable early detection techniques, a majority of patients have a poor prognosis. Therefore, identifying new tumor biomarkers and therapeutic targets is essential. This review aims to provide fresh insights into enhancing the prognosis of patients with GC by summarizing the processes through which microRNAs (miRNAs) regulate the tumor microenvironment (TME) and highlighting their critical role in the TME. MAIN TEXT A comprehensive literature review was conducted by focusing on the interactions among tumor cells, extracellular matrix, blood vessels, cancer-associated fibroblasts, and immune cells within the GC TME. The role of noncoding RNAs, known as miRNAs, in modulating the TME through various signaling pathways, cytokines, growth factors, and exosomes was specifically examined. Tumor formation, metastasis, and therapy in GC are significantly influenced by interactions within the TME. miRNAs regulate tumor progression by modulating these interactions through multiple signaling pathways, cytokines, growth factors, and exosomes. Dysregulation of miRNAs affects critical cellular processes such as cell proliferation, differentiation, angiogenesis, metastasis, and treatment resistance, contributing to the pathogenesis of GC. CONCLUSIONS miRNAs play a crucial role in the regulation of the GC TME, influencing tumor progression and patient prognosis. By understanding the mechanisms through which miRNAs control the TME, potential biomarkers and therapeutic targets can be identified to improve the prognosis of patients with GC.
Collapse
Affiliation(s)
- Xianzhe Yu
- Department of Medical Oncology, West China Hospital, Sichuan University, Sichuan Province, Cancer Center, Chengdu, 610041, People's Republic of China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, People's Republic of China
- Department of Gastrointestinal Surgery, Chengdu Second People's Hospital, Sichuan Province, No. 10 Qinyun Nan Street, Chengdu, 610041, People's Republic of China
| | - Yin Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fengming Luo
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qinghua Zhou
- Department of Medical Oncology, West China Hospital, Sichuan University, Sichuan Province, Cancer Center, Chengdu, 610041, People's Republic of China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, People's Republic of China.
| | - Lingling Zhu
- Department of Medical Oncology, West China Hospital, Sichuan University, Sichuan Province, Cancer Center, Chengdu, 610041, People's Republic of China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
17
|
Shi M, MacLean JA, Hayashi K. The involvement of peritoneal GATA6 + macrophages in the pathogenesis of endometriosis. Front Immunol 2024; 15:1396000. [PMID: 39192982 PMCID: PMC11348394 DOI: 10.3389/fimmu.2024.1396000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Endometriosis is a chronic inflammatory disease that causes debilitating pelvic pain in women. Macrophages are considered to be key players in promoting disease progression, as abundant macrophages are present in ectopic lesions and elevated in the peritoneum. In the present study, we examined the role of GATA6+ peritoneal macrophages on endometriosis-associated hyperalgesia using mice with a specific myeloid deficiency of GATA6. Lesion induction induced the disappearance of TIM4hi MHCIIlo residential macrophages and the influx of increased Ly6C+ monocytes and TIM4lo MHCIIhi macrophages. The recruitment of MHCIIhi inflammatory macrophages was extensive in Mac Gata6 KO mice due to the severe disappearance of TIM4hi MHCIIlo residential macrophages. Ki67 expression confirmed GATA6-dependent proliferative ability, showing different proliferative phenotypes of TIM4+ residential macrophages in Gata6f/f and Mac Gata6 KO mice. Peritoneal proinflammatory cytokines were elevated after lesion induction. When cytokine levels were compared between Gata6f/f and Mac Gata6 KO mice, TNFα at day 21 in Gata6f/f mice was higher than in Mac Gata6 KO mice. Lesion induction increased both abdominal and hind paw sensitivities. Gata6f/f mice tended to show higher sensitivity in the abdomen after day 21. Elevated expression of TRPV1 and CGRP was observed in the dorsal root ganglia after ELL induction in Gata6f/f mice until days 21 and 42, respectively. These results support that peritoneal GATA6+ macrophages are involved in the recruitment and reprogramming of monocyte-derived macrophages. The extensive recruitment of monocyte-derived macrophages in Mac Gata6 KO mice might protect against inflammatory stimuli during the resolution phase, whereas GATA6 deficiency did not affect lesion initiation and establishment at the acute phase of inflammation. GATA6+ residential macrophages act to sustain local inflammation in the peritoneum and sensitivities in the neurons, reflecting endometriosis-associated hyperalgesia.
Collapse
Affiliation(s)
| | | | - Kanako Hayashi
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, WA, United States
| |
Collapse
|
18
|
Tatsuno R, Komohara Y, Pan C, Kawasaki T, Enomoto A, Jubashi T, Kono H, Wako M, Ashizawa T, Haro H, Ichikawa J. Surface Markers and Chemokines/Cytokines of Tumor-Associated Macrophages in Osteosarcoma and Other Carcinoma Microenviornments-Contradictions and Comparisons. Cancers (Basel) 2024; 16:2801. [PMID: 39199574 PMCID: PMC11353089 DOI: 10.3390/cancers16162801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
Osteosarcoma (OS) is the most common primary bone tumor in children and adolescents. Prognosis is improving with advances in multidisciplinary treatment strategies, but the development of new anticancer agents has not, and improvement in prognosis for patients with pulmonary metastases has stalled. In recent years, the tumor microenvironment (TME) has gained attention as a therapeutic target for cancer. The immune component of OS TME consists mainly of tumor-associated macrophages (TAMs). They exhibit remarkable plasticity, and their phenotype is influenced by the TME. In general, surface markers such as CD68 and CD80 show anti-tumor effects, while CD163 and CD204 show tumor-promoting effects. Surface markers have potential value as diagnostic and prognostic biomarkers. The cytokines and chemokines produced by TAMs promote tumor growth and metastasis. However, the role of TAMs in OS remains unclear to date. In this review, we describe the role of TAMs in OS by focusing on TAM surface markers and the TAM-produced cytokines and chemokines in the TME, and by comparing their behaviors in other carcinomas. We found contrary results from different studies. These findings highlight the urgency for further research in this field to improve the stalled OS prognosis percentages.
Collapse
Affiliation(s)
- Rikito Tatsuno
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8555, Japan; (Y.K.); (C.P.)
| | - Cheng Pan
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8555, Japan; (Y.K.); (C.P.)
| | - Tomonori Kawasaki
- Department of Pathology, Saitama Medical University International Medical Center, Saitama 350-1298, Japan;
| | - Atsushi Enomoto
- Department of Pathology, Graduate School of Medicine, Nagoya University, Nagoya 464-8601, Japan;
| | - Takahiro Jubashi
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| | - Hiroyuki Kono
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| | - Masanori Wako
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| | - Tomoyuki Ashizawa
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| | - Hirotaka Haro
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| | - Jiro Ichikawa
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| |
Collapse
|
19
|
Yasuda T, Wang YA. Gastric cancer immunosuppressive microenvironment heterogeneity: implications for therapy development. Trends Cancer 2024; 10:627-642. [PMID: 38600020 PMCID: PMC11292672 DOI: 10.1016/j.trecan.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
Although immunotherapy has revolutionized solid tumor treatment, durable responses in gastric cancer (GC) remain limited. The heterogeneous tumor microenvironment (TME) facilitates immune evasion, contributing to resistance to conventional and immune therapies. Recent studies have highlighted how specific TME components in GC acquire immune escape capabilities through cancer-specific factors. Understanding the underlying molecular mechanisms and targeting the immunosuppressive TME will enhance immunotherapy efficacy and patient outcomes. This review summarizes recent advances in GC TME research and explores the role of the immune-suppressive system as a context-specific determinant. We also provide insights into potential treatments beyond checkpoint inhibition.
Collapse
Affiliation(s)
- Tadahito Yasuda
- Brown Center for Immunotherapy, Department of Medicine, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Y Alan Wang
- Brown Center for Immunotherapy, Department of Medicine, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
20
|
Gao J, Zhao Z, Pan H, Huang Y. Significance of dysregulated M2 macrophage and ESR2 in the ovarian metastasis of gastric cancer. Transl Cancer Res 2024; 13:2674-2690. [PMID: 38988946 PMCID: PMC11231788 DOI: 10.21037/tcr-24-124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/08/2024] [Indexed: 07/12/2024]
Abstract
Background Prognosis of gastric cancer (GC) patients with ovarian metastasis (OM) remains poor. We hereby characterized the role of tumor immune microenvironment (TIME) and identified potential key regulators in the OM with the aim of understanding its molecular basis to develop novel therapeutic targets. Methods Transcriptomic analyses of paired primary and ovarian metastatic lesions of seven GC patients from Fudan University Shanghai Cancer Center uncovered and functionally annotated their differentially expressed genes (DEGs). CIBERSORT analysis revealed differential TIME between primary GCs and OMs, which was further validated by multiplex immunofluorescence (mIF). Unique overexpression of candidate regulator in OMs was validated by an immunohistochemical (IHC) staining-based cohort study and in vitro cell growth, migration and invasion assays were conducted to characterize its function in GC progression. Results Functional enrichment analyses of DEGs between GCs and matched OMs revealed multiple significantly dysregulated immune-related and cancer-related pathways. Distinctive subsets of immune cells, especially M2 macrophage, were selectively enriched in metastatic lesions. mIF-based quantification further validated the overexpression of CD68+CD206+ M2 macrophage in the OMs. Estrogen receptor 2 (ESR2), which encodes estrogen receptor β (ERβ), was not only potentially correlated with M2 macrophage but also overexpressed in the OM of GC. ESR2 was up-regulated in cancerous tissue and its high expression correlated with younger age, more advanced lymph node metastasis and pathological stage, as well as a worse patient survival. IHC staining of ERβ in the cohort of paired primary and metastatic GCs validated its selective overexpression in OMs. Small-interfering RNAs (siRNAs)-induced knockdown of ESR2 significantly inhibited the invasion and migration of both AGS and HGC-27 GC cell lines. Conclusions Comparative RNA-sequencing analysis revealed the dysregulated TIME, M2 macrophage in particular, between primary GC and OM. ESR2 potentially correlated with M2 macrophage and played pro-oncogenic roles in GC progression and metastasis.
