1
|
Li X, Li C, Yao W, Mao J. Characterization of three carrageenases from marine bacterium Shewanella sp. LE8: A novel approach for producing ι-carrageenan oligosaccharides. Int J Biol Macromol 2025; 297:138973. [PMID: 39725097 DOI: 10.1016/j.ijbiomac.2024.138973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/25/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
Carrageenan oligosaccharides have attracted significant attention due to their excellent biological activities, and they can be produced by carrageenases. In this study, a novel marine bacterium, Shewanella sp. LE8, was used to enzymatically degrade carrageenan, and the κ-, ι-, and λ-carrageenases produced by the bacterium were characterized. The crude enzyme derived from media exhibited κ-carrageenase activity, indicating its natural secretion during growth and proliferation. According to the results of molecular weight distribution from HPGPC, λ-carrageenan could be degraded by Shewanella sp. LE8 cells in both 20 mM Tris-HCl buffer and PBS, while ι-carrageenan can only be hydrolyzed in PBS environment, indicating the activation of ι-carrageenase in Shewanella sp. LE8 was dependent on the presence of Na+ ions. The components of carrageenan hydrolysates were determined by ESIMS, and results revealed that κ-carrageenan hydrolysates were primarily consisted of G4S-DA, [G4S-DA]2 and [G4S-DA]3, while ι-carrageenan hydrolysates were predominantly composed of [G4S-DA2S]2. Moreover, the fragment ions of λ-carrageenan revealed that the hydrolytic process not only encompasses enzymatic cleavage of glycosidic bonds but also involves the participation of sulfatase. The precise structure was further elucidated through NMR analysis, confirming that the end-products of ι-carrageenase were neoι-carratetraose. The results highlight the potential of Shewanella sp. LE8 for industrial applications in the production of ι-carrageenan oligosaccharides.
Collapse
Affiliation(s)
- Xiong Li
- Guangdong Engineering Research Center of High-Value Utilization and Equipment Development of Marine Biological Resources, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, 511458, China
| | - Chuyi Li
- College of life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Wanzi Yao
- Department of Food Safety and Health, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Jian Mao
- Guangdong Engineering Research Center of High-Value Utilization and Equipment Development of Marine Biological Resources, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, 511458, China.
| |
Collapse
|
2
|
Wang Z, Zhang A, Chen L, Li J. Preparation and anti-inflammation activity of λ-carrageenan oligosaccharides degraded by a novel λ-carrageenase Car3193. Int J Biol Macromol 2025; 293:139282. [PMID: 39736286 DOI: 10.1016/j.ijbiomac.2024.139282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/18/2024] [Accepted: 12/27/2024] [Indexed: 01/01/2025]
Abstract
To date, less attention has been paid to λ-carrageenases and their enzymatic hydrolysates than to κ- and ι-carrageenases and their hydrolysates. In this study, a Gram-negative strain Polaribacter sp. NJDZ03 was isolated from the surface of an Antarctic macroalga, Desmarestia sp., and a novel λ-carrageenase gene car3193 was isolated from it. The car3193 gene was 2832 bp long, and encoded an enzyme consisting of 943 amino acids. Although Car3193 had the typical PQQ structure at the N-terminal, its predicted active sites, Arg93 and Asn361, differed from those of other reported λ-carrageenases. The optimum temperature and pH of recombinant Car3193 towards λ-carrageenan were 50 °C and 7.0, respectively. The degradation products of λ-carrageenan produced by Car3193 were λ-neocarrabiose-, λ-neocarratetraose