1
|
Wang L, Xu X, Zhang Z, Li K, Yang Y, Zheng W, Sun H, Chen S. Transcriptome analysis and protein-protein interaction in resistant and susceptible families of Japanese flounder (Paralichthys olivaceus) to understand the mechanism against Edwardsiella tarda. FISH & SHELLFISH IMMUNOLOGY 2022; 123:265-281. [PMID: 35272057 DOI: 10.1016/j.fsi.2022.02.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Edwardsiella tarda is one of the most harmful bacterial pathogens for aquaculture flatfish. After artificial infection of 47 Japanese flounder (Paralichthys olivaceus) families, resistant and susceptible families were identified in this study. High-throughput sequencing was performed on the liver transcriptome of uninfected groups (PoRU and PoSU) and infected groups (PoRC and PoSC). Through assembly and annotation, a total of 3012 and 1386 differentially expressed genes (DEGs) were identified in PoRU vs. PoSU and PoRC vs. PoSC. The significant enrichment pathways between PoRU and PoSU were mainly in metabolic and biosynthesis pathways. A total of thirty dominant enrichment pathways between PoRC and PoSC mainly focused on some immune-related pathways, including the hematopoietic cell lineage, cytokine-cytokine receptor interaction, complement and coagulation cascades, antigen processing and presentation, the intestinal immune network for immunoglobulin A (IgA) production and T/B cell receptor signaling pathway. Under the protein-protein interaction (PPI) analysis, hub genes, including CD molecules, complement component factors and chemokines, were identified in the network, and 16 core genes were differentially expressed in resistant and sustainable families in quantitative polymerase chain reaction (qPCR) validation. This study represents the first transcriptome analysis based on resistant and susceptible families and provides resistant genes to understand the potential molecular mechanisms of antibacterial function in marine fish. The results obtained in this study provide crucial information on gene markers for resistant breeding of Japanese flounder.
Collapse
Affiliation(s)
- Lei Wang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao, 266071, China; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao, 266071, China
| | - Xiwen Xu
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao, 266071, China; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao, 266071, China
| | - Ziwei Zhang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao, 266071, China; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao, 266071, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Kaimin Li
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao, 266071, China; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao, 266071, China; Shandong Normal University, Jinan, 250014, China
| | - Yingming Yang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao, 266071, China; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao, 266071, China
| | - Weiwei Zheng
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao, 266071, China; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao, 266071, China
| | - Hejun Sun
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao, 266071, China; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao, 266071, China
| | - Songlin Chen
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao, 266071, China; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Qingdao, 266071, China.
| |
Collapse
|
2
|
Ning X, Sun L. Systematic Identification and Analysis of Circular RNAs of Japanese Flounder ( Paralichthys olivaceus) in Response to Vibrio anguillarum Infection. Genes (Basel) 2021; 12:genes12010100. [PMID: 33467444 PMCID: PMC7830906 DOI: 10.3390/genes12010100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 12/15/2022] Open
Abstract
Circular RNA (circRNA) is a new class of non-coding RNA that is structured into a closed loop without polyadenylation. Recent studies showed that circRNAs are involved in the host immune response to pathogen infection. Japanese flounder (Paralichthys olivaceus), an important economical marine fish cultured in north Asia, is affected by Vibrio anguillarum, a pathogenic bacterium that can infect a large number of fish. In this study, we systematically explored the circRNAs in the spleen of V. anguillarum-infected flounder at different infection time points. A total of 6581 circRNAs were identified, 148 of which showed differential expression patterns after V. anguillarum infection and were named DEcirs. Most of the DEcirs were strongly time-specific. The parental genes of the DEcirs were identified and functionally classified into diverse pathways, including immune-related pathways. Among the immune-related DEcirs, seven were predicted to sponge 18 targeted miRNAs that were differentially expressed during V. anguillarum infection (named DETmiRs). Further analysis showed that the DEcirs and their corresponding DETmiRs intertwined into complicated immune related networks. These results indicate that in flounder, circRNAs are regulated by V. anguillarum and form interactive networks with mRNAs and miRNAs that likely play important roles in the immune defense against pathogen infection.
Collapse
Affiliation(s)
- Xianhui Ning
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China;
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Li Sun
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China;
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence: ; Tel.: +86-532-82898829
| |
Collapse
|
3
|
Micro-Transcriptome Analysis Reveals Immune-Related MicroRNA Regulatory Networks of Paralichthys olivaceus Induced by Vibrio anguillarum Infection. Int J Mol Sci 2020; 21:ijms21124252. [PMID: 32549342 PMCID: PMC7352997 DOI: 10.3390/ijms21124252] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding regulatory RNAs that play a vital part in the host immune response to pathogen infection. Japanese flounder (Paralichthys olivaceus) is an important aquaculture fish species that has suffered from bacterial diseases, including that caused by Vibrio anguillarum infection. In a previous study, we examined the messenger RNA (mRNA) expression profiles of flounder during V. anguillarum infection and identified 26 hub genes in the flounder immune response. In this study, we performed the micro-transcriptome analysis of flounder spleen in response to V. anguillarum infection at 3 different time points. Approximately 277 million reads were obtained, from which 1218 miRNAs were identified, including 740 known miRNAs and 478 novel miRNAs. Among the miRNAs, 206 were differentially expressed miRNAs (DEmiRs), and 104 of the 206 DEmiRs are novel miRNAs identified for the first time. Most of the DEmiRs were strongly time-dependent. A total of 1355 putative target genes of the DEmiRs (named DETGs) were identified based on integrated analysis of miRNA-mRNA expressions. The DETGs were enriched in multiple functional categories associated with immunity. Thirteen key DEmiRs and 66 immune DETGs formed an intricate regulatory network constituting 106 pairs of miRNAs and DETGs that span five immune pathways. Furthermore, seven of the previously identified hub genes were found to be targeted by 73 DEmiRs, and together they formed interlinking regulatory networks. These results indicate that V. anguillarum infection induces complicated miRNA response with extensive influences on immune gene expression in Japanese flounder.
Collapse
|
4
|
El-Magd MA, El-Said KS, El-Semlawy AA, Tanekhy M, Afifi M, Mohamed TM. Association of MHC IIA polymorphisms with disease resistance in Aeromonas hydrophila-challenged Nile tilapia. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 96:126-134. [PMID: 30853539 DOI: 10.1016/j.dci.2019.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/02/2019] [Accepted: 03/02/2019] [Indexed: 06/09/2023]
Abstract
The major histocompatibility complex (MHC) genes show high polymorphisms in vertebrates depending on animal immunity status. Herein, MHC class IIA gene in Aeromonas hydrophila-challenged Nile tilapia was screened for presence of polymorphisms using sequencing. Twelve nucleotides deletion polymorphism was determined with a PCR product size of 267 bp in the resistant fish and 255 bp in the control and susceptible/diseased fish. Additionally, a non-synonymous right frameshift c.712 T > G (P. 238 * > G) SNP was detected at the stop codon (*). SNP-susceptibility association analysis revealed that fish carrying GG genotype and allele G were high susceptible (risk) for A. hydrophila, and had lower immune response as indicated by significant reduction in non-specific immune parameters (total protein, globulin, IgM, phagocytic activity, phagocytic index, and lysosome activity) and mRNA level of MHC IIA, interleukin 1 beta (IL1β), tumor necrosis factor alfa (TNFα), and toll-like receptor 7 (TLR7) in the spleen and head kidney. Thus, G allele could be considered as a risk (recessive or mutant) allele for c. 712 T > G (P. 238 * > G) SNP and so selection of Nile tilapia with protective allele (T) for this SNP could improve the disease resistant of the fish.