Collapse
Affiliation(s)
- Jianpeng Gao
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhenxiong Zhao
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hongda Pan
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yakai Huang
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Lin X, Yang P, Wang M, Huang X, Wang B, Chen C, Xu A, Cai J, Khan M, Liu S, Lin J. Dissecting gastric cancer heterogeneity and exploring therapeutic strategies using bulk and single-cell transcriptomic analysis and experimental validation of tumor microenvironment and metabolic interplay. Front Pharmacol 2024; 15:1355269. [PMID: 38962317 PMCID: PMC11220201 DOI: 10.3389/fphar.2024.1355269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/15/2024] [Indexed: 07/05/2024] Open
Abstract
Gastric cancer, the fifth most prevalent cancer worldwide, is often diagnosed in advanced stages with limited treatment options. Examining the tumor microenvironment (TME) and its metabolic reprogramming can provide insights for better diagnosis and treatment. This study investigates the link between TME factors and metabolic activity in gastric cancer using bulk and single-cell RNA-sequencing data. We identified two molecular subtypes in gastric cancer by analyzing the distinct expression patterns of 81 prognostic genes related to the TME and metabolism, which exhibited significant protein-level interactions. The high-risk subtype had increased stromal content, fibroblast and M2 macrophage infiltration, elevated glycosaminoglycans/glycosphingolipids biosynthesis, and fat metabolism, along with advanced clinicopathological features. It also exhibited low mutation rates and microsatellite instability, associating it with the mesenchymal phenotype. In contrast, the low-risk group showed higher tumor content and upregulated protein and sugar metabolism. We identified a 15-gene prognostic signature representing these characteristics, including CPVL, KYNU, CD36, and GPX3, strongly correlated with M2 macrophages, validated through single-cell analysis and an internal cohort. Despite resistance to immunotherapy, the high-risk group showed sensitivity to molecular targeted agents directed at IGF-1R (BMS-754807) and the PI3K-mTOR pathways (AZD8186, AZD8055). We experimentally validated these promising drugs for their inhibitory effects on MKN45 and MKN28 gastric cells. This study unveils the intricate interplay between TME and metabolic pathways in gastric cancer, offering potential for enhanced diagnosis, patient stratification, and personalized treatment. Understanding molecular features in each subtype enriches our comprehension of gastric cancer heterogeneity and potential therapeutic targets.
Collapse
Affiliation(s)
- XianTao Lin
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Ping Yang
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - MingKun Wang
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Xiuting Huang
- Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Baiyao Wang
- Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Chengcong Chen
- Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Anan Xu
- Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jiazuo Cai
- Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Muhammad Khan
- Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Sha Liu
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Jie Lin
- Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
22
|
Feng Z, Gao L, Lu Y, He X, Xie J. The potential contribution of aberrant cathepsin K expression to gastric cancer pathogenesis. Discov Oncol 2024; 15:218. [PMID: 38856944 PMCID: PMC11164852 DOI: 10.1007/s12672-023-00814-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/26/2023] [Indexed: 06/11/2024] Open
Abstract
The role of cathepsin K (CTSK) expression in the pathogenesis and progression of gastric cancer (GC) remains unclear. Hence, the primary objective of this study is to elucidate the precise expression and biological role of CTSK in GC by employing a combination of bioinformatics analysis and in vitro experiments. Our findings indicated a significant upregulation of CTSK in GC. The bioinformatics analysis revealed that GC patients with a high level of CTSK expression exhibited enrichment of hallmark gene sets associated with angiogenesis, epithelial-mesenchymal transition (EMT), inflammatory response, KRAS signaling up, TNFα signaling via KFκB, IL2-STAT5 signaling, and IL6-JAK-STAT3 signaling. Additionally, these patients demonstrated elevated levels of M2-macrophage infiltration, which was also correlated with a poorer prognosis. The results of in vitro experiments provided confirmation that the over-expression of CTSK leads to an increase in the proliferative and invasive abilities of GC cells. However, further evaluation was necessary to determine the impact of CTSK on the migration capability of these cells. Our findings suggested that CTSK has the potential to facilitate the initiation and progression of GC by augmenting the invasive capacity of GC cells, engaging in tumor-associated EMT, and fostering the establishment of an immunosuppressive tumor microenvironment (TME).
Collapse
Affiliation(s)
- Zhijun Feng
- Jiangmen Central Hospital, No. 23, Haibang Street, Pengjiang District, Jiangmen, Guangdong, China
- The Second Clinical Medical College, Lanzhou University, No. 82, Cuiyingmen, Chengguan District, Lanzhou, Gansu, China
| | - Lina Gao
- Laboratory Medicine Center, Lanzhou University Second Hospital, No. 82, Cuiyingmen, Chengguan District, Lanzhou, Gansu, China
| | - Yapeng Lu
- Department of Anesthesiology, Lanzhou University Second Hospital, No. 82, Cuiyingmen, Chengguan District, Lanzhou, Gansu, China
| | - Xiaodong He
- The Second Clinical Medical College, Lanzhou University, No. 82, Cuiyingmen, Chengguan District, Lanzhou, Gansu, China.
| | - Jianqin Xie
- Department of Anesthesiology, Lanzhou University Second Hospital, No. 82, Cuiyingmen, Chengguan District, Lanzhou, Gansu, China.
- The Second Clinical Medical College, Lanzhou University, No. 82, Cuiyingmen, Chengguan District, Lanzhou, Gansu, China.
| |
Collapse
|
23
|
Li H, Wang S, Yang Z, Meng X, Niu M. Nanomaterials modulate tumor-associated macrophages for the treatment of digestive system tumors. Bioact Mater 2024; 36:376-412. [PMID: 38544737 PMCID: PMC10965438 DOI: 10.1016/j.bioactmat.2024.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/25/2024] [Accepted: 03/03/2024] [Indexed: 11/25/2024] Open
Abstract
The treatment of digestive system tumors presents challenges, particularly in immunotherapy, owing to the advanced immune tolerance of the digestive system. Nanomaterials have emerged as a promising approach for addressing these challenges. They provide targeted drug delivery, enhanced permeability, high bioavailability, and low toxicity. Additionally, nanomaterials target immunosuppressive cells and reshape the tumor immune microenvironment (TIME). Among the various cells in the TIME, tumor-associated macrophages (TAMs) are the most abundant and play a crucial role in tumor progression. Therefore, investigating the modulation of TAMs by nanomaterials for the treatment of digestive system tumors is of great significance. Here, we present a comprehensive review of the utilization of nanomaterials to modulate TAMs for the treatment of gastric cancer, colorectal cancer, hepatocellular carcinoma, and pancreatic cancer. We also investigated the underlying mechanisms by which nanomaterials modulate TAMs to treat tumors in the digestive system. Furthermore, this review summarizes the role of macrophage-derived nanomaterials in the treatment of digestive system tumors. Overall, this research offers valuable insights into the development of nanomaterials tailored for the treatment of digestive system tumors.
Collapse
Affiliation(s)
- Hao Li
- Department of Interventional Radiology, First Hospital of China Medical University, Shenyang, China
| | - Shuai Wang
- Department of Interventional Radiology, First Hospital of China Medical University, Shenyang, China
| | - Zhengqiang Yang
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Meng Niu
- China Medical University, Shenyang, China
| |
Collapse
|
24
|
Yuan Y, Wu D, Hou Y, Zhang Y, Tan C, Nie X, Zhao Z, Hou J. Wnt signaling: Modulating tumor-associated macrophages and related immunotherapeutic insights. Biochem Pharmacol 2024; 223:116154. [PMID: 38513742 DOI: 10.1016/j.bcp.2024.116154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Wnt signaling pathways are highly conserved cascades that mediate multiple biological processes through canonical or noncanonical pathways, from embryonic development to tissue maintenance, but they also contribute to the pathogenesis of numerous cancers. Recent studies have revealed that Wnt signaling pathways critically control the interplay between cancer cells and tumor-associated macrophages (TAMs) in the tumor microenvironment (TME) and potentially impact the efficacy of cancer immunotherapy. In this review, we summarize the evidence that Wnt signaling pathways boost the maturation and infiltration of macrophages for immune surveillance in the steady state but also polarize TAMs toward immunosuppressive M2-like phenotypes for immune escape in the TME. Both cancer cells and TAMs utilize Wnt signaling to transmit signals, and this interaction is crucial for the carcinogenesis and progression of common solid cancers, such as colorectal, gastric, hepatocellular, breast, thyroid, prostate, kidney, and lung cancers; osteosarcoma; and glioma. Specifically, compared with those in solid cancers, Wnt signaling pathways play a distinct role in the pathogenesis of leukemia. Efforts to develop Wnt-based drugs for cancer treatment are still ongoing, and some indeed enhance the anticancer immune response. We believe that the combination of Wnt signaling-based therapy with conventional or immune therapies is a promising therapeutic approach and can facilitate personalized treatment for most cancers.
Collapse
Affiliation(s)
- Yimeng Yuan
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences and Department of Urinary Surgery, Huaihe Hospital, Henan University, Kaifeng, China
| | - Dapeng Wu
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences and Department of Urinary Surgery, Huaihe Hospital, Henan University, Kaifeng, China
| | - Yifan Hou
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences and Department of Urinary Surgery, Huaihe Hospital, Henan University, Kaifeng, China
| | - Yi Zhang
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences and Department of Urinary Surgery, Huaihe Hospital, Henan University, Kaifeng, China
| | - Cong Tan
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences and Department of Urinary Surgery, Huaihe Hospital, Henan University, Kaifeng, China
| | - Xiaobo Nie
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences and Department of Urinary Surgery, Huaihe Hospital, Henan University, Kaifeng, China; Henan Provincial Research Center for the Prevention and Diagnosis of Prostate Diseases, Henan University, Kaifeng, China.
| | - Zhenhua Zhao
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences and Department of Urinary Surgery, Huaihe Hospital, Henan University, Kaifeng, China; Henan Provincial Research Center for the Prevention and Diagnosis of Prostate Diseases, Henan University, Kaifeng, China.
| | - Junqing Hou
- Kaifeng 155 Hospital, China RongTong Medical Healthcare Group Co. Ltd., Kaifeng, China; Henan Provincial Research Center for the Prevention and Diagnosis of Prostate Diseases, Henan University, Kaifeng, China.
| |
Collapse
|
25
|
Fang J, Zhang H, Zhang X, Lu X, Liu J, Li H, Huang J. Akkermansia muciniphila improves gastric cancer treatment by modulating the immune microenvironment. Future Microbiol 2024; 19:481-494. [PMID: 38629914 PMCID: PMC11216265 DOI: 10.2217/fmb-2023-0210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/28/2023] [Indexed: 06/27/2024] Open
Abstract
Background: Gut microbiota is pivotal in tumor occurrence and development, and there is a close relationship between Akkermansia muciniphila (AKK) and cancer immunotherapy. Methods: The effects of AKK and its outer membrane proteins on gastric cancer (GC) were evaluated in vitro and in vivo using cell counting kit-8 assay, flow cytometry, western blotting, ELISA, immunohistochemistry and immunofluorescence. Results: AKK outer membrane protein facilitated apoptosis of GC cells and exerted an immunostimulatory effect (by promoting M1 polarization of macrophages, enhancing expression of cytotoxic T-lymphocyte-related cytokines and suppressing that of Treg-related cytokines). Additionally, AKK and its formulation could inhibit tumor growth of GC and enhance the infiltration of immune cells in tumor tissues. Conclusion: AKK could improve GC treatment by modulating the immune microenvironment.
