1
|
Rahman SU, Han JC, Zhou Y, Li B, Huang Y, Farman A, Zhao X, Riaz L, Yasin G, Ullah S. Eco-resilience of China's mangrove wetlands: The impact of heavy metal pollution and dynamics. ENVIRONMENTAL RESEARCH 2025; 277:121552. [PMID: 40194676 DOI: 10.1016/j.envres.2025.121552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/10/2025] [Accepted: 04/05/2025] [Indexed: 04/09/2025]
Abstract
Mangrove forests in China have significantly degraded over the past several decades primarily due to rapid economic growth and land reclamation for aquaculture and infrastructure development. Among various threats, heavy metal pollution, primarily from urbanization, agricultural runoff, and industrial runoff, poses a substantial risk to mangroves in China. It impairs their ecological functions, limiting biodiversity and reducing their natural ability to sequester carbon and detoxify coastal areas. Despite these challenges, the mangrove ecosystem's resilience in China has not been completely compromised. Natural adaptations and phytoremediation mechanisms, such as limiting metal uptake, excreting metal binding proteins, upregulating antioxidants, forming Fe plague, excreting metals through salt glands, and tolerance to specific metal concentrations, help mitigate heavy metal toxicity. However, these adaptive strategies are limited by the extent of pollutants and the speed at which these pollution factors arise. This review highlights a need to shift restoration efforts from expanding mangrove areas to enhancing ecosystem integrity, with a specific focus on reducing heavy metal pollution through phytoremediation. It also examines how heavy metal interactions at the sediment-water interface impact microbial communities and local fauna, contributing to climate change. Addressing these challenges is critical to improving mangrove conservation in China and ensuring the long-term health and resilience of these critical ecosystems for future generations.
Collapse
Affiliation(s)
- Shafeeq Ur Rahman
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Jing-Cheng Han
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Yang Zhou
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Bing Li
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yuefei Huang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China; Laboratory of Ecological Protection and High Quality Development in the Upper Yellow River, School of Civil Engineering and Water Resources, Qinghai University, Xining, 810016, China.
| | - Ali Farman
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xu Zhao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Luqman Riaz
- Department of Environmental Sciences, Kohsar University Murree, Murree, 47150, Pakistan.
| | - Ghulam Yasin
- Department of Forestry and Range Management, Bahauddin Zakaryia University, Multan, Pakistan.
| | - Sami Ullah
- Department of Forestry & Range Management, Kohsar University Murree, Murree, 47150, Pakistan.
| |
Collapse
|
2
|
Ajdari B, Madrakian T, Afkhami A. Development of an electrochemical sensor utilizing MWCNs-poly(2-aminothiophenol) @AgNPs nanocomposite for the simultaneous determination of Pb 2+ and Cd 2+ in food samples. Food Chem 2025; 477:143529. [PMID: 40023026 DOI: 10.1016/j.foodchem.2025.143529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/19/2025] [Accepted: 02/19/2025] [Indexed: 03/04/2025]
Abstract
This study focuses on the synthesis and characterization of the Multiwall Carbon Nanotubes-Poly(2-aminothiophenol) @silver nanoparticles nanocomposite (MWCNTs-PATP@AgNPs) using different analytical methods. The synthesized MWCNTs-PATP@AgNPs served as an electrocatalytic modifier, enabling the highly selective and sensitive detection of Pb2+ and Cd2+ ions at nanomolar levels using square wave anodic stripping voltammetry. The concentration of MWCNTs- PATP @AgNPs, the type and concentration of the electrolyte, the solution's pH, and the preconcentration conditions, were systematically optimized. A linear response was observed for Pb2+ and Cd2+ within the ranges of 0.5-60.0 nmolL-1 and 8.0-50.0 nmol L-1, respectively, with detection limits of 0.125 nmol L-1 for Pb2+ and 1.47 nmol L-1 for Cd2+. Furthermore, the MWCNTs-PATP@AgNPs sensor demonstrated the capability to selectively detect these target metals in the presence of various common interfering species. The sensor was effectively utilized for the detection of Pb2+ and Cd2+ ions across various real samples.
Collapse
Affiliation(s)
- Beheshteh Ajdari
- Department of Analytical Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 6517838695, Iran
| | - Tayyebeh Madrakian
- Department of Analytical Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 6517838695, Iran.
| | - Abbas Afkhami
- Department of Analytical Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 6517838695, Iran
| |
Collapse
|
3
|
Dutta B, Chatterjee D, Guha A, Ray RR. Green treatments for polyaromatic hydrocarbons in e-wastes. Biodegradation 2025; 36:48. [PMID: 40388048 DOI: 10.1007/s10532-025-10140-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 05/01/2025] [Indexed: 05/20/2025]
Abstract
Rapid elevation of global population along with increased urbanization and industrialization afflict the water resources leading to the blooming of wastewater. Two or more aromatic rings fused with organic compound Polycyclic Aromatic Hydrocarbons (PAHs) emerged worldwide through anthropogenic processes, mainly due to the incomplete combustion of organic fuels. In accordance with the United States Environmental Protection Agency (USEPA), there are 16 PAHs that are deemed as primary pollutants. These are toxic to the living organisms due to their pervasive existence, rebelliousness, potential for bioaccumulation and carcinogenic venture. Several methods including fixation, incineration and oxidation are put forward to remove PAHs. Occasionally some fictional toxic products are produced by the incomplete removal of PAHs. Bioremediation is one of the ecological techniques to remove the PAHs. Microbial biodegradation is considered as an effective and inexpensive technique to remove PAHs along with other hydrocarbons and xenobiotic compounds and are accomplished by few PAHs degrading bacteria including Haemophilus spp., Mycobacterium spp., Paenibacillus spp., Pseudomonas aeruginosa, P. fluorescens, Rhodococcus spp. along with few biosurfactant-producing microbes. The novel biochemical events involved in hydrocarbon catabolism are microbial physical adaptation, their acquisition and uptake. The bioremediation efficacy can be further ameliorated through genetic modification of the microbes. This chapter will focus on the eco-friendly treatment for the PAHs remediation in in situ and ex situ. This chapter will explore the remediation of the PAH by-products through the multi-process conjunctional treatment processes under the green therapy.
Collapse
Affiliation(s)
- Bandita Dutta
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Nadia, West Bengal, India
| | - Debarati Chatterjee
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Nadia, West Bengal, India
| | - Arina Guha
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Nadia, West Bengal, India
| | - Rina Rani Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Nadia, West Bengal, India.
| |
Collapse
|
4
|
Lei X, Li J, Chen Y, Huang H. Estimation of chromium potential risk stock in karst soils: Insights from spatial and depth variations in Southwestern China. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137449. [PMID: 39919632 DOI: 10.1016/j.jhazmat.2025.137449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/21/2025] [Accepted: 01/29/2025] [Indexed: 02/09/2025]
Abstract
Potential risk stock assessments of heavy metals are essential for informing management strategies and mitigating environmental and human health risks. This process enables cost-effective decision-making, supports regulatory compliance, and promotes sustainable land and ecosystem management; however, such studies remain limited. To investigate chromium (Cr) distribution and estimate its potential risk stock under varying soil layers, soil types, parent materials, and land-use conditions, a large dataset of surface soils, deep soils, and soil columns from a karst region in southwestern China was analyzed. The concentration of Cr in surface soils, deep soils, and soil columns was 23.3 - 1126.9, not detected - 315.6, and 36.9 - 684.0 mg/kg, respectively. The consistency in the Cr distribution across the surface and deep layers, geological structures, and mine locations indicated a main geological origin for Cr rather than anthropogenic pollution. This was further supported by principal component analysis, which identified ore stockpiling and parent-rock weathering as the primary sources. Variance analysis showed significant influences of soil type, land-use type, parent rock, landform, soil pH, and SOC on spatial distributions. Cr exhibited exponential variations with depth. Using an exponential fitting model with multiple integrations, the Cr potential risk stock was estimated at 1.78 × 105 tons with middle and deep layers accounting for the highest, underscoring the complexity and challenges of managing Cr risks. Given the limited soil resources in karst regions, it is crucial for local authorities to prioritize Cr risk management and implement targeted land-use strategies.
Collapse
Affiliation(s)
- Xin Lei
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, MEE, Guangzhou 510535, PR China
| | - Jie Li
- Geological Survey of Guangxi Zhuang Autonomous Region, Nanning 530023, PR China
| | - Yingjie Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Huanfang Huang
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, MEE, Guangzhou 510535, PR China.
| |
Collapse
|
5
|
Rashid CP, Jyothibabu R, Arunpandi N, Alok KT, Vidhya V, Snigtha, Gireeshkumar TR, Sudheesh V, Marigoudar SR, Sharma KV. Tidal control of heavy metal loading in the nearshore of the northwestern Indian coast. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 975:179264. [PMID: 40174248 DOI: 10.1016/j.scitotenv.2025.179264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/11/2025] [Accepted: 03/26/2025] [Indexed: 04/04/2025]
Abstract
Heavy metals accumulate in the marine food chain and their excessive amounts are hazardous to aquatic and human lives. The current study presents the role of ecosystem variables especially tides in deciding the presence of ten heavy metals (Fe, Zn, Cu, Co, Cr, Mn, Ni, V, Pb, and Cd) in seawater and copepods along the Indian west coast. The Indian northwestern coast is an industrial hub, where thousands of industries release enormous volumes of effluents, while the southwest coast has a far lower number of industries. Multiple surface seawater and zooplankton samples from eight selected marine outfall regions in the nearshore of the Indian west coast showed that Fe/Cd was generally the highest/lowest in seawater (av. 184 ± 12.40 μg L-1/ av. 0.01 ± 0.01 μg L-1) and copepods (av. 41,818 ± 2867 μg. g-1/ av. 0.2 ± 0.02 μg g-1). The heavy metals in seawater/copepods generally showed the order Fe/Fe > Zn/Zn > V/Mn > Cr/Cr > Pb/Cu > Ni/Ni > Cu/Pb > Mn/V > Co/Co > Cd/Cd. Contrary to expectations, despite being loaded with massive amounts of effluent from thousands of industries, most heavy metals in seawater on the northwestern Indian coast were not higher than on the southwestern coast. It is shown here that this feature is the result of the macro-tidal nature of the northwest Indian coast (av. 7 m tide), where tidal currents, sediment resuspension, and flushing are far more intense than in the southwest (av. 1 m tide), which reduce pollution levels. Yet, the marine pollution index and bioaccumulation factor of heavy metals in copepods was found highest along the northwestern Indian coast, which are important indicators to be considered when developing environmental management strategies for the area.
Collapse
Affiliation(s)
- C P Rashid
- CSIR-National Institute of Oceanography, Regional Centre, Kochi, India
| | - R Jyothibabu
- CSIR-National Institute of Oceanography, Regional Centre, Kochi, India.
| | - N Arunpandi
- CSIR-National Institute of Oceanography, Regional Centre, Kochi, India
| | - K T Alok
- CSIR-National Institute of Oceanography, Regional Centre, Kochi, India
| | - V Vidhya
- CSIR-National Institute of Oceanography, Regional Centre, Kochi, India
| | - Snigtha
- CSIR-National Institute of Oceanography, Regional Centre, Kochi, India
| | - T R Gireeshkumar
- CSIR-National Institute of Oceanography, Regional Centre, Kochi, India
| | - V Sudheesh
- CSIR-National Institute of Oceanography, Dona Paula, India
| | | | - K V Sharma
- National Centre for Coastal Research, Chennai, India
| |
Collapse
|
6
|
Zhang Y, Zhang Z, Li H, Xiao Y, Ying H. Recent advancements in the application of multi-elemental profiling and ionomics in cardiovascular diseases. J Trace Elem Med Biol 2025; 88:127616. [PMID: 39933207 DOI: 10.1016/j.jtemb.2025.127616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 02/13/2025]
Abstract
BACKGROUND Trace elements and minerals are crucial for human growth and health, whose imbalance is associated with a variety of diseases. Recently, multi-elemental profiling and ionomics have been rapidly developed and widely used to study the distribution, variation, and interactions of various elements in diverse physiological and pathological conditions. By utilizing high-throughput elemental analytical techniques and bioinformatics approaches, researchers can uncover the relationship between the metabolism and balance of different elements and numerous human diseases. METHODS The presented work reviews recent advances in multi-elemental and ionomic profiling of human biological samples for several major types of cardiovascular diseases. RESULTS Research indicates distinct and dynamic patterns of ion contents in these diseases. Accumulation of copper and environmental toxic metals as well as deficiencies in zinc and selenium appear to be the most significant risk factors for the majority of cardiovascular diseases, suggesting that an imbalance in these elements may play a role in the development of these illnesses. Furthermore, each type of cardiovascular disease exhibits a relatively unique distribution of ions in biofluid and hair samples from patients, potentially serving as indicators for the specific disease. CONCLUSION Multi-elemental profiling and ionomics not only enhance our understanding of the association between elemental dyshomeostasis and the development of cardiovascular diseases but also facilitate the discovery of novel diagnostic and prognostic markers for these conditions.
Collapse
Affiliation(s)
- Yan Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong Province 518055, PR China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong Province 518055, PR China.
| | - Zaicheng Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong Province 518055, PR China
| | - Hengtao Li
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong Province 518055, PR China
| | - Yao Xiao
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, Brain Disease and Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong Province 518055, PR China
| | - Huimin Ying
- Department of Endocrinology, Hangzhou Xixi Hospital, Hangzhou Sixth People's Hospital, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province 310023, PR China.
| |
Collapse
|
7
|
Grąz M, Jarosz-Wilkołazka A, Polak J, Pawlikowska-Pawlęga B, Kapral-Piotrowska J, Ciempiel W, Ruminowicz-Stefaniuk M. Accumulation of heavy metals in the mycelium of Abortiporus biennis and their effect on oxalate oxidase activity. Biometals 2025; 38:699-710. [PMID: 40056268 DOI: 10.1007/s10534-025-00675-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/26/2025] [Indexed: 03/10/2025]
Abstract
Abortiporus biennis belongs to a basidiomycete fungi with the unique ability to degrade oxalate using enzyme oxalate oxidase. Oxalate oxidase (OXO) from Abortiporus biennis is an intracellular oxalic acid-induced enzyme, which catalyses the degradation of oxalic acid to carbon dioxide and hydrogen peroxide. OXO activity was stimulated by all the heavy metals tested (copper, manganese, lead and cadmium) after addition as water-soluble salts to A. biennis fungal cultures. Manganese ions stimulated OXO activity to the greatest extent among the tested metal ions. In the presence of manganese ions, an elevated concentration of oxalate was also detected in the fungal culture after 7 days of cultivation. The manganese, lead, and cadmium ions were accumulated by the A. biennis mycelium. Among them, lead was accumulated to a great extent. It was observed that the accumulation of lead ions occurred in the vicinity of the A. biennis hyphal cell wall.