Collapse
Affiliation(s)
- Mohammed A El-Magd
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Egypt.
| | - Karim S El-Said
- Department of Chemistry (Biochemistry Branch), Faculty of Science, Tanta University, Egypt
| | - Aml A El-Semlawy
- Department of Chemistry (Biochemistry Branch), Faculty of Science, Tanta University, Egypt
| | - Mahmoud Tanekhy
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Egypt
| | - Mohamed Afifi
- Department of Animal Wealth Development, Biostatistics, Faculty of Veterinary Medicine, Zagazig University, Egypt
| | - Tarek M Mohamed
- Department of Chemistry (Biochemistry Branch), Faculty of Science, Tanta University, Egypt
| |
Collapse
|
5
|
Gao FY, Zhang D, Lu MX, Cao JM, Liu ZG, Ke XL, Wang M, Zhang DF. MHC Class IIB gene polymorphisms associated with resistance/susceptibility to Streptococcus agalactiae in Nile tilapia Oreochromis niloticus. DISEASES OF AQUATIC ORGANISMS 2019; 133:253-261. [PMID: 31187732 DOI: 10.3354/dao03349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Genetic variation in the major histocompatibility complex (MHC) Class IIB was tested in Nile tilapia Oreochromis niloticus, and the association between the MHC IIB alleles and disease resistance was also studied. F3 fry offspring (n = 1200) from 12 full-sib families were challenged with Streptococcus agalactiae, which caused significantly different mortalities in different Nile tilapia families (11.00-81.10%). Twenty fry (F1) from each of the 12 families were selected to study the polymorphisms of the MHC Class IIB gene using PCR followed by cloning and sequencing methods. The results showed that the size of the amplified fragment was 770-797 bp. Thirty-seven sequences from 240 individuals revealed 22 different alleles, which belonged to 9 major allele types. Up to 63.58% of nucleotide positions were variable, while the proportion of the amino acid variable positions was up to 68.73%. According to the survival rate of offspring (F3) from 12 full-sib families, we deduced that the alleles Orni-DAB*0107, Orni-DAB*0201 and Orni-DAB*0302 were highly associated with resistance to S. agalactiae, while the allele Orni-DAB*0701 was associated with susceptibility to S. agalactiae. In addition, our previous study found that the allele Orni-DAB*0201 was more frequently distributed in the disease-resistant groups. Therefore, the allele Orni-DAB*0201 could be used as an S. agalactiae resistance-related MHC marker in molecular marker-assisted selective breeding programs for S. agalactiae-resistant Nile tilapia.
Collapse
Affiliation(s)
- Feng-Ying Gao
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, PR China
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Cao Z, Wang L, Xiang Y, Liu X, Tu Z, Sun Y, Zhou Y. MHC class IIα polymorphism and its association with resistance/susceptibility to Vibrio harveyi in golden pompano (Trachinotus ovatus). FISH & SHELLFISH IMMUNOLOGY 2018; 80:302-310. [PMID: 29902561 DOI: 10.1016/j.fsi.2018.06.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/13/2018] [Accepted: 06/11/2018] [Indexed: 06/08/2023]
Abstract
The major histocompatibility complex (MHC) plays an important role in the vertebrate immune response to antigenic peptides, and it is essential for recognizing foreign pathogens in organisms. In this study, MHC class IIα (Trov-MHC IIα) from the golden pompano (Trachinotus ovatus) was first cloned and identified. The gene structure of Trov-MHC IIα was contained four exons and three introns. High levels of polymorphism were found in the exon 2 of Trov-MHC IIα. A total of 29 different MHC class IIα alleles with high polymorphism were identified from 80 individuals. The ratio of non-synonymous substitutions (dN) to synonymous substitutions (dS) was 3.157 (>1) in the peptide binding regions (PBRs) of Trov-MHC IIα, suggesting positive balancing selection. Six alleles were selected to analyze the association between alleles and resistance/susceptibility to Vibrio harveyi in golden pompano. The results showed that Trov-DAA*6401 and Trov-DAA*6702 alleles were associated with the resistance to V. harveyi in golden pompano, while alleles Trov-DAA*6304 and Trov-DAA*7301 were associated with the susceptibility to V. harveyi in golden pompano. This study confirmed the association between alleles of MHC class IIα and disease resistance, and also detected some alleles which might be correlated with high V. harveyi-resistance. These disease resistance-related MHC alleles could be used as potential genetic markers for molecular marker-assisted selective breeding in the golden pompano.
Collapse
Affiliation(s)
- Zhenjie Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China; Institute of Tropical Agriculture and Forestry, Hainan University, PR China
| | - Lu Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, PR China
| | - Yajing Xiang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, PR China
| | - Xiaocen Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, PR China
| | - Zhigang Tu
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, Hainan, China
| | - Yun Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China.
| | - Yongcan Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China.
| |
Collapse
|
7
|
Li C, Jiang J, Zhang Q, Wang X. Duplicated major histocompatibility complex class II genes in the tongue sole (Cynoglossus semilaevis
). Int J Immunogenet 2018; 45:210-224. [DOI: 10.1111/iji.12368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 02/25/2018] [Accepted: 03/22/2018] [Indexed: 12/26/2022]
Affiliation(s)
- C. Li
- Ministry of Education Key Laboratory of Marine Genetics and Breeding; College of Marine Life Sciences; Ocean University of China; Qingdao China
| | - J. Jiang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding; College of Marine Life Sciences; Ocean University of China; Qingdao China
| | - Q. Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding; College of Marine Life Sciences; Ocean University of China; Qingdao China
| | - X. Wang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding; College of Marine Life Sciences; Ocean University of China; Qingdao China
| |
Collapse
|
8
|
Hofmann MJ, Bracamonte SE, Eizaguirre C, Barluenga M. Molecular characterization of MHC class IIB genes of sympatric Neotropical cichlids. BMC Genet 2017; 18:15. [PMID: 28201988 PMCID: PMC5310070 DOI: 10.1186/s12863-017-0474-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/13/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The Major Histocompatibility Complex (MHC) is a key component of the adaptive immune system of all vertebrates and consists of the most polymorphic genes known to date. Due to this complexity, however, MHC remains to be characterized in many species including any Neotropical cichlid fish. Neotropical crater lake cichlids are ideal models to study evolutionary processes as they display one of the most convincing examples of sympatric and repeated parallel radiation events within and among isolated crater lakes. RESULTS Here, we characterized the genes of MHC class IIB chain of the Midas cichlid species complex (Amphilophus cf. citrinellus) including fish from five lakes in Nicaragua. We designed 19 new specific primers anchored in a stepwise fashion in order to detect all alleles present. We obtained 866 genomic DNA (gDNA) sequences from thirteen individuals and 756 additional sequences from complementary DNA (cDNA) of seven of those individuals. We identified 69 distinct alleles with up to 25 alleles per individual. We also found considerable intron length variation and mismatches of alleles detected in cDNA and gDNA suggesting that some loci have undergone pseudogenization. Lastly, we created a model of protein structure homology for each allele and identified their key structural components. CONCLUSIONS Overall, the Midas cichlid has one of the most diverse repertoires of MHC class IIB genes known, which could serve as a powerful tool to elucidate the process of divergent radiations, colonization and speciation in sympatry.
Collapse
Affiliation(s)
- Melinda J Hofmann
- Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal, 2, 28006, Madrid, Spain
| | - Seraina E Bracamonte
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Duesternbrooker weg 20, 24105, Kiel, Germany
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany
| | - Christophe Eizaguirre
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Duesternbrooker weg 20, 24105, Kiel, Germany
- Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road, London, E1 4NS, UK
| | - Marta Barluenga
- Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal, 2, 28006, Madrid, Spain.
| |
Collapse
|
9
|
Wang L, Fan C, Xu W, Zhang Y, Dong Z, Xiang J, Chen S. Characterization and functional analysis of a novel C1q-domain-containing protein in Japanese flounder (Paralichthys olivaceus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 67:322-332. [PMID: 27601208 DOI: 10.1016/j.dci.2016.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 09/02/2016] [Accepted: 09/02/2016] [Indexed: 06/06/2023]
Abstract
The complement system is important in the innate immune response. C1q-domain-containing proteins have multiple functions and occur extensively in invertebrates and vertebrates. In this study, PoC1ql3 encoding a C1q-domain-containing protein in the Japanese flounder was identified. The 266-amino-acid polypeptide encoded, PoC1ql3, shares high sequence and structural similarity with orthologues in other fish and mammals. PoC1ql3 is abundantly expressed in the brain, but less in the blood, gills, and liver. Transcripts of PoC1ql3 were down-regulated in the spleen and liver 6-24 h after bacterial infection, but were significantly up-regulated after 48 h. Full-length PoC1ql3 (C1ql3-full) and its gC1q domain (C1ql3-part) were both exerted anti-Edwardsiella tarda activity. C1ql3-part bound to lipopolysaccharide and peptidoglycan, and exerted antibacterial effects against E. tarda in vivo, suggesting that C1ql3 functions as a pathogen-recognition receptor. Therefore, PoC1ql3 functions in the innate immune system, which would facilitate the investigation of the immune system in Japanese flounder.