Collapse
Affiliation(s)
- Jianming Fang
- Department of Hepatobiliary Pancreatic Surgery, GuangFu Oncology Hospital, Jinhua, 321000, China
| | - Huizhong Zhang
- Department of Hepatobiliary Pancreatic Surgery, GuangFu Oncology Hospital, Jinhua, 321000, China
| | - Xiaodong Zhang
- Department of Hepatobiliary Pancreatic Surgery, GuangFu Oncology Hospital, Jinhua, 321000, China
| | - Xiaolong Lu
- Department of Hepatobiliary Pancreatic Surgery, GuangFu Oncology Hospital, Jinhua, 321000, China
| | - Junjie Liu
- Department of Hepatobiliary Pancreatic Surgery, GuangFu Oncology Hospital, Jinhua, 321000, China
| | - Haiyang Li
- Department of Hepatobiliary Pancreatic Surgery, GuangFu Oncology Hospital, Jinhua, 321000, China
| | - Jianxin Huang
- Department of Hepatobiliary Pancreatic Surgery, GuangFu Oncology Hospital, Jinhua, 321000, China
| |
Collapse
|
26
|
Rakina M, Larionova I, Kzhyshkowska J. Macrophage diversity in human cancers: New insight provided by single-cell resolution and spatial context. Heliyon 2024; 10:e28332. [PMID: 38571605 PMCID: PMC10988020 DOI: 10.1016/j.heliyon.2024.e28332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 04/05/2024] Open
Abstract
M1/M2 paradigm of macrophage plasticity has existed for decades. Now it becomes clear that this dichotomy doesn't adequately reflect the diversity of macrophage phenotypes in tumor microenvironment (TME). Tumor-associated macrophages (TAMs) are a major population of innate immune cells in the TME that promotes tumor cell proliferation, angiogenesis and lymphangiogenesis, invasion and metastatic niche formation, as well as response to anti-tumor therapy. However, the fundamental restriction in therapeutic TAM targeting is the limited knowledge about the specific TAM states in distinct human cancer types. Here we summarized the results of the most recent studies that use advanced technologies (e.g. single-cell RNA sequencing and spatial transcriptomics) allowing to decipher novel functional subsets of TAMs in numerous human cancers. The transcriptomic profiles of these TAM subsets and their clinical significance were described. We emphasized the characteristics of specific TAM subpopulations - TREM2+, SPP1+, MARCO+, FOLR2+, SIGLEC1+, APOC1+, C1QC+, and others, which have been most extensively characterized in several cancers, and are associated with cancer prognosis. Spatial transcriptomics technologies defined specific spatial interactions between TAMs and other cell types, especially fibroblasts, in tumors. Spatial transcriptomics methods were also applied to identify markers of immunotherapy response, which are expressed by macrophages or in the macrophage-abundant regions. We highlighted the perspectives for novel techniques that utilize spatial and single cell resolution in investigating new ligand-receptor interactions for effective immunotherapy based on TAM-targeting.
Collapse
Affiliation(s)
- Militsa Rakina
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, 634050, Russia
- Laboratory of Molecular Therapy of Cancer, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Russia
| | - Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, 634050, Russia
- Laboratory of Molecular Therapy of Cancer, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Russia
| | - Julia Kzhyshkowska
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, 634050, Russia
- Institute of Transfusion Medicine and Immunology, Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, 68167, Germany
- German Red Cross Blood Service Baden-Württemberg – Hessen, Mannheim, 68167, Germany
| |
Collapse
|
27
|
Shao L, Wu Y, Cao J, Zhong F, Yang X, Xing C. Activation of M2 macrophage autophagy by rapamycin increases the radiosensitivity of colorectal cancer xenografts. J Cancer Res Ther 2024; 20:695-705. [PMID: 38687942 DOI: 10.4103/jcrt.jcrt_215_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 11/20/2023] [Indexed: 05/02/2024]
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) are intimately involved in cancer radiochemotherapy resistance. However, the mechanism by which macrophages affect radiosensitivity through autophagy remains unclear. The purpose of our study was to investigate how activating autophagy in type-II macrophages (M2) by using rapamycin (RAP) would affect the radiosensitivity of colorectal cancer (CRC) xenografts. MATERIALS AND METHODS A nude mouse CRC model was established by injecting LoVo CRC cells. After tumor formation, supernatant from M2 cells (autophagy-unactivated), autophagy-activated M2 cells, or autophagy-downregulated M2 cells was injected peritumorally. All tumor-bearing mice were irradiated with 8-Gy X-rays twice, and the radiosensitivity of CRC xenografts was analyzed in each group. RESULTS The mass, volume, and microvessel density (MVD) of tumors in the autophagy-unactivated M2 group significantly increased; however, supernatant from M2 cells that were autophagy-activated by rapamycin significantly decreased tumor weight, volume, and MVD compared with negative control. Combining bafilomycin A1 (BAF-A1) with RAP treatment restored the ability of the M2 supernatant to increase tumor mass, volume, and MVD. Immunohistochemical and Western blot results showed that compared with the negative control group, supernatant from M2 cells that were not activated by autophagy downregulated the expression of Livin and Survivin in tumor tissues; activation of M2 autophagy further downregulated the protein levels. CONCLUSIONS Therefore, autophagy-activated M2 supernatant can downregulate the expression of the antiapoptotic genes Livin and Survivin in CRC xenografts, improving the radiosensitivity of CRC by inducing apoptosis in combination with radiotherapy and inhibiting the growth of transplanted tumors.
Collapse
Affiliation(s)
- Lening Shao
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yongyou Wu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jianping Cao
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Fengyun Zhong
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaodong Yang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Chungen Xing
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
28
|
Ajam-Hosseini M, Heydari R, Rasouli M, Akhoondi F, Asadi Hanjani N, Bekeschus S, Doroudian M. Lactic acid in macrophage polarization: A factor in carcinogenesis and a promising target for cancer therapy. Biochem Pharmacol 2024; 222:116098. [PMID: 38431231 DOI: 10.1016/j.bcp.2024.116098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Cancer remains a formidable challenge, continually revealing its intricate nature and demanding novel treatment approaches. Within this intricate landscape, the tumor microenvironment and its dynamic components have gained prominence, particularly macrophages that can adopt diverse polarization states, exerting a profound influence on cancer progression. Recent revelations have spotlighted lactic acid as a pivotal player in this complex interplay. This review systematically explores lactic acid's multifaceted role in macrophage polarization, focusing on its implications in carcinogenesis. We commence by cultivating a comprehensive understanding of the tumor microenvironment and the pivotal roles played by macrophages. The dynamic landscape of macrophage polarization, typified by M1 and M2 phenotypes, is dissected to reveal its substantial impact on tumor progression. Lactic acid, a metabolic byproduct, emerges as a key protagonist, and we meticulously unravel the mechanisms underpinning its generation within cancer cells, shedding light on its intimate association with glycolysis and its transformative effects on the tumor microenvironment. Furthermore, we decipher the intricate molecular framework that underlies lactic acid's pivotal role in facilitating macrophage polarization. Our review underscores lactic acid's dual role in carcinogenesis, orchestrating tumor growth and immune modulation within the tumor microenvironment, thereby profoundly influencing the balance between pro-tumor and anti-tumor immune responses. This duality highlights the therapeutic potential of selectively manipulating lactic acid metabolism for cancer treatment. Exploring strategies to inhibit lactic acid production by tumor cells, novel approaches to impede lactic acid transport in the tumor microenvironment, and the burgeoning field of immunotherapeutic cancer therapies utilizing lactic acid-induced macrophage polarization form the core of our investigation.
Collapse
Affiliation(s)
- Mobarakeh Ajam-Hosseini
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Romina Heydari
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Milad Rasouli
- Department of Physics, Kharazmi University, Tehran, Iran; Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Fatemeh Akhoondi
- Department of Molecular Biology of the Cell, Faculty of Bioscience, University of Milan, Milan, Italy
| | - Niloofar Asadi Hanjani
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran; Student Research Committee, Pasteur Institute of Iran, Tehran, Iran
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str 2, 17489 Greifswald, Germany; Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057 Rostock, Germany
| | - Mohammad Doroudian
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| |
Collapse
|
29
|
Salnikov MY, MacNeil KM, Mymryk JS. The viral etiology of EBV-associated gastric cancers contributes to their unique pathology, clinical outcomes, treatment responses and immune landscape. Front Immunol 2024; 15:1358511. [PMID: 38596668 PMCID: PMC11002251 DOI: 10.3389/fimmu.2024.1358511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/14/2024] [Indexed: 04/11/2024] Open
Abstract
Epstein-Barr virus (EBV) is a pathogen known to cause a number of malignancies, often taking years for them to develop after primary infection. EBV-associated gastric cancer (EBVaGC) is one such malignancy, and is an immunologically, molecularly and pathologically distinct entity from EBV-negative gastric cancer (EBVnGC). In comparison with EBVnGCs, EBVaGCs overexpress a number of immune regulatory genes to help form an immunosuppressive tumor microenvironment (TME), have improved prognosis, and overall have an "immune-hot" phenotype. This review provides an overview of the histopathology, clinical features and clinical outcomes of EBVaGCs. We also summarize the differences between the TMEs of EBVaGCs and EBVnGCs, which includes significant differences in cell composition and immune infiltration. A list of available EBVaGC and EBVnGC gene expression datasets and computational tools are also provided within this review. Finally, an overview is provided of the various chemo- and immuno-therapeutics available in treating gastric cancers (GCs), with a focus on EBVaGCs.
Collapse
Affiliation(s)
- Mikhail Y. Salnikov
- Department of Microbiology and Immunology, Western University, London, ON, Canada
| | - Katelyn M. MacNeil
- Department of Microbiology and Immunology, Western University, London, ON, Canada
| | - Joe S. Mymryk
- Department of Microbiology and Immunology, Western University, London, ON, Canada
- Department of Oncology, Western University, London, ON, Canada
- Department of Otolaryngology, Western University, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| |
Collapse
|
30
|
Schultze-Rhonhof L, Marzi J, Carvajal Berrio DA, Holl M, Braun T, Schäfer-Ruoff F, Andress J, Bachmann C, Templin M, Brucker SY, Schenke-Layland K, Weiss M. Human tissue-resident peritoneal macrophages reveal resistance towards oxidative cell stress induced by non-invasive physical plasma. Front Immunol 2024; 15:1357340. [PMID: 38504975 PMCID: PMC10949891 DOI: 10.3389/fimmu.2024.1357340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/14/2024] [Indexed: 03/21/2024] Open
Abstract
In the context of multimodal treatments for abdominal cancer, including procedures such as cytoreductive surgery and intraperitoneal chemotherapy, recurrence rates remain high, and long-term survival benefits are uncertain due to post-operative complications. Notably, treatment-limiting side effects often arise from an uncontrolled activation of the immune system, particularly peritoneally localized macrophages, leading to massive cytokine secretion and phenotype changes. Exploring alternatives, an increasing number of studies investigated the potential of plasma-activated liquids (PAL) for adjuvant peritoneal cancer treatment, aiming to mitigate side effects, preserve healthy tissue, and reduce cytotoxicity towards non-cancer cells. To assess the non-toxicity of PAL, we isolated primary human macrophages from the peritoneum and subjected them to PAL exposure. Employing an extensive methodological spectrum, including flow cytometry, Raman microspectroscopy, and DigiWest protein analysis, we observed a pronounced resistance of macrophages towards PAL. This resistance was characterized by an upregulation of proliferation and anti-oxidative pathways, countering PAL-derived oxidative stress-induced cell death. The observed cellular effects of PAL treatment on human tissue-resident peritoneal macrophages unveil a potential avenue for PAL-derived immunomodulatory effects within the human peritoneal cavity. Our findings contribute to understanding the intricate interplay between PAL and macrophages, shedding light on the promising prospects for PAL in the adjuvant treatment of peritoneal cancer.
Collapse
Affiliation(s)
| | - Julia Marzi
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, University of Tübingen, Tübingen, Germany
- Natural and Medical Sciences Institute (NMI) at the University of Tübingen, Reutlingen, Germany
| | - Daniel Alejandro Carvajal Berrio
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, University of Tübingen, Tübingen, Germany
| | - Myriam Holl
- Department of Women’s Health Tübingen, University of Tübingen, Tübingen, Germany
| | - Theresa Braun
- Natural and Medical Sciences Institute (NMI) at the University of Tübingen, Reutlingen, Germany
- University Development, Research and Transfer, University of Konstanz, Konstanz, Germany
| | - Felix Schäfer-Ruoff
- Natural and Medical Sciences Institute (NMI) at the University of Tübingen, Reutlingen, Germany
| | - Jürgen Andress
- Department of Women’s Health Tübingen, University of Tübingen, Tübingen, Germany
| | - Cornelia Bachmann
- Department of Women’s Health Tübingen, University of Tübingen, Tübingen, Germany
| | - Markus Templin
- Natural and Medical Sciences Institute (NMI) at the University of Tübingen, Reutlingen, Germany
| | - Sara Y. Brucker
- Department of Women’s Health Tübingen, University of Tübingen, Tübingen, Germany
| | - Katja Schenke-Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, University of Tübingen, Tübingen, Germany
- Natural and Medical Sciences Institute (NMI) at the University of Tübingen, Reutlingen, Germany
| | - Martin Weiss
- Department of Women’s Health Tübingen, University of Tübingen, Tübingen, Germany
- Natural and Medical Sciences Institute (NMI) at the University of Tübingen, Reutlingen, Germany
| |
Collapse
|
31
|
Singh D, Siddique HR. Epithelial-to-mesenchymal transition in cancer progression: unraveling the immunosuppressive module driving therapy resistance. Cancer Metastasis Rev 2024; 43:155-173. [PMID: 37775641 DOI: 10.1007/s10555-023-10141-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/21/2023] [Indexed: 10/01/2023]
Abstract
Cancer cells undergo phenotypic switching (cancer cell plasticity) in response to microenvironmental cues, including exposure to therapy/treatment. Phenotypic plasticity enables the cancer cells to acquire more mesenchymal traits promoting cancer cells' growth, survival, therapy resistance, and disease recurrence. A significant program in cancer cell plasticity is epithelial-to-mesenchymal transition (EMT), wherein a comprehensive reprogramming of gene expression occurs to facilitate the translational shift from epithelial-to-mesenchymal phenotypes resulting in increased invasiveness and metastasis. In addition, EMT plays a pivotal role in facilitating cancer cells' escape from the body's immune system using several mechanisms, such as the downregulation of major histocompatibility complex-mediated antigen presentation, upregulation of immune checkpoint molecules, and recruitment of immune-suppressive cells. Cancer cells' ability to undergo phenotypic switching and EMT-driven immune escape presents a formidable obstacle in cancer management, highlighting the need to unravel the intricate mechanisms underlying these processes and develop novel therapeutic strategies. This article discusses the role of EMT in promoting immune evasion and therapy resistance. We also discuss the ongoing research on developing therapeutic approaches targeting intrinsic and induced cell plasticity within the immune suppressive microenvironment. We believe this review article will update the current research status and equip researchers, clinicians, and other healthcare professionals with valuable insights enhancing their existing knowledge and shedding light on promising directions for future cancer research. This will facilitate the development of innovative strategies for managing therapy-resistant cancers and improving patient outcomes.
Collapse
Affiliation(s)
- Deepti Singh
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, 202002, India
| | - Hifzur R Siddique
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
32
|
Dorjkhorloo G, Erkhem-Ochir B, Shiraishi T, Sohda M, Okami H, Yamaguchi A, Shioi I, Komine C, Nakazawa N, Ozawa N, Shibasaki Y, Okada T, Osone K, Sano A, Sakai M, Ogawa H, Yokobori T, Shirabe K, Saeki H. Prognostic value of a modified‑immune scoring system in patients with pathological T4 colorectal cancer. Oncol Lett 2024; 27:104. [PMID: 38298428 PMCID: PMC10829066 DOI: 10.3892/ol.2024.14237] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/13/2023] [Indexed: 02/02/2024] Open
Abstract
Tumor-infiltrating immune cells, such as lymphocytes and macrophages, have been associated with tumor aggressiveness, prognosis and treatment response in colorectal cancer (CRC). An immune scoring system, Immunoscore (IS), based on tumor-infiltrating T cells in stage I-III CRC, was used to predict prognosis. An alternative immune scoring signature of immune activation (SIA) reflects the balance between anti- and pro-tumoral immune components. The present study aimed to evaluate the prognostic value of modified IS (mIS) and modified SIA (mSIA) in locally advanced pathological T4 (pT4) CRC, including stage IV CRC. Immunohistochemical staining for immune cell markers, such as CD3 (pan-T cell marker), CD8 (anti-tumoral cytotoxic T cell marker) and CD163 (tumor-supportive macrophage marker), in specimens from patients with radically resected pT4 CRC at stages II-IV was performed. mIS levels in the T4 CRC cohort were not associated with prognosis. However, low mSIA levels were associated with low survival. Furthermore, low mSIA was an independent predictor of recurrence in patients with radically resected pT4 CRC. In patients with CRC who did not receive postoperative adjuvant chemotherapy, low mSIA was a major poor prognostic factor; however, this was not observed in patients receiving adjuvant chemotherapy. Evaluation of the tumor-infiltrating immune cell population could serve as a valuable marker of recurrence and poor prognosis in patients with locally advanced CRC. mSIA assessment after radical CRC resection may be promising for identifying high-risk patients with pT4 CRC who require aggressive adjuvant chemotherapy.
Collapse
Affiliation(s)
- Gendensuren Dorjkhorloo
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Bilguun Erkhem-Ochir
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Maebashi, Gunma 371-8511, Japan
| | - Takuya Shiraishi
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Makoto Sohda
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Haruka Okami
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Arisa Yamaguchi
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Ikuma Shioi
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Chika Komine
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Nobuhiro Nakazawa
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Naoya Ozawa
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Yuta Shibasaki
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Takuhisa Okada
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Katsuya Osone
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Akihiko Sano
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Makoto Sakai
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Hiroomi Ogawa
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Takehiko Yokobori
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Maebashi, Gunma 371-8511, Japan
| | - Ken Shirabe
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Hiroshi Saeki
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
33
|
Behrooz AB, Cordani M, Fiore A, Donadelli M, Gordon JW, Klionsky DJ, Ghavami S. The obesity-autophagy-cancer axis: Mechanistic insights and therapeutic perspectives. Semin Cancer Biol 2024; 99:24-44. [PMID: 38309540 DOI: 10.1016/j.semcancer.2024.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Autophagy, a self-degradative process vital for cellular homeostasis, plays a significant role in adipose tissue metabolism and tumorigenesis. This review aims to elucidate the complex interplay between autophagy, obesity, and cancer development, with a specific emphasis on how obesity-driven changes affect the regulation of autophagy and subsequent implications for cancer risk. The burgeoning epidemic of obesity underscores the relevance of this research, particularly given the established links between obesity, autophagy, and various cancers. Our exploration delves into hormonal influence, notably INS (insulin) and LEP (leptin), on obesity and autophagy interactions. Further, we draw attention to the latest findings on molecular factors linking obesity to cancer, including hormonal changes, altered metabolism, and secretory autophagy. We posit that targeting autophagy modulation may offer a potent therapeutic approach for obesity-associated cancer, pointing to promising advancements in nanocarrier-based targeted therapies for autophagy modulation. However, we also recognize the challenges inherent to these approaches, particularly concerning their precision, control, and the dual roles autophagy can play in cancer. Future research directions include identifying novel biomarkers, refining targeted therapies, and harmonizing these approaches with precision medicine principles, thereby contributing to a more personalized, effective treatment paradigm for obesity-mediated cancer.
Collapse
Affiliation(s)
- Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Science, University of Manitoba, College of Medicine, Winnipeg, Manitoba, Canada; Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Madrid, Spain; Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain
| | - Alessandra Fiore
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Joseph W Gordon
- Department of Human Anatomy and Cell Science, University of Manitoba, College of Medicine, Winnipeg, Manitoba, Canada; Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Saeid Ghavami
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA; Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland; Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, Manitoba, Canada; Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
34
|
Xia Y, Wang C, Li X, Gao M, Hogg HDJ, Tunthanathip T, Hulsen T, Tian X, Zhao Q. Development and validation of a novel stemness-related prognostic model for neuroblastoma using integrated machine learning and bioinformatics analyses. Transl Pediatr 2024; 13:91-109. [PMID: 38323183 PMCID: PMC10839279 DOI: 10.21037/tp-23-582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/05/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Neuroblastoma (NB) is a common solid tumor in children, with a dismal prognosis in high-risk cases. Despite advancements in NB treatment, the clinical need for precise prognostic models remains critical, particularly to address the heterogeneity of cancer stemness which plays a pivotal role in tumor aggressiveness and patient outcomes. By utilizing machine learning (ML) techniques, we aimed to explore the cancer stemness features in NB and identify stemness-related hub genes for future investigation and potential targeted therapy. METHODS The public dataset GSE49710 was employed as the training set for acquire gene expression data and NB sample information, including age, stage, and MYCN amplification status and survival. The messenger RNA (mRNA) expression-based stemness index (mRNAsi) was calculated and patients were grouped according to their mRNAsi value. Stemness-related hub genes were identified from the differentially expressed genes (DEGs) to construct a gene signature. This was followed by evaluating the relationship between cancer stemness and the NB immune microenvironment, and the development of a predictive nomogram. We assessed the prognostic outcomes including overall survival (OS) and event-free survival, employing machine learning methods to measure predictive accuracy through concordance indices and validation in an independent cohort E-MTAB-8248. RESULTS Based on mRNAsi, we categorized NB patients into two groups to explore the association between varying levels of stemness and their clinical outcomes. High mRNAsi was linked to the advanced International Neuroblastoma Staging System (INSS) stage, amplified MYCN, and elder age. High mRNAsi patients had a significantly poorer prognosis than low mRNAsi cases. According to the multivariate Cox analysis, the mRNAsi was an independent risk factor of prognosis in NB patients. After least absolute shrinkage and selection operator (LASSO) regression analysis, four key genes (ERCC6L, DUXAP10, NCAN, DIRAS3) most related to mRNAsi scores were discovered and a risk model was built. Our model demonstrated a significant prognostic capacity with hazard ratios (HR) ranging from 18.96 to 41.20, P values below 0.0001, and area under the receiver operating characteristic curve (AUC) values of 0.918 in the training set, suggesting high predictive accuracy which was further confirmed by external verification. Individuals with a low four-gene signature score had a favorable outcome and better immune responses. Finally, a nomogram for clinical practice was constructed by integrating the four-gene signature and INSS stage. CONCLUSIONS Our findings confirm the influence of CSC features in NB prognosis. The newly developed NB stemness-related four-gene signature prognostic signature could facilitate the prognostic prediction, and the identified hub genes may serve as promising targets for individualized treatments.
Collapse
Affiliation(s)
- Yuren Xia
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- Department of General Surgery, Tianjin Cancer Hospital Airport Hospital, Tianjin, China
| | - Chaoyu Wang
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Xin Li
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- Department of Pathology, Tianjin Cancer Hospital Airport Hospital, Tianjin, China
| | - Mingyou Gao
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Henry David Jeffry Hogg
- Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Thara Tunthanathip
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Tim Hulsen
- Data Science & AI Engineering, Philips, Eindhoven, The Netherlands
| | - Xiangdong Tian
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Qiang Zhao
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| |
Collapse
|
35
|
Wang J, Wu W, Yuan T, Wang L, Zang L, Liu Q, Wang L, Huo X, Huo B, Tang Y, Wang H, Zhao Z. Tumor-associated macrophages and PD-L1 in prostate cancer: a possible key to unlocking immunotherapy efficacy. Aging (Albany NY) 2024; 16:445-465. [PMID: 38189834 PMCID: PMC10817380 DOI: 10.18632/aging.205378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/15/2023] [Indexed: 01/09/2024]
Abstract
PURPOSE Prostate cancer (PCa) is often considered as a "cold" tumor with low responsiveness to immunotherapy. Recent evidence suggests the activation of specific immune cells, such as tumor-associated macrophages (TAMs), could potentially influence the efficacy of immunotherapy in PCa. However, the relationship between TAMs and PD-L1, a significant regulator in immunotherapy, within PCa remains unexplored. METHODS In this study, we assessed TAM infiltration and PD-L1 expression levels in a local cohort of 95 PCa tissue samples and two publicly available PCa datasets. We employed a combination of bioinformatics and experimental techniques, including gene set enrichment analysis, CIBERSORTx, tissue microarray, immunohistochemistry staining, and analysis of single-cell sequencing datasets, to provide a comprehensive understanding of the association between PD-L1 and TAMs in the PCa microenvironment. RESULTS The study showed that CD68+ TAMs and CD163+ TAMs (M2-TAMs) were more abundant in the tumor microenvironment than in non-cancerous surrounding tissues. The infiltration of CD163+ TAMs was significantly associated with the Gleason score and risk stratification of PCa. Importantly, elevated PD-L1 expression correlated significantly with high infiltration of CD163+ TAMs. Furthermore, patients displaying high levels of CD163+ TAMs and PD-L1 expression exhibited shorter times to biochemical recurrence-free survival. CONCLUSION Our study suggests that CD163+ TAMs are closely associated with PD-L1 expression and can act as a valuable prognostic indicator for PCa. The high infiltration of M2-TAMs, coupled with the overexpression of PD-L1, may contribute to immune escape mechanisms in PCa, thereby influencing disease prognosis.
Collapse
Affiliation(s)
- Jinhuan Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
- Department of Oncology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Wenqi Wu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Tian Yuan
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Lili Wang
- Department of Oncology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Li Zang
- Department of Oncology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Qing Liu
- Department of Oncology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Lei Wang
- Department of Oncology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Xiaodong Huo
- Department of Oncology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Bin Huo
- Department of Oncology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Yong Tang
- Department of Oncology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Haitao Wang
- Department of Oncology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Zhigang Zhao
- Department of Medical Oncology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, China
| |
Collapse
|
36
|
Yu X, Zhai X, Wu J, Feng Q, Hu C, Zhu L, Zhou Q. Evolving perspectives regarding the role of the PD-1/PD-L1 pathway in gastric cancer immunotherapy. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166881. [PMID: 37696462 DOI: 10.1016/j.bbadis.2023.166881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/08/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023]
Abstract
Gastric cancer (GC) is an increasing global health problem and is one of the leading cancers worldwide. Traditional therapies, such as radiation and chemotherapy, have made limited progress in enhancing their efficacy for advanced GC. The development of immunotherapy for advanced GC has considerably improved with a deeper understanding of the tumor microenvironment. Immunotherapy using checkpoint inhibitors is a new therapeutic option that has made substantial advances in the treatment of other malignancies and is increasingly used in other clinical oncology treatments. Particularly, therapeutic antibodies targeting the programmed cell death protein-1 (PD-1)/programmed cell death ligand 1 (PD-L1) pathway have been effectively used in the clinical treatment of cancer. Monoclonal antibodies blocking the PD-1/PD-L1 pathway have been developed for cancer immunotherapy to enhance T cell function to restore the immune response and represent a breakthrough in the treatment of GC. This review provides an outline of the progress of PD-1/PD-L1 blockade therapy and its expression characteristics and clinical application in advanced GC.
Collapse
Affiliation(s)
- Xianzhe Yu
- Department of Medical Oncology, Cancer Center & Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China; Department of Gastrointestinal Surgery, Chengdu Second People's Hospital, No. 10 Qinyun Nan Street, Chengdu, Sichuan Province, People's Republic of China
| | - Xiaoqian Zhai
- Department of Medical Oncology, Cancer Center & Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Juan Wu
- Out-patient Department, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Qingbo Feng
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Affiliated Digestive Hospital of Zunyi Medical University, Zunyi, Guizhou Province, People's Republic of China
| | - Chenggong Hu
- Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China.
| | - Lingling Zhu
- Department of Medical Oncology, Cancer Center & Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China.
| | - Qinghua Zhou
- Department of Medical Oncology, Cancer Center & Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China.
| |
Collapse
|
37
|
Kotnala S, Dhasmana A, Dhasmana S, Haque S, Yallapu MM, Tripathi MK, Jaggi M, Chauhan SC. A Systems Biology Approach Unveils a Critical Role of DPP4 in Upper Gastrointestinal Cancer Patient Outcomes. J Environ Pathol Toxicol Oncol 2024; 43:43-55. [PMID: 38505912 PMCID: PMC11419273 DOI: 10.1615/jenvironpatholtoxicoloncol.2023048056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024] Open
Abstract
Gastrointestinal (GI) cancers comprise of cancers that affect the digestive system and its accessory organs. The late detection and poor prognosis of GI cancer emphasizes the importance of identifying reliable and precise biomarkers for early diagnosis and prediction of prognosis. The membrane-bound glycoprotein dipeptidyl-peptidase 4 (DPP4), also known as CD26, is ubiquitously expressed and has a wide spectrum of biological roles. The role of DPP4/CD26 in tumor progression in different types of cancers remains elusive. However, the link between DPP4 and tumor-infiltrating cells, as well as its prognostic significance in malignancies, still require further investigation. This study was intended to elucidate the correlation of DPP4 expression and survival along with prognosis, followed by its associated enriched molecular pathways and immune cell marker levels in upper GI cancers. Results demonstrated a strong correlation between increased DPP4 expression and a worse prognosis in esophageal and gastric cancer and the co-expressed common genes with DPP4 were associated with crucial molecular pathways involved in tumorigenesis. Additionally, DPP4 was shown to be significantly linked to several immune infiltrating cell marker genes, including Macrophages (M1, M2 and Tumor Associated Macrophages), neutrophils, Treg, T-cell exhaustion, Th1 and Th2. Overall, our findings suggest that DPP4 may serve as a substantial prognostic biomarker, a possible therapeutic target, as well as it can play a critical role in the regulation of immune cell invasion in patients with gastroesophageal (esophageal, gastroesophageal junction and gastric) cancer. KEY WORDS: DPP4, integrated analysis, GI cancer, gastroesophageal cancer, gastroesophageal junction, prognosis.
Collapse
Affiliation(s)
- Sudhir Kotnala
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Anupam Dhasmana
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- Department of Biosciences and Cancer Research Institute, Himalayan Institute of Medical Sciences, Swami Rama Himalayan University, Dehradun, India
| | - Swati Dhasmana
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Murali M. Yallapu
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Manish K. Tripathi
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Subhash C. Chauhan
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| |
Collapse
|
38
|
Peng R, Xu C, Zhang L, Liu X, Peng D, Chen X, Liu D, Li R. M2 macrophages participate in ILC2 activation induced by Helicobacter pylori infection. Gut Microbes 2024; 16:2347025. [PMID: 38693666 PMCID: PMC11067991 DOI: 10.1080/19490976.2024.2347025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/30/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024] Open
Abstract
Helicobacter pylori (H. pylori) causes a diversity of gastric diseases. The host immune response evoked by H. pylori infection is complicated and can influence the development and progression of diseases. We have reported that the Group 2 innate lymphocytes (ILC2) were promoted and took part in building type-2 immunity in H. pylori infection-related gastric diseases. Therefore, in the present study, we aim to clarify how H. pylori infection induces the activation of ILC2. It was found that macrophages were necessary for activating ILC2 in H. pylori infection. Mechanistically, H. pylori infection up-regulated the expression of indoleamine 2,3-dioxygenase (IDO) in macrophages to induce M2 polarization, and the latter secreted the alarmin cytokine Thymic Stromal Lymphopoietin (TSLP) to arouse ILC2.
Collapse
Affiliation(s)
- Ruyi Peng
- Department of Gastroenterology, the Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
- Research Center of Digestive Disease, Central South University, Changsha, Hunan Province, China
- Clinical Research Center of Digestive Diseases of Hunan Province, Changsha, Hunan Province, China
| | - Canxia Xu
- Department of Gastroenterology, Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan Province, China
| | - Linfang Zhang
- Department of Gastroenterology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Xiaoming Liu
- Department of Gastroenterology, Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan Province, China
| | - Dongzi Peng
- Department of Gastroenterology, the Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
- Research Center of Digestive Disease, Central South University, Changsha, Hunan Province, China
- Clinical Research Center of Digestive Diseases of Hunan Province, Changsha, Hunan Province, China
| | - Xingcen Chen
- Department of Gastroenterology, the Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
- Research Center of Digestive Disease, Central South University, Changsha, Hunan Province, China
- Clinical Research Center of Digestive Diseases of Hunan Province, Changsha, Hunan Province, China
| | - Deliang Liu
- Department of Gastroenterology, the Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
- Research Center of Digestive Disease, Central South University, Changsha, Hunan Province, China
- Clinical Research Center of Digestive Diseases of Hunan Province, Changsha, Hunan Province, China
| | - Rong Li
- Department of Gastroenterology, the Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
- Research Center of Digestive Disease, Central South University, Changsha, Hunan Province, China
- Clinical Research Center of Digestive Diseases of Hunan Province, Changsha, Hunan Province, China
| |
Collapse
|
39
|
Shaopeng Z, Yang Z, Yuan F, Chen H, Zhengjun Q. Regulation of regulatory T cells and tumor-associated macrophages in gastric cancer tumor microenvironment. Cancer Med 2024; 13:e6959. [PMID: 38349050 PMCID: PMC10839124 DOI: 10.1002/cam4.6959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 02/15/2024] Open
Abstract
INTRODUCTION Despite advancements in the methods for prevention and early diagnosis of gastric cancer (GC), GC continues to be the fifth in incidence among major cancers and the third most common cause of cancer-related death. The therapeutic effects of surgery and drug treatment are still unsatisfied and show notable differences according to the tumor microenvironment (TME) of GC. METHODS Through screening Pubmed, Embase, and Web of Science, we identified and summarized the content of recent studies that focus on the investigation of Helicobacter pylori (Hp) infection, regulatory T cells (Tregs), and tumor-associated macrophages (TAMs) in the TME of GC. Furthermore, we searched and outlined the clinical research progress of various targeted drugs in GC treatment including CTLA-4, PD-1\PD-L1, and VEGF/VEGFR. RESULTS In this review, the findings indicate that Hp infection causes local inflammation and leads to immunosuppressive environment. High Tregs infiltration in the TME of GC is associated with increased induction and recruitment; the exact function of infiltrated Tregs in GC was also affected by phenotypes and immunosuppressive molecules. TAMs promote the development and metastasis of tumors, the induction, recruitment, and function of TAMs in the TME of gastric cancer are also regulated by various factors. CONCLUSION Discussing the distinct tumor immune microenvironment (TIME) of GC can deepen our understanding on the mechanism of cancer immune evasion, invasion, and metastasis, help us to reduce the incidence of GC, and guide the innovation of new therapeutic targets for GC eventually.
Collapse
Affiliation(s)
- Zhang Shaopeng
- Department of Gastrointestinal Surgery, Shanghai General HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Zheng Yang
- Department of Gastrointestinal Surgery, Shanghai General HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Fang Yuan
- Department of Gastrointestinal Surgery, Shanghai General HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Huang Chen
- Department of Gastrointestinal Surgery, Shanghai General HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Qiu Zhengjun
- Department of Gastrointestinal Surgery, Shanghai General HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| |
Collapse
|
40
|
Yerolatsite M, Torounidou N, Gogadis A, Kapoulitsa F, Ntellas P, Lampri E, Tolia M, Batistatou A, Katsanos K, Mauri D. TAMs and PD-1 Networking in Gastric Cancer: A Review of the Literature. Cancers (Basel) 2023; 16:196. [PMID: 38201623 PMCID: PMC10778110 DOI: 10.3390/cancers16010196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/11/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common and aggressive types of cancer. Immune checkpoint inhibitors (ICIs) have proven effective in treating various types of cancer. The use of ICIs in GC patients is currently an area of ongoing research. The tumor microenvironment (TME) also seems to play a crucial role in cancer progression. Tumor-associated macrophages (TAMs) are the most abundant population in the TME. TAMs are capable of displaying programmed cell death protein 1 (PD-1) on their surface and can form a ligand with programmed death ligand 1 (PD-L1), which is found on the surface of cancer cells. Therefore, it is expected that TAMs may significantly influence the immune response related to immune checkpoint inhibitors (ICIs). AIM OF THE STUDY Understanding the role of TAMs and PD-1/PD-L1 networking in GC. METHODS A systematic review of published data was performed using MEDLINE (PubMed), Embase, and Cochrane databases. We retrieved articles investigating the co-existence of TAMs and PD-1 in GC and the prognosis of patients expressing high levels of PD-1+ TAMs. RESULTS Ten articles with a total of 2277 patients were included in the systematic review. The examined data suggest that the expression of PD-L1 has a positive correlation with the infiltration of TAMs and that patients who express high levels of PD-1+ TAMs may have a worse prognosis than those who express low levels of PD-1+ TAMs. CONCLUSIONS TAMs play a pivotal role in the regulation of PD-1/PD-L1 networking and the progression of GC cells. Nevertheless, additional studies are needed to better define the role of TAMs and PD-1/PD-L1 networking in GC.
Collapse
Affiliation(s)
- Melina Yerolatsite
- Department of Medical Oncology, University of Ioannina, 45500 Ioannina, Greece; (N.T.); (A.G.); (F.K.); (P.N.); (D.M.)
- Society for Study of Clonal Heterogeneity of Neoplasia (EMEKEN), 45445 Ioannina, Greece
| | - Nanteznta Torounidou
- Department of Medical Oncology, University of Ioannina, 45500 Ioannina, Greece; (N.T.); (A.G.); (F.K.); (P.N.); (D.M.)
- Society for Study of Clonal Heterogeneity of Neoplasia (EMEKEN), 45445 Ioannina, Greece
| | - Aristeidis Gogadis
- Department of Medical Oncology, University of Ioannina, 45500 Ioannina, Greece; (N.T.); (A.G.); (F.K.); (P.N.); (D.M.)
- Society for Study of Clonal Heterogeneity of Neoplasia (EMEKEN), 45445 Ioannina, Greece
| | - Fani Kapoulitsa
- Department of Medical Oncology, University of Ioannina, 45500 Ioannina, Greece; (N.T.); (A.G.); (F.K.); (P.N.); (D.M.)
- Society for Study of Clonal Heterogeneity of Neoplasia (EMEKEN), 45445 Ioannina, Greece
| | - Panagiotis Ntellas
- Department of Medical Oncology, University of Ioannina, 45500 Ioannina, Greece; (N.T.); (A.G.); (F.K.); (P.N.); (D.M.)
| | - Evangeli Lampri
- Department of Pathology, University of Ioannina, 45500 Ioannina, Greece; (E.L.); (A.B.)
| | - Maria Tolia
- Department of Radiotherapy, University of Crete, 71003 Heraklion, Greece;
| | - Anna Batistatou
- Department of Pathology, University of Ioannina, 45500 Ioannina, Greece; (E.L.); (A.B.)
| | | | - Davide Mauri
- Department of Medical Oncology, University of Ioannina, 45500 Ioannina, Greece; (N.T.); (A.G.); (F.K.); (P.N.); (D.M.)
- Society for Study of Clonal Heterogeneity of Neoplasia (EMEKEN), 45445 Ioannina, Greece
| |
Collapse
|
41
|
Zhang J, Hu C, Zhang R, Xu J, Zhang Y, Yuan L, Zhang S, Pan S, Cao M, Qin J, Cheng X, Xu Z. The role of macrophages in gastric cancer. Front Immunol 2023; 14:1282176. [PMID: 38143746 PMCID: PMC10746385 DOI: 10.3389/fimmu.2023.1282176] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023] Open
Abstract
As one of the deadliest cancers of the gastrointestinal tract, there has been limited improvement in long-term survival rates for gastric cancer (GC) in recent decades. The poor prognosis is attributed to difficulties in early detection, minimal opportunity for radical resection and resistance to chemotherapy and radiation. Macrophages are among the most abundant infiltrating immune cells in the GC stroma. These cells engage in crosstalk with cancer cells, adipocytes and other stromal cells to regulate metabolic, inflammatory and immune status, generating an immunosuppressive tumour microenvironment (TME) and ultimately promoting tumour initiation and progression. In this review, we summarise recent advances in our understanding of the origin of macrophages and their types and polarisation in cancer and provide an overview of the role of macrophages in GC carcinogenesis and development and their interaction with the GC immune microenvironment and flora. In addition, we explore the role of macrophages in preclinical and clinical trials on drug resistance and in treatment of GC to assess their potential therapeutic value in this disease.
Collapse
Affiliation(s)
- Jiaqing Zhang
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Can Hu
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Ruolan Zhang
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Jingli Xu
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Yanqiang Zhang
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Li Yuan
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Shengjie Zhang
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Siwei Pan
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Mengxuan Cao
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Jiangjiang Qin
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Xiangdong Cheng
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Zhiyuan Xu
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
42
|
Lewis CR, Dadgar N, Yellin SA, Donnenberg VS, Donnenberg AD, Bartlett DL, Allen CJ, Wagner PL. Regional Immunotherapy for Peritoneal Carcinomatosis in Gastroesophageal Cancer: Emerging Strategies to Re-Condition a Maladaptive Tumor Environment. Cancers (Basel) 2023; 15:5107. [PMID: 37894473 PMCID: PMC10605802 DOI: 10.3390/cancers15205107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/04/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Peritoneal carcinomatosis originating from gastric/gastroesophageal junction cancer (GC-PC) occurs in a defined subset of gastric cancer patients with unique clinical, pathologic, molecular and immunologic characteristics that create significant obstacles to effective treatment with modern therapy. Although systemic chemo- and immuno- therapy have yielded disappointing results in GC-PC, recent advances in the characterization of GC-PC and peritoneal immune biology present new opportunities for targeted therapeutics. In this review article, we discuss the distinct properties of GC-PC and the peritoneal immune environment as they pertain to current and investigative treatment strategies. We discuss pre-clinical studies and clinical trials relevant to the modulation of the peritoneal environment as a therapeutic intervention in GC-PC. Finally, we present a road map for future combinatorial strategies based on the conception of the peritoneal cavity as a bioreactor. Within this isolated compartment, prevailing immunosuppressive conditions can be altered through regional interventions toward an adaptive phenotype that would support the effectiveness of regionally delivered cellular therapy products. It is hoped that novel combination strategies would promote efficacy not only in the sequestered peritoneal environment, but also via migration into the circulation of tumor-reactive lymphocytes to produce durable systemic disease control, thereby improving oncologic outcome and quality of life in patients with GC-PC.
Collapse
Affiliation(s)
- Catherine R. Lewis
- Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA; (C.R.L.); (A.D.D.); (D.L.B.); (C.J.A.)
| | - Neda Dadgar
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Samuel A. Yellin
- Department of Surgery, Lehigh Valley Health Network, Allentown, PA 18101, USA;
| | - Vera S. Donnenberg
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
- Hillman Cancer Centers, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Albert D. Donnenberg
- Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA; (C.R.L.); (A.D.D.); (D.L.B.); (C.J.A.)
| | - David L. Bartlett
- Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA; (C.R.L.); (A.D.D.); (D.L.B.); (C.J.A.)
| | - Casey J. Allen
- Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA; (C.R.L.); (A.D.D.); (D.L.B.); (C.J.A.)
| | - Patrick L. Wagner
- Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA; (C.R.L.); (A.D.D.); (D.L.B.); (C.J.A.)
| |
Collapse
|
43
|
Wang L, Li Z, Li Z, Ren Y, Qian L, Yu Y, Shi W, Xiong Y. Identification of A Novel Gene Signature Combining Ferroptosis- and Immunity-Related Genes for Prognostic Prediction, Immunotherapy and Potential Therapeutic Targets in Gastric Cancer. J Cancer 2023; 14:3457-3476. [PMID: 38021154 PMCID: PMC10647194 DOI: 10.7150/jca.87223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/17/2023] [Indexed: 12/01/2023] Open
Abstract
Gastric cancer (GC) is one of the most prevalent cancers worldwide. Ferroptosis and the immune status of tumor tissue play vital roles in the initiation and progression of GC. However, the role and functional mechanisms of ferroptosis- and immunity-related genes (FIRGs) in GC pathogenesis and their correlations with GC prognosis have not been elucidated. We aim to establish a prognostic prediction model based on the FIRGs signature for GC patients. Differentially expressed genes were screened from the Cancer Genome Atlas (TCGA) GC cohorts. The least absolute shrinkage and selection operator (LASSO) regression was performed to establish a FIRGs-based risk model. This gene signature with 7 FIRGs was identified as an independent prognostic factor. A nomogram incorporating clinical parameters and the FIRG signature was constructed to individualize outcome predictions. Finally, we provided in vivo and in vitro evidence to verify the reliability of FIRG signature for GC prognosis, and validate the expression and function of FIRGs contributing to the development and progression of GC. Herein, our work represents great therapeutic and prognostic potentials for GC.
Collapse
Affiliation(s)
- Liwei Wang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, P.R. China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, P.R. China
| | - Zhuozhuo Li
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, P.R. China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, P.R. China
| | - Zi Li
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, P.R. China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, P.R. China
| | - Yuanyuan Ren
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, P.R. China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, P.R. China
| | - Lu Qian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, P.R. China
- Department of Endocrinology, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, P.R. China
| | - Yi Yu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, P.R. China
| | - Wenzhen Shi
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, P.R. China
- Medical Research Center, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, P.R. China
| | - Yuyan Xiong
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, P.R. China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, P.R. China
| |
Collapse
|
44
|
Yan Y, Li L, Wang Z, Pang J, Guan X, Yuan Y, Xia Z, Yi W. A comprehensive analysis of the role of QPRT in breast cancer. Sci Rep 2023; 13:15414. [PMID: 37723185 PMCID: PMC10507026 DOI: 10.1038/s41598-023-42566-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023] Open
Abstract
To explore the clinical role of QPRT in breast cancer. The gene expression, methylation levels and prognostic value of QPRT in breast cancer was analyzed using TCGA data. Validation was performed using the data from GEO dataset and TNMPLOT database. Meta analysis method was used to pool the survival data for QPRT. The predictive values of QPRT for different drugs were retrieved from the ROC plot. The expression differences of QPRT in acquired drug-resistant and sensitive cell lines were analyzed using GEO datasets. GO and KEGG enrichment analysis were conducted for those genes which were highly co-expressed with QPRT in tissue based on TCGA data and which changed after QPRT knockdown. Timer2.0 was utilized to explore the correlation between QPRT and immune cells infiltration, and the Human Protein Atlas was used to analyse QPRT's single-cell sequencing data across different human tissues. The expression of QPRT in different types of macrophages, and the expression of QPRT were analysed after coculturing HER2+ breast cancer cells with macrophages. Additionally, TargetScan, Comparative Toxicogenomics and the connectivity map were used to research miRNAs and drugs that could regulate QPRT expression. Cytoscape was used to map the interaction networks between QPRT and other proteins. QPRT was highly expressed in breast cancer tissue and highly expressed in HER2+ breast cancer patients (P < 0.01). High QPRT expression levels were associated with worse OS, DMFS, and RFS (P < 0.01). Two sites (cg02640602 and cg06453916) were found to be potential regulators of breast cancer (P < 0.01). QPRT might predict survival benefits in breast cancer patients who received taxane or anthracycline. QPRT was associated with tumour immunity, especially in macrophages. QPRT may influence the occurrence and progression of breast cancer through the PI3K-AKT signalling pathway, Wnt signalling pathway, and cell cycle-related molecules.
Collapse
Affiliation(s)
- Yiqing Yan
- Department of General Surgery, The Second Xiangya Hospital, Central South University, No. 139, Renmin Central Road, Changsha, 410011, China
| | - Lun Li
- Department of General Surgery, The Second Xiangya Hospital, Central South University, No. 139, Renmin Central Road, Changsha, 410011, China
| | - Zixin Wang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, No. 139, Renmin Central Road, Changsha, 410011, China
| | - Jian Pang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, No. 139, Renmin Central Road, Changsha, 410011, China
| | - Xinyu Guan
- Department of General Surgery, The Second Xiangya Hospital, Central South University, No. 139, Renmin Central Road, Changsha, 410011, China
| | - Yunchang Yuan
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, No. 139, Renmin Central Road, Changsha, 410011, China
| | - Zhenkun Xia
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, No. 139, Renmin Central Road, Changsha, 410011, China.
| | - Wenjun Yi
- Department of General Surgery, The Second Xiangya Hospital, Central South University, No. 139, Renmin Central Road, Changsha, 410011, China.
| |
Collapse
|
45
|
Cao Y, Wang D, Mo G, Peng Y, Li Z. Gastric precancerous lesions:occurrence, development factors, and treatment. Front Oncol 2023; 13:1226652. [PMID: 37719006 PMCID: PMC10499614 DOI: 10.3389/fonc.2023.1226652] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/10/2023] [Indexed: 09/19/2023] Open
Abstract
Patients with gastric precancerous lesions (GPL) have a higher risk of gastric cancer (GC). However, the transformation of GPL into GC is an ongoing process that takes several years. At present, several factors including H.Pylori (Hp), flora imbalance, inflammatory factors, genetic variations, Claudin-4, gastric stem cells, solute carrier family member 26 (SLC26A9), bile reflux, exosomes, and miR-30a plays a considerable role in the transformation of GPL into GC. Moreover, timely intervention in the event of GPL can reduce the risk of GC. In clinical practice, GPL is mainly treated with endoscopy, acid suppression therapy, Hp eradication, a cyclooxygenase-2 inhibitor, aspirin, and diet. Currently, the use of traditional Chinese medicine (TCM) or combination with western medication to remove Hp and the use of TCM to treat GPL are common in Asia, particularly China, and have also demonstrated excellent clinical efficacy. This review thoroughly discussed the combining of TCM and Western therapy for the treatment of precancerous lesions as conditions allow. Consequently, this review also focuses on the causes of the development and progression of GPL, as well as its current treatment. This may help us understand GPL and related treatment.
Collapse
Affiliation(s)
- Yue Cao
- Emergency of Department, Yunnan Provincial Hospital of Traditional Chinese Medicine, The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Dongcai Wang
- Emergency of Department, Yunnan Provincial Hospital of Traditional Chinese Medicine, The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Guiyun Mo
- Emergency Teaching and Research Department of the First Clinical School of Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Yinghui Peng
- Emergency of Department, Yunnan Provincial Hospital of Traditional Chinese Medicine, The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Zengzheng Li
- Department of Hematology, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Yunnan Province Clinical Center for Hematologic Disease, The First People’s Hospital of Yunnan Province, Kunming, China
- Yunnan Blood Disease Hospital, The First People’s Hospital of Yunnan Province, Kunming, China
- National Key Clinical Specialty of Hematology, The First People’s Hospital of Yunnan Province, Kunming, China
- Yunnan Province Clinical Research Center for Hematologic Disease, The First People’s Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
46
|
Li M, Zhao Z, Mak TK, Wang X, Chen J, Ren H, Yu Z, Zhang C. Neutrophil extracellular traps-related signature predicts the prognosis and immune infiltration in gastric cancer. Front Med (Lausanne) 2023; 10:1174764. [PMID: 37636564 PMCID: PMC10447905 DOI: 10.3389/fmed.2023.1174764] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Gastric cancer (GC) is the fifth most prevalent cancer globally, with the third highest case fatality rate. Neutrophil extracellular traps (NETs) are a reticulated structure of DNA, histones, and antimicrobial peptides produced by active neutrophils that trap pathogens. Even though NETs are associated with poorer recurrence-free survival (RFS) and overall survival (OS), the specifics of this interaction between NETs and cancer cells are yet unknown. Methods The keywords "neutrophil extracellular traps and gastric cancer" were used in the GEO database for retrieval, and the GSE188741 dataset was selected to obtain the NETs-related gene. 27 NETs-related genes were screened by univariate Cox regression analysis (p < 0.05). 27 NETs-related genes were employed to identify and categorize NETs-subgroups of GC patients under the Consensus clustering analysis. 808 GC patients in TCGA-STAD combined with GES84437 were randomly divided into a training group (n = 403) and a test group (n = 403) at a ratio of 1:1 to validate the NETs-related signature. Results Based on Multivariate Cox regression and LASSO regression analysis to develop a NETs-related prognosis model. We developed a very specific nomogram to improve the NETs-clinical score's usefulness. Similarly, we also performed a great result in pan-cancer study with NETs-score. Low NETs scores were linked to higher MSI-H (microsatellite instability-high), mutation load, and immune activity. The cancer stem cell (CSC) index and chemotherapeutic treatment sensitivity were also connected to the NET score. Our comprehensive analysis of NETs in GC suggests that NETs have a role in the tumor microenvironment, clinicopathological features, and prognosis. Discussion The NETs-score risk model provides a basis for better prognosis and therapy outcomes in GC patients.
Collapse
Affiliation(s)
- Mingzhe Li
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Zidan Zhao
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Tsz Kin Mak
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xiaoqun Wang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Jingyao Chen
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Hui Ren
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Zhiwei Yu
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Changhua Zhang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
47
|
Li J, Sun J, Zeng Z, Liu Z, Ma M, Zheng Z, He Y, Kang W. Tumour-associated macrophages in gastric cancer: From function and mechanism to application. Clin Transl Med 2023; 13:e1386. [PMID: 37608500 PMCID: PMC10444973 DOI: 10.1002/ctm2.1386] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is a malignant tumour, with high morbidity and mortality rates worldwide. The occurrence and development of GC is a complex process involving genetic changes in tumour cells and the influence of the surrounding tumour microenvironment (TME). Accumulative evidence shows that tumour-associated macrophages (TAMs) play a vital role in GC, acting as plentiful and active infiltrating inflammatory cells in the TME. MAIN BODY In this review, the different functions and mechanisms of TAMs in GC progression, including the conversion of phenotypic subtypes; promotion of tumour proliferation, invasion and migration; induction of chemoresistance; promotion of angiogenesis; modulation of immunosuppression; reprogramming of metabolism; and interaction with the microbial community are summarised. Although the role of TAMs in GC remains controversial in clinical settings, clarifying their significance in the treatment selection and prognostic prediction of GC could support optimising TAM-centred clinicaltherapy. CONCLUSION In summary, we reviewed the the phenotypic polarisation, function and molecular mechanism of TAMs and their potential applications in the treatment selection and prognostic prediction of GC.
Collapse
Affiliation(s)
- Jie Li
- Department of General SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingPeople's Republic of China
| | - Juan Sun
- Department of General SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingPeople's Republic of China
| | - Ziyang Zeng
- Department of General SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingPeople's Republic of China
| | - Zhen Liu
- Department of General SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingPeople's Republic of China
| | - Mingwei Ma
- Department of General SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingPeople's Republic of China
| | - Zicheng Zheng
- Department of General SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingPeople's Republic of China
| | - Yixuan He
- Department of General SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingPeople's Republic of China
| | - Weiming Kang
- Department of General SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingPeople's Republic of China
| |
Collapse
|
48
|
Jiang L, Wang Z, Wang Y, Liu S, Xu Y, Zhang C, Li L, Si S, Yao B, Dai W, Li H. Re-exposure of chitosan by an inhalable microsphere providing the re-education of TAMs for lung cancer treatment with assistant from sustained H 2S generation. Int J Pharm 2023; 642:123142. [PMID: 37328119 DOI: 10.1016/j.ijpharm.2023.123142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/06/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
The re-education of tumor-associated macrophages (TAMs) is an effective strategy to inhibit the growth and metastasis of lung cancer. We have reported that chitosan could re-educate the TAMs and then inhibit cancer metastasis; however, the re-exposure of chitosan from the chemical corona on their surface is critical for this effect. In this study, a strategy was proposed to re-expose the chitosan from chemical corona, and a sustained H2S generation was applied to enhance the immunotherapy of chitosan. To achieve this objective, an inhalable microsphere (namely F/Fm) was designed, which could be degraded by the matrix metalloproteinase in lung cancer, releasing two kinds of nanoparticles; in an external magnetic field, these nanoparticles can aggregate with each other, and β-cyclodextrin on the surface of one nanoparticle can be hydrolyzed by amylase on the surface of another nanoparticle, leading to the re-exposure of chitosan in the inner layer of β-cyclodextrin and the release of diallyl trisulfide for H2S generation. In vitro, the expression of CD86 and secretion of TNF-α by TAMs was increased by F/Fm, proving the re-education of TAMs, and the apoptosis of A549 cells was promoted with the migration and invasion being inhibited. In the Lewis lung carcinoma-bearing mouse, the F/Fm re-educated the TAMs and provided a sustained generation of H2S in the region of lung cancer, effectively inhibiting the growth and metastasis of lung cancer cells. This work provides a new strategy for the treatment of lung cancer in combination of re-education of TAMs by chitosan and the adjuvant chemotherapy by H2S.
Collapse
Affiliation(s)
- Liqun Jiang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China.
| | - Ziyao Wang
- Wuxi Branch of Ruijin Hospital, People's Republic of China
| | - Yan Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Shuo Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Ya Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Cong Zhang
- Shanghai Frontier Health Pharmaceutical Technology Co., Ltd, People's Republic of China
| | - Lei Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Sujia Si
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Bingmei Yao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Wenjin Dai
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Huiyang Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| |
Collapse
|
49
|
Fu X, Wang Q, Du H, Hao H. CXCL8 and the peritoneal metastasis of ovarian and gastric cancer. Front Immunol 2023; 14:1159061. [PMID: 37377954 PMCID: PMC10291199 DOI: 10.3389/fimmu.2023.1159061] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
CXCL8 is the most representative chemokine produced autocrine or paracrine by tumor cells, endothelial cells and lymphocytes. It can play a key role in normal tissues and tumors by activating PI3K-Akt, PLC, JAK-STAT, and other signaling pathways after combining with CXCR1/2. The incidence of peritoneal metastasis in ovarian and gastric cancer is extremely high. The structure of the peritoneum and various peritoneal-related cells supports the peritoneal metastasis of cancers, which readily produces a poor prognosis, low 5-year survival rate, and the death of patients. Studies show that CXCL8 is excessively secreted in a variety of cancers. Thus, this paper will further elaborate on the mechanism of CXCL8 and the peritoneal metastasis of ovarian and gastric cancer to provide a theoretical basis for the proposal of new methods for the prevention, diagnosis, and treatment of cancer peritoneal metastasis.
Collapse
|
50
|
Yang Y, Lu T, Jia X, Gao Y. FSTL1 Suppresses Triple-Negative Breast Cancer Lung Metastasis by Inhibiting M2-like Tumor-Associated Macrophage Recruitment toward the Lungs. Diagnostics (Basel) 2023; 13:1724. [PMID: 37238210 PMCID: PMC10217361 DOI: 10.3390/diagnostics13101724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Immune cell infiltration into the tumor microenvironment is associated with cancer prognosis. Tumor-associated macrophages play essential roles in tumor initiation, progression, and metastasis. Follistatin-like protein 1 (FSTL1), a widely expressed glycoprotein in human and mouse tissues, is a tumor suppressor in various cancers and a regulator of macrophage polarization. However, the mechanism by which FSTL1 affects crosstalk between breast cancer cells and macrophages remains unclear. By analyzing public data, we found that FSTL1 expression was significantly low in breast cancer tissues compared to normal breast tissues, and high expression of FSTL1 in patients indicated prolonged survival. Using flow cytometry, we found that total and M2-like macrophages dramatically increased in the metastatic lung tissues during breast cancer lung metastasis in Fstl1+/- mice. Transwell assay in vitro and q-PCR experimental results showed that FSTL1 inhibited macrophage migration toward 4T1 cells by decreasing CSF1, VEGF-α, and TGF-β secretion in 4T1 cells. We demonstrated that FSTL1 inhibited M2-like tumor-associated macrophage recruitment toward the lungs by suppressing CSF1, VEGF-α, and TGF-β secretion in 4T1 cells. Therefore, we identified a potential therapeutic strategy for triple-negative breast cancer.
Collapse
Affiliation(s)
- Ying Yang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Tao Lu
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiaowei Jia
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Department of Human Anatomy, Capital Medical University, No. 10 Xitoutiao, You’anmenwai, Fengtai District, Beijing 100069, China
| | - Yan Gao
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Department of Human Anatomy, Capital Medical University, No. 10 Xitoutiao, You’anmenwai, Fengtai District, Beijing 100069, China
| |
Collapse
|