1
|
Dong D, Yu X, Liu H, Xu J, Guo J, Guo W, Li X, Wang F, Zhang D, Liu K, Sun Y. Study of immunosenescence in the occurrence and immunotherapy of gastrointestinal malignancies. Semin Cancer Biol 2025; 111:16-35. [PMID: 39929408 DOI: 10.1016/j.semcancer.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/18/2025] [Accepted: 01/26/2025] [Indexed: 02/25/2025]
Abstract
In human beings heterogenous, pervasive and lethal malignancies of different parts of the gastrointestinal (GI) tract viz., tumours of the oesophagus, stomach, small intestine, colon, and rectum, represent gastrointestinal malignancies. Primary treatment modality for gastric cancer includes chemotherapy, surgical interventions, radiotherapy, monoclonal antibodies and inhibitors of angiogenesis. However, there is a need to improve upon the existing treatment modality due to associated adverse events and the development of resistance towards treatment. Additionally, age has been found to contribute to increasing the incidence of tumours due to immunosenescence-associated immunosuppression. Immunosenescence is the natural process of ageing, wherein immune cells as well as organs begin to deteriorate resulting in a dysfunctional or malfunctioning immune system. Accretion of senescent cells in immunosenescence results in the creation of a persistent inflammatory environment or inflammaging, marked with elevated expression of pro-inflammatory and immunosuppressive cytokines and chemokines. Perturbation in the T-cell pools and persistent stimulation by the antigens facilitate premature senility of the immune cells, and senile immune cells exacerbate inflammaging conditions and the inefficiency of the immune system to identify the tumour antigen. Collectively, these conditions contribute positively towards tumour generation, growth and eventually proliferation. Thus, activating the immune cells to distinguish the tumour cells from normal cells and invade them seems to be a logical strategy for the treatment of cancer. Consequently, various approaches to immunotherapy, viz., programmed death ligand-1 (PD-1) inhibitors, Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibitors etc are being extensively evaluated for their efficiency in gastric cancer. In fact, PD-1 inhibitors have been sanctioned as late late-line therapy modality for gastric cancer. The present review will focus on deciphering the link between the immune system and gastric cancer, and the alterations in the immune system that incur during the development of gastrointestinal malignancies. Also, the mechanism of evasion by tumour cells and immune checkpoints involved along with different approaches of immunotherapy being evaluated in different clinical trials will be discussed.
Collapse
Affiliation(s)
- Daosong Dong
- Department of Pain, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Xue Yu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Molecular Pathology and Epidemiology of Gastric Cancer in the Universities of Liaoning Province, Shenyang, Liaoning 110001, China
| | - Haoran Liu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Jingjing Xu
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Jiayan Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Wei Guo
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiang Li
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Fei Wang
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Dongyong Zhang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Kaiwei Liu
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Yanbin Sun
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
2
|
Luo D, Zhou J, Ruan S, Zhang B, Zhu H, Que Y, Ying S, Li X, Hu Y, Song Z. Overcoming immunotherapy resistance in gastric cancer: insights into mechanisms and emerging strategies. Cell Death Dis 2025; 16:75. [PMID: 39915459 PMCID: PMC11803115 DOI: 10.1038/s41419-025-07385-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/07/2025] [Accepted: 01/22/2025] [Indexed: 02/09/2025]
Abstract
Gastric cancer (GC) remains a leading cause of cancer-related mortality worldwide, with limited treatment options in advanced stages. Immunotherapy, particularly immune checkpoint inhibitors (ICIs) targeting PD1/PD-L1, has emerged as a promising therapeutic approach. However, a significant proportion of patients exhibit primary or acquired resistance, limiting the overall efficacy of immunotherapy. This review provides a comprehensive analysis of the mechanisms underlying immunotherapy resistance in GC, including the role of the tumor immune microenvironment, dynamic PD-L1 expression, compensatory activation of other immune checkpoints, and tumor genomic instability. Furthermore, the review explores GC-specific factors such as molecular subtypes, unique immune evasion mechanisms, and the impact of Helicobacter pylori infection. We also discuss emerging strategies to overcome resistance, including combination therapies, novel immunotherapeutic approaches, and personalized treatment strategies based on tumor genomics and the immune microenvironment. By highlighting these key areas, this review aims to inform future research directions and clinical practice, ultimately improving outcomes for GC patients undergoing immunotherapy.
Collapse
Affiliation(s)
- Dingtian Luo
- Gastroenterology Department, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Jing Zhou
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Shuiliang Ruan
- Gastroenterology Department, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Binzhong Zhang
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Huali Zhu
- Gastroenterology Department, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Yangming Que
- Gastroenterology Department, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Shijie Ying
- Gastroenterology Department, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Xiaowen Li
- Pathology Department, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Yuanmin Hu
- Intensive Care Unit, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
| | - Zhengwei Song
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
| |
Collapse
|
3
|
Case A, Williams F, Prosser S, Hutchings H, Crosby T, Adams R, Jenkins G, Gwynne S. Reconsidering the Role of Radiotherapy for Inoperable Gastric Cancer: A Systematic Review of Gastric Radiotherapy Given With Definitive and Palliative Intent. Clin Oncol (R Coll Radiol) 2025; 37:103693. [PMID: 39642760 DOI: 10.1016/j.clon.2024.103693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 12/09/2024]
Abstract
AIMS The role of radiotherapy (RT) for inoperable gastric cancer (IGC) is commonly low-dose, given reactively for symptoms (e.g. bleeding), in contrast to the oesophagus, where high quality evidence exists for higher doses of RT. This systematic review aims to evaluate the use of, and evidence for, definitive and high-dose palliative RT for IGC and whether a change in practice is warranted. MATERIALS AND METHODS Following registration with PROSPERO (CRD42022297080), MEDLINE, EMBASE and The Cochrane Library were searched in accordance with PRISMA standards for studies evaluating definitive (non-metastatic disease, BED10 >45Gy) or high-dose palliative RT (for symptom/local control, minimum BED10 >30Gy). A manual search of meeting proceedings and clinical trial registries was also performed. RESULTS 31 studies were selected for analysis. 10 definitive studies totalling n = 354 patients receiving RT with 45-50.4Gy/25-28#, showed median overall survival ranging between 11 and 26.4 months, clinical complete response range 12%-45%, G3 gastrointestinal toxicity 0-31% (range) and RT completion rates ranging from 81% to 100%. 21 high-dose palliative studies (n = 955) mostly evaluated haemostatic control and reported 38 different RT regimens (most commonly 30Gy/10#). Bleeding response rate (RR) was 59.6%-90%, pain RR 45.5-100%, obstruction RR 52.9%-100%, G3 gastrointestinal toxicity <5% and RT completion 68%-100%. An additional American National Cancer Database review >4700 non metastatic IGC patients which combined both definitive and palliative doses found significant benefit to RT in addition to chemotherapy. Evidence regarding a dose-response relationship is conflicting, limited by retrospective data. Two studies report high quality -of-life (QOL) scores following gastric RT. CONCLUSION There is a body of mainly non-randomised, observational evidence showing high-dose RT is efficacious, safe and may maintain QOL for patients with IGC. A change in practice will require a prospective randomised controlled trial, which should explore the role of prophylactic, high-BED RT combined with optimal systemic therapy using modern IMRT techniques and RT quality assurance.
Collapse
Affiliation(s)
- A Case
- South West Wales Cancer Centre, Swansea Bay University Health Board, Singleton Hospital, Sketty Lane, Swansea. SA2 8QA, UK; Swansea University Medical School, Institute of Life Science 2, Sketty, Swansea, SA2 8QA, UK.
| | - F Williams
- Velindre Cancer Centre, Whitchurch, Cardiff, CF14 2TL, UK
| | - S Prosser
- South West Wales Cancer Centre, Swansea Bay University Health Board, Singleton Hospital, Sketty Lane, Swansea. SA2 8QA, UK
| | - H Hutchings
- Swansea University Medical School, Institute of Life Science 2, Sketty, Swansea, SA2 8QA, UK
| | - T Crosby
- Velindre Cancer Centre, Whitchurch, Cardiff, CF14 2TL, UK
| | - R Adams
- Velindre Cancer Centre, Whitchurch, Cardiff, CF14 2TL, UK; Cardiff University Centre for Trials Research, Neuadd Meirionnydd, Heath Park Way, Cardiff, CF14 4YS, UK
| | - G Jenkins
- Swansea University Medical School, Institute of Life Science 2, Sketty, Swansea, SA2 8QA, UK
| | - S Gwynne
- South West Wales Cancer Centre, Swansea Bay University Health Board, Singleton Hospital, Sketty Lane, Swansea. SA2 8QA, UK; Swansea University Medical School, Institute of Life Science 2, Sketty, Swansea, SA2 8QA, UK
| |
Collapse
|
4
|
Pan H, Zhou L, Cheng Z, Zhang J, Shen N, Ma H, Li Y, Jin R, Zhou W, Wu D, Sun W, Wang R. Perioperative Tislelizumab plus intensity modulated radiotherapy in resectable hepatocellular carcinoma with macrovascular invasion: a phase II trial. Nat Commun 2024; 15:9350. [PMID: 39472470 PMCID: PMC11522700 DOI: 10.1038/s41467-024-53704-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
Hepatocellular carcinoma (HCC) patients with macrovascular invasion (MVI) have dismal prognosis and there are no standard perioperative therapies. This phase 2 trial (ChiCTR2000036385) aimed to investigate the activity and safety of perioperative tislelizumab plus intensity modulated radiotherapy (IMRT) for resectable HCC with MVI. Thirty treatment-naïve patients with MVI received 3 cycles of tislelizumab intravenously (200 mg, every three weeks) and concurrent IMRT (45 Gray in 15 fractions). Primary endpoints were the overall response rate (ORR) and overall survival (OS). Secondary endpoints were the proportion of patients with a complete or major pathological response (pCR or MPR), recurrence-free survival (RFS) and safety. Of patients enrolled, 15 (50%) underwent curative surgery followed by adjuvant tislelizumab. The ORR was 30.0% (90% CI 16.6%-46.5%) and the median OS was 18.7 months. Of the 15 patients underwent surgical resection, 10 (66.7%) achieved pCR or MPR and 8 (53.3%) remained recurrence-free. The median RFS were not reached with a median follow-up of 21.77 months (95% CI 12.50-31.03) post-surgery. 4 (13.3%) patients experienced grade 3 treatment-related adverse events. The most common events were thrombocytopenia, leukopenia, and anemia. The trial has met the pre-specified endpoints, and these results support further studies of perioperative immunotherapy plus radiotherapy in HCC.
Collapse
Affiliation(s)
- Hongyu Pan
- The First Department of Hepatic Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Liuyu Zhou
- The First Department of Hepatic Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
- University of Shanghai for Science and Technology, Shanghai, China
| | - Zhuo Cheng
- Department of Oncology, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Jin Zhang
- The First Department of Hepatic Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Ningjia Shen
- The Second Department of Biliary, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Hongbin Ma
- Department of Radiation Oncology, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Yao Li
- The First Department of Hepatic Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Riming Jin
- The First Department of Hepatic Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Weiping Zhou
- The Third Department of Hepatic Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Dong Wu
- The First Department of Hepatic Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Wen Sun
- National Center for Liver Cancer, Naval Medical University, Shanghai, China.
| | - Ruoyu Wang
- The First Department of Hepatic Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
5
|
Kluge A, Baum RP, Bitterlich N, Kulkarni HR, Schorr-Neufing U, van Echteld CJA. Immune Response to Molecular Radiotherapy with 177Lu-DOTATOC: Predictive Value of Blood Cell Counts for Therapy Outcome. Cancer Biother Radiopharm 2024; 39:541-550. [PMID: 38905126 DOI: 10.1089/cbr.2024.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024] Open
Abstract
Purpose: In a prior, retrospective study, 76% of patients with advanced neuroendocrine tumors undergoing 177Lu-DOTATOC molecular radiotherapy (MRT) showed their best response within 8 months from the first MRT cycle. In 24% of patients, latency was much greater up to >22 months after the first cycle, and long after near-complete decay of 177Lu from the last cycle. An immune response induced by MRT seems a likely explanation. As a crude measure of immunocompetence, the authors investigated whether blood cell counts (BCCs) may have predictive value for MRT outcome with 177Lu-DOTATOC. Methods: 56 Patients with neuroendocrine tumors (NET) were administered 177Lu-DOTATOC (mean 2.1 cycles; range 1-4) with median radioactivity of 7.0 GBq/cycle at 3-month intervals. Patients' BCCs were evaluated for four responder categories: CR, PR, SD, and PD (RECIST 1.1). Furthermore, baseline BCCs were correlated with progression-free survival (PFS). Finally, BCCs of patients with (PMT+) and without prior medical therapy (PMT-) were compared. Results: Significant differences between responder categories were found for baseline hemoglobin (Hb), erythrocytes, neutrophils, lymphocytes, neutrophil/lymphocyte ratio (NLR), platelet/lymphocyte ratio (PLR), and LEHN-score, integrating lymphocyte, erythrocyte, and neutrophil counts, and Hb level, but not for leukocytes and platelets. LEHN-score yielded an almost complete separation between CR and PD groups. In analogy, PFS times showed significant correlations with baseline Hb, erythrocytes, neutrophils, lymphocytes, NLR, PLR, and LEHN-score, the LEHN-score showing the strongest correlation, but not with leukocytes and platelets. For PMT- patients, median PFS was 34.5 months, compared with 20.8 months in PMT+ patients, with corresponding baseline lymphocyte (32.1 ± 9.6% vs. 24.5 ± 11.6%, p = 0.028) and neutrophil (54.9 ± 11.6% vs. 63.5 ± 13.7%, p = 0.039) counts. Conclusion: These findings emphasize the significance of an immune response to MRT for obtaining optimal therapy efficacy and support concepts to enhance the immune response of less immunocompetent patients before MRT. It seems advisable to avoid prior or concomitant immunosuppressant medical therapy.
Collapse
Affiliation(s)
- Andreas Kluge
- ABX-CRO Advanced Pharmaceutical Services, Dresden, Germany
| | - Richard P Baum
- Theranostics Center for Molecular Radiotherapy and Molecular Imaging, Zentralklinik Bad Berka, Bad Berka, Germany
- CURANOSTICUM Wiesbaden-Frankfurt-Advanced Theranostics Center for Radiomolecular Precision Oncology, HELIOS DKD Klinik, Wiesbaden, Germany
| | | | - Harshad R Kulkarni
- Theranostics Center for Molecular Radiotherapy and Molecular Imaging, Zentralklinik Bad Berka, Bad Berka, Germany
- BAMF Health, Grand Rapids, Michigan, USA
| | | | - Cees J A van Echteld
- ABX-CRO Advanced Pharmaceutical Services, Dresden, Germany
- Helacor Consultancy, Hillegom, The Netherlands
| |
Collapse
|
6
|
Akkanapally V, Bai XF, Basu S. Therapeutic Immunomodulation in Gastric Cancer. Cancers (Basel) 2024; 16:560. [PMID: 38339311 PMCID: PMC10854796 DOI: 10.3390/cancers16030560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Gastric carcinoma, being one of the most prevalent types of solid tumors, has emerged as the third leading cause of death worldwide. The symptoms of gastric cancer (GC) are typically complex, which makes early detection challenging. Immune checkpoint inhibition has become the new standard targeted therapy for advanced or metastatic GC. It is currently being explored in various combinations, both with and without chemotherapy, across multiple therapies in clinical trials. Immunotherapy can stimulate immune responses in GC patients, leading to the destruction of cancer cells. Compared with traditional therapies, immunotherapy has shown strong effectiveness with tolerable toxicity levels. Hence, this innovative approach to the treatment of advanced GC has gained popularity. In this review, we have outlined the recent advancements in immunotherapy for advanced GC, including immune checkpoint inhibitors, cancer vaccines, vascular endothelial growth factor-A inhibitors, and chimeric antigen receptor T-cell therapy. Our current emphasis is on examining the immunotherapies presently employed in clinical settings, addressing the existing challenges associated with these therapeutic approaches, and exploring promising strategies to overcome their limitations.
Collapse
Affiliation(s)
- Venu Akkanapally
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA; (V.A.); (X.-F.B.)
| | - Xue-Feng Bai
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA; (V.A.); (X.-F.B.)
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Sujit Basu
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA; (V.A.); (X.-F.B.)
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
7
|
Taeb S, Rostamzadeh D, Mafi S, Mofatteh M, Zarrabi A, Hushmandi K, Safari A, Khodamoradi E, Najafi M. Update on Mesenchymal Stem Cells: A Crucial Player in Cancer Immunotherapy. Curr Mol Med 2024; 24:98-113. [PMID: 36573062 DOI: 10.2174/1566524023666221226143814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 12/28/2022]
Abstract
The idea of cancer immunotherapy has spread, and it has made tremendous progress with the advancement of new technology. Immunotherapy, which serves to assist the natural defenses of the body in eradicating cancerous cells, is a remarkable achievement that has revolutionized both cancer research and cancer treatments. Currently, the use of stem cells in immunotherapy is widespread and shares a special characteristic, including cancer cell migration, bioactive component release, and immunosuppressive activity. In the context of cancer, mesenchymal stem cells (MSCs) are rapidly being identified as vital stromal regulators of tumor progression. MSCs therapy has been implicated in treating a wide range of diseases, including bone damage, autoimmune diseases, and particularly hematopoietic abnormalities, providing stem cell-based therapy with an extra dimension. Moreover, the implication of MSCs does not have ethical concerns, and the complications known in pluripotent and totipotent stem cells are less common in MSCs. MSCs have a lot of distinctive characteristics that, when coupled, make them excellent for cellular-based immunotherapy and as vehicles for gene and drug delivery in a variety of inflammations and malignancies. MSCs can migrate to the inflammatory site and exert immunomodulatory responses via cell-to-cell contacts with lymphocytes by generating soluble substances. In the current review, we discuss the most recent research on the immunological characteristics of MSCs, their use as immunomodulatory carriers, techniques for approving MSCs to adjust their immunological contour, and their usages as vehicles for delivering therapeutic as well as drugs and genes engineered to destroy tumor cells.
Collapse
Affiliation(s)
- Shahram Taeb
- Department of Radiology, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran
| | - Davoud Rostamzadeh
- Department of Clinical Biochemistry, Yasuj University of Medical Sciences, Yasuj, Iran
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Sahar Mafi
- Department of Clinical Biochemistry, Yasuj University of Medical Sciences, Yasuj, Iran
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mohammad Mofatteh
- Sir William Dunn School of Pathology, Medical Sciences Division, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom
- Lincoln College, University of Oxford, Turl Street, Oxford OX1 3DR, United Kingdom
| | - Ali Zarrabi
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul, Turkey
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Arash Safari
- Department of Radiology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ehsan Khodamoradi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
8
|
Xu X, Chen J, Li W, Feng C, Liu Q, Gao W, He M. Immunology and immunotherapy in gastric cancer. Clin Exp Med 2023; 23:3189-3204. [PMID: 37322134 DOI: 10.1007/s10238-023-01104-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/24/2023] [Indexed: 06/17/2023]
Abstract
Gastric cancer is the fifth leading cause of cancer-related deaths worldwide. As the diagnosis of early gastric cancer is difficult, most patients are at a late stage of cancer progression when diagnosed. The current therapeutic approaches based on surgical or endoscopic resection and chemotherapy indeed improve patients' outcomes. Immunotherapy based on immune checkpoint inhibitors has opened a new era for cancer treatment, and the immune system of the host is reshaped to combat tumor cells and the strategy differs according to the patient's immune system. Thus, an in-depth understanding of the roles of various immune cells in the progression of gastric cancer is beneficial to application for immunotherapy and the discovery of new therapeutic targets. This review describes the functions of different immune cells in gastric cancer development, mainly focusing on T cells, B cells, macrophages, natural killer cells, dendritic cells, neutrophils as well as chemokines or cytokines secreted by tumor cells. And this review also discusses the latest advances in immune-related therapeutic approaches such as immune checkpoint inhibitors, CAR-T or vaccine, to reveal potential and promising strategies for gastric cancer treatment.
Collapse
Affiliation(s)
- Xiaqing Xu
- Department of Pharmacy, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, Henan, People's Republic of China
| | - Jiaxing Chen
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450002, Henan, People's Republic of China
| | - Wenxing Li
- Department of Pharmacy, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, Henan, People's Republic of China
| | - Chenlu Feng
- Department of Cancer Center, Nanyang First People's Hospital, Nanyang, 473000, Henan, People's Republic of China
| | - Qian Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450002, Henan, People's Republic of China
| | - Wenfang Gao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450002, Henan, People's Republic of China
| | - Meng He
- Department of Pharmacy, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, Henan, People's Republic of China.
| |
Collapse
|
9
|
Mirzaei S, Gholami MH, Aghdaei HA, Hashemi M, Parivar K, Karamian A, Zarrabi A, Ashrafizadeh M, Lu J. Exosome-mediated miR-200a delivery into TGF-β-treated AGS cells abolished epithelial-mesenchymal transition with normalization of ZEB1, vimentin and Snail1 expression. ENVIRONMENTAL RESEARCH 2023; 231:116115. [PMID: 37178752 DOI: 10.1016/j.envres.2023.116115] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/15/2023]
Abstract
Exosomes are small extracellular vesicles that can be derived from human cells such as mesenchymal stem cells (MSCs). The size of exosomes is at nano-scale range and owing to their biocompatibility and other characteristics, they have been promising candidates for delivery of bioactive compounds and genetic materials in disease therapy, especially cancer therapy. Gastric cancer (GC) is a leading cause of death among patients and this malignant disease affects gastrointestinal tract that its invasiveness and abnormal migration mediate poor prognosis of patients. Metastasis is an increasing challenge in GC and microRNAs (miRNAs) are potential regulators of metastasis and related molecular pathways, especially epithelial-to-mesenchymal transition (EMT). In the present study, our aim was to explore role of exosomes in miRNA-200a delivery for suppressing EMT-mediated GC metastasis. Exosomes were isolated from MSCs via size exclusion chromatography. The synthetic miRNA-200a mimics were transfected into exosomes via electroporation. AGS cell line exposed to TGF-β for EMT induction and then, these cells cultured with miRNA-200a-loaded exosomes. The transwell assays performed to evaluate GC migration and expression levels of ZEB1, Snail1 and vimentin measured. Exosomes demonstrated loading efficiency of 5.92 ± 4.6%. The TGF-β treatment transformed AGS cells into fibroblast-like cells expressing two stemness markers, CD44 (45.28%) and CD133 (50.79%) and stimulated EMT. Exosomes induced a 14.89-fold increase in miRNA-200a expression in AGS cells. Mechanistically, miRNA-200a enhances E-cadherin levels (P < 0.01), while it decreases expression levels of β-catenin (P < 0.05), vimentin (P < 0.01), ZEB1 (P < 0.0001) and Snail1 (P < 0.01). Leading to EMT inhibition in GC cells. This pre-clinical experiment introduces a new strategy for miRNA-200a delivery that is of importance for preventing migration and invasion of GC cells.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorder Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Molecular and Cellular Sciences, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Science Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kazem Parivar
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Amin Karamian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences. Tehran, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34485, Istanbul, Turkey
| | - Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Jianlin Lu
- Department of Geriatrics, The Fifth People's Hospital of Wujiang District, Suzhou, China.
| |
Collapse
|
10
|
Sun DZ, Wei PK, Yue XQ. Xiaotan Sanjie decoction normalizes tumor permissive microenvironment in gastric cancer (Review). Oncol Rep 2023; 49:74. [PMID: 36866751 DOI: 10.3892/or.2023.8511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/20/2023] [Indexed: 03/04/2023] Open
Abstract
Gastric cancer (GC) develops in a complex tissue environment, the tumor microenvironment (TME), which it relies on for persistent proliferation, migration, invasion and metastasis. Non‑malignant stromal cell types within the TME are regarded as a clinical meaningful target with the lower risk of resistance and tumor relapse. Studies have revealed that the Xiaotan Sanjie decoction, which is formulated on the basis of the theory of phlegm syndrome, a Traditional Chinese Medicine concept, modulates released factors such as transforming growth factor‑β from tumor cells, immune cells, cancer‑associated fibroblasts, extracellular matrix, as well as vascular endothelial growth factor involved in the process of angiogenesis within the TME. Clinical studies have also shown that the Xiaotan Sanjie decoction is associated with favorable survival and quality of life. The present review aimed to interpret the hypothesis that Xiaotan Sanjie decoction has the ability to normalize the GC tumor cells by influencing functions of stromal cells within the TME. The possible association between phlegm syndrome and the TME in GC was discussed in the present review. Overall, Xiaotan Sanjie decoction may be suitable to be added to tumor cell‑directed agents or emerging immunotherapies becoming a desirable modality in the management of GC and acquire improved outcomes for patients with GC.
Collapse
Affiliation(s)
- Da-Zhi Sun
- Department of Traditional Chinese Medicine, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, P.R. China
| | - Pin-Kang Wei
- Department of Traditional Chinese Medicine, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, P.R. China
| | - Xiao-Qiang Yue
- Department of Traditional Chinese Medicine, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, P.R. China
| |
Collapse
|
11
|
Tang X, Li M, Wu X, Guo T, Zhang L, Tang L, Jia F, Hu Y, Zhang Y, Xing X, Shan F, Gao X, Li Z. Neoadjuvant PD-1 blockade plus chemotherapy induces a high pathological complete response rate and anti-tumor immune subsets in clinical stage III gastric cancer. Oncoimmunology 2022; 11:2135819. [PMID: 36268179 PMCID: PMC9578498 DOI: 10.1080/2162402x.2022.2135819] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
First-line PD-1 blockade plus chemotherapy significantly improves the survival benefits in late-stage gastric cancer (GC) patients. However, the pathological response rate and effects on the immune microenvironment of neoadjuvant PD-1 blockade plus chemotherapy in patients with cTNM-stage III GC remain to be elucidated. Patients with cTNM-stage III GC who underwent neoadjuvant PD-1 blockade plus chemotherapy and surgery were enrolled. Four in vivo models bearing GC were jointly established to investigate the specific roles of chemotherapy and PD-1 blockade for GC treatment. The tumor immune microenvironment was analyzed by hematoxylin and eosin (H&E) and IHC staining, multicolor flow cytometry and immunofluorescence. A total of 75 patients with cTNM-stage III (cT2-4N1-3M0) gastric cancer who received neoadjuvant PD-1 blockade plus chemotherapy (SOX/XELOX) were included in this study. After treatment, 21 (28.0%) and 57 (76.0%) patients achieved pathological complete response (pCR) and post-therapy pathological downstaging. Subgroup analyses revealed that patients with CPS >1 (32.6% vs 8.3%) and dMMR (35.7% vs 25.4%) subtype had better efficacy. Additionally, the resected specimens showed more anti-tumor immune infiltration indicating a response to neoadjuvant PD-1 blockade plus chemotherapy. Multicolor immunofluorescence and in vivo experiments on mouse models revealed that elevated M1/M2 ratio of macrophages, CD8 + T cells and plasma cells indicated effective response to treatment. Furthermore, neoadjuvant PD-1 blockade plus chemotherapy neither delayed surgery nor increased postoperative complication rate. The analyses indicate neoadjuvant PD-1 blockade plus chemotherapy is a promising therapeutic strategy in patients with cTNM-stage III GC with an encouraging pCR rate.
Collapse
Affiliation(s)
- Xiaohuan Tang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Cancer Center, Ward I, Peking University Cancer Hospital & Institute, Beijing, P.R. China
| | - Mengyuan Li
- Department of Radiation Oncology, Peking University 3rd Hospital, Beijing, P.R. China
| | - Xiaolong Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Cancer Center, Ward I, Peking University Cancer Hospital & Institute, Beijing, P.R. China
| | - Ting Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Cancer Center, Ward I, Peking University Cancer Hospital & Institute, Beijing, P.R. China
| | - Li Zhang
- Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, P.R. China
| | - Lei Tang
- Department of Radiology, Peking University Cancer Hospital & Institute, Beijing, P.R. China
| | - Fangzhou Jia
- Biological Sample Bank, Peking University Cancer Hospital & Institute, Beijing, P.R. China
| | - Ying Hu
- Biological Sample Bank, Peking University Cancer Hospital & Institute, Beijing, P.R. China
| | - Yan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Cancer Center, Ward I, Peking University Cancer Hospital & Institute, Beijing, P.R. China
| | - Xiaofang Xing
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Cancer Center, Ward I, Peking University Cancer Hospital & Institute, Beijing, P.R. China
| | - Fei Shan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Cancer Center, Ward I, Peking University Cancer Hospital & Institute, Beijing, P.R. China
| | - Xiangyu Gao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Cancer Center, Ward I, Peking University Cancer Hospital & Institute, Beijing, P.R. China
| | - Ziyu Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Cancer Center, Ward I, Peking University Cancer Hospital & Institute, Beijing, P.R. China
| |
Collapse
|
12
|
Liu C, Yu H, Huang R, Lei T, Li X, Liu M, Huang Q, Du Q, Xing L, Yu J. Radioimmunotherapy-induced intratumoral changes in cervical squamous cell carcinoma at single-cell resolution. Cancer Commun (Lond) 2022; 42:1407-1411. [PMID: 35894635 PMCID: PMC9759758 DOI: 10.1002/cac2.12342] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/06/2022] [Accepted: 07/18/2022] [Indexed: 06/01/2023] Open
Affiliation(s)
- Chao Liu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation OncologyShandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanShandong250117P. R. China
- Research Unit of Radiation OncologyChinese Academy of Medical SciencesJinanShandong250117P. R. China
| | - Hao Yu
- Department of Gynecologic OncologyShandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanShandong250117P. R. China
| | - Rui Huang
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation OncologyShandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanShandong250117P. R. China
| | - Tianyu Lei
- Department of OncologyRenmin Hospital of Wuhan UniversityWuhanHubei430060P. R. China
| | - Xiaohui Li
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation OncologyShandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanShandong250117P. R. China
| | - Ming Liu
- Department of Gynecologic OncologyShandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanShandong250117P. R. China
| | - Qingyu Huang
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation OncologyShandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanShandong250117P. R. China
| | - Qilian Du
- Department of OncologyRenmin Hospital of Wuhan UniversityWuhanHubei430060P. R. China
| | - Ligang Xing
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation OncologyShandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanShandong250117P. R. China
- Research Unit of Radiation OncologyChinese Academy of Medical SciencesJinanShandong250117P. R. China
| | - Jinming Yu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation OncologyShandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanShandong250117P. R. China
- Research Unit of Radiation OncologyChinese Academy of Medical SciencesJinanShandong250117P. R. China
| |
Collapse
|
13
|
Shen J, Wang Z. Recent advances in the progress of immune checkpoint inhibitors in the treatment of advanced gastric cancer: A review. Front Oncol 2022; 12:934249. [PMID: 36505771 PMCID: PMC9730822 DOI: 10.3389/fonc.2022.934249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 11/04/2022] [Indexed: 11/25/2022] Open
Abstract
Most patients with advanced gastric cancer were treated with palliative therapy, which had a poor curative effect and a short survival time. In recent years, the clinical research of immune checkpoint inhibitors in advanced gastric cancer has made a breakthrough and has become an important treatment for advanced gastric cancer. The modes of immune checkpoint inhibitors in the treatment of advanced gastric cancer include single drug, combined chemotherapy, radiotherapy, and multiple immune drug combination therapy, among which combination therapy shows better clinical efficacy, and a large number of trials are currently exploring more effective combination therapy programs. In this paper, the new clinical research progress of immune checkpoint inhibitors in the treatment of advanced gastric cancer is reviewed, with an emphasis on combination therapy.
Collapse
Affiliation(s)
- Jingjing Shen
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Zhongming Wang
- Department of Radiation Oncology, Shidong Hospital, Yangpu District, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
14
|
Deng H, Xiong B, Gao Y, Wu Y, Wang W. Stereotactic radiosurgery combined with immune checkpoint inhibitors for brain metastasis: A systematic review and meta-analysis. Asian J Surg 2022; 46:1917-1923. [PMID: 36207214 DOI: 10.1016/j.asjsur.2022.09.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/05/2022] [Accepted: 09/19/2022] [Indexed: 11/02/2022] Open
Abstract
Many studies have reported the combination of radiosurgery and immune checkpoint inhibitors (ICI) in the treatment of brain metastasis, but these studies have not reached a consistent conclusion. Therefore, we conducted this systematic review and meta-analysis to evaluate the effect of combination therapy compared with radiosurgery alone on the prognosis of patients with brain metastasis. The Pubmed-MEDLINE and Ovid-EMBASE databases were comprehensively searched to identify relevant articles until May 5, 2022. The search results were filtered by the inclusion and exclusion criteria described in this paper. The pooled hazard ratios (HR) with 95% confidence intervals (CI) were presented as estimates effect to reflect the effect of combined therapy on each outcome. A total of 17 eligible studies covering 2079 patients were included in this meta-analysis. The pooled results showed that the use of targeted drugs could significantly improve the overall survival (HR = 0.62, 95%CI: 0.51-0.76; P<0.01), reduce the risk of local recurrence (HR = 0.48, 95%CI: 0.38-0.62; P<0.01) and distant brain recurrence (HR = 0.70, 95%CI: 0.50-0.97; P<0.05). Overall, SRS combined with ICIs could significantly improve overall survival, local control, and distant brain control of patients with brain metastasis compared to SRS alone, but the effect varies for different pathological types. Our results verified the rationality of the current treatment strategy for brain metastasis which emphasizes the combination of local and systematic therapy.
Collapse
|
15
|
Morinaga T, Inozume T, Kawazu M, Ueda Y, Sax N, Yamashita K, Kawashima S, Nagasaki J, Ueno T, Lin J, Ohara Y, Kuwata T, Yukami H, Kawazoe A, Shitara K, Honobe-Tabuchi A, Ohnuma T, Kawamura T, Umeda Y, Kawahara Y, Nakamura Y, Kiniwa Y, Morita A, Ichihara E, Kiura K, Enokida T, Tahara M, Hasegawa Y, Mano H, Suzuki Y, Nishikawa H, Togashi Y. Mixed Response to Cancer Immunotherapy is Driven by Intratumor Heterogeneity and Differential Interlesion Immune Infiltration. CANCER RESEARCH COMMUNICATIONS 2022; 2:739-753. [PMID: 36923281 PMCID: PMC10010332 DOI: 10.1158/2767-9764.crc-22-0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/26/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022]
Abstract
Some patients experience mixed response to immunotherapy, whose biological mechanisms and clinical impact have been obscure. We obtained two tumor samples from lymph node (LN) metastatic lesions in a same patient. Whole exome sequencing for the both tumors and single-cell sequencing for the both tumor-infiltrating lymphocytes (TIL) demonstrated a significant difference in tumor clonality and TILs' characteristics, especially exhausted T-cell clonotypes, although a close relationship between the tumor cell and T-cell clones were observed as a response of an overlapped exhausted T-cell clone to an overlapped neoantigen. To mimic the clinical setting, we generated a mouse model of several clones from a same tumor cell line. Similarly, differential tumor clones harbored distinct TILs, and one responded to programmed cell death protein 1 (PD-1) blockade but the other did not in this model. We further conducted cohort study (n = 503) treated with PD-1 blockade monotherapies to investigate the outcome of mixed response. Patients with mixed responses to PD-1 blockade had a poor prognosis in our cohort. Particularly, there were significant differences in both tumor and T-cell clones between the primary and LN lesions in a patient who experienced tumor response to anti-PD-1 mAb followed by disease progression in only LN metastasis. Our results underscore that intertumoral heterogeneity alters characteristics of TILs even in the same patient, leading to mixed response to immunotherapy and significant difference in the outcome. Significance Several patients experience mixed responses to immunotherapies, but the biological mechanisms and clinical significance remain unclear. Our results from clinical and mouse studies underscore that intertumoral heterogeneity alters characteristics of TILs even in the same patient, leading to mixed response to immunotherapy and significant difference in the outcome.
Collapse
Affiliation(s)
| | - Takashi Inozume
- Chiba Cancer Center, Research Institute, Chiba, Japan.,Department of Dermatology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Dermatology, University of Yamanashi, Yamanashi, Japan
| | - Masahito Kawazu
- Chiba Cancer Center, Research Institute, Chiba, Japan.,Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Youki Ueda
- Department of Tumor Microenvironment, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | | | - Shusuke Kawashima
- Chiba Cancer Center, Research Institute, Chiba, Japan.,Department of Dermatology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Joji Nagasaki
- Chiba Cancer Center, Research Institute, Chiba, Japan.,Department of Tumor Microenvironment, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshihide Ueno
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Jason Lin
- Chiba Cancer Center, Research Institute, Chiba, Japan
| | - Yuuki Ohara
- Department of Pathology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Takeshi Kuwata
- Department of Genetic Medicine and Services, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hiroki Yukami
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Akihito Kawazoe
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Kohei Shitara
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | | | - Takehiro Ohnuma
- Department of Dermatology, University of Yamanashi, Yamanashi, Japan.,Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | | | - Yoshiyasu Umeda
- Department of Skin Oncology/Dermatology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Yu Kawahara
- Department of Skin Oncology/Dermatology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Yasuhiro Nakamura
- Department of Skin Oncology/Dermatology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Yukiko Kiniwa
- Department of Dermatology, Shinshu University School of Medicine, Nagano, Japan
| | - Ayako Morita
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama, Japan
| | - Eiki Ichihara
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama, Japan
| | - Katsuyuki Kiura
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama, Japan
| | - Tomohiro Enokida
- Department of Head and Neck Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Makoto Tahara
- Department of Head and Neck Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yoshinori Hasegawa
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba, Japan
| | - Hiroyuki Mano
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center, Tokyo/Kashiwa, Japan.,Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yosuke Togashi
- Chiba Cancer Center, Research Institute, Chiba, Japan.,Department of Tumor Microenvironment, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama, Japan.,Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center, Tokyo/Kashiwa, Japan
| |
Collapse
|
16
|
Song L, Liu S, Zhao S. Everolimus (RAD001) combined with programmed death-1 (PD-1) blockade enhances radiosensitivity of cervical cancer and programmed death-ligand 1 (PD-L1) expression by blocking the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR)/S6 kinase 1 (S6K1) pathway. Bioengineered 2022; 13:11240-11257. [PMID: 35485300 PMCID: PMC9208494 DOI: 10.1080/21655979.2022.2064205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cervical cancer (CC) is the 4th most prevalent malignancy in females. This study explored the mechanism of everolimus (RAD001) combined with programmed death-1 (PD-1) blockade on radiosensitivity by phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway and autophagy in CC cells. Low-radiosensitive CaSki cells were selected as study objects. After RAD001 treatment, PI3K/AKT/mTOR pathway activation, autophagy, migration and invasion abilities, autophagy-related proteins (LC3-I, LC3-II, and p62), and PD-L1 expression in CC cells were detected. After triple treatment of radiotherapy (RT), RAD001, and PD-1 blockade to the CC mouse models, tumor weight and volume were recorded. Ki67 expression, the number of CD8 + T cells, and the ability to produce IFN-γ and TNF-α in tumor tissues were determined. RAD001 promoted autophagy by repressing PI3K/AKT/mTOR pathway, augmented RT-induced apoptosis, and weakened migration and invasion, thereby increasing CC cell radiosensitivity. RAD001 elevated RT-induced PD-L1 level. RT combined with RAD001 and PD-1 blockade intensified the inhibitory effect of RT on tumor growth, reduced the amount of Ki67-positive cells, enhanced radiosensitivity of CC mice, and increased the quantity and killing ability of CD8 + T cells. Briefly, RAD001 combined with PD-1 blockade increases radiosensitivity of CC by impeding the PI3K/AKT/mTOR pathway and potentiating cell autophagy.
Collapse
Affiliation(s)
- Lili Song
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shikai Liu
- Department of Obstetrics and Gynecology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Sufen Zhao
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
17
|
He L, Chen H, Qi Q, Wu N, Wang Y, Chen M, Feng Q, Dong B, Jin R, Jiang L. Schisandrin B suppresses gastric cancer cell growth and enhances the efficacy of chemotherapy drug 5-FU in vitro and in vivo. Eur J Pharmacol 2022; 920:174823. [PMID: 35157912 DOI: 10.1016/j.ejphar.2022.174823] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/23/2022]
Abstract
Gastric cancer (GC) is a serious affliction worldwide and remains to be the fourth most common cancer with poor prognosis, especially in advanced stage. Chemotherapy is one of the main therapeutic means. The purpose of this study was to investigate the antitumor effects of Schisandrin B (Sch B) on GC cells both in vitro and in vivo, as well as the synergistic effect with 5-fluorouracil (5-FU), and to preliminarily explore the relevant mechanism of action. Our results showed that Sch B inhibited the growth, migration and invasion of GC cells. Besides, Sch B could effectively inhibit the phosphorylation of STAT3 (signal transducer and activator of transcription 3), induce autophagy, and enhance the efficacy of chemotherapy drug 5-FU in vitro and in vivo. Taken together, the findings indicate that Sch B displays potent antitumor activities. The co-administration of Sch B and 5-FU might be a promising way for future therapy of GC.
Collapse
Affiliation(s)
- Leye He
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Hao Chen
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Qinqin Qi
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Nan Wu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Ying Wang
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Mengxia Chen
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Qian Feng
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Buyuan Dong
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Rong Jin
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Lei Jiang
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
18
|
LncRNA OGFRP1 promotes cell proliferation and suppresses cell radiosensitivity in gastric cancer by targeting the miR-149-5p/MAP3K3 axis. J Mol Histol 2022; 53:257-271. [DOI: 10.1007/s10735-022-10058-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 01/06/2022] [Indexed: 12/11/2022]
|
19
|
Chao J, He TF, D'Apuzzo M, Chen YJ, Frankel P, Tajon M, Chen H, Solomon S, Klempner SJ, Fakih M, Lee P. A Phase 2 Trial Combining Pembrolizumab and Palliative Radiation Therapy in Gastroesophageal Cancer to Augment Abscopal Immune Responses. Adv Radiat Oncol 2022; 7:100807. [PMID: 35071830 PMCID: PMC8767243 DOI: 10.1016/j.adro.2021.100807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/10/2021] [Indexed: 12/30/2022] Open
Abstract
PURPOSE Single agent PD-1 inhibitors have yielded durable responses in a minority of gastroesophageal cancers. Radiation therapy has been recognized to promote antitumor immune responses and may synergize with anti-PD-1 agents. We sought to evaluate if combining palliative radiation therapy with pembrolizumab can augment antitumor immune responses in gastroesophageal cancer. METHODS AND MATERIALS Patients had metastatic gastroesophageal cancer with indication for palliative radiation therapy with ≥2 disease sites outside of the radiation field assessable for abscopal response and biopsies for laboratory correlative analyses. Palliative radiation was delivered to a dose of 30 Gy over 10 fractions. Pembrolizumab, 200 mg, was administered concurrently intravenously every 3 weeks until disease progression, unacceptable toxicity, or study withdrawal, for up to 2 years. Endpoints included PD-L1 expression in pre- and posttreatment biopsies and abscopal objective response rate per Response Evaluation Criteria in Solid Tumors. RESULTS Of 14 enrolled patients, the objective response rate was 28.6% (95% confidence interval, 8.4%-58.1%), and the median duration of response was not reached (95% confidence interval, 6.9-NR months). Overall, 2 patients had treatment-related grade 3 to 4 adverse events with no grade 5 events. One patient discontinued therapy due to grade 4 colitis. We did not observe an association between radiation and abscopal changes in PD-L1 expression via assessment of an analogous PD-L1 Combined Positive Score, Tumor Proportion Score, Mononuclear Immune Cell Density Score, or proportion of PD-L1-expressing immune cells between pre- and posttreatment tumor biopsies. CONCLUSIONS Combining palliative radiation therapy and pembrolizumab provided promising durable responses in this patient population but we were unable to definitively distinguish abscopal biologic changes. Biomarker analyses beyond PD-L1 expression are needed to better understand putative mechanisms and identify patients who will benefit from this approach.
Collapse
Affiliation(s)
- Joseph Chao
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Ting-Fang He
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Massimo D'Apuzzo
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Yi-Jen Chen
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Paul Frankel
- Department of Biostatistics, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Michael Tajon
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Helen Chen
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Shawn Solomon
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Samuel J. Klempner
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Marwan Fakih
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Peter Lee
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California
| |
Collapse
|
20
|
Zhang SX, Liu W, Ai B, Sun LL, Chen ZS, Lin LZ. Current Advances and Outlook in Gastric Cancer Chemoresistance: A Review. Recent Pat Anticancer Drug Discov 2021; 17:26-41. [PMID: 34587888 DOI: 10.2174/1574892816666210929165729] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/19/2021] [Accepted: 09/20/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Surgical resection of the lesion is the standard primary treatment of gastric cancer. Unfortunately, most patients are already in the advanced stage of the disease when they are diagnosed with gastric cancer. Alternative therapies, such as radiation therapy and chemotherapy, can achieve only very limited benefits. The emergence of cancer drug resistance has always been the major obstacle to the cure of tumors. The main goal of modern cancer pharmacology is to determine the underlying mechanism of anticancer drugs. OBJECTIVE Here, we mainly review the latest research results related to the mechanism of chemotherapy resistance in gastric cancer, the application of natural products in overcoming the chemotherapy resistance of gastric cancer, and the new strategies currently being developed to treat tumors based on immunotherapy and gene therapy. CONCLUSION The emergence of cancer drug resistance is the main obstacle in achieving alleviation and final cure for gastric cancer. Mixed therapies are considered to be a possible way to overcome chemoresistance. Natural products are the main resource for discovering new drugs specific for treating chemoresistance, and further research is needed to clarify the mechanism of natural product activity in patients. .
Collapse
Affiliation(s)
- Sheng-Xiong Zhang
- Guangdong Province Work Injury Rehabilitation Hospital, Guangzhou, 510440. China
| | - Wei Liu
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006. China
| | - Bo Ai
- Huazhong University of Science and Technology, Wuhan, 430030. China
| | - Ling-Ling Sun
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405. China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY 11439, New York. United States
| | - Li-Zhu Lin
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405. China
| |
Collapse
|
21
|
Advances in clinical immunotherapy for gastric cancer. Biochim Biophys Acta Rev Cancer 2021; 1876:188615. [PMID: 34403771 DOI: 10.1016/j.bbcan.2021.188615] [Citation(s) in RCA: 216] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/14/2021] [Accepted: 08/12/2021] [Indexed: 12/26/2022]
Abstract
Gastric cancer (GC) is one of the most malignant human cancers with increasing incidence worldwide, ranking among the top five malignant tumors worldwide in terms of incidence and mortality. The clinical efficacy of conventional therapies is limited, and the median overall survival (mOS) for advanced-stage gastric cancer is only about 8 months. Emerging as one of breakthroughs for cancer therapy, immunotherapy has become an effective treatment modality after surgery, chemotherapy, radiotherapy, and targeted therapy. In this review, we have summarized the progresses of clinical development of immunotherapies for gastric cancer. Major advances with immune checkpoint inhibitors (ICIs) have started to change the clinical practice for gastric cancer treatment and prognosis. Additionally, combination therapies with other modalities, such as targeted therapies, are expected to push immunotherapies to front-line. In this review, the efficacy of ICIs and targeted therapy alone or combination with existing therapies gastric cancer treatment was described and the predictive value of biomarkers for immunotherapies in gastric cancer treatment is also discussed.
Collapse
|
22
|
Kong X, Lu P, Liu C, Guo Y, Yang Y, Peng Y, Wang F, Bo Z, Dou X, Shi H, Meng J. A combination of PD‑1/PD‑L1 inhibitors: The prospect of overcoming the weakness of tumor immunotherapy (Review). Mol Med Rep 2021; 23:362. [PMID: 33760188 PMCID: PMC7985997 DOI: 10.3892/mmr.2021.12001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 02/08/2021] [Indexed: 12/15/2022] Open
Abstract
Programmed cell death protein-1 (PD-1)/programmed death protein ligand-1 (PD-L1) inhibitors for treatment of a various types of cancers have revolutionized cancer immunotherapy. However, PD-1/PD-L1 inhibitors are associated with a low response rate and are only effective on a small number of patients with cancer. Development of an anti-PD-1/PD-L1 sensitizer for improving response rate and effectiveness of immunotherapy is a challenge. The present study reviews the synergistic effects of PD-1/PD-L1 inhibitor with oncolytic virus, tumor vaccine, molecular targeted drugs, immunotherapy, chemotherapy, radiotherapy, intestinal flora and traditional Chinese medicine, to provide information for development of effective combination therapies.
Collapse
Affiliation(s)
- Xianbin Kong
- Integrated Traditional Chinese and Western Medicine Laboratory, College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Peng Lu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Chuanxin Liu
- Department of Pharmaceutical Analysis, School of Chinese Materia Medical, Beijing University of Chinese Medicine, Beijing 102488, P.R. China
| | - Yuzhu Guo
- Department of Radiotherapy, Tianjin Hospital, Tianjin 300211, P.R. China
| | - Yuying Yang
- Integrated Traditional Chinese and Western Medicine Laboratory, College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Yingying Peng
- Integrated Traditional Chinese and Western Medicine Laboratory, College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Fangyuan Wang
- Integrated Traditional Chinese and Western Medicine Laboratory, College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Zhichao Bo
- Integrated Traditional Chinese and Western Medicine Laboratory, College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Xiaoxin Dou
- Integrated Traditional Chinese and Western Medicine Laboratory, College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Haoyang Shi
- Integrated Traditional Chinese and Western Medicine Laboratory, College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Jingyan Meng
- Integrated Traditional Chinese and Western Medicine Laboratory, College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| |
Collapse
|
23
|
Merhi M, Raza A, Inchakalody VP, Siveen KS, Kumar D, Sahir F, Mestiri S, Hydrose S, Allahverdi N, Jalis M, Relecom A, Al Zaidan L, Hamid MSE, Mostafa M, Gul ARZ, Uddin S, Al Homsi M, Dermime S. Persistent anti-NY-ESO-1-specific T cells and expression of differential biomarkers in a patient with metastatic gastric cancer benefiting from combined radioimmunotherapy treatment: a case report. J Immunother Cancer 2020; 8:e001278. [PMID: 32913031 PMCID: PMC7484873 DOI: 10.1136/jitc-2020-001278] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2020] [Indexed: 12/14/2022] Open
Abstract
Combined radioimmunotherapy is currently being investigated to treat patients with cancer. Anti-programmed cell death-1 (PD-1) immunotherapy offers the prospect of long-term disease control in solid tumors. Radiotherapy has the ability to promote immunogenic cell death leading to the release of tumor antigens, increasing infiltration and activation of T cells. New York esophageal squamous cell carcinoma-1 (NY-ESO-1) is a cancer-testis antigen expressed in 20% of advanced gastric cancers and known to induce humoral and cellular immune responses in patients with cancer. We report on the dynamic immune response to the NY-ESO-1 antigen and important immune-related biomarkers in a patient with metastatic gastric cancer treated with radiotherapy combined with anti-PD-1 pembrolizumab antibody.Our patient was an 81-year-old man diagnosed with locally advanced unresectable mismatch repair-deficient gastric cancer having progressed to a metastatic state under a second line of systemic treatment consisting of an anti-PD-1 pembrolizumab antibody. The patient was subsequently treated with local radiotherapy administered concomitantly with anti-PD-1, with a complete response on follow-up radiologic assessment. Disease control was sustained with no further therapy for a period of 12 months before relapse. We have identified an NY-ESO-1-specific interferon-γ (IFN-γ) secretion from the patients' T cells that was significantly increased at response (****p˂0.0001). A novel promiscuous immunogenic NY-ESO-1 peptide P39 (P153-167) restricted to the four patient's HLA-DQ and HLA-DP alleles was identified. Interestingly, this peptide contained the known NY-ESO-1-derived HLA-A2-02:01(P157-165) immunogenic epitope. We have also identified a CD107+ cytotoxic T cell subset within a specific CD8+/HLA-A2-NY-ESO-1 T cell population that was low at disease progression, markedly increased at disease resolution and significantly decreased again at disease re-progression. Finally, we identified two groups of cytokines/chemokines. Group 1 contains five cytokines (IFN-γ, tumor necrosis factor-α, interleukin-2 (IL-2), IL-5 and IL-6) that were present at disease progression, significantly downregulated at disease resolution and dramatically upregulated again at disease re-progression. Group 2 contains four biomarkers (perforin, soluble FAS, macrophage inflammatory protein-3α and C-X-C motif chemokine 11/Interferon-inducible T Cell Alpha Chemoattractant that were present at disease progression, significantly upregulated at disease resolution and dramatically downregulated again at disease re-progression. Combined radioimmunotherapy can enhance specific T cell responses to the NY-ESO-1 antigen that correlates with beneficial clinical outcome of the patient.
Collapse
Affiliation(s)
- Maysaloun Merhi
- Medical Oncology, Hamad Medical Corporation, Doha, Ad Dawhah, Qatar
| | - Afsheen Raza
- Medical Oncology, Hamad Medical Corporation, Doha, Ad Dawhah, Qatar
| | | | | | - Deepak Kumar
- Computational Biology, Carnegie Mellon University - Qatar Campus, Doha, Ad Dawhah, Qatar
| | | | | | | | | | - Munir Jalis
- Hamad Medical Corporation, Doha, Ad Dawhah, Qatar
| | | | | | | | - Mai Mostafa
- Hamad Medical Corporation, Doha, Ad Dawhah, Qatar
| | | | - Shahab Uddin
- Hamad Medical Corporation, Doha, Ad Dawhah, Qatar
| | | | - Said Dermime
- Medical Oncology, National Center for Cancer Care and Research, Doha, Qatar
| |
Collapse
|
24
|
Zhu Y, Fang X, Wang L, Zhang T, Yu D. A Predictive Nomogram for Early Death of Metastatic Gastric Cancer: A Retrospective Study in the SEER Database and China. J Cancer 2020; 11:5527-5535. [PMID: 32742500 PMCID: PMC7391207 DOI: 10.7150/jca.46563] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/05/2020] [Indexed: 12/15/2022] Open
Abstract
Background: To identify associated risk factors and develop a predictive nomogram for the early death of metastatic gastric cancer patients. Methods: A total of 4575 patients in the SEER cohort and 220 patients in the Chinese cohort diagnosed with metastatic gastric cancer in our Cancer Center were obtained. Univariate and multivariate logistic regression models were used to identify independent risk variables for early death. A predictive nomogram and a web-based probability calculator were developed and then validated by receiver operating characteristics (ROCs) curve and calibration plot in a Chinese cohort. Results: Eight independent variables, including race, grade, surgery, chemotherapy, and metastases of bone, brain, liver, lung were recognized by using univariate and multivariate logistic regression models for identifying independent risk variables of early death about metastatic gastric cancer patients. By comprising these variables, a predictive nomogram and a web-based probability calculator were constructed in the SEER cohort. Then, it could be validated well in the Chinese cohort by receiver operating characteristics (ROCs) curve and calibration plot. Conclusion: Using this nomogram model provided an insightful and applicable tool to distinguish the early death of metastatic gastric cancer patients.
Collapse
Affiliation(s)
- Ying Zhu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiongfeng Fang
- School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lanqing Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tao Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Dandan Yu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|