Collapse
Affiliation(s)
- Lei Wang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Caixia Fan
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Wenteng Xu
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yongzhen Zhang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Zhongdian Dong
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Jinsong Xiang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Songlin Chen
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
10
|
Osborne MJ, Pilger TJ, Lusk JD, Turner TF. Spatio-temporal variation in parasite communities maintains diversity at the major histocompatibility complex class IIβ in the endangered Rio Grande silvery minnow. Mol Ecol 2016; 26:471-489. [PMID: 27864911 DOI: 10.1111/mec.13936] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/02/2016] [Accepted: 11/14/2016] [Indexed: 01/30/2023]
Abstract
Climate change will strongly impact aquatic ecosystems particularly in arid and semi-arid regions. Fish-parasite interactions will also be affected by predicted altered flow and temperature regimes, and other environmental stressors. Hence, identifying environmental and genetic factors associated with maintaining diversity at immune genes is critical for understanding species' adaptive capacity. Here, we combine genetic (MHC class IIβ and microsatellites), parasitological and ecological data to explore the relationship between these factors in the remnant wild Rio Grande silvery minnow (Hybognathus amarus) population, an endangered species found in the southwestern United States. Infections with multiple parasites on the gills were observed and there was spatio-temporal variation in parasite communities and patterns of infection among individuals. Despite its highly endangered status and chronically low genetic effective size, Rio Grande silvery minnow had high allelic diversity at MHC class IIβ with more alleles recognized at the presumptive DAB1 locus compared to the DAB3 locus. We identified significant associations between specific parasites and MHC alleles against a backdrop of generalist parasite prevalence. We also found that individuals with higher individual neutral heterozygosity and higher amino acid divergence between MHC alleles had lower parasite abundance and diversity. Taken together, these results suggest a role for fluctuating selection imposed by spatio-temporal variation in pathogen communities and divergent allele advantage in maintenance of high MHC polymorphism. Understanding the complex interaction of habitat, pathogens and immunity in protected species will require integrated experimental, genetic and field studies.
Collapse
Affiliation(s)
- Megan J Osborne
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, MSC 03-2020, Albuquerque, NM, 87131, USA
| | - Tyler J Pilger
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, MSC 03-2020, Albuquerque, NM, 87131, USA
| | - Joel D Lusk
- U.S. Fish and Wildlife Service, New Mexico Ecological Services, Albuquerque, NM, 87113, USA
| | - Thomas F Turner
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, MSC 03-2020, Albuquerque, NM, 87131, USA
| |
Collapse
|
11
|
Yang M, Wei J, Li P, Wei S, Huang Y, Qin Q. MHC polymorphism and disease resistance to Singapore grouper iridovirus (SGIV) in the orange-spotted grouper, Epinephelus coioides. Sci Bull (Beijing) 2016. [DOI: 10.1007/s11434-016-1055-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Jiang J, Li C, Zhang Q, Wang X. Locus number estimation of MHC class II B in stone flounder and Japanese flounder. Int J Mol Sci 2015; 16:6000-17. [PMID: 25782161 PMCID: PMC4394517 DOI: 10.3390/ijms16036000] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 12/22/2014] [Accepted: 12/25/2014] [Indexed: 01/19/2023] Open
Abstract
Members of major histocompatibility complex (MHC) family are important in immune systems. Great efforts have been made to reveal their complicated gene structures. But many existing studies focus on partial sequences of MHC genes. In this study, by gene cloning and sequencing, we identified cDNA sequences and DNA sequences of the MHC class II B in two flatfishes, stone flounder (Kareius bicoloratus) and homozygous diploid Japanese flounder (Paralichthys olivaceus). Eleven cDNA sequences were acquired from eight stone flounder individuals, and most of the polymorphic sites distributed in exons 2 and 3. Twenty-eight alleles were identified from the DNA fragments in these eight individuals. It could be deduced from their Bayesian inference phylogenetic tree that at least four loci of MHC class II B exist in stone flounder. The detailed whole-length DNA sequences in one individual were analyzed, revealing that the intron length varied among different loci. Four different cDNA sequences were identified from one homozygous diploid Japanese flounder individual, implying the existence of at least four loci. Comparison of the cDNA sequences to the DNA sequence confirmed that six exons existed in this gene of Japanese flounder, which was a common feature shared by Pleuronectiformes fishes. Our results proved the multi-locus feature of MHC class II B. The sequences we obtained would provide detailed and systematic data for further research.
Collapse
Affiliation(s)
- Jiajun Jiang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao 266003, China.
| | - Chunmei Li
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao 266003, China.
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao 266003, China.
| | - Xubo Wang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao 266003, China.
| |
Collapse
|
13
|
Genetic and genomic analyses for economically important traits and their applications in molecular breeding of cultured fish. SCIENCE CHINA-LIFE SCIENCES 2015; 58:178-86. [PMID: 25614028 DOI: 10.1007/s11427-015-4804-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/13/2014] [Indexed: 01/09/2023]
Abstract
The traits of cultured fish must continually be genetically improved to supply high-quality animal protein for human consumption. Economically important fish traits are controlled by multiple gene quantitative trait loci (QTL), most of which have minor effects, but a few genes may have major effects useful for molecular breeding. In this review, we chose relevant studies on some of the most intensively cultured fish and concisely summarize progress on identifying and verifying QTLs for such traits as growth, disease and stress resistance and sex in recent decades. The potential applications of these major-effect genes and their associated markers in marker-assisted selection and molecular breeding, as well as future research directions are also discussed. These genetic and genomic analyses will be valuable for elucidating the mechanisms modulating economically important traits and to establish more effective molecular breeding techniques in fish.
Collapse
|
14
|
Colussi S, Prearo M, Bertuzzi SA, Scanzio T, Peletto S, Favaro L, Modesto P, Maniaci MG, Ru G, Desiato R, Acutis PL. Association of a specific major histocompatibility complex class IIβ single nucleotide polymorphism with resistance to lactococcosis in rainbow trout, Oncorhynchus mykiss (Walbaum). JOURNAL OF FISH DISEASES 2015; 38:27-35. [PMID: 24397583 DOI: 10.1111/jfd.12193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 09/13/2013] [Accepted: 09/15/2013] [Indexed: 06/03/2023]
Abstract
Major histocompatibility complex (MHC) loci encode glycoproteins that bind to foreign peptides and initiate immune responses through their interaction with T cells. MHC class II molecules are heterodimers consisting of α and β chains encoded by extremely variable genes; variation in exon 2 is responsible for the majority of observed polymorphisms, mostly concentrated in the codons specifying the peptide-binding region. Lactococcus garvieae is the causative agent of lactococcosis, a warm-water bacterial infection pathogenic for cultured freshwater and marine fish. It causes considerable economic losses, limiting the profitability and development of fish industries in general and the intensive production of rainbow trout, Oncorhynchus mykiss (Walbaum), in particular. The disease is currently controlled with vaccines and antibiotics; however, vaccines have short-term efficacy, and increasing concerns regarding antibiotic residues have called for alternative strategies. To explore the involvement of the MHC class II β-1 domain as a candidate gene for resistance to lactococcosis, we exposed 400 rainbow trout to naturally contaminated water. One single nucleotide polymorphism (SNP) and one haplotype were associated with resistance (P < 0.01). These results are promising for using MHC class IIβ as a molecular marker in breeding rainbow trout resistant to lactococcosis.
Collapse
Affiliation(s)
- S Colussi
- Istituto Zooprofilattico of Piemonte, Liguria and Valle d'Aosta - Via Bologna, Turin, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Zhenzhen X, Ling X, Dengdong W, Chao F, Qiongyu L, Zihao L, Xiaochun L, Yong Z, Shuisheng L, Haoran L. Transcriptome analysis of the Trachinotus ovatus: identification of reproduction, growth and immune-related genes and microsatellite markers. PLoS One 2014; 9:e109419. [PMID: 25303650 PMCID: PMC4193775 DOI: 10.1371/journal.pone.0109419] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 08/31/2014] [Indexed: 12/25/2022] Open
Abstract
Background The Trachinotus ovatus (Teleostei, Carangidae) is an economically important marine fish species in the world. However, the lack of genomic information regarding this species limits our understanding of the genetics and biological mechanisms in Trachinotus ovatus. In this study, high throughput transcriptome sequencing was used to obtain comprehensive genomic information in Trachinotus ovatus. Principal Findings Transcriptome sequencing was performed by using Illumina paired-end sequencing technology. The 98,534,862 high quality reads were yielded, and were de novo assembled into 156,094 unigenes with an average sequence length of 1179 bp. Transcriptome annotation revealed that 75,586 and 67,923 unigenes were functionally annotated in the NCBI non-redundant database and Swiss-Prot protein database, respectively. Functional analysis demonstrated that 67,923 unigenes were grouped into 25 Cluster of Orthologous Groups (COG) functional categories, 37,976 unigenes were clustered into 61 Gene Ontology (GO) terms, and 38,172 unigenes were assigned to 275 different Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Based on the transcriptome dataset, a large number of unigenes associated with reproduction, growth and immunity were identified. Furthermore, a total number of 38,794 simple sequence repeats (SSRs) were discovered and 16 polymorphic loci were characterized in Trachinotus ovatus. Conclusion/Significance The present study is the first transcriptome analysis of a fish species belonging to the genus Trachinotus and provides a valuable genomic resource for novel gene discovery, gene expression and regulation studies, and the identification of genetic markers in Trachinotus ovatus and the other fish of the genus Trachinotus.
Collapse
Affiliation(s)
- Xie Zhenzhen
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xiao Ling
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Wang Dengdong
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Fang Chao
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Liu Qiongyu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Li Zihao
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Liu Xiaochun
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zhang Yong
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- * E-mail: (LSS); (LHR)
| | - Li Shuisheng
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- * E-mail: (LSS); (LHR)
| | - Lin Haoran
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- College of Ocean, Hainan University, Haikou, Hainan, China
| |
Collapse
|
16
|
Wang L, Fan C, Liu Y, Zhang Y, Liu S, Sun D, Deng H, Xu Y, Tian Y, Liao X, Xie M, Li W, Chen S. A genome scan for quantitative trait loci associated with Vibrio anguillarum infection resistance in Japanese flounder (Paralichthys olivaceus) by bulked segregant analysis. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2014; 16:513-521. [PMID: 24562474 DOI: 10.1007/s10126-014-9569-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 01/28/2014] [Indexed: 06/03/2023]
Abstract
A recent genetic linkage map was employed to detect quantitative trait loci (QTLs) associated with Vibrio anguillarum resistance in Japanese flounder. An F1 family established and challenged with V. anguillarum in 2009 was used for QTL mapping. Of the 221 simple sequence repeat (SSR) markers used to detect polymorphisms in the parents of F1, 170 were confirmed to be polymorphic. The average distance between the markers was 10.6 cM. Equal amounts of genomic DNA from 15 fry that died early and from 15 survivors were pooled separately to constitute susceptible bulk and resistance bulk DNA. Bulked segregant analysis and QTL mapping were combined to detect candidate SSR markers and regions associated with the disease. A genome scan identified four polymorphic SSR markers, two of which were significantly different between susceptible and resistance bulk (P=0.008). These two markers were located in linkage group (LG) 7; therefore, all the SSR markers in LG7 were genotyped in all the challenged fry by single marker analysis. Using two different models, 11-17 SSR markers were detected with different levels of significance. To confirm the associations of these markers with the disease, composite interval mapping was employed to genotype all the challenged individuals. One and three QTLs, which explained more than 60 % of the phenotypic variance, were detected by the two models. Two of the QTLs were located at 48.6 cM. The common QTL may therefore be a major candidate region for disease resistance against V. anguillarum infection.
Collapse
Affiliation(s)
- Lei Wang
- College of Marine Life Science, Ocean University of China, 266003, Qingdao, The People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Shen T, He X, Lei M, Wang J, Li X, Li J. Cloning and structure of a histocompatibility class IIA gene (Lelo-DAA) in Chinese longsnout catfish (Leiocassis longirostris). Genes Genomics 2014. [DOI: 10.1007/s13258-014-0208-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
Molecular cloning, genomic structure, polymorphism and expression analysis of major histocompatibility complex class IIA gene of swamp eel Monopterus albus. Biologia (Bratisl) 2014; 69:236-246. [PMID: 32214413 PMCID: PMC7089440 DOI: 10.2478/s11756-013-0307-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 10/26/2013] [Indexed: 11/20/2022]
Abstract
Major histocompatibility complex (MHC) class II molecules play an important role in the immune response of vertebrates. In this paper, full-length MHC IIA cDNA was isolated from swamp eel (Monopterus albus) by rapid amplification of cDNA ends PCR. The genomic structure, molecular polymorphism, tissue distribution, and immune response of the MHC IIA gene to bacterial challenge were investigated. The full-length cDNA (GenBank accession No.: KC616308) is 1,509 bp in length including an 83 bp-long 5' untranslated region (UTR) and a 709 bp-long 3' UTR, which encoded a 238 amino acids protein. In the 2,339 bp-long MHC IIA genomic DNA, four exons and three introns were identified. Sequence comparison exhibited that the deduced amino acid sequence shared 27.1-66.3% identity with those of other species. Seven alleles were identified from five healthy individuals. Number of alleles per individual diversified from two to five. Five different 5' UTR sequences and two different 3' UTR sequences from one individual may infer the existence of five loci at least. Real-time quantitative PCR demonstrated that swamp eel MHC IIA transcripts were ubiquitously expressed in ten tissues, but the expression level was distinctly different. Significant changes were observed in liver, spleen, kidney and intestine after challenged with pathogenic bacteria Aeromonas hydrophilia.
Collapse
|
19
|
MH-DAB gene polymorphism and disease resistance to Flavobacterium columnare in grass carp (Ctenopharyngodon idellus). Gene 2013; 526:217-22. [DOI: 10.1016/j.gene.2013.05.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 05/14/2013] [Accepted: 05/17/2013] [Indexed: 11/20/2022]
|
20
|
Fischer U, Koppang EO, Nakanishi T. Teleost T and NK cell immunity. FISH & SHELLFISH IMMUNOLOGY 2013; 35:197-206. [PMID: 23664867 DOI: 10.1016/j.fsi.2013.04.018] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 02/01/2013] [Accepted: 04/12/2013] [Indexed: 06/02/2023]
Abstract
The main function of the immune system is to maintain the organism's homeostasis when invaded by foreign material or organisms. Prior to successful elimination of the invader it is crucial to distinguish self from non-self. Most pathogens and altered cells can be recognized by immune cells through expressed pathogen- or danger-associated molecular patterns (PAMPS or DAMPS, respectively), through non-self (e.g. allogenic or xenogenic cells) or missing major histocompatibility (MHC) class I molecules (some virus-infected target cells), and by presenting foreign non-self peptides of intracellular (through MHC class I-e.g. virus-infected target cells) or extracellular (through MHC class II-e.g. from bacteria) origin. In order to eliminate invaders directly or by destroying their ability to replicate (e.g. virus-infected cells) specialized immune cells of the innate and adaptive responses appeared during evolution. The first line of defence is represented by the evolutionarily ancient macrophages and natural killer (NK) cells. These innate mechanisms are well developed in bony fish. Two types of NK cell homologues have been described in fish: non-specific cytotoxic cells and NK-like cells. Adaptive cell-mediated cytotoxicity (CMC) requires key molecules expressed on cytotoxic T lymphocytes (CTLs) and target cells. CTLs kill host cells harbouring intracellular pathogens by binding of their T cell receptor (TCR) and its co-receptor CD8 to a complex of MHC class I and bound peptide on the infected host cell. Alternatively, extracellular antigens are taken up by professional antigen presenting cells such as macrophages, dendritic cells and B cells to process those antigens and present the resulting peptides in association with MHC class II to CD4(+) T helper cells. During recent years, genes encoding MHC class I and II, TCR and its co-receptors CD8 and CD4 have been cloned in several fish species and antibodies have been developed to study protein expression in morphological and functional contexts. Functional assays for innate and adaptive lymphocyte responses have been developed in only a few fish species. This review summarizes and discusses recent results and developments in the field of T and NK cell responses with focus on economically important and experimental model fish species in the context of vaccination.
Collapse
Affiliation(s)
- Uwe Fischer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Infectology, Suedufer 10, 17493 Greifswald-Insel Riems, Germany.
| | | | | |
Collapse
|
21
|
Pang JC, Gao FY, Lu MX, Ye X, Zhu HP, Ke XL. Major histocompatibility complex class IIA and IIB genes of Nile tilapia Oreochromis niloticus: genomic structure, molecular polymorphism and expression patterns. FISH & SHELLFISH IMMUNOLOGY 2013; 34:486-496. [PMID: 23261509 DOI: 10.1016/j.fsi.2012.11.048] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 11/15/2012] [Accepted: 11/27/2012] [Indexed: 06/01/2023]
Abstract
Major histocompatibility complex (MHC) is a large genomic region characterized by extremely high polymorphism, and it plays an important role in the immune response of vertebrates. In the present study, we isolated MHC class II genes from Nile tilapia in order to investigate the immune mechanism in tilapia and develop better strategies for disease prevention. Moreover, we cloned the full-length cDNA sequences of MHC IIA and IIB from Nile tilapia by the RACE approach. In addition, the genomic structure, molecular polymorphism and expression patterns of MHC II genes in Nile tilapia were also examined. Compared with that of other teleosts, Nile tilapia MHC class IIA contained four exons and three introns. The deduced amino acid sequence of the MHC IIA molecule shared 25.4-64.5% similarity with those of other teleosts and mammals. Six exons and five introns were identified from Nile tilapia MHC IIB, and the deduced amino acid sequence shared 26.9-74.7% similarity with those of other teleosts and mammals. All the characteristic features of MHC class II chain structure could be identified in the deduced sequences of MHC IIA and IIB molecules, including the leader peptide, α1/β1 and α2/β2 domains, connecting peptide and transmembrane and cytoplasmic regions, as well as conserved cysteines and N-glycosylation site. A total of 12 MHC IIA alleles were identified from six individuals. Four alleles originating from a single individual suggested that at least four MHC IIA loci existed. Moreover, 10 MHC IIB alleles were identified, among which four were detected in a single individual, suggesting that at least four MHC IIB loci existed. The expression of MHC IIA and IIB at the mRNA level in 10 types of normal tissues was determined using quantitative real-time PCR analysis. The highest expression level was detected in stomach and gill, whereas the lowest expression was detected in muscle and brain. Furthermore, MHC IIA and IIB were probably two candidate immune molecules involved in the resistance against streptococcosis, because their expression was significantly up-regulated in gill, kidney, intestine and spleen after the intraperitoneal injection of Streptococcus agalactiae.
Collapse
Affiliation(s)
- Ji-cai Pang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, Guangdong 510380, PR China
| | | | | | | | | | | |
Collapse
|
22
|
Dong ZD, Zhao Y, Zeng QF, Fu Y, Zhou FN, Ji XS, Wang H. Molecular cloning and polymorphism of the major histocompatibility complex (MHC) class IIB gene of grass carp (Ctenopharyngodon idella). Biochem Genet 2012; 51:139-46. [PMID: 23114719 DOI: 10.1007/s10528-012-9549-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Accepted: 07/09/2012] [Indexed: 11/29/2022]
Affiliation(s)
- Zhong-Dian Dong
- College of Animal Science and Technology, Shandong Agricultural University, Daizong Avenue 61, Taian, 271018, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Lu DQ, Yi SB, Yao M, Li YW, Liu XC, Zhang Y, Lin HR. Identification and expression analysis of major histocompatibility complex IIB gene in orange-spotted grouper Epinephelus coioides. JOURNAL OF FISH BIOLOGY 2012; 81:165-180. [PMID: 22747811 DOI: 10.1111/j.1095-8649.2012.03321.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In this study, complementary DNA (cDNA) and DNA sequences of major histocompatibility complex (MHC) class IIB genes (mhcIIB) were cloned from orange-spotted grouper Epinephelus coioides. The gene structure of E. coioides mhcIIB consists of five exons and four introns, and its deduced amino acid sequence length is 249 amino acids, including a signal peptide, a peptide-binding region, an IGC1 domain, a transmembrane region and a cytoplasmic tail. A phylogenetic study showed that E. coioides mhcIIB shared 32.0-79.1% identity with those of other teleosts and mammals. Real-time reverse transcriptase (RT)-PCR was performed to detect the class IIB gene expression in eight different tissues. To characterize the relationship between E. coioides mhcIIB gene and pathogens, in vivo and in vitro studies were performed. Challenge of Cryptocaryon irritans revealed that class IIB genes were down-regulated after 24 and 48 h of challenge, and their expression was later restored at 72 h. Stimulation of isolated E. coioides leukocytes with lipopolysaccharide (LPS) and polyinosinic:polycytidylic acid (PolyI:C) significantly increased peripheral blood and spleen mhcIIB expression, while head kidney mhcIIB expression remained constant.
Collapse
Affiliation(s)
- D Q Lu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and the Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, 135 Xingang West Street, Guangzhou 510275, PR China
| | | | | | | | | | | | | |
Collapse
|
24
|
Baratti M, Dessì-Fulgheri F, Ambrosini R, Bonisoli-Alquati A, Caprioli M, Goti E, Matteo A, Monnanni R, Ragionieri L, Ristori E, Romano M, Rubolini D, Scialpi A, Saino N. MHC genotype predicts mate choice in the ring-necked pheasant Phasianus colchicus. J Evol Biol 2012; 25:1531-42. [PMID: 22591334 DOI: 10.1111/j.1420-9101.2012.02534.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Females of several vertebrate species selectively mate with males on the basis of the major histocompatibility complex (MHC) genes. As androgen-mediated maternal effects have long-lasting consequences for the adult phenotype, both mating and reproductive success may depend on the combined effect of MHC genotype and exposure to androgens during early ontogeny. We studied how MHC-based mate choice in ring-necked pheasants (Phasianus colchicus) was influenced by an experimental in ovo testosterone (T) increase. There was no conclusive evidence of in ovo T treatment differentially affecting mate choice in relation to MHC genotype. However, females avoided mating with males with a wholly different MHC genotype compared with males sharing at least one MHC allele. Females also tended to avoid mating with MHC-identical males, though not significantly so. These findings suggest that female pheasants preferred males with intermediate MHC dissimilarity. Male MHC heterozygosity or diversity did not predict the expression of ornaments or male dominance rank. Thus, MHC-based mating preferences in the ring-necked pheasant do not seem to be mediated by ornaments' expression and may have evolved mainly to reduce the costs of high heterozygosity at MHC loci for the progeny, such as increased risk of autoimmune diseases or disruption of coadapted gene pools.
Collapse
Affiliation(s)
- M Baratti
- Istituto per lo Studio degli Ecosistemi, Sesto Fiorentino, via Madonna del Piano 10, Florence, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
MHC polymorphism and disease-resistance to Edwardsiella tarda in six turbot (Scophthalmus maximus) families. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11434-012-5179-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
26
|
Li H, Jiang L, Han J, Su H, Yang Q, He C. Major histocompatibility complex class IIA and IIB genes of the spotted halibut Verasper variegatus: genomic structure, molecular polymorphism, and expression analysis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2011; 37:767-780. [PMID: 21424758 DOI: 10.1007/s10695-011-9476-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 03/03/2011] [Indexed: 05/30/2023]
Abstract
The major histocompatibility complex (MHC) is a large genomic region characterized by extremely high polymorphism and its association with resistance/susceptibility to disease in vertebrates. In this study, the full lengths of MHC IIA and IIB cDNA were obtained from spotted halibut (Verasper variegates) by expressed sequence tag (EST) and rapid amplification of cDNA ends (RACE) approaches. The genomic structure, molecular polymorphism, and expression patterns were examined to study MHC II gene functions in fish. As in other teleosts, the genomic structure of the spotted halibut MHC IIA contained 4 exons and 3 introns. The deduced amino acid sequence of the class IIA molecule shared 28-79% similarity with those of teleosts and mammals. Nine class IIA alleles were identified from five individuals. Three alleles originating from a single individual suggested the existence of at least two class IIA loci in the genome. Six exons and 5 introns were identified from spotted halibut MHC IIB, and the deduced amino acid sequence shared 33-79% similarity with those of teleosts and mammals. Twelve alleles were identified, among which five were observed in a single individual, which suggested at least three class IIB loci. Quantitative real-time PCR analysis revealed the presence of class IIA and IIB transcripts in nine normal tissues with high expression level in kidney and gill. Furthermore, MHC IIA and IIB are probably two candidates of immune molecules involved in the acute-phase response in spotted halibut, because their transcriptional levels were significantly up-regulated in blood and liver after bacterial challenge.
Collapse
Affiliation(s)
- Hongjun Li
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Ocean and Fishery Science Institute, Dalian, China
| | | | | | | | | | | |
Collapse
|
27
|
Du M, Chen SL, Liu YH, Liu Y, Yang JF. MHC polymorphism and disease resistance to Vibrio anguillarum in 8 families of half-smooth tongue sole (Cynoglossus semilaevis). BMC Genet 2011; 12:78. [PMID: 21888646 PMCID: PMC3199252 DOI: 10.1186/1471-2156-12-78] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 09/02/2011] [Indexed: 11/25/2022] Open
Abstract
Background Genes in the major histocompatibility complex (MHC) have a critical role in both the innate and adaptive immune responses because of their involvement in presenting foreign peptides to T cells. However, the nature has remained largely unknown. Results We examined the genetic variation in MHC class IIB in half-smooth tongue sole (Cynoglossus semilaevis) after challenge with vibrio anguillarum. Two thousand and four hundred fry from 12 half-smooth tongue sole families were challenged with Vibrio anguillarum. To determine any association between alleles and resistance or susceptibility to V. anguillarum, 160 individuals from four high-resistance (HR, < 40.55% mortality) families and four low-resistance (LR, > 73.27% mortality) families were selected for MHC IIB exon2 gene sequence analysis. The MHC IIB exon2 genes of tongue sole displayed a high level of polymorphism and were discovered at least four loci. Meanwhile, the dN/dS [the ratio of non-synonymous (dN) substitutions to synonymous (dS) substitutions] in the peptide-binding region (PBR) was higher than that in the non-peptide-binding region (non-PBR). Eighty-eight alleles were discovered among 160 individuals, and 13 out of 88 alleles were used to analyze the distribution pattern between the resistant and susceptible families. Certain alleles presented in HR and LR with a different frequency, while other alleles were discovered in only the HR or LR families, not both. Five alleles, Cyse-DBB*6501, Cyse-DBB*4002, Cyse-DBB*6102, Cyse-DBB*5601 and Cyse-DBB*2801, were found to be associated with susceptibility to V. anguillarum with a frequency of 1.25%, 1.25%, 1.25%, 1.25% and 2.5% in the HR families, and 35%, 33.75%, 27.5%, 16.25%, 15% in the LR families (p < 0.01, 0.01, 0.01, 0.01, 0.01), respectively. Four alleles, Cyse-DBB*3301, Cyse-DBB*4701, Cyse-DBB*6801 and Cyse-DBB*5901, were found to be associated with resistance to V. anguillarum, with a frequency of 13.75%, 11.25%, 11.25%, 8.75% in the HR families and 1.25%, 1.25%, 1.25%, 1.25% and 1.25% in the LR families (p < 0.01, 0.05, 0.05 and p = 0.064), respectively. Conclusions Elucidation of the role of MHC II B genes in half-smooth tongue sole should prove to be helpful to the in-depth development of marker-assisted selective breeding in half-smooth tongue sole.
Collapse
Affiliation(s)
- Min Du
- Key Lab for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266071, Qingdao, China
| | | | | | | | | |
Collapse
|
28
|
Xu T, Sun Y, Shi G, Cheng Y, Wang R. Characterization of the major histocompatibility complex class II genes in miiuy croaker. PLoS One 2011; 6:e23823. [PMID: 21901139 PMCID: PMC3162010 DOI: 10.1371/journal.pone.0023823] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 07/27/2011] [Indexed: 11/18/2022] Open
Abstract
Major histocompatibility complex (MHC) has a central role in the adaptive immune system by presenting foreign peptide to the T-cell receptor. In order to study the molecular function and genomic characteristic of class II genes in teleost, the full lengths of MHC class IIA and IIB cDNA and genomic sequence were cloned from miiuy croaker (Miichthys miiuy). As in other teleost, four exons and three introns were identified in miiuy croaker class IIA gene; but the difference is that six exons and five introns were identified in the miiuy croaker class IIB gene. The deduced amino acid sequence of class IIA and class IIB had 26.3–85.7% and 11.0–88.8% identity with those of mammal and teleost, respectively. Real-time quantitative RT-PCR demonstrated that the MHC class IIA and IIB were ubiquitously expressed in ten normal tissues; expression levels of MHC genes were found first upregulated and then downregulated, and finally by a recovery to normal level throughout the pathogenic bacteria infection process. In addition, we report on the underlying mechanism that maintains sequences diversity among many fish species. A series of site-model tests implemented in the CODEML program revealed that positive Darwinian selection is likely the cause of the molecular evolution in the fish MHC class II genes.
Collapse
Affiliation(s)
- Tianjun Xu
- Laboratory for Marine Living Resources and Molecular Engineering, College of Marine Science, Zhejiang Ocean University, Zhoushan, People's Republic of China.
| | | | | | | | | |
Collapse
|
29
|
Polymorphism and Balancing Selection of MHC Class II DAB Gene in 7 Selective Flounder (Paralichthys olivaceus) Families. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:613629. [PMID: 21808654 PMCID: PMC3145484 DOI: 10.1155/2011/613629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 04/28/2011] [Accepted: 05/30/2011] [Indexed: 11/17/2022]
Abstract
In order to determine the genetic variation of the MHC class IIB exon2 allele in the offspring, 700 fry from seven families of Japanese flounder challenged with V. anguillarum were studied, and different mortality rates were found in those families. Five to ten surviving and dead fry from each of the seven families were selected to study the MHC class II B exon2 gene with PCR and a direct sequencing method. One hundred and sixteen different exon2 sequences were found and 116 different alleles were identified, while a minimum of four loci were revealed in the MHC class II B exon2 gene. The ratio (dN/dS) of nonsynonymous substitution (dN) to synonymous substitutions (dS) in the peptide-binding region (PBR) of the MHC class IIB gene was 6.234, which indicated that balancing selection is acting on the MHC class IIB genes. The MHC IIB alleles were thus being passed on to their progeny. Some alleles were significantly more frequent in surviving than dead individuals. All together our data suggested that the alleles Paol-DAB*4301, Paol-DAB*4601, Paol-DAB*4302, Paol-DAB*3803, and Paol-DAB*4101 were associated with resistance to V. anguillarum in flounder.
Collapse
|
30
|
Xu TJ, Sun YN, Cheng YZ, Shi G, Wang RX. Genomic sequences comparison and differential expression of miiuy croaker MHC class I gene, after infection by Vibrio anguillarum. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:483-489. [PMID: 21147159 DOI: 10.1016/j.dci.2010.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 12/03/2010] [Accepted: 12/05/2010] [Indexed: 05/30/2023]
Abstract
Major histocompatibility complex (MHC) has a central role in the adaptive immune system by presenting foreign peptide to the T-cell receptor. MHC gene family contains two main subgroups of immunologically active molecules. In order to study the molecular function and genomic characteristic of class I gene in teleost, the full lengths of MHC class Iα cDNA and genomic sequence were cloned from miiuy croaker (Miichthys miiuy). Seven exons and six introns were identified in miiuy croaker class Iα gene. This genomic structural feature of miiuy croaker is similar to that present in some fishes such as Japanese flounder and Atlantic salmon, but different from that present in some other fishes such as half-smooth tongue sole and channel catfish. The deduced amino acid sequence of class Iα gene had 25.9-54.1% identity with those of mammal and teleost. Real-time quantitative RT-PCR demonstrated that the MHC class Iα gene was ubiquitously expressed in 10 normal tissues; expression levels of MHC Iα gene were found first upregulated and then downregulated throughout the pathogenic bacteria infection process in spleen and kidney.
Collapse
Affiliation(s)
- Tian-jun Xu
- Key Laboratory for Marine Living Resources and Molecular Engineering, College of Marine Science, Zhejiang Ocean University, Zhejiang Province, Zhoushan 316000, PR China
| | | | | | | | | |
Collapse
|
31
|
Li YD, Ren HL, Lu SY, Zhou Y, Han X, Gong BB, Zhang YY, Liu ZS. Cloning, expression, and genus-specificity analysis of 28-kDa OmpK from Vibrio alginolyticus. J Food Sci 2010; 75:M198-203. [PMID: 20546410 DOI: 10.1111/j.1750-3841.2010.01565.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Some Vibrio species are universal marine pathogens and Vibrio infections are often encountered due to consumption of raw or uncooked seafood. The outer membrane proteins, playing a key role in interaction between bacteria and hosts, are potential candidates for development of vaccine and markers of the genus Vibrio. In this study, the ompK (outer membrane protein K) genes of Vibrio alginolyticus, V. vulnificus, V. parahaemolyticus, V. fluvialis, and V. mimicu were cloned with 798 to 822 nucleotides encoding 266 to 274 amino acids. The ompK gene from V. alginolyticus was expressed in Escherichia coli using pET-22b expression vector. The recombinant fusion OmpK protein with 6xHis tag was purified with nickel chelate affinity chromatography. The polyclonal antibody (titer, 1:102400) against V. alginolyticus OmpK was developed in guinea pigs and it positively reacted with each of 5 Vibrio species but negative to other 18 Gram-negative bacterial strains. The result suggests that Vibrio OmpK protein could be a genus-specific antigen, which can be used for developing vaccines and rapid detection of multiple Vibrio species.
Collapse
Affiliation(s)
- Yan-Dong Li
- Key Laboratory for Zoonosis Research, Ministry of Education, Inst. of Zoonosis, College of Animal Science and Veterinary Medicine, Jilin Univ., Changchun 130062, PR China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
MHC class II DRB diversity in raccoons (Procyon lotor) reveals associations with raccoon rabies virus (Lyssavirus). Immunogenetics 2010; 63:103-13. [DOI: 10.1007/s00251-010-0485-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 09/15/2010] [Indexed: 10/19/2022]
|
33
|
Xu TJ, Chen SL, Zhang YX. MHC class IIalpha gene polymorphism and its association with resistance/susceptibility to Vibrio anguillarum in Japanese flounder (Paralichthys olivaceus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:1042-1050. [PMID: 20580738 DOI: 10.1016/j.dci.2010.05.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 05/11/2010] [Accepted: 05/11/2010] [Indexed: 05/29/2023]
Abstract
Association between polymorphism of the major histocompatibility complex (MHC) genes and disease resistance has been documented for few teleosts. In this study, we first investigate the genetic variation at the MHC IIalpha gene in Japanese flounder (Paralichthys olivaceus) for survival after challenge with bacterial infection. To explore the specific allele associated with disease resistance, about 6000 individuals from 60 families challenged with Vibrio anguillarum, which causes significantly different mortality in flounder families. 15-20 individuals from each of six high-resistance (HR) and six low-resistance (LR) families were screened for their MHC class IIalpha genotypes using sequence analysis. High polymorphism of MHC IIalpha gene and at least two loci were discovered in Japanese flounder and the rate of d(N) occurred at a significantly higher frequency than that of d(S) in PBR and non-PBR, the balancing selection hypothesis could explain the high polymorphism of MHC IIalpha gene in flounder. From the 212 individuals, a total of 55 MHC class IIalpha alleles were identified, and 9 alleles were used to study association between alleles and resistance to disease. Three alleles, Paol-DAA*1301, Paol-DAA*1401 and Paol-DAA*2201 were significantly associated with resistance against V. anguillarum, and Paol-DAA*1001 and Paol-DAA*1501 alleles were significantly associated with increased susceptibility to V. anguillarum. This study confirmed the association between alleles of MHC class IIalpha gene and disease resistance or susceptibility to bacterial infection in flounder, and the disease resistance-related MHC markers could be used for molecular marker-assisted selective breeding in the flounder.
Collapse
Affiliation(s)
- Tian-jun Xu
- Key Laboratory for Marine Living Resources and Molecular Engineering, College of Marine Science, Zhejiang Ocean University, 316000 Zhoushan, China
| | | | | |
Collapse
|
34
|
Bao Y, Li L, Zhang G. Polymorphism of the superoxide dismutase gene family in the bay scallop (Argopecten irradians) and its association with resistance/susceptibility to Vibrio anguillarum. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:553-561. [PMID: 20045025 DOI: 10.1016/j.dci.2009.12.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2009] [Revised: 12/10/2009] [Accepted: 12/27/2009] [Indexed: 05/28/2023]
Abstract
The superoxide dismutases (SODs) are a family of enzymes that function as the first line of antioxidant defense against highly reactive superoxide radicals. The bay scallop Argopecten irradians contains three unique superoxide dismutases: Ai-icCuZnSOD, Ai-MnSOD and Ai-ecCuZnSOD, which were characterized in our previous studies. qRT-PCR was also performed to characterize the temporal expression of SODs in the hemocytes of bay scallops injected with the bacterium Vibrio anguillarum. To characterize the SOD family in A. irradians completely, we evaluated the polymorphism in the SOD genes and investigated the association of this polymorphism with resistance/susceptibility to V. anguillarum. Fifty-nine SNPs were identified in the promoter, exon and partial intron sequences of the three SOD genes. AiECSOD contained the most SNPs, as compared to AiCuZnSOD and AiMnSOD, and the majority of these were located in the promoter. Among them, the genotypes of -1739 T-C SNP in the AiCuZnSOD promoter and alleles of the -498 A-T and -267 G-A SNPs in the AiECSOD promoter showed a significant association with resistance/susceptibility to V. angullarum (P<0.05). The only non-synonymous SNP that was identified, E1-38 C-A in Ai-ecCuZnSOD, was a dimorphism caused by a C to A transition that resulted in a Thr to Lys substitution at position 13 in the signal peptide. The Thr allele was associated with increased susceptibility to V. anguillarum (P<0.05). To confirm the presumption, another independent challenge experiment was performed, in which the cumulative mortality of Ai-icCuZnSOD Q-1739 genotype TT was significantly lower than TC (P<0.05). Ai-ecCuZnSOD Q-498 genotype AA and AT were significantly lower than TT (P<0.05), Ai-ecCuZnSOD E1-3 genotype AA was significantly higher than CA and CC (P<0.05). The results suggested that these three polymorphic loci could be potential gene markers for the future molecular selection of strains that are resistant to diseases caused by V. anguillarum.
Collapse
Affiliation(s)
- Yongbo Bao
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, China
| | | | | |
Collapse
|
35
|
Li C, Yu Y, Sun Y, Li S, Zhong Q, Wang X, Wang Z, Qi J, Zhang Q. Isolation, polymorphism and expression study of two distinct major histocompatibility complex class II B genes from half-smooth tongue sole (Cynoglossus semilaevis). Int J Immunogenet 2010; 37:185-97. [DOI: 10.1111/j.1744-313x.2010.00909.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
XU TJ, CHEN SL. Genomic structure of DAA gene and polymorphism within MHC-DAA alleles in Japanese flounder ( Paralichthys olivaceus). YI CHUAN = HEREDITAS 2009; 31:1020-8. [DOI: 10.3724/sp.j.1005.2009.01020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Li L, Zhao J, Wang L, Qiu L, Zhang H, Dong C, Cong M, Song L. The polymorphism of lysozyme gene in Zhikong scallop (Chlamys farreri) and its association with susceptibility/resistance to Listonella anguillarum. FISH & SHELLFISH IMMUNOLOGY 2009; 27:136-142. [PMID: 19154789 DOI: 10.1016/j.fsi.2008.12.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 12/08/2008] [Accepted: 12/22/2008] [Indexed: 05/27/2023]
Abstract
Lysozyme functions as a crucial biodefence effector against the infection of bacterial pathogens in innate immunity. The nucleotide sequence polymorphisms in promoter region of a nuclear goose type lysozyme gene from Zhikong scallop Chlamys farreri (designated as CFLysG) were investigated to explore their association with susceptibility/resistance to Listonella anguillarum infection. Eight sites of single nucleotide polymorphisms (SNPs) and two sites of insert-deletion (ins-del) polymorphisms were identified in the promoter region of CFLysG. Two of them, -753 TATCTCGATCAGG ins-del polymorphism and -391 A-G SNP were selected to analyze their distribution in the susceptible and resistant stocks, which were identified according to the survival time after L. anguillarum challenge. Using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP), two genotypes were found at each site, which were ins/del and ins/ins at locus -753, and A/A and A/G at locus -391, respectively. The -753 ins/del genotype was more prevalent in the resistant stock than that in the susceptible stock, 30% vs 16.67% in frequency, but there was no significant difference in the frequency distribution between these two stocks (P=0.15). In contrast, the frequency of -391A/G genotype in the resistant stock was significantly higher (30%) than that in the susceptible stock (7.14%) (P=0.007), indicating a significant association with the resistance of Zhikong scallop to L. anguillarum. To confirm the presumption, another independent challenge experiment was performed, in which the cumulative mortality of scallops with -391 A/A genotype (96.8%) was significantly higher than those with -391 A/G genotype (64.5%) (P=0.001), which further validate the association between -391 A/G genotype and the resistance of Zhikong scallop to L. anguillarum. These results suggested that the -391 A/G could be a potential marker applied in future selection of Zhikong scallop with enhanced resistance to L. anguillarum.
Collapse
Affiliation(s)
- Ling Li
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao 266071, China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Xu TJ, Chen SL, Ji XS, Sha ZX. Molecular cloning, genomic structure, polymorphism and expression analysis of major histocompatibility complex class IIA and IIB genes of half-smooth tongue sole (Cynoglossus semilaevis). FISH & SHELLFISH IMMUNOLOGY 2009; 27:192-201. [PMID: 19442741 DOI: 10.1016/j.fsi.2009.04.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 04/16/2009] [Accepted: 04/21/2009] [Indexed: 05/27/2023]
Abstract
Major histocompatibility complex (MHC) genes play an important role in the immune response of vertebrates. Its function is to present foreign peptide to the T-cell. In order to study the function and molecular polymorphism of class II genes in teleost, the full lengths of MHC class IIA and IIB cDNA were cloned from half-smooth tongue sole by homology cloning and rapid amplification of cDNA ends polymerase chain reaction (RACE-PCR). Genomic organizations, molecular polymorphism, and expression profiles of class IIA and IIB were examined to study the function in fish. As in other teleost, four exons and three introns were identified in half-smooth tongue sole class IIA gene, five exons and four introns were identified in class IIB gene. The deduced amino acid sequence of class IIA had 27.3-69.8% identity with those of mammal and teleost. Nine class IIA alleles were identified from four individuals. Four different alleles observed in a single individual may infer the existence of two loci at least. The deduced amino acid sequence of class IIB had 7.9-71.9% identity with those of other species. Fifteen class IIB alleles were identified. Six different alleles observed in a single individual may suggest that there are at least three loci in class IIB genes. Real-time quantitative RT-PCR demonstrated that the MHC class IIA and IIB were ubiquitously expressed in twelve normal tissues. Challenge of half-smooth tongue sole with the pathogenic bacteria, Vibrio anguillarum, resulted in significant changes in the expression of MHC IIA and IIB mRNA in three tissues.
Collapse
Affiliation(s)
- Tian-Jun Xu
- Key Lab for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266071 Qingdao, China
| | | | | | | |
Collapse
|
39
|
Xu JY, Chen SL, Ding H. Specific MHC class II B alleles associated with resistance to Edwardsiella tarda in turbot, Psetta maxima (L.). JOURNAL OF FISH DISEASES 2009; 32:637-640. [PMID: 19486240 DOI: 10.1111/j.1365-2761.2009.01028.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Affiliation(s)
- J-Y Xu
- Key Lab for Sustainable Utilization of Marine Fisheries Resources, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Ministry of Agriculture, Qingdao, China
| | | | | |
Collapse
|
40
|
Johnson NA, Vallejo RL, Silverstein JT, Welch TJ, Wiens GD, Hallerman EM, Palti Y. Suggestive association of major histocompatibility IB genetic markers with resistance to bacterial cold water disease in rainbow trout (Oncorhynchus mykiss). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2008; 10:429-437. [PMID: 18274824 DOI: 10.1007/s10126-007-9080-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 11/30/2007] [Accepted: 12/18/2007] [Indexed: 05/25/2023]
Abstract
Genes within the major histocompatibility complex (MHC) are important for both innate and adaptive immune responses in mammals; however, much less is known regarding their contribution in teleost fishes. We examined the involvement of four major histocompatibility (MH) genomic regions in rainbow trout in resistance to the causative agent of bacterial coldwater disease (BCWD), Flavobacterium psychrophilum. Fish from the 2005 NCCCWA brood-year (71 full-sib families) were challenged with F. psychrophilum strain CSF 259-93. The overall mortality rate was 70%, with large variation in mortality between families. Disease resistance was quantified as post-challenge days to death. Phenotypic variation and additive genetic variation were estimated using mixed models of survival analysis. To examine association, eight microsatellite markers were isolated from MH gene-containing BAC clones and mapped onto the rainbow trout genetic linkage map. The parents and grandparents of the 2005 brood-year families were genotyped with these eight markers and another two markers tightly linked to the MH-IB region to assess the extent of linkage disequilibrium (LD) of MH genomic regions MH-IA, MH-IB, TAP1, and MH-II with survival post-challenge. MH-IB and MH-II markers were linked to BCWD survivability when data were analyzed by family. Tests for disease association at the population level substantiated the involvement of MH-IB, but not MH-II, with disease resistance. The impact of selective breeding for disease resistance on MH sequence variation is discussed in the context of aquaculture production.
Collapse
Affiliation(s)
- Nathan A Johnson
- National Center for Cool and Cold Water Aquaculture USDA-ARS, 11861 Leetown Road, Kearneysville, WV 25430, USA
| | | | | | | | | | | | | |
Collapse
|