Collapse
Affiliation(s)
- Marcin Grąz
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
| | - Anna Jarosz-Wilkołazka
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Jolanta Polak
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Bożena Pawlikowska-Pawlęga
- Department of Comparative Anatomy and Anthropology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
- Electron Microscopy Laboratory, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Justyna Kapral-Piotrowska
- Department of Comparative Anatomy and Anthropology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
- Electron Microscopy Laboratory, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Wioleta Ciempiel
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland
| | - Marta Ruminowicz-Stefaniuk
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| |
Collapse
|
8
|
Pandit D, Haque MM, Bhuyan MS, Harun-Al-Rashid A, Barman PP, Roy R, Sarker B, Saifullah MK, Kunda M. A comprehensive scenario of heavy metals pollution in the rivers of Bangladesh during the last two decades. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:10240-10257. [PMID: 38995333 DOI: 10.1007/s11356-024-34225-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/30/2024] [Indexed: 07/13/2024]
Abstract
For decades, rivers have been used for transporting pollutants loaded with heavy metals (HMs) causing severe pollution in downstream. The current study aimed to review the levels and sources of 10 HMs, viz. As, Pb, Cd, Cr, Fe, Mn, Cu, Co, Ni, and Zn in the surface water of the rivers in Bangladesh. The PRISMA criteria were used to conduct a systematic review of the available literature published between 2001 and 2020, and thus a total of 55 documents were finally selected for review. The mean concentration of each HM exceeding the threshold limits as per World Health Organization (WHO), the United States Environmental Protection Agency (USEPA), and Department of Environment (DoE), Bangladesh standards were higher in the last decade (2011-2020) than in the previous one (2001-2010). Most HM concentrations in water were found above the threshold limits in three divisions (Dhaka, Rajshahi, and Chattogram). The Buriganga River in Dhaka has been the top polluted river in Bangladesh. Among the 10 HMs, six metals (As, Pb, Cd, Cr, Fe, and Mn) exceeded the limit set by WHO, USEPA, and DoE in all three seasons, where mean values of most of the HMs were found to be the highest in the summer season. Statistical analyses identified possible sources of HMs such as natural weathering, electroplating, fertilizers and pesticides, mining and manufacturing, textiles, coal mining and burning, batteries, and paint industries. Strong legislations and regulations, awareness programs, continuous monitoring, and comprehensive research are urgently needed to control riverine HMs pollution in Bangladesh.
Collapse
Affiliation(s)
- Debasish Pandit
- Department of Aquatic Resource Management, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
- Department of Fishery Resources Conservation and Management, Khulna Agricultural University, Khulna, 9100, Bangladesh
| | | | - Md Simul Bhuyan
- Department of Aquatic Resource Management, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
- Bangladesh Oceanographic Research Institute, Cox's Bazar, 4730, Bangladesh
| | - Ahmed Harun-Al-Rashid
- Department of Aquatic Resource Management, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Partho Protim Barman
- Department of Coastal and Marine Fisheries, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Rana Roy
- Department of Agroforestry and Environmental Science, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Bishwajit Sarker
- Department of Agricultural Statistics, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Md Khalid Saifullah
- Department of Aquatic Resource Management, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Mrityunjoy Kunda
- Department of Aquatic Resource Management, Sylhet Agricultural University, Sylhet, 3100, Bangladesh.
| |
Collapse
|
9
|
García-Elías J, Ochoa-Terán A, López-Maldonado EA, Pérez-Sicairos S, Trujillo-Navarrete B, Rivero IA, Zizumbo-López A, Martínez-Quiroz M, Ramírez-Zatarain SD. Adsorption properties of Merrifield- bCCA chelating resins: a new alternative for Pb 2+ removal from water. RSC Adv 2025; 15:8999-9016. [PMID: 40129640 PMCID: PMC11931416 DOI: 10.1039/d4ra06929c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/06/2025] [Indexed: 03/26/2025] Open
Abstract
In this work, five new chelating resins (MR n Bz) functionalized with N-benzyl bis(carbamoyl)carboxylic acid molecules (BzbCCA) on their surface were prepared to study the metal ion (M n+) adsorption properties in water. MR n Bz resins were characterized by FTIR, TGA, FESEM and EDS. The surface charge as a function of pH and the chemical adsorption of M n+ on the surface were evaluated through zeta potential (ζ) measurements. The M n+ adsorption capacity of MR n Bz resins was evaluated using Pb2+, Cu2+, Cd2+, and Ni2+ mixture model solutions at low concentrations. MR n Bz resins displayed selective adsorption of Pb2+ even in the presence of a molar excess of other cations, due to the intrinsic affinity and selectivity of BzbCCA molecules for this metal ion. The adsorption isotherms of Pb2+ showed that the adsorption capacity of MR n Bz resins was influenced by the spacer chain length. In addition, the resins were characterized by FTIR, TGA, FESEM and EDS after the M n+ adsorption process, confirming the M n+ loading on the resin surface.
Collapse
Affiliation(s)
- José García-Elías
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de México/IT de Tijuana Tijuana B. C. Mexico
| | - Adrián Ochoa-Terán
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de México/IT de Tijuana Tijuana B. C. Mexico
| | - Eduardo A López-Maldonado
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California Tijuana B. C. Mexico
| | - Sergio Pérez-Sicairos
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de México/IT de Tijuana Tijuana B. C. Mexico
| | - Balter Trujillo-Navarrete
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de México/IT de Tijuana Tijuana B. C. Mexico
| | - Ignacio A Rivero
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de México/IT de Tijuana Tijuana B. C. Mexico
| | - Arturo Zizumbo-López
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de México/IT de Tijuana Tijuana B. C. Mexico
| | | | - Sandy D Ramírez-Zatarain
- Departamento de Ingeniería Química y Bioquímica, Tecnológico Nacional de México/IT de Tijuana Tijuana B. C. Mexico
| |
Collapse
|
10
|
Rajar AB, Malik Z, Ujan JA, Rind KH, Ullah R, Naz S, Ullah M, Zahid M, Khan K, Khayyam K, Al-Rejaie SS, Mohany M. Implications of Heavy Metal Accumulation in Fish Feed, Water, Sediment, and Different Fish Species in a Polyculture System. Biol Trace Elem Res 2025; 203:1085-1096. [PMID: 38709368 DOI: 10.1007/s12011-024-04217-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
Heavy metal bioaccumulation in organisms is primarily a result of dietary uptake. The current study examines the concentrations of heavy metals (Pb, Cd, Cr, and Cu) in fish feed, water, sediment, and three fish species (Catla catla, Labeo rohita, and Cyprinus carpio) from different feeding zones in a polyculture pond system. Furthermore, associated human health risks were also evaluated. The fish samples (n = 25 for each species) were collected from 10 different fish ponds in the Kohat district, Pakistan. Heavy metals were determined using an atomic absorption spectrometer. Results revealed higher concentrations of heavy metals in sediment, followed by water. However, the concentration of heavy metals in fish feed was lower than the standard limits. In the case of fish, the bottom feeder (C. carpio) notably exhibited higher (P < 0.05) levels of heavy metals than the column feeder (L. rohita) and surface feeder (C. catla) fish. Moreover, in the liver of all fish species, the bioaccumulation of heavy metals was higher, followed by the gills. Principal component analysis (PCA) demonstrated a strong correlation of heavy metals in C. carpio gills, flesh, feed, and pond water, while the heavy metals in the liver correlated with the detected metals in sediment. The human health risk analysis shows that bottom feeder fish had higher estimated daily intake (EDI), target hazard quotient (THQ), and hazard index (HI) values (> 1). Consequently, the exposed population may experience adverse health effects. The findings of this study suggest that the bottom feeder (C. carpio) bioaccumulates a higher concentration of heavy metals than column (L. rohita) and surface feeder (C. catla) in the polyculture system.
Collapse
Affiliation(s)
- Allah Bachayo Rajar
- Muhammad Medical College Mirpurkhas/Ibn-e-Sina University, Mirpurkhas, 69012, Sindh, Pakistan
| | - Zainab Malik
- Department of Zoology, Wildlife and Fisheries, University of Agriculture Faisalabad, Faisalabad, 38040, Punjab, Pakistan
| | - Javed Ahmed Ujan
- Department of Zoology, Shah Abdul Latif University Khairpur, Khairpur, 66020, Sindh, Pakistan
- Department of Animal Sciences, University of Florida, Gainesville, FL, 32608, USA
| | - Khalid Hussian Rind
- Department of Molecular Biology and Genetics, Shaheed Benazir Bhutto University, Shaheed Benazirabad, 67450, Sindh, Pakistan
| | - Raqeeb Ullah
- Department of Zoology, Bacha Khan University Charsadda, Charsadda, 24540, Khyber Pakhtunkhwa, Pakistan
| | - Saira Naz
- Centre for Research on Fish Nutrition and Environmental Ecology of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China.
- Department of Zoology, University of Lahore, Sargodha, 40100, Punjab, Pakistan.
| | - Mujeeb Ullah
- Department of Zoology, Islamia College University Peshawar, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Zahid
- Department of Zoology, Islamia College University Peshawar, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| | - Khalid Khan
- Department of Zoology, Islamia College University Peshawar, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| | - Khayyam Khayyam
- Department of Zoology, Islamia College University Peshawar, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| | - Salim S Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, 11451, Riyadh, Saudi Arabia
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Opande T, Kong M, Feng D, Wen Y, Okoth N, Yatoo AM, Khalil FMA, Elrys AS, Meng L, Zhang J. Edaphic factors mediate the response of nitrogen cycling and related enzymatic activities and functional genes to heavy metals: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117766. [PMID: 39864213 DOI: 10.1016/j.ecoenv.2025.117766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/17/2025] [Accepted: 01/17/2025] [Indexed: 01/28/2025]
Abstract
Soil nitrogen (N) transformations control N availability and plant production and pose environmental concerns when N is lost, raising issues such as soil acidification, water contamination, and climate change. Former studies suggested that soil N cycling is chiefly regulated by microbial activity; however, emerging evidence indicates that this regulation is disrupted by heavy metal (HM) contamination, which alters microbial communities and enzyme functions critical to N transformations. Environmental factors like soil organic carbon, soil texture, water content, temperature, soil pH, N fertilization, and redox status play significant roles in modulating the response of soil N cycling to HM contamination. This review examines how different HMs affect soil N processes, including N fixation, mineralization, nitrification, denitrification, dissimilatory nitrate reduction to ammonium (DNRA), and immobilization, as well as microbial activities and functional genes related to soil N transformations. The review additionally outlines the impact of HMs on environmental degradation, including the risk of soil N losses (e.g., leaching, runoff, and gaseous emissions) and depletion of soil fertility, thus threatening the sustainability of the ecosystem. The effect of edaphic factors and fertilization on soil N cycling response to HM contamination was also examined. The effect of phytoremediation, a sustainable approach to remediate HM polluted soils, on N cycling was also reviewed. Thus, this review underscores the importance of increasing research and innovative strategies to combat HM pollution's effects to enhance soil health, boost crop yields, and protect soil stability and productivity.
Collapse
Affiliation(s)
- Tracy Opande
- College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Mengru Kong
- College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Di Feng
- College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - YuHong Wen
- College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Nathan Okoth
- College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Ali Mohd Yatoo
- College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Fatma Mohamed Ameen Khalil
- King Khalid University, Applied College, Unit of Health Specialties, Basic Sciences and their Applications, Mohayil Asir Abha 61421, Saudi Arabia
| | - Ahmed S Elrys
- College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| | - Lei Meng
- College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China.
| | - Jinbo Zhang
- College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| |
Collapse
|
12
|
Ibrahim AE, Alamir SG, Al-Omairi M, Salman BI, Batakoushy HA, Hegazy MM, Al-Harrasi A. Tracking the Variations in Trace and Heavy Elements in Smoking Products Marketed in Oman and Egypt: Risk Assessment After Implementation of Constraining Protocols. Biol Trace Elem Res 2025; 203:556-569. [PMID: 38656680 DOI: 10.1007/s12011-024-04182-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024]
Abstract
Tobacco smoking is becoming one of the major worldwide concerns regarding environmental pollution as well as health threats. In 2005, the World Health Organization (WHO) released the Framework Convention On Tobacco Control (FCTC), which outlined protocols for controlling tobacco products. Oman was one of the leading countries to follow these protocols; however, Egypt has only followed these protocols recently in 2020. One of the main challenges in tobacco product control is the variation in their trace element's types and amounts from country to country owing to differences in agriculture techniques and used chemical additives. Smoking releases different toxic metal ions found in them into the air, and hence, analyzing trace amounts of metals in tobacco smoking products is becoming more critical. The proposed research aims to evaluate the current levels of 11 heavy metals (namely, As, Pb, Cd, Co, Cr, Be, Ba, Mn, Ni, Fe, and Hg) in 22 tobacco products available in Egypt and Oman using inductively coupled plasma optical emission spectroscopy and a direct mercury analyzer. Although some elements such as Be, Co, and Cd were absent, the positive detection of As and Pb and the levels of Ba, Cr, and Ni are still alarming, especially for heavy smokers. The obtained results were then statistically related to previously published data in 2017 to explore the effectiveness of implementing the FCTC protocols within the Egyptian market. The outcomes suggested a positive impact of FCTC protocol implementation in Egypt, besides the lower levels of elemental content for Omani products compared to the Egyptian market.
Collapse
Affiliation(s)
- Adel Ehab Ibrahim
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz , Nizwa, 616, Oman.
| | - Samy G Alamir
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz , Nizwa, 616, Oman
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, 11566, Cairo, Egypt
| | - Mohamed Al-Omairi
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz , Nizwa, 616, Oman
| | - Baher I Salman
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Hany A Batakoushy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Menoufia University, Shebin Elkom, 32511, Egypt
| | - Mostafa M Hegazy
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University (Boys), Cairo, 11884, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Sinai University - Arish Branch, Arish, 45511, Egypt
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz , Nizwa, 616, Oman.
| |
Collapse
|
13
|
Laishram B, Devi OR, Dutta R, Senthilkumar T, Goyal G, Paliwal DK, Panotra N, Rasool A. Plant-microbe interactions: PGPM as microbial inoculants/biofertilizers for sustaining crop productivity and soil fertility. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 8:100333. [PMID: 39835267 PMCID: PMC11743900 DOI: 10.1016/j.crmicr.2024.100333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
Plant-microbe interactions play pivotal roles in sustaining crop productivity and soil fertility, offering promising avenues for sustainable agricultural practices. This review paper explores the multifaceted interactions between plants and various microorganisms, highlighting their significance in enhancing crop productivity, combating pathogens, and promoting soil health. Understanding these interactions is crucial for harnessing their potential in agricultural systems to address challenges such as food security and environmental sustainability. Therefore, the introduction of beneficial microbes into agricultural ecosystems by bio-augmentation reduces the negative effects of intensive, non-sustainable agriculture on the environment, society, and economy, into the mechanisms underlying the application of plant growth promoting microbes as microbial inoculants/biofertilizers; their interactions, the factors influencing their dynamics, and the implications for agricultural practices, emerging technologies and strategies that leverage plant-microbe interactions for improving crop yields, soil fertility, and overall agricultural sustainability.
Collapse
Affiliation(s)
- Bibek Laishram
- Department of Agronomy, Assam Agricultural University, Jorhat 785013, Assam, India
| | - Okram Ricky Devi
- Department of Agronomy, Assam Agricultural University, Jorhat 785013, Assam, India
| | - Rinjumoni Dutta
- Department of Agronomy, Assam Agricultural University, Jorhat 785013, Assam, India
| | | | - Girish Goyal
- Acharya Narendra Deva University of Agriculture and Technology, Kumarganj, Ayodhya, India
| | | | - Narinder Panotra
- Institute of Biotechnology, SKUAST Jammu, Jammu and Kashmir 180009, India
| | - Akhtar Rasool
- Research Center for Chemistry - National Research and Innovation Agency (BRIN), KST BJ Habibie, Building 452, Setu, Tangerang Selatan 15314, Indonesia
- Department of Biotechnology, Manav Rachna International Institute of Research and Studies, Faridabad, Haryana, India
| |
Collapse
|
14
|
Zhao XM, Liu JY, Liu HC, Yang ZZ, Zhao H, Yong YC. Individual cell modification with cell surface specific atom transfer radical polymerization for enhanced Cr(VI) removal. J Biosci Bioeng 2024; 138:423-430. [PMID: 39142978 DOI: 10.1016/j.jbiosc.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/21/2024] [Accepted: 07/02/2024] [Indexed: 08/16/2024]
Abstract
Modifying cells with polymers on the surface can enable them to gain or enhance function with various applications, wherein the atom transfer radical polymerization (ATRP) has garnered significant potential due to its biocompatibility. However, specifically initiating ATRP from the cell surface for in-situ modification remains challenging. This study established a bacterial surface-initiated ATRP method and further applied it for enhanced Cr(VI) removal. The cell surface specificity was facilely achieved by cell surface labelling with azide substrates, following alkynyl ATRP initiator specifically anchoring with azide-alkyne click chemistry. Then, the ATRP polymerization was initiated from the cell surface, and different polymers were successfully applied to in-situ modification. Further analysis revealed that the modification of Shewanella oneidensis with poly (4-vinyl pyridine) and sodium polymethacrylate improved the heavy metal tolerance and enhanced the Cr(VI) removal rate of 2.6 times from 0.088 h-1 to 0.314 h-1. This work provided a novel idea for bacterial surface modification and would extend the application of ATRP in bioremediation.
Collapse
Affiliation(s)
- Xing-Ming Zhao
- Biofuels Institute and Institute for Energy Research, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Jun-Ying Liu
- Biofuels Institute and Institute for Energy Research, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Heng-Chi Liu
- Biofuels Institute and Institute for Energy Research, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Zhi-Zhi Yang
- Biofuels Institute and Institute for Energy Research, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Han Zhao
- Biofuels Institute and Institute for Energy Research, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Yang-Chun Yong
- Biofuels Institute and Institute for Energy Research, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| |
Collapse
|
15
|
Sumit, Sharma K, Tewatia P, Samota S, Kaur M, Paulik C, Sharma M, Kaushik A. Efficient mercury ion abatement through highly porous cellulose nanofibrils combined with microporous organic polymer enhancements. Int J Biol Macromol 2024; 280:136136. [PMID: 39349077 DOI: 10.1016/j.ijbiomac.2024.136136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/14/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
Pristine microporous organic polymer (p-MOP), owing to the presence of heteroatoms, has emerged as a significant platform for sensing and adsorption of heavy metal ions. The present work is a novel approach for developing highly porous hybrid architectures with trimesic acid and phenylene diamine-based p-MOP embedded over rice straw-derived cellulose nanofibers (ACNFs/MOP) for the sensing and remediation of mercury ions in the aqueous medium. The ACNFs/MOP were successfully characterized by various techniques, such as FTIR spectroscopy, BET surface area analysis, X-ray diffraction, XPS, HR-TEM, and TGA. The hybrid exhibited excellent porosity and crystallinity. The ACNFs/MOP hybrid was highly selective for Hg(II) ions, displaying substantial enhancement in fluorescence intensity with an LOD of 3.927 nM while also facilitating simultaneous adsorption. The adsorption showed a strong fit with pseudo-second-order kinetics and Langmuir isotherm models with an excellent adsorption capacity of 416.18 mg g-1, attributed to electrostatic interactions, coordination surface complexation, and metal-π interactions, as confirmed by XPS studies. Thermodynamic studies indicated an endothermic adsorption process. Box-Behnken Design-Response Surface methodology with Design Expert Software-13 was applied to model the process parameters. The hybrids were 97 % efficient even after five cycles of reusability, exhibiting their excellent potential for removing perilous Hg(II) ions from wastewater.
Collapse
Affiliation(s)
- Sumit
- Energy Research Centre, Panjab University, Chandigarh, India
| | - Kavita Sharma
- Energy Research Centre, Panjab University, Chandigarh, India
| | - Preeti Tewatia
- Energy Research Centre, Panjab University, Chandigarh, India
| | | | - Manpreet Kaur
- Energy Research Centre, Panjab University, Chandigarh, India
| | - Christian Paulik
- Institute for Chemical Technology of Organic Materials, Johannes Kepler University, Linz, Austria
| | - Mukta Sharma
- Department of Civil Engineering, IKG Punjab Technical University, Jalandhar, India
| | - Anupama Kaushik
- Energy Research Centre, Panjab University, Chandigarh, India; Dr. SSB University Institutes of Chemical Engineering and Technology, Panjab University, Chandigarh, India.
| |
Collapse
|
16
|
Youssif MM, El-Attar HG, Hessel V, Wojnicki M. Recent Developments in the Adsorption of Heavy Metal Ions from Aqueous Solutions Using Various Nanomaterials. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5141. [PMID: 39517417 PMCID: PMC11546202 DOI: 10.3390/ma17215141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Water pollution is caused by heavy metals, minerals, and dyes. It has become a global environmental problem. There are numerous methods for removing different types of pollutants from wastewater. Adsorption is viewed as the most promising and financially viable option. Nanostructured materials are used as effective materials for adsorption techniques to extract metal ions from wastewater. Many types of nanomaterials, such as zero-valent metals, metal oxides, carbon nanomaterials, and magnetic nanocomposites, are used as adsorbents. Magnetic nanocomposites as adsorbents have magnetic properties and abundant active functional groups, and unique nanomaterials endow them with better properties than nonmagnetic materials (classic adsorbents). Nonmagnetic materials (classic adsorbents) typically have limitations such as limited adsorption capacity, adsorbent recovery, poor selective adsorption, and secondary treatment. Magnetic nanocomposites are easy to recover, have strong selectivity and high adsorption capacity, are safe and economical, and have always been a hotspot for research. A large amount of data has been collected in this review, which is based on an extensive study of the synthesis, characterization, and adsorption capacity for the elimination of ions from wastewater and their separation from water. The effects of several experimental parameters on metal ion removal, including contact duration, temperature, adsorbent dose, pH, starting ion concentration, and ionic strength, have also been investigated. In addition, a variety of illustrations are used to describe the various adsorption kinetics and adsorption isotherm models, providing insight into the adsorption process.
Collapse
Affiliation(s)
- Mahmoud M. Youssif
- Faculty of Non-Ferrous Metals, AGH University of Krakow, al. A. Mickewicza 30, 30-059 Krakow, Poland
- Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt;
| | - Heba G. El-Attar
- Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt;
| | - Volker Hessel
- School of Chemical Engineering, University of Adelaide, Adelaide 5005, Australia;
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK
| | - Marek Wojnicki
- Faculty of Non-Ferrous Metals, AGH University of Krakow, al. A. Mickewicza 30, 30-059 Krakow, Poland
| |
Collapse
|
17
|
Yazdani M, Karimzadeh H, Azimzadeh H, Soleimani M. Assessment of environmental and health risks of potentially toxic elements associated with desert dust particles affected by industrial activities in Isfahan metropolitan. Sci Rep 2024; 14:22867. [PMID: 39354012 PMCID: PMC11445583 DOI: 10.1038/s41598-024-74153-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024] Open
Abstract
Dust particles and their associated compounds can adversely affect human health and ecosystems. The aim of this study was to investigate the concentration, health, and ecological risks of selected potentially toxic elements (e.g. Pb, Cd, Cr, Co, Cu, Zn, V, Ni, and As) bound to air particles generated by dust storms in the Sejzi plain desert area within the industrial district of Isfahan metropolitan, Iran. The enrichment factor revealed the highest values for Zn, Pb, and Cd which among them Zn showed the highest value (8.1) with the potential source of industrial activities confirmed by the integrated pollution index, accumulation coefficient, and ecological risk index. Regarding health risk analysis (non-cancer and cancer risks) the elements including Co, As, and Cr showed a significant risk for adults and children across all seasons. It's concluded that mitigation of air particles originated from both natural and industrial activities is necessary to reduce their relevant risks to human being and ecosystems in the region.
Collapse
Affiliation(s)
- Moslem Yazdani
- Department of Natural Resources, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Hamidreza Karimzadeh
- Department of Natural Resources, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Hamidreza Azimzadeh
- Environmental Sciences Department, School of Natural Resources and Desert Studies, Yazd University, Yazd, 89158-18411, Iran
| | - Mohsen Soleimani
- Department of Natural Resources, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| |
Collapse
|
18
|
Katebe FM, Colinet G, Kyalamakasa JMK, Mubemba MM, Jijakli MH. Application of soil amendments to reduce the transfer of trace metal elements from contaminated soils of Lubumbashi (Democratic Republic of the Congo) to vegetables. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:902. [PMID: 39240423 PMCID: PMC11379750 DOI: 10.1007/s10661-024-13029-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 08/15/2024] [Indexed: 09/07/2024]
Abstract
The extraction of copper and cobalt from mines has led to the contamination of agricultural soils by trace metal elements (TMEs) (e.g. Cu: 204 to 1355 mg/kg). The mining industry is one of the sources of metal discharges into the environment, contributing to water, soil, and air contamination and causing metabolic disorders in the inhabitants of the city of Lubumbashi (R.D. Congo). This study assessed the effectiveness of organocalcareous soil improvers applied to TME-contaminated soils to reduce their transfer to plants. Following a factorial design, increasing doses of organic soil improvers (chicken droppings and sawdust) and agricultural lime were applied to the soils of three market gardens (high, medium, and low Cu contamination). The experiment was monitored for 60 days. Soil physicochemical properties (pH, TOC, and total and available copper, cobalt, lead, cadmium, and zinc (mg/kg)) were determined for the three gardens and in the vegetable biomass. The daily consumption index of the vegetables was determined based on total TME content. The results show that organocalcareous soil improvers did not promote plant growth and survival on soils with high and medium levels of copper contamination. However, on soils with low copper content, organocalcareous soil improvers improved germination and plant survival and reduced the transfer of metals from the soil to the plants. The best germination and plant survival rates were obtained with the lightly contaminated market garden. In addition, the organo-limestone amendments applied to the soils slightly increased the soil pH from acidic to slightly acidic, with pH values ranging from (5.43 ± 0.07 to 7.26 ± 0.33). The daily vegetable consumption index obtained for cobalt in the low-contaminated garden ranged from (0.029 to 0.465 mg/60 kg/day), i.e. from 0.5 to 8.45 times higher than the FAO/WHO limit, unlike the other trace metals (Cd, Cu and Pb) for which the daily consumption index found was lower than the FAO/WHO limit. Organocalcareous soil improvers can only be applied to soils with low levels of TME contamination, but for soils with medium to high levels of metal contamination, new soilless production techniques such as hydroponics or bioponics are needed.
Collapse
Affiliation(s)
- Félicien Mununga Katebe
- Centre de Recherches en Agriculture Urbaine (C-RAU), Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés 2, 5030, Gembloux, Belgium.
- Ecology, Ecological Restoration and Landscape, Agronomy Faculty, University of Lubumbashi, Route Kasapa, Campus Universitaire, Lubumbashi, Kinshasa, Congo.
| | - Gilles Colinet
- Water, Soil & Plant Exchanges TERRA, Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés 2, 5030, Gembloux, Belgium
| | - Jean-Marc Kaumbu Kyalamakasa
- Ecology, Ecological Restoration and Landscape, Agronomy Faculty, University of Lubumbashi, Route Kasapa, Campus Universitaire, Lubumbashi, Kinshasa, Congo
| | - Michel Mpundu Mubemba
- Ecology, Ecological Restoration and Landscape, Agronomy Faculty, University of Lubumbashi, Route Kasapa, Campus Universitaire, Lubumbashi, Kinshasa, Congo
| | - M Haïssam Jijakli
- Centre de Recherches en Agriculture Urbaine (C-RAU), Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés 2, 5030, Gembloux, Belgium
| |
Collapse
|
19
|
Tripathi S, Parmar D, Raval S, Mishra R, Singh G. Attenuation of chromium (VI) and arsenic (III)-induced oxidative stress and hepatic apoptosis by phloretin, biochanin-A, and coenzyme Q10 via activation of SIRT1/Nrf2/HO-1/NQO1 signaling. J Biochem Mol Toxicol 2024; 38:e23817. [PMID: 39177155 DOI: 10.1002/jbt.23817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/21/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
Heavy metal contamination is an alarming concern on a global scale, as drinking tainted water significantly increases human susceptibility to heavy metals. In a realistic scenario, humans are often exposed to a combination of harmful chemicals rather than a single toxicant. Phloretin (PHL), biochanin-A (BCA), and coenzyme Q10 (CoQ10) are bioactive compounds owning plentiful pharmacological properties. Henceforth, the current research explored the putative energizing effects of selected nutraceuticals in combined chromium (Cr) and arsenic (As) intoxicated Swiss albino mice. Potassium dichromate (75 ppm) and sodium meta-arsenite (100 ppm) were given in the drinking water to induce hepatotoxicity, conjugated with PHL and BCA (50 mg/kg each), and CoQ10 (10 mg/kg) intraperitoneally for 2 weeks. After the statistical evaluation, it was observed that the hepato-somatic index, metal load, and antioxidant activity (lipid peroxidation and protein carbonyl content) increased along with the concomitant decrease in the antioxidants (catalase, glutathione-S-transferase, superoxide dismutase, reduced glutathione, and total thiol) in the Cr and As intoxicated mice. Additionally, light microscopy observations, DNA breakages, decreased silent information regulator 1 (SIRT1), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), heme oxygenase (HO-1), and NAD(P)H quinone dehydrogenase 1 (NQO1) gene expressions, together with stimulated apoptotic cell death manifested by the increased expressions of caspase 8 and caspase 3, thus, proved consistency with the aforementioned outcomes. Importantly, the treatment with nutraceuticals not only restored the antioxidant activity but also favorably altered the expressions of SIRT1, Nrf2, HO-1, and NQO1 signaling and apoptosis markers. These findings highlight the crucial role of the PHL, BCA, and CoQ10 combination in reducing Cr and As-induced hepatotoxicity in mice. By averting the triggered apoptosis in conjunction with oxidative stress, this combination increases the SIRT1, Nrf2, HO-1, and NQO1 signaling, thereby reassuringly maintaining the cellular equilibrium.
Collapse
Affiliation(s)
- Swapnil Tripathi
- Toxicology Department, ICMR-National Institute of Occupational Health, Ahmedabad, Gujarat, India
- Department of Biochemistry & Forensic Science, Gujarat University, Ahmedabad, Gujarat, India
| | - Dharati Parmar
- Toxicology Department, ICMR-National Institute of Occupational Health, Ahmedabad, Gujarat, India
| | - Samir Raval
- College of Veterinary Science and Animal Husbandry, Kamdhenu University, Sardarkrushinagar, Gujarat, India
| | - Rajeev Mishra
- Department of Life Sciences & Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur, Uttar Pradesh, India
| | - Gyanendra Singh
- Toxicology Department, ICMR-National Institute of Occupational Health, Ahmedabad, Gujarat, India
| |
Collapse
|
20
|
Capcarova M, Dudejova B, Harangozo L, Kovacik A, Emmanouil C, Zemanova J, Argente MJ, Stawarz R, Filipejova ZV, Jaszcza K, Massanyi P. Concentration of selected biogenic and risk elements in liver, kidneys and muscle of domestic rabbit and wild brown hare. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2024; 59:334-341. [PMID: 39205405 DOI: 10.1080/10934529.2024.2395714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
In the present study the concentration of selected elements in tissues of domestic rabbits and of wild brown-hares (kidneys, liver, and muscle - m. quadriceps femoris) in Slovakian habitats were determined. After mineralization the elements examined were detected using flame atomic absorption spectrophotometry/graphite furnace atomic absorption spectrophotometry. For rabbits, Fe in the liver was correlated with essential (Mn, Cu) (R2 = 0.94, p < 0.05; R2 = 0.96, p < 0.05 respectively) or toxic (Pb) elements (R2 = -0.93, p < 0.05). For hares, significant correlations were found between Cd and Cu or between Cd and Mn in the kidneys (R2 = -0.96, p < 0.05; R2 = 0.92, p < 0.05 respectively), which is the target organ for Cd. Higher concentrations of the elements were found in hare tissue, and this may be linked to pollution of their wild habitats. The xenobiotic elements as well as the essential elements were accumulated in the kidneys of the hares than rabbits. For liver, differences were less pronounced and significance was only for Fe and Cu. Muscle of hares was more contaminated than of rabbits for both biogenic and toxic elements. These results show that detectable concentrations of inorganic elements. These levels may be linked to contamination of the natural habitats of wild biota due to industry, traffic, agriculture, and urban sprawl.
Collapse
Affiliation(s)
- Marcela Capcarova
- Faculty of Biotechnology and Food Science, Institute of Applied Biology, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Beata Dudejova
- Faculty of Biotechnology and Food Science, Institute of Applied Biology, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Lubos Harangozo
- Faculty of Biotechnology and Food Science, Institute of Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Anton Kovacik
- Faculty of Biotechnology and Food Science, Institute of Applied Biology, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Christina Emmanouil
- School of Spatial Planning and Development, Faculty of Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Jirina Zemanova
- Faculty of Biotechnology and Food Science, Institute of Applied Biology, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Maria-Jose Argente
- Department of Agro-Food Technology, Universidad Miguel Hernández de Elche, Orihuela, Spain
| | - Robert Stawarz
- Institute of Biology and Earth Sciences, University of the National Education Commission, Krakow, Kraków, Poland
| | | | - Klaudia Jaszcza
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Krakow, Poland
| | - Peter Massanyi
- Faculty of Biotechnology and Food Science, Institute of Applied Biology, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
- Institute of Biology and Earth Sciences, University of the National Education Commission, Krakow, Kraków, Poland
| |
Collapse
|
21
|
Alnuqaydan AM. The dark side of beauty: an in-depth analysis of the health hazards and toxicological impact of synthetic cosmetics and personal care products. Front Public Health 2024; 12:1439027. [PMID: 39253281 PMCID: PMC11381309 DOI: 10.3389/fpubh.2024.1439027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
Over the past three decades, the popularity of cosmetic and personal care products has skyrocketed, largely driven by social media influence and the propagation of unrealistic beauty standards, especially among younger demographics. These products, promising enhanced appearance and self-esteem, have become integral to contemporary society. However, users of synthetic, chemical-based cosmetics are exposed to significantly higher risks than those opting for natural alternatives. The use of synthetic products has been associated with a variety of chronic diseases, including cancer, respiratory conditions, neurological disorders, and endocrine disruption. This review explores the toxicological impact of beauty and personal care products on human health, highlighting the dangers posed by various chemicals, the rise of natural ingredients, the intricate effects of chemical mixtures, the advent of nanotechnology in cosmetics, and the urgent need for robust regulatory measures to ensure safety. The paper emphasizes the necessity for thorough safety assessments, ethical ingredient sourcing, consumer education, and collaboration between governments, regulatory bodies, manufacturers, and consumers. As we delve into the latest discoveries and emerging trends in beauty product regulation and safety, it is clear that the protection of public health and well-being is a critical concern in this ever-evolving field.
Collapse
Affiliation(s)
- Abdullah M Alnuqaydan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
22
|
Mukherjee K, Rahman A, Chakraborty J, Pakrashi S. Isolation and characterization of mercury and multidrug-resistant Citrobacter freundii strains from tannery effluents in Kolkata, India. Arch Microbiol 2024; 206:362. [PMID: 39066800 DOI: 10.1007/s00203-024-04090-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/14/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
Mercury (Hg) is one of the most potent toxic heavy metals that distresses livestock, humans, and ecological health. Owing to uncontrolled exposure to untreated tannery industrial effluents, metals such as Hg are increasing in nature and are, therefore, becoming a global concern. As a result, understanding the thriving microflora in that severe condition and their characteristics becomes immensely important. During the course of this study, two Hg-resistant bacteria were isolated from tannery wastewater effluents from leather factories in Kolkata, India, which were able to tolerate 2.211 × 10- 3 M (600 µg/ml) Hg. 16 S rDNA analysis revealed strong sequence homology with Citrobacter freundii, were named as BNC22A and BNC22C for this study. In addition they showed high tolerance to nickel (Ni) and Chromium (Cr) at 6.31 × 10- 3 M (1500 µg/ml) and 6.792 × 10- 3 M (2000 µg/ml) respectively. However, both the isolates were sensitive to arsenic (As) and cadmium (Cd). Furthermore, their antibiotic sensitivity profiles reveal a concerning trend towards resistance to multiple drugs. Overuse and misuse of antibiotics in healthcare systems and agriculture has been identified as two of the main reasons for the decline in efficacy of antibiotics. Though their ability to produce lipase makes them industrially potent organisms, their competence to resist several antibiotics and metals that are toxic makes this study immensely relevant. In addition, their ability to negate heavy metal toxicity makes them potential candidates for bioremediation. Finally, the green mung bean seed germination test showed a significant favourable effect of BNC22A and BNC22C against Hg-stimulated toxicity.
Collapse
Affiliation(s)
- Kushal Mukherjee
- Department of Microbiology, Bidhannagar College, Kolkata, West Bengal, 700064, India
| | - Abdul Rahman
- Institute of Genomics and Integrative Biology, New Delhi, India
| | - Joyeeta Chakraborty
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal, NH 12, Haringhata, 741249, India
| | - Sourav Pakrashi
- Department of Microbiology, Bidhannagar College, Kolkata, West Bengal, 700064, India.
| |
Collapse
|
23
|
Gao S, Dong Y, Jia Q, Wu S, Bai J, Cui C, Li Y, Zou P, An M, Du X, Liu H. Hazards of toxic metal(loid)s: Exploring the ecological and health risk in soil-crops systems with long-term sewage sludge application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174988. [PMID: 39047827 DOI: 10.1016/j.scitotenv.2024.174988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/16/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Sewage sludge (SS) is commonly used as agricultural fertilizer worldwide. However, the toxic metal(loid)s in SS raises concerns about soil contamination and the potential risks to human health. This study, conducted since 2007 on the North China Plain, examines the impact of SS use on crops. An experiment was designed with five treatments: conventional fertilization (CK) and four levels of SS application (W1, W2, W3, and W4: 4.5, 9.0, 18.0, and 36.0 t ha-1, respectively). Soil concentrations of eight toxic metal(loid)s (Zn, Cu, Cr, Cd, Ni, Pb, As, and Hg) were analyzed to assess pollution risk using various indices. Health risks associated with maize and wheat grains were also evaluated. Additionally, the impact of long-term SS application on crop yield, soil quality, and human health within a wheat-maize rotation system was examined. SS application increased wheat and maize yields by 5.37 to 19.08 % and 6.97 to 17.94 %, respectively, across treatments W2 to W4. Despite the toxic metal(loid)s in the grains remaining within safe limits, their concentrations showed an upward trend, especially under the W4 treatment. Moreover, SS application significantly increased the soil Zn, Cu, Cr, Cd, Pb, and Hg levels (P < 0.05) without exceeding the national standards. The geo-accumulation index values revealed rising pollution levels for Zn, Cu, Cd, and Hg, which shifted from no contamination to moderate contamination and then to moderate-to-high contamination, yet the overall pollution level remained safe. Soil ecological risks increased from moderate to serious, with Hg posing the greatest risk, particularly under the W4 treatment. Long-term crop intake from the area significantly exposed children and adults to As, contributing 42.12 % and 34.62 % to hazard index (HI), respectively. The HI values for toxic metal(loid)s in these grains surpassed one in both age groups, suggesting health risks from long-term SS cultivated crops.
Collapse
Affiliation(s)
- Shitao Gao
- Beijing City Drainage Refco Group Ltd, Beijing 100044, China; Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs/Changping Soil Quality National Observation and Research Station/State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanmei Dong
- Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs/Changping Soil Quality National Observation and Research Station/State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qingqi Jia
- Beijing City Drainage Refco Group Ltd, Beijing 100044, China; Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs/Changping Soil Quality National Observation and Research Station/State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuxia Wu
- Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs/Changping Soil Quality National Observation and Research Station/State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiayun Bai
- Beijing City Drainage Refco Group Ltd, Beijing 100044, China; Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs/Changping Soil Quality National Observation and Research Station/State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chao Cui
- Beijing City Drainage Refco Group Ltd, Beijing 100044, China; Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs/Changping Soil Quality National Observation and Research Station/State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ying Li
- Beijing City Drainage Refco Group Ltd, Beijing 100044, China; Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs/Changping Soil Quality National Observation and Research Station/State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Peng Zou
- Heze Kingenta Ecological Engineering Co., Ltd, Shandong 274000, China
| | - Miaoying An
- Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs/Changping Soil Quality National Observation and Research Station/State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xinzhong Du
- Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs/Changping Soil Quality National Observation and Research Station/State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Hongbin Liu
- Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs/Changping Soil Quality National Observation and Research Station/State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Heze Kingenta Ecological Engineering Co., Ltd, Shandong 274000, China
| |
Collapse
|
24
|
Acharya BR, Gill SP, Kaundal A, Sandhu D. Strategies for combating plant salinity stress: the potential of plant growth-promoting microorganisms. FRONTIERS IN PLANT SCIENCE 2024; 15:1406913. [PMID: 39077513 PMCID: PMC11284086 DOI: 10.3389/fpls.2024.1406913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/24/2024] [Indexed: 07/31/2024]
Abstract
Global climate change and the decreasing availability of high-quality water lead to an increase in the salinization of agricultural lands. This rising salinity represents a significant abiotic stressor that detrimentally influences plant physiology and gene expression. Consequently, critical processes such as seed germination, growth, development, and yield are adversely affected. Salinity severely impacts crop yields, given that many crop plants are sensitive to salt stress. Plant growth-promoting microorganisms (PGPMs) in the rhizosphere or the rhizoplane of plants are considered the "second genome" of plants as they contribute significantly to improving the plant growth and fitness of plants under normal conditions and when plants are under stress such as salinity. PGPMs are crucial in assisting plants to navigate the harsh conditions imposed by salt stress. By enhancing water and nutrient absorption, which is often hampered by high salinity, these microorganisms significantly improve plant resilience. They bolster the plant's defenses by increasing the production of osmoprotectants and antioxidants, mitigating salt-induced damage. Furthermore, PGPMs supply growth-promoting hormones like auxins and gibberellins and reduce levels of the stress hormone ethylene, fostering healthier plant growth. Importantly, they activate genes responsible for maintaining ion balance, a vital aspect of plant survival in saline environments. This review underscores the multifaceted roles of PGPMs in supporting plant life under salt stress, highlighting their value for agriculture in salt-affected areas and their potential impact on global food security.
Collapse
Affiliation(s)
- Biswa R. Acharya
- US Salinity Laboratory, USDA-ARS, Riverside, CA, United States
- College of Natural and Agricultural Sciences, University of California Riverside, Riverside, CA, United States
| | - Satwinder Pal Gill
- Plants, Soils, and Climate, College of Agricultural and Applied Sciences, Utah State University, Logan, UT, United States
| | - Amita Kaundal
- Plants, Soils, and Climate, College of Agricultural and Applied Sciences, Utah State University, Logan, UT, United States
| | - Devinder Sandhu
- US Salinity Laboratory, USDA-ARS, Riverside, CA, United States
| |
Collapse
|
25
|
Saravanan P, Saravanan V, Rajeshkannan R, Arnica G, Rajasimman M, Baskar G, Pugazhendhi A. Comprehensive review on toxic heavy metals in the aquatic system: sources, identification, treatment strategies, and health risk assessment. ENVIRONMENTAL RESEARCH 2024; 258:119440. [PMID: 38906448 DOI: 10.1016/j.envres.2024.119440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 05/08/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Heavy metal pollution in water sources has become a major worldwide environmental issue, posing a threat to aquatic ecosystems and human health. The pollution of the aquatic environment is increasing as a result of industrialization, climate change, and urban development. The sources of heavy metal pollution in water include mining waste, leachates from landfills, municipal and industrial wastewater, urban runoff, and natural events such as volcanism, weathering, and rock abrasion. Heavy metal ions are toxic and potentially carcinogenic. They can also buildup in biological systems and cause bioaccumulation even at low levels of exposure, heavy metals can cause harm to organs such as the nervous system, liver and lungs, kidneys and stomach, skin, and reproductive systems. There were various approaches tried to purify water and maintain water quality. The main purpose of this article was to investigate the occurrence and fate of the dangerous contaminants (Heavy metal and metalloids) found in domestic and industrial effluents. This effluent mixes with other water streams and is used for agricultural activities and other domestic activities further complicating the issue. It also discussed conventional and non-conventional treatment methods for heavy metals from aquatic environments. Conclusively, a pollution assessment of heavy metals and a human health risk assessment of heavy metals in water resources have been explained. In addition, there have been efforts to focus on heavy metal sequestration from industrial waste streams and to create a scientific framework for reducing heavy metal discharges into the aquatic environment.
Collapse
Affiliation(s)
- Panchamoorthy Saravanan
- Department of Petrochemical Technology, UCE - BIT Campus, Anna University, Tiruchirappalli, Tamil Nadu, 620024, India.
| | - V Saravanan
- Department of Chemical Engineering, Annamalai University, Chidambaram, Tamil Nadu, 608002, India
| | - R Rajeshkannan
- Department of Chemical Engineering, Annamalai University, Chidambaram, Tamil Nadu, 608002, India
| | - G Arnica
- Department of Petrochemical Technology, UCE - BIT Campus, Anna University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - M Rajasimman
- Department of Chemical Engineering, Annamalai University, Chidambaram, Tamil Nadu, 608002, India
| | - Gurunathan Baskar
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai, 600119, Tamil Nadu, India; School of Engineering, Lebanese American University, Byblos, 1102 2801, Lebanon
| | - Arivalagan Pugazhendhi
- Tecnologico de Monterrey, Centre of Bioengineering, NatProLab, Plant Innovation Lab, School of Engineering and Sciences, Queretaro 76130, Mexico; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam-603103, Tamil Nadu, India.
| |
Collapse
|
26
|
Doolotkeldieva T, Bobusheva S, Konurbaeva M. In vitro and in vivo screening of bacterial species from contaminated soil for heavy metal biotransformation activity. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2024; 59:315-332. [PMID: 38676363 DOI: 10.1080/03601234.2024.2343236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 03/30/2024] [Indexed: 04/28/2024]
Abstract
Heavy metals (HMs) are widely used in various industries. High concentrations of HMs can be severely toxic to plants, animals and humans. Microorganism-based bioremediation has shown significant potential in degrading and detoxifying specific HM contaminants. In this study, we cultivated a range of bacterial strains in liquid and solid nutrient medium containing different concentrations of different HMs to select and analyze bacteria capable of transforming HMs. The bacterial strains most resistant to selected HMs and exhibiting the ability to remove HMs from contaminated soils were identified. Then, the bacterial species capable of utilizing HMs in soil model experiments were selected, and their ability to transform HMs was evaluated. This study has also generated preliminary findings on the use of plants for further removal of HMs from soil after microbial bioremediation. Alcaligenes faecalis, Delftia tsuruhatensis and Stenotrophomonas sp. were selected for their ability to grow in and utilize HM ions at the maximum permissible concentration (MPC) and two times the MPC. Lysinibacillus fusiformis (local microflora) can be used as a universal biotransformation tool for many HM ions. Brevibacillus parabrevis has potential for the removal of lead ions, and Brevibacillus reuszeri and Bacillus safensis have potential for the removal of arsenic ions from the environment. The bacterial species have been selected for bioremediation to remove heavy metal ions from the environment.
Collapse
Affiliation(s)
| | - Saykal Bobusheva
- Plant Protection Department, Kyrgyz-Turkish Manas University, Bishkek, Kyrgyzstan
| | - Mahabat Konurbaeva
- Plant Protection Department, Kyrgyz-Turkish Manas University, Bishkek, Kyrgyzstan
| |
Collapse
|
27
|
Wang Y, Wang Y, Ma S, Zhao K, Ding F, Liu X. Exploring metal(loid)s dynamics and bacterial community shifts in contaminated paddy soil: Impact of MgO-laden biochar under different water conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123416. [PMID: 38278407 DOI: 10.1016/j.envpol.2024.123416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024]
Abstract
In this study, a soil incubation experiment was conducted to explore the influence MgO-treated corn straw biochar (MCB) on the bioavailability and chemical forms of cadmium (Cd), lead (Pb), and arsenic (As), alongside the impact on the bacterial community within paddy soil subjected to both flooded and non-flooded conditions. Raw corn straw biochar (CB) served as the unmodified biochar control, aiding in the understanding of the biochar's role within the composite. The results showed that even at a minimal concentration of 0.5 %, MCB exhibited higher effectiveness in reducing the bioavailability of Pb and Cd compared to 1 % CB. In non-flooded conditions, 0.5 % MCB reduced the bioavailable Pb and Cd by 99.7 % and 87.4 %, respectively, while NaH2PO4-extracted As displayed a 14.5 % increase. With increasing MCB concentrations (from 0.5 % to 1.5 %), soil pH, DOC, EC, available phosphorus, and bioavailable As increased, while bioavailable Pb and Cd exhibited declining tendencies. Flooding did not notably alter MCB's role in reducing Pb and Cd bioavailability, yet it systematically amplified As release. Heavy metal fractions extracted by acetic acid increased in the MCB groups under flooding conditions, especially for As. The inclusion of 0.5 % MCB did not noticeably affect bacterial diversity, whereas higher doses led to reduced diversity and substantial changes in community composition. Specifically, the groups with MCB showed an increase in the Bacteroidetes and Proteobacteria phyla, accompanied by a decrease in Acidobacteria. These alterations were primarily attributed to the increased pH and EC resulting from MgO hydrolysis. Consequently, for Pb/Cd stabilization and soil bacterial diversity, a low dosage of MgO-treated biochar is recommended. However, caution is advised when employing MgO-treated biochar in soils with elevated arsenic levels, particularly under flooded conditions.
Collapse
Affiliation(s)
- Yan Wang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China; College of Resources and Environmental Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Yichen Wang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02215, USA
| | - Suhan Ma
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China; College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Kankan Zhao
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fenghua Ding
- Institute of Ecology, Lishui University, Lishui, Zhejiang, 323000, China
| | - Xingmei Liu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
28
|
Kumari B, Chauhan S, Chauhan GS, Kumar K, Jamwal P, Ranote S. A two-in-one thiosemicarbazide and whole pine needle-based adsorbent for rapid and efficient adsorption of methylene blue dye and mercuric ions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21591-21609. [PMID: 38396177 DOI: 10.1007/s11356-024-32446-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/08/2024] [Indexed: 02/25/2024]
Abstract
Herein, we report the synthesis of an oxidized pine needle-thiosemicarbazone Schiff base (OPN-TSC) from whole pine needles (WPN) as a dual-purpose adsorbent to remove a cationic dye, methylene blue (MB), and Hg2+ ions in separate processes. The adsorbent was synthesized by periodate oxidation of WPN followed by a reaction with thiosemicarbazide. The syntheses of OPN and OPN-TSC were confirmed by FTIR, XRD, FESEM, EDS, BET, and surface charge analysis. The emergence of new peaks at 1729 cm-1 (-CHO stretching) and 1639 cm-1 (-COO- stretching) in the FTIR spectrum of OPN confirmed the oxidation of WPN to OPN. FTIR spectrum of OPN-TSC has a peak at 1604 cm-1 (C = N stretching), confirming the functionalization of OPN to OPN-TSC. XRD studies revealed an increase in the crystallinity of OPN and a decrease in the crystallinity of OPN-TSC because of the attachment of thiosemicarbazide to OPN. The values of %removal for MB and Hg2+ ions by OPN-TSC were found to be 87.36% and 98.2% with maximum adsorption capacity of 279.3 mg/g and 196 mg/g for MB and Hg2+ ions, respectively. The adsorption of MB followed pseudo-second-order kinetics with correlation coefficient (R2 of 0.99383) and Freundlich isotherm (R2 = 0.97239), whereas Hg2+ ion removal demonstrated the Elovich (R2 = 0.97076) and Langmuir isotherm (R2 = 0.95110). OPN-TSC is regenerable with significant recyclability up to 10 cycles for both the adsorbates. The studies established OPN-TSC as a low-cost, sustainable, biodegradable, environmentally benign, and promising adsorbent for the removal of hazardous cationic dyes and toxic metal ions from wastewater and industrial effluents, especially the textile effluents.
Collapse
Affiliation(s)
- Babita Kumari
- Department of Chemistry, Himachal Pradesh University, Summerhill, Shimla, Himachal-Pradesh, India, 171005
| | - Sandeep Chauhan
- Department of Chemistry, Himachal Pradesh University, Summerhill, Shimla, Himachal-Pradesh, India, 171005.
| | - Ghanshyam S Chauhan
- Department of Chemistry, Himachal Pradesh University, Summerhill, Shimla, Himachal-Pradesh, India, 171005
| | - Kiran Kumar
- Department of Chemistry, Himachal Pradesh University, Summerhill, Shimla, Himachal-Pradesh, India, 171005
| | - Pooja Jamwal
- Department of Chemistry, Himachal Pradesh University, Summerhill, Shimla, Himachal-Pradesh, India, 171005
| | - Sunita Ranote
- Department of Chemistry, Himachal Pradesh University, Summerhill, Shimla, Himachal-Pradesh, India, 171005
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34. M. Curie-Skłodowska St, 41-819, Zabrze, Poland
| |
Collapse
|
29
|
Liu S, Zhu L, Xu Z, Wang L, Wang S, Seif M, Xu X. Toxic effect of chromium on nonspecific immune, bioaccumulation, and tissue structure of Urechis unicinctus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:23077-23090. [PMID: 38416356 DOI: 10.1007/s11356-024-32441-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 02/08/2024] [Indexed: 02/29/2024]
Abstract
The contamination of toxic heavy metals in aquatic environments has garnered significant global attention due to its detrimental effects on marine organisms and human health. Hexavalent chromium is a typical environmental and occupational heavy metal pollutant, identified as carcinogenic heavy metal. This study aimed to assess the impact of different Cr (VI) concentrations (0.05-2.5 mg/L) on Urechis unicinctus (U. unicinctus) by investigating bioaccumulation, antioxidant defense system, expression of resistance-related genes, and histological issues. A clear concentration-effect relationship was observed in the bioaccumulation of Cr (VI) in muscle tissues of U. unicinctus. Moreover, exposure to Cr (VI) can alter the activities of lysozyme (LSZ), catalase (CAT), and superoxide dismutase (SOD) to enhance cellular defense mechanisms in U. unicinctus. Likewise, maintained the normal protein structure and functional stability by regulating protein folding. The heat shock cognitive protein (HSC70) gene showed an upward and then downward trend after Cr (VI) exposure. At 12 h, the HSC70 gene expression reached the maximum values of 4.75 and 4.61-fold in the 0.1 and 1.5 mg/L groups, respectively. The organism produced a large number of free radicals, and elevated level of metallothionein (MT) was used to scavenge free radicals and alleviate oxidative stress. Additionally, histopathological examination revealed disorganization in the midgut, atrophic changes in intestinal connective tissue, uneven distribution in respiratory tissues, and irregular shape with a significant reduction in epithelial cells within the gastric cavity. These findings can serve as a valuable reference for elucidating the toxicity mechanisms of heavy metals towards marine benthic organisms and enhancing water environment monitoring strategies.
Collapse
Affiliation(s)
- Shun Liu
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222005, Jiangsu, China
| | - Long Zhu
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222005, Jiangsu, China
| | - ZhiWei Xu
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222005, Jiangsu, China
| | - LeJiang Wang
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222005, Jiangsu, China
| | - Sijie Wang
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222005, Jiangsu, China
| | - Mohamed Seif
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222005, Jiangsu, China.
- Toxicology and Food Contaminants Department, Food Industries and Nutrition Research Institute, National Research Centre, Dokki, P.O. Box 12622, Giza, Egypt.
| | - Xinghong Xu
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222005, Jiangsu, China
| |
Collapse
|
30
|
Alabssawy AN, Hashem AH. Bioremediation of hazardous heavy metals by marine microorganisms: a recent review. Arch Microbiol 2024; 206:103. [PMID: 38358529 PMCID: PMC10869373 DOI: 10.1007/s00203-023-03793-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 02/16/2024]
Abstract
Heavy metals (HMs) like Zn, Cu, Pb, Ni, Cd, and Hg, among others, play a role in several environmental problems. The marine environment is polluted by several contaminants, such as HMs. A variety of physico-chemical methods usually available for sanitation HMs remediation suffer from either limitation. Bioremediation is a promising way of dealing with HMs pollution. Microbes have the ability with various potencies to resist HMs tension. The current review discusses the main sources and influences of HMs, the role of marine microorganisms in HMs bioremediation, as well as the microbial mechanisms for HMs detoxification and transformation. This review paper aims to provide an overview of the bioremediation technologies that are currently available for the removal of HMs ions from industrial and urban effluent by aquatic organisms such as bacteria, fungi, and microalgae, particularly those that are isolated from marine areas. The primary goals are to outline various studies and offer helpful information about the most important aspects of the bioelimination techniques. The biotreatment practices have been primarily divided into three techniques based on this topic. They are biosorption, bioaccumulation, bioleaching, and biotransformation. This article gives the brief view on the research studies about bioremediation of HMs using marine microorganisms. The current review also deals with the critical issues and recent studies based on the HMs biodetoxification using aquatic microorganisms.
Collapse
Affiliation(s)
- Ahmed N Alabssawy
- Marine Science and Fishes Branch, Zoology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt.
| | - Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| |
Collapse
|
31
|
Yu Z, Sun Z, Liu L, Li C, Zhang X, Amat G, Ran M, Hu X, Xu Y, Zhao X, Zhou J. Environmental surveillance in Jinan city of East China (2014-2022) reveals improved air quality but remained health risks attributable to PM2.5-bound metal contaminants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123275. [PMID: 38163628 DOI: 10.1016/j.envpol.2023.123275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
PM2.5-bound metal contaminants are associated with multiple chronic diseases in human. At global level, the contamination status has not been well controlled yet. Here we report findings from a long-term air pollution surveillance in Jinan city of Shandong, China. During 2014-2022, the dynamics and trends of PM2.5-bound heavy metal contaminants were monitored in an industrial area and a downtown area. The surveillance targets included: antimony (Sb), aluminum (Al), arsenic (As), beryllium (Be), cadmium (Cd), chromium (Cr), mercury (Hg), lead (Pb), manganese (Mn), nickel (Ni), selenium (Se). The human exposure and health risks were calculated and we found that the health risks of most contaminants showed peak values in autumn and winter. But Al, Mn, Hg and Be were found to result in highest health risk in spring or summer in the downtown area. In the industrial area we identified 100% alarming health index >1 (ranged from 1.12 to 3.35) in autumn and winter. In winter the total non-carcinogenic HI was all above 1 (peak value 2.21). Mn and As together posed >85% non-carcinogenic risk. As and Cd were ranked as major drivers of carcinogenic risks (5.84 × 10-6 and 2.78 × 10-6). Pd and Cd both showed non-negligible environmental levels but risk assessment model for their air-exposure associated non-carcinogenic risks are not yet available. This study updates air pollution data and status for air pollution status in China. This study provides valuable 9 year long-term reference to experimental and field studies in the related fields.
Collapse
Affiliation(s)
- Zhigang Yu
- Institute of Physical and Chemical Analysis, Jinan Municipal Center for Disease Control and Prevention, Jinan, Shandong, 250021, China.
| | - Zhan Sun
- Institute of Physical and Chemical Analysis, Jinan Municipal Center for Disease Control and Prevention, Jinan, Shandong, 250021, China.
| | - Lanzheng Liu
- Jinan Municipal Center for Disease Control and Prevention, Jinan, Shandong, 250021, China.
| | - Chao Li
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250062, China.
| | - Xin Zhang
- Institute of Physical and Chemical Analysis, Jinan Municipal Center for Disease Control and Prevention, Jinan, Shandong, 250021, China.
| | - Gzalnur Amat
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China.
| | - Mohan Ran
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China.
| | - Xiaoyue Hu
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China.
| | - Yunxiang Xu
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China.
| | - Xiulan Zhao
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China.
| | - Jun Zhou
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China.
| |
Collapse
|
32
|
Habib SS, Naz S, Fazio F, Cravana C, Ullah M, Rind KH, Attaullah S, Filiciotto F, Khayyam K. Assessment and Bioaccumulation of Heavy Metals in Water, Fish (wild and Farmed) and Associated Human Health Risk. Biol Trace Elem Res 2024; 202:725-735. [PMID: 37178449 DOI: 10.1007/s12011-023-03703-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023]
Abstract
Worldwide, anthropogenic activities are causing the natural environment and aquaculture systems to become heavily contaminated with heavy metals, which can lead to consumer's health problems. In the current study, wild and farmed fish (n = 30) and water samples (n = 6) have been collected from the Chashma barrage and fish farm to assess the heavy metals concentration, i.e., Cu, Cd, Pb, Zn and Cr, in the water and some important organs (gills, liver, muscle, brain and bones) of wild and farmed fish (Labeo rohita) using Graphite furnace Atomic absorption spectrometry. Bioaccumulation factor and human health risk assessment were calculated to measure the health status of both fish and humans. Results show that in wild and farm fish's gills, muscles and bones, the trend of the heavy metals was Zn > Pb > Cu > Cd > Cr. On the other hand, the brain and liver show Zn > Cu > Pb > Cd > Cr trend. Comparatively, the heavy metals concentration was mostly higher (P < 0.05) in wild fish. Further; in both fish habitats (water) the heavy metals (Cd and Pb) concentration was higher than the WHO standard level, while in the body, Cd was higher (P < 0.05) in all studied organs except the muscle, Cr was only lower (P > 0.05) in muscle and brain. Pb was higher (P < 0.05) in all studied organs of both fish. Bioaccumulation of heavy metals was mostly higher (P < 0.05) in wild fish than in farmed. EDI and THQ were higher in wild fish, but the HI value was lower than 1 for both fish. Moreover, the PCA analysis suggests a positive correlation between heavy metals concentration in fish organs and the water of both fish (wild and farmed). Results indicated that farmed fish showed less potential risk to humans than wild fish.
Collapse
Affiliation(s)
- Syed Sikandar Habib
- Department of Zoology, University of Sargodha, Sargodha, 40100, Punjab, Pakistan
| | - Saira Naz
- Institute of Molecular Biology and Biotechnology, University of Lahore Sargodha Campus, Sargodha, 40100, Punjab, Pakistan
| | - Francesco Fazio
- Department of Veterinary Sciences, University of Messina, Via Palatuccisnc, 98168, Messina, Italy.
| | - Cristina Cravana
- Department of Veterinary Sciences, University of Messina, Via Palatuccisnc, 98168, Messina, Italy
| | - Mujeeb Ullah
- Department of Zoology, Islamia College University, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| | - Khalid Hussain Rind
- Department of Molecular Biology and Genetics, Shaheed Benazir Bhutto University Shaheed Benazirabad, Nawabshah, 67450, Sindh, Pakistan
| | - Sobia Attaullah
- Department of Zoology, Islamia College University, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| | - Francesco Filiciotto
- Institute of Polar Science, National Research Council, Unit of Messina, Messina, Italy
| | - Khayyam Khayyam
- Department of Zoology, Islamia College University, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
33
|
Azzouz A, Hejji L, Kumar V, Kim KH. Nanomaterials-based aptasensors: An efficient detection tool for heavy-metal and metalloid ions in environmental and biological samples. ENVIRONMENTAL RESEARCH 2023; 238:117170. [PMID: 37722582 DOI: 10.1016/j.envres.2023.117170] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/01/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
In light of potential risks of heavy metal exposure, diverse aptasensors have been developed through the combination of aptamers with nanomaterials for the timely and efficient detection of metals in environmental and biological matrices. Aptamer-based sensors can benefit from multiple merits such as heightened sensitivity, facile production, uncomplicated operation, exceptional specificity, enhanced stability, low immunogenicity, and cost-effectiveness. This review highlights the detection capabilities of nanomaterial-based aptasensors for heavy-metal and metalloid ions based on their performance in terms of the basic quality assurance parameters (e.g., limit of detection, linear dynamic range, and response time). Out of covered studies, dendrimer/CdTe@CdS QDs-based ECL aptasensor was found as the most sensitive option with an LOD of 2.0 aM (atto-molar: 10-18 M) detection for Hg2+. The existing challenges in the nanomaterial-based aptasensors and their scientific solutions are also discussed.
Collapse
Affiliation(s)
- Abdelmonaim Azzouz
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002, Tetouan, Morocco
| | - Lamia Hejji
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002, Tetouan, Morocco; Department of Chemical, Environmental, and Materials Engineering, Higher Polytechnic School of Linares, University of Jaén, Campus Científico-Tecnológico, Cinturón Sur S/n, 23700, Linares, Jaén, Spain
| | - Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab, 140306, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, South Korea.
| |
Collapse
|
34
|
Jan S, Mishra AK, Bhat MA, Bhat MA, Jan AT. Pollutants in aquatic system: a frontier perspective of emerging threat and strategies to solve the crisis for safe drinking water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:113242-113279. [PMID: 37864686 DOI: 10.1007/s11356-023-30302-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 10/03/2023] [Indexed: 10/23/2023]
Abstract
Water is an indispensable natural resource and is the most vital substance for the existence of life on earth. However, due to anthropogenic activities, it is being polluted at an alarming rate which has led to serious concern about water shortage across the world. Moreover, toxic contaminants released into water bodies from various industrial and domestic activities negatively affect aquatic and terrestrial organisms and cause serious diseases such as cancer, renal problems, gastroenteritis, diarrhea, and nausea in humans. Therefore, water treatments that can eliminate toxins are very crucial. Unfortunately, pollution treatment remains a difficulty when four broad considerations are taken into account: effectiveness, reusability, environmental friendliness, and affordability. In this situation, protecting water from contamination or creating affordable remedial techniques has become a serious issue. Although traditional wastewater treatment technologies have existed since antiquity, they are both expensive and inefficient. Nowadays, advanced sustainable technical approaches are being created to replace traditional wastewater treatment processes. The present study reviews the sources, toxicity, and possible remediation techniques of the water contaminants.
Collapse
Affiliation(s)
- Saima Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, 185234, J&K, India
| | | | - Mujtaba Aamir Bhat
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, 185234, J&K, India
| | - Mudasir Ahmad Bhat
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, 185234, J&K, India
| | - Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, 185234, J&K, India.
| |
Collapse
|
35
|
Saravanan A, Swaminaathan P, Kumar PS, Yaashikaa PR, Kamalesh R, Rangasamy G. A comprehensive review on immobilized microbes - biochar and their environmental remediation: Mechanism, challenges and future perspectives. ENVIRONMENTAL RESEARCH 2023; 236:116723. [PMID: 37487925 DOI: 10.1016/j.envres.2023.116723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/07/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
The environment worldwide has been contaminated by toxic pollutants and chemicals through anthropogenic activities, industrial growth, and urbanization. Microbial remediation is seen to be superior compared to conventional remediation due to its low cost, selectivity towards particular metal ions, and high efficiency. One key strategy in enhancing microbial remediation is employing an immobilization technique with biochar as a carrier. This review provides a comprehensive summary of sources and toxic health effects of hazardous water pollutants on human health and the environment. Biochar enhances the growth and proliferation of contaminant-degrading microbes. The combined activity of biochar and microbes in eliminating the contaminants has gained the researcher's interest. Biochar demonstrates its biocompatibility by fostering microbial populations, the release of enzymes, and protecting the microbes from the acute toxicity of surrounding contaminants. The current review complies with the immobilization technique and remediation mechanisms of microbes in pollutant removal. This review also emphasizes the combined utilization, environmental adaptability, and the potential of the combined effect of immobilized microbes and biochar in the remediation of contaminants. Challenges and future outlooks are urged to commercialize the immobilized microbes-biochar interaction mechanism for environmental remediation.
Collapse
Affiliation(s)
- A Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Pavithra Swaminaathan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; School of Engineering, Lebanese American University, Byblos, Lebanon.
| | - P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - R Kamalesh
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| |
Collapse
|
36
|
Gomes PR, Pestana IA, de Almeida MG, de Rezende CE. The Paraíba do Sul River Basin and its coastal area as a study model of the mercury cycle: A meta-analytical review of three decades of research. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132442. [PMID: 37683351 DOI: 10.1016/j.jhazmat.2023.132442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/05/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023]
Abstract
The Paraíba do Sul River (PSR) Basin is a crucial drainage basin in Southeast Brazil, being the most industrialized and densely populated region in the country. Over the last three decades, the basin has been the subject of numerous studies due to its long history of mercury (Hg) contamination. This makes the PSR Basin an excellent model to evaluate Hg cycling, which is a priority for signatory countries of the Minamata Convention, which includes Brazil. This review compiled data on Hg from five environmental compartments (animals, plants, sediment, suspended particulate matter (SPM), and water), three different sectors (upper, middle, and lower) and five different ecosystems (reservoir, mangrove, fluvial, estuarine, and coastal) from 60 published studies, aiming to understand the Hg cycling through meta-analyses. The highest concentrations of Hg were observed in the upper and middle sectors of the basin, which are areas with high industrialization and urbanization levels. Among the evaluated ecosystems, hydropower reservoirs showed the highest medians and were also frequent in the upper and middle portions of the PSR basin. Over the years, all environmental compartments showed a decline in Hg concentrations due to the implementation of federal and state environmental policies. The main source of Hg for the basin was Hg-rich soils from past activities (such as artisanal small-scale gold mining and the use of organomercurial fungicides in sugarcane plantations). These results can assist decision-makers in the management of the basin's ecosystems and can also be used to evaluate the effectiveness of implementing the Minamata Convention in the region.
Collapse
Affiliation(s)
- Philipe Ribeiro Gomes
- Programa de Pós-Graduação em Ecologia e Recursos Naturais, Laboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, 2000 - Parque Califórnia - CEP: 28013-602, Campos dos Goytacazes, Rio de Janeiro, Brazil.
| | - Inácio Abreu Pestana
- Programa de Pós-Graduação em Ecologia e Recursos Naturais, Laboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, 2000 - Parque Califórnia - CEP: 28013-602, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Marcelo Gomes de Almeida
- Programa de Pós-Graduação em Ecologia e Recursos Naturais, Laboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, 2000 - Parque Califórnia - CEP: 28013-602, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Carlos Eduardo de Rezende
- Programa de Pós-Graduação em Ecologia e Recursos Naturais, Laboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, 2000 - Parque Califórnia - CEP: 28013-602, Campos dos Goytacazes, Rio de Janeiro, Brazil
| |
Collapse
|
37
|
Khan M, Ahmed S, Yasin NA, Sardar R, Hussaan M, Gaafar ARZ, Haider FU. 28-Homobrassinolide Primed Seed Improved Lead Stress Tolerance in Brassica rapa L. through Modulation of Physio-Biochemical Attributes and Nutrient Uptake. PLANTS (BASEL, SWITZERLAND) 2023; 12:3528. [PMID: 37895994 PMCID: PMC10610288 DOI: 10.3390/plants12203528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
Abstract
Brassinosteroids (BRs) influence a variety of physiological reactions and alleviate different biotic and abiotic stressors. Turnip seedlings were grown with the goal of further exploring and expanding their function in plants under abiotic stress, particularly under heavy metal toxicity (lead stress). This study's objective was to ascertain the role of applied 28-homobrassinolide (HBL) in reducing lead (Pb) stress in turnip plants. Turnip seeds treated with 1, 5, and 10 µM HBL and were grown-up in Pb-contaminated soil (300 mg kg-1). Lead accumulation reduces biomass, growth attributes, and various biochemical parameters, as well as increasing proline content. Seed germination, root and shoot growth, and gas exchange characteristics were enhanced via HBL treatment. Furthermore, Pb-stressed seedlings had decreased total soluble protein concentrations, photosynthetic pigments, nutrition, and phenol content. Nonetheless, HBL increased chlorophyll a and chlorophyll b levels in plant, resulting in increased photosynthesis. As a result, seeds treated with HBL2 (5 µM L-1) had higher nutritional contents (Mg+2, Zn+2, Na+2, and K+1). HBL2-treated seedlings had higher DPPH and metal tolerance indexes. This led to the conclusion that HBL2 effectively reduced Pb toxicity and improved resistance in lead-contaminated soil.
Collapse
Affiliation(s)
- Mawra Khan
- Institute of Botany, University of the Punjab, Lahore 54590, Pakistan
| | - Shakil Ahmed
- Institute of Botany, University of the Punjab, Lahore 54590, Pakistan
| | - Nasim Ahmad Yasin
- SSG RO-II Department, University of the Punjab, Lahore 54590, Pakistan
| | - Rehana Sardar
- Institute of Botany, University of the Punjab, Lahore 54590, Pakistan
| | - Muhammad Hussaan
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Abdel-Rhman Z. Gaafar
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | |
Collapse
|
38
|
Tasleem S, Masud S, Habib SS, Naz S, Fazio F, Aslam M, Ullah M, Attaullah S. Investigation of the incidence of heavy metals contamination in commonly used fertilizers applied to vegetables, fish ponds, and human health risk assessments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:100646-100659. [PMID: 37639089 DOI: 10.1007/s11356-023-29480-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/20/2023] [Indexed: 08/29/2023]
Abstract
Overuse of fertilizers on agricultural lands and fish ponds may result in serious pollution problems, such as heavy metals that can enter the food chain and pose serious health problems. Due to this, the present study investigates the incidence of heavy metals in commonly used fertilizers and its association with heavy metals in vegetables, soil, fish species, and pond water. Samples were collected from different sites (fields and ponds) in district Kohat, where the application of fertilizers was common and control groups (no fertilizers used). Heavy metal analysis was carried out through a spectrophotometer. Results showed higher Cd and Cr concentrations in triple superphosphate (TSP), Cu and Pb in nitrogen, phosphorus, and potassium (NPK), while lower concentrations were found in gypsum. In vegetables (onion, tomato, brinjal, and potato) and associated soil, most of the heavy metals concentrations were significantly higher (P < 0.05) in fertilizer-applied sites than in the control. Also, the Cd concentration in potatoes and Pb level in all vegetables obtained from sites were greater than the WHO/FAO standard limit. In the case of fish species (Hypophthalmichthys molitrix and Cyprinus carpio) muscles and their habitat (water), all the understudy heavy metals were notably higher (P < 0.05) in fertilizer-applied sites (ponds) than the control group. Collectively, in all vegetables and muscles of fish species, the bioaccumulation factor was higher in sites compared to the control. The estimated daily intake (EDI) and target hazard quotient (THQ) values were also higher in fertilizer-applied sites (fields and ponds) than control. The health index (HI) value was > 1 in vegetables (onion, tomato, and potato) and fish muscles collected from different sites compared to the control. Thus, there is the possibility of severe health risks. The use of fertilizers must be carefully monitored in order to ensure that humans and animals are safe from exposure to heavy metals.
Collapse
Affiliation(s)
- Samiyah Tasleem
- Department of Biotechnology, Hafiz Ilayas Institute of Pharmaceuticals and Herbal Sciences Karachi, Sindh, Pakistan
| | - Samrah Masud
- Institute of Zoology, Bahauddin Zakariya University, Multan, Punjab, 60800, Pakistan
| | - Syed Sikandar Habib
- Department of Zoology, University of Sargodha, Sargodha, Punjab, 40100, Pakistan
| | - Saira Naz
- Institute of Molecular Biology and Biotechnology, University of Lahore Sargodha Campus, Sargodha, Punjab, 40100, Pakistan
| | - Francesco Fazio
- Department of Veterinary Sciences, Via Palatuccisnc, University of Messina, 98168, Messina, Italy.
| | - Muhammad Aslam
- Department of Zoology, Islamia College University, Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Mujeeb Ullah
- Department of Zoology, Islamia College University, Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Sobia Attaullah
- Department of Zoology, Islamia College University, Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| |
Collapse
|
39
|
Singaram P, Retnamma J, Cheruparambil R, Nagarathinam A, Loganathan J, Thangaraj JR, Radhakrishnan SS. Heavy metals concentration in zooplankton (copepods) in the western Bay of Bengal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:101565-101584. [PMID: 37653191 DOI: 10.1007/s11356-023-29112-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/28/2023] [Indexed: 09/02/2023]
Abstract
Along the coastline, urbanisation and industrialization pose significant challenges to marine habitats and biodiversity. Most wastewater that reaches the marine environment contains toxic metals, which, as they are non-biodegradable, accumulate in the biota and enter the marine food chain. This study presents the concentration of nine heavy metals (Fe, Zn, Cu, Co, Cr, Mn, Ni, Pb, and Cd) in zooplankton (copepods) during the Spring Intermonsoon/Pre-Monsoon (April 2019) in the western Bay of Bengal (BoB). Higher Fe concentrations were found in copepods both nearshore (42,352 µg/g) and offshore (9835 µg/g). However, the relative amounts of heavy metals in copepods from 16 locations (eight nearshore and eight offshore) varied in the order of Fe > Zn > Cu > Co > Cr > Mn > Ni > Pb > Cd. The copepods in the nearshore locations had higher concentrations of heavy metals than those offshore. Compared to earlier data on heavy metals, particularly those that are physiologically non-essential and toxic, the current study demonstrates higher amounts of these metals in copepods in the inshore BoB [Ni (avg. 58.7 ± 5.5 µg/g), Pb (avg. 25.6 ± 4.7 µg/g), and Cd (avg. 16.4 ± 0.9 µg/g)]. Considering the strong East India Coastal Currents in the western BoB, trace metal-concentrated copepods could be transported too far along the Indian coastline from the current study area.
Collapse
Affiliation(s)
- Parthasarathi Singaram
- CSIR- National Institute of Oceanography, Regional Centre, Kochi, India
- Research Student, Bharathidasan University, Tiruchirappalli, India
| | | | - Rashid Cheruparambil
- CSIR- National Institute of Oceanography, Regional Centre, Kochi, India
- Research Student, Bharathidasan University, Tiruchirappalli, India
| | | | - Jagadeesan Loganathan
- CSIR- National Institute of Oceanography, Regional Centre, Kochi, India
- CSIR- National Institute of Oceanography, Regional Centre, Vishakhapatnam, India
| | | | | |
Collapse
|
40
|
Nthwane Y, Fouda-Mbanga BG, Thwala M, Pillay K. Synthesis and Characterization of MC/TiO 2 NPs Nanocomposite for Removal of Pb 2+ and Reuse of Spent Adsorbent for Blood Fingerprint Detection. ACS OMEGA 2023; 8:26725-26738. [PMID: 37546658 PMCID: PMC10399188 DOI: 10.1021/acsomega.2c05765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 03/14/2023] [Indexed: 08/08/2023]
Abstract
The removal of toxic heavy metals from wastewater through the use of novel adsorbents is expensive. The challenge arises after the heavy metal is removed by the adsorbent, and the fate of the adsorbent is not taken care of. This may create secondary pollution. The study aimed to prepare mesoporous carbon (MC) from macadamia nutshells coated with titanium dioxide nanoparticles (TiO2 NPs) using a hydrothermal method to remove Pb2+ and to test the effectiveness of reusing the lead-loaded spent adsorbent (Pb2+-MC/TiO2 NP nanocomposite) in blood fingerprint detection. The samples were characterized using SEM, which confirmed spherical and flower-like structures of the nanomaterials, whereas TEM confirmed a particle size of 5 nm. The presence of functional groups such as C and Ti and a crystalline size of 4 nm were confirmed by FTIR and XRD, respectively. The surface area of 1283.822 m2/g for the MC/TiO2 NP nanocomposite was examined by BET. The removal of Pb2+ at pH 4 and the dosage of 1.6 g/L with the highest percentage removal of 98% were analyzed by ICP-OES. The Langmuir isotherm model best fit the experimental data, and the maximum adsorption capacity of the MC/TiO2 NP nanocomposite was 168.919 mg/g. The adsorption followed the pseudo-second-order kinetic model. The ΔH° (-54.783) represented the exothermic nature, and ΔG° (-0.133 to -4.743) indicated that the adsorption process is spontaneous. In the blood fingerprint detection, the fingerprint details were more visible after applying the Pb2+-MC/TiO2 NP nanocomposite than before the application. The reuse application experiments showed that the Pb2+-MC/TiO2 NP nanocomposite might be a useful alternative material for blood fingerprint enhancement when applied on nonporous surfaces, eliminating secondary pollution.
Collapse
Affiliation(s)
- Yvonne
Boitumelo Nthwane
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg 2028, South Africa
| | - Bienvenu Gael Fouda-Mbanga
- Department
of Chemistry, Center for Rubber Science and Technology, Nelson Mandela University, Gqeberha 6031, South Africa
| | - Melusi Thwala
- Science
Advisory and Strategic Partnerships, Academy
of Science of South Africa, Pretoria 0040, South Africa
- Department
of Environmental Health, Nelson Mandela
University, Port Elizabeth 6031, South Africa
| | - Kriveshini Pillay
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg 2028, South Africa
| |
Collapse
|
41
|
Bober P, Minisy IM, Morávková Z, Hlídková H, Hodan J, Hromádková J, Acharya U. Polypyrrole Aerogels: Efficient Adsorbents of Cr(VI) Ions from Aqueous Solutions. Gels 2023; 9:582. [PMID: 37504461 PMCID: PMC10379293 DOI: 10.3390/gels9070582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023] Open
Abstract
Three-dimensional and porous polypyrrole (PPy) aerogels were prepared using a facile two-step procedure in which cryogels were synthesized via the cryopolymerization of pyrrole with iron (III) chloride in the presence of supporting water-soluble polymers (poly(N-vinylpyrrolidone), poly(vinyl alcohol), gelatin, methylcellulose or hydroxypropylcellulose), followed by freeze-drying to obtain aerogels. The choice of supporting polymers was found to affect the morphology, porosity, electrical conductivity, and mechanical properties of PPy aerogels. PPy aerogels were successfully used as adsorbents to remove toxic Cr(VI) ions from aqueous solutions.
Collapse
Affiliation(s)
- Patrycja Bober
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 00 Prague, Czech Republic
| | - Islam M Minisy
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 00 Prague, Czech Republic
| | - Zuzana Morávková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 00 Prague, Czech Republic
| | - Helena Hlídková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 00 Prague, Czech Republic
| | - Jiří Hodan
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 00 Prague, Czech Republic
| | - Jiřina Hromádková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 00 Prague, Czech Republic
| | - Udit Acharya
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 00 Prague, Czech Republic
| |
Collapse
|
42
|
Karbalaee Hosseini A, Tadjarodi A. Novel Zn metal-organic framework with the thiazole sites for fast and efficient removal of heavy metal ions from water. Sci Rep 2023; 13:11430. [PMID: 37454199 PMCID: PMC10349873 DOI: 10.1038/s41598-023-38523-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023] Open
Abstract
Pollution of water by heavy metal ions such as Pb2+ and Hg2+ is considered as an important issue, because of the potential toxic effects these ions impose on environmental ecosystems and human health. A new Zn-based metal-organic framework, [Zn2(DPTTZ) (OBA)2] (IUST-2), was synthesized through a solvothermal method by the reaction of 2, 5-di (4- pyridyl) thiazolo [5, 4-d] thiazole ligand (DPTTZ), the "V-shape" 4,4'-oxybis (benzoic acid) ligand (OBA) and zinc nitrate (Zn(NO3)2·6H2O). This novel MOF has been characterized by several analysis techniques such as fourier transform infrared spectroscopy (FT-IR), elemental analysis (EA), powder x-ray diffraction (PXRD), thermogravimetry analysis (TGA), differential thermal analysis (DTA), field emission scanning electron microscopy (FE-SEM), Brunauer-Emmett-Teller (BET) surface area analysis and single-crystal X-ray diffraction (SXRD). This 3D MOF was tested for removing Pb2+ and Hg2+ ions from water. The factors that were investigated on the elimination of Pb2+ and Hg2+ ions were of pH, adsorption time, and the effect of initial ions concentration. According to the results, this particular Zn-MOF had significant performance in eliminating Pb2+ and Hg2+ ions from water with a removal efficiency of more than 97% and 87% within 3 min, respectively.
Collapse
Affiliation(s)
- Akram Karbalaee Hosseini
- Research Laboratory of Inorganic Materials Synthesis, Department of Chemistry, Iran University of Science and Technology (IUST), Tehran, 16846-13114, Iran
| | - Azadeh Tadjarodi
- Research Laboratory of Inorganic Materials Synthesis, Department of Chemistry, Iran University of Science and Technology (IUST), Tehran, 16846-13114, Iran.
| |
Collapse
|
43
|
Li Y, Mu Z, Yuan Y, Zhou J, Bai L, Qing M. An enzymatic activity regulation-based clusterzyme sensor array for high-throughput identification of heavy metal ions. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131501. [PMID: 37119573 DOI: 10.1016/j.jhazmat.2023.131501] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/19/2023]
Abstract
The accurate identification and sensitive quantification of heavy metal ions are of great significance, considering that pose a serious threat to environment and human health. Most array-based sensing platforms, to date, utilize nanozymes as sensing elements, but few studies have explored the application of the peroxidase-like activity of clusterzymes in identification of multiple analytes. Herein, for the first time, we developed a clusterzyme sensor array utilizing gold nanoclusters (AuNCs) as sensing elements for five heavy metal ions identification including Hg2+, Pb2+, Cu2+, Cd2+ and Co2+. The heavy metal ions can differentially regulate the peroxidase-like activity of AuNCs, and that can be converted into colorimetric signals with 3,3',5,5'-tetramethylbenzidine (TMB) as the chromogenic substrate. Subsequently, the generated composite responses can be interpreted by combining pattern recognition algorithms. The developed clusterzyme sensor array can identify five heavy metal ions at concentrations as low as 0.5 μM and their multi-component mixtures. Especially, we demonstrated the successful identification of multiple heavy metal ions in tap water and traditional Chinese medicine, with an accuracy of 100% in blind test. This study provided a simple and effective method for identification and quantification of heavy metal ions, rendering a promising technique for environmental monitoring and drug safety assurance.
Collapse
Affiliation(s)
- Yueyuan Li
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Zhaode Mu
- Research Center for Pharmacodynamic Evaluation Engineering Technology of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Yonghua Yuan
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Jing Zhou
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Lijuan Bai
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China.
| | - Min Qing
- Research Center for Pharmacodynamic Evaluation Engineering Technology of Chongqing, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
44
|
Wang T, Cao W, Wang Y, Qu C, Xu Y, Li H. Surface modification of quartz sand: A review of its progress and its effect on heavy metal adsorption. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115179. [PMID: 37356400 DOI: 10.1016/j.ecoenv.2023.115179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 06/27/2023]
Abstract
Quartz sand (SiO2) is a prevalent filtration medium, boasting wide accessibility, superior stability, and cost-effectiveness. However, its utility is often curtailed by its sleek surface, limited active sites, and swift saturation of adsorption sites. This review outlines the prevalent strategies and agents for quartz sand surface modification and provides a comprehensive analysis of the various modification reagents and their operative mechanisms. It delves into the mechanism and utility of surface-modified quartz sand for adsorbing heavy metal ions (HMIs). It is found that the reported modifiers usually form connections with the surface of quartz sand through electrostatic forces, van der Waals forces, pore filling, chemical bonding, and/or molecular entanglement. The literature suggests that these modifications effectively address issues inherent to natural quartz sand, such as its low superficial coarseness, rapid adsorption site saturation, and limited adsorption capacity. Regrettably, comprehensive investigations into the particle size, regenerative capabilities, and application costs of surface-modified quartz sand and the critical factors for its wider adoption are lacking in most reports. The adsorption mechanisms indicate that surface-modified quartz sand primarily removes HMIs from aqueous solutions through surface complexation, ion exchange, and electrostatic and gravitational forces. However, these findings were derived under controlled laboratory conditions, and practical applications for treating real wastewater necessitate overcoming further laboratory-scale obstacles. Finally, this review outlines the limitations of partially surface modified quartz sand and suggests potential venues for future developments, providing a valuable reference for the advancement of cost-effective, HMI-absorbing, surface-modified quartz sand filter media.
Collapse
Affiliation(s)
- Ting Wang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
| | - Weiyuan Cao
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
| | - Yingqi Wang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
| | - Chao Qu
- Handan Environmental Monitoring Center Station, Handan 056000, China
| | - Yufeng Xu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China; Chinese Acad Sci, Res Ctr Ecoenvironm Sci, Beijing 100085, China.
| | - Haixiang Li
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China.
| |
Collapse
|
45
|
Muratova A, Golubev S, Romanova V, Sungurtseva I, Nurzhanova A. Effect of Heavy-Metal-Resistant PGPR Inoculants on Growth, Rhizosphere Microbiome and Remediation Potential of Miscanthus × giganteus in Zinc-Contaminated Soil. Microorganisms 2023; 11:1516. [PMID: 37375018 DOI: 10.3390/microorganisms11061516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Microbial-assisted phytoremediation is considered a more effective approach to soil rehabilitation than the sole use of plants. Mycolicibacterium sp. Pb113 and Chitinophaga sp. Zn19, heavy-metal-resistant PGPR strains originally isolated from the rhizosphere of Miscanthus × giganteus, were used as inoculants of the host plant grown in control and zinc-contaminated (1650 mg/kg) soil in a 4-month pot experiment. The diversity and taxonomic structure of the rhizosphere microbiomes, assessed with metagenomic analysis of rhizosphere samples for the 16S rRNA gene, were studied. Principal coordinate analysis showed differences in the formation of the microbiomes, which was affected by zinc rather than by the inoculants. Bacterial taxa affected by zinc and the inoculants, and the taxa potentially involved in the promotion of plant growth as well as in assisted phytoremediation, were identified. Both inoculants promoted miscanthus growth, but only Chitinophaga sp. Zn19 contributed to significant Zn accumulation in the aboveground part of the plant. In this study, the positive effect of miscanthus inoculation with Mycolicibacterium spp. and Chitinophaga spp. was demonstrated for the first time. On the basis of our data, the bacterial strains studied may be recommended to improve the efficiency of M. × giganteus phytoremediation of zinc-contaminated soil.
Collapse
Affiliation(s)
- Anna Muratova
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia
| | - Sergey Golubev
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia
| | - Valeria Romanova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420021 Kazan, Russia
| | - Irina Sungurtseva
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia
| | - Asil Nurzhanova
- Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan
| |
Collapse
|
46
|
Sudegi P, Bagheri R, Jafari H, Qishlaqi A. Groundwater conceptual pollution model and related human health hazards, the main dilemma of a desert aquifer near ophiolite complex. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:4025-4042. [PMID: 36633754 DOI: 10.1007/s10653-023-01482-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 01/04/2023] [Indexed: 06/01/2023]
Abstract
Groundwater is a finite resource in Davarzan region which is located between the ophiolite complex mountain in the north and salty playa at the south. The water samples were analyzed to assess the origin of groundwater pollution and explain links between the disturbed heavy metals composition of the earth's surface and the human health risks. The main heavy metal pollutants in the groundwater are Cr, Fe, As and Pb ions. In general, the groundwater salinity and some elements such as Cr and As are increased along with surface topography and groundwater flow directions from the northern ophiolite highlands recharge area to the adjacent desert discharging zone in the south. Despite the ophiolite complexes being the most enriched in Cr element, the lowest Cr concentration in the groundwater was measured near the ophiolite area, which is in the range of its discharged springs. Based on the groundwater conceptual pollution model, bedrock geochemistry controls the composition of soil and hence that of groundwater. The Cr samples show a direct relation with the EC value indicating that intrusion of salinity from the salt pan is probably another reason for the increased Cr concentration. The results of health risk assessment indicated that the groundwater suffered from significant contamination and if used for long-term without pre-treatment may pose serious health risks to human population via drinking water and irrigation of agricultural fields. This is the first attempt to apply hydrogeological setting along with the source of pollution and its health risk in a desert-ophiolitic area.
Collapse
Affiliation(s)
- Peyman Sudegi
- Faculty of Earth Sciences, Shahrood University of Technology, Shahrood, Iran
| | - Rahim Bagheri
- Faculty of Earth Sciences, Shahrood University of Technology, Shahrood, Iran.
| | - Hadi Jafari
- Faculty of Earth Sciences, Shahrood University of Technology, Shahrood, Iran
| | - Afshin Qishlaqi
- Faculty of Earth Sciences, Shahrood University of Technology, Shahrood, Iran
| |
Collapse
|
47
|
Wódkowska A, Gruszecka-Kosowska A. Dietary exposure to potentially harmful elements in edible plants in Poland and the health risk dynamics related to their geochemical differentiation. Sci Rep 2023; 13:8521. [PMID: 37231099 DOI: 10.1038/s41598-023-35647-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023] Open
Abstract
Differences in the health risk values calculated for consumers of potentially harmful elements (PHEs) present in edible plants were investigated. Based on a comprehensive literature search, the highest PHE contents in plants were identified in the southern and western regions of Poland, that also revealed the highest geochemical enrichment with Zn, Pb, Cu, As, Cd, and Tl. The highest unacceptable non-carcinogenic risk (HQ) values for mean PHE contents in Poland were found for Pb: toddlers (2.80), pre-schoolers (1.80), and school-aged children (1.45) and for Cd for toddlers (1.42). The highest unacceptable carcinogenic risk (CR) values for mean As content was observed for adults (5.9 × 10-5). The highest non-carcinogenic risk values for consumers were reported in Silesia, Lower Silesia, Lublin, Lesser Poland, and Opole Provinces, indicating the impact of geochemical variability on risk values.
Collapse
Affiliation(s)
- Agata Wódkowska
- Department of Environmental Protection, Faculty of Geology, Geophysics, and Environmental Protection, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059, Kraków, Poland
| | - Agnieszka Gruszecka-Kosowska
- Department of Environmental Protection, Faculty of Geology, Geophysics, and Environmental Protection, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059, Kraków, Poland.
| |
Collapse
|
48
|
Tripathi S, Parmar D, Fathima S, Raval S, Singh G. Coenzyme Q10, Biochanin A and Phloretin Attenuate Cr(VI)-Induced Oxidative Stress and DNA Damage by Stimulating Nrf2/HO-1 Pathway in the Experimental Model. Biol Trace Elem Res 2023; 201:2427-2441. [PMID: 35953644 DOI: 10.1007/s12011-022-03358-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/12/2022] [Indexed: 11/02/2022]
Abstract
Hexavalent chromium [Cr(VI)] has emerged as a prevailing environmental and occupational contaminant over the past few decades. However, the knowledge is sparse regarding Cr(VI)-induced neurological aberrations, and its remediation through natural bioactive compounds has not been fully explored. This study intended to probe the possible invigorative effects of nutraceuticals such as coenzyme Q10 (CoQ10), biochanin A (BCA), and phloretin (PHL) on Cr(VI) intoxicated Swiss albino mice with special emphasis on Nrf2/HO-1/NQO1 gene expressions. Mice received potassium dichromate (75 ppm) through drinking water and were simultaneously co-treated intraperitoneally with CoQ10 (10 mg/kg), BCA, and PHL (50 mg/kg) each for 30-day treatment period. The statistics highlight the elevated levels of lipid peroxidation (LPO) and protein carbonyl content (PCC) with a concomitant reduction in the superoxide dismutase (SOD), glutathione-S-transferase (GST), reduced glutathione (GSH), total thiols (TT), catalase (CAT), and cholinesterase activities in the Cr(VI)-exposed mice. The collateral assessment of DNA fragmentation, DNA breakages, and induced histological alterations was in conformity with the above findings in conjugation with the dysregulation in the Nrf2 and associated downstream HO-1 and NQO1 gene expressions. Co-treatment with the selected natural compounds reversed the above-altered parameters significantly, thereby bringing cellular homeostasis in alleviating the Cr(VI)-induced conciliated impairments. Our study demonstrated that the combination of different bioactive compounds shields the brain better against Cr(VI)-induced neurotoxicity by revoking the oxidative stress-associated manifestations. These compounds may represent a new potential combination therapy due to their ability to modulate the cellular antioxidant responses by upregulating the Nrf2/HO-1/NQO1 signaling pathway against Cr(VI)-exposed population. HIGHLIGHTS: Cr(VI)-associated heavy metal exposure poses a significant threat to the environment, especially to living organisms. Cr(VI) exposure for 30 days resulted in the free radical's generation that caused neurotoxicity in the Swiss albino mice. Natural compounds such as coenzyme Q10, biochanin A, and phloretin counteracted the neurotoxic effect due to Cr(VI) exposure in scavenging of free radicals by enhancing Nrf2/HO-1/NQO1 gene expressions in maintaining the cellular homeostasis.
Collapse
Affiliation(s)
- Swapnil Tripathi
- Toxicology Department, ICMR-National Institute of Occupational Health, Ahmedabad, 380016, India
- Department of Biochemistry & Forensic Science, Gujarat University, Ahmedabad, 380009, India
| | - Dharati Parmar
- Toxicology Department, ICMR-National Institute of Occupational Health, Ahmedabad, 380016, India
| | - Shabrin Fathima
- Toxicology Department, ICMR-National Institute of Occupational Health, Ahmedabad, 380016, India
| | - Samir Raval
- College of Veterinary Science and Animal Husbandry, Kamdhenu University, Sardarkrushinagar, 385506, India
| | - Gyanendra Singh
- Toxicology Department, ICMR-National Institute of Occupational Health, Ahmedabad, 380016, India.
| |
Collapse
|
49
|
Bhavya G, De Britto S, Satapute P, Geetha N, Jogaiah S. Biofabricated yeast: super-soldier for detoxification of heavy metals. World J Microbiol Biotechnol 2023; 39:148. [PMID: 37022650 DOI: 10.1007/s11274-023-03596-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/27/2023] [Indexed: 04/07/2023]
Abstract
The advances in nanotechnology have shown enormous impacts in environmental technology as a potent weapon for degradation of toxic organic pollutants and detoxification of heavy metals. It is either by in-situ or ex-situ adaptive strategies. Mycoremediation of environmental pollutants has been a success story of the past decade, by employing the wide arsenal of biological capabilities of fungi. Recently, the proficiency and uniqueness of yeast cell surface alterations have encouraged the generation of engineered yeast cells as dye degraders, heavy metal reduction and its recovery, and also as detoxifiers of various hazardous xenobiotic compounds. As a step forward, recent trends in research are towards developing biologically engineered living materials as potent, biocompatible and reusable hybrid nanomaterials. They include chitosan-yeast nanofibers, nanomats, nanopaper, biosilica hybrids, and TiO2-yeast nanocomposites. The nano-hybrid materials contribute significantly as supportive stabilizer, and entrappers, which enhances the biofabricated yeast cells' functionality. This field serves as an eco-friendly cutting-edge cocktail research area. In this review, we highlight recent research on biofabricated yeast cells and yeast-based biofabricated molecules, as potent heavy metals, toxic chemical detoxifiers, and their probable mechanistic properties with future application perspectives.
Collapse
Affiliation(s)
- Gurulingaiah Bhavya
- Nanobiotechnology laboratory, Department of Biotechnology, University of Mysore, Manasagangotri, Mysuru, Karnataka, 570006, India
| | - Savitha De Britto
- Division of Biological Sciences, School of Science and Technology, University of Goroka, 441, Goroka, Papua New Guinea
| | - Praveen Satapute
- Laboratory of Plant Healthcare and Diagnostics, Department of Biotechnology and Microbiology, Karnatak University, Dharwad, PG, Karnataka, 580 003, India
| | - Nagaraja Geetha
- Nanobiotechnology laboratory, Department of Biotechnology, University of Mysore, Manasagangotri, Mysuru, Karnataka, 570006, India
| | - Sudisha Jogaiah
- Laboratory of Plant Healthcare and Diagnostics, Department of Biotechnology and Microbiology, Karnatak University, Dharwad, PG, Karnataka, 580 003, India.
- Department of Environmental Science, Central University of Kerala, Tejaswini Hills, Periye (PO), Kasaragod (DT), Periye, Kerala, 671316, India.
| |
Collapse
|
50
|
Pasupuleti RR, Huang Y. Recent applications of atomic spectroscopy coupled with magnetic solid‐phase extraction techniques for heavy metal determination in environmental samples: A review. J CHIN CHEM SOC-TAIP 2023. [DOI: 10.1002/jccs.202300029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Affiliation(s)
- Raghavendra Rao Pasupuleti
- Department of Medical Laboratory Science and Biotechnology Kaohsiung Medical University Kaohsiung Taiwan
| | - Yeou‐Lih Huang
- Department of Medical Laboratory Science and Biotechnology Kaohsiung Medical University Kaohsiung Taiwan
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital Kaohsiung Medical University Kaohsiung Taiwan
- Graduate Institute of Medicine Kaohsiung Medical University Kaohsiung Taiwan
- Research Center for Precision Environmental Medicine Kaohsiung Medical University Kaohsiung Taiwan
- Department of Chemistry National Sun Yat‐sen University Kaohsiung Taiwan
| |
Collapse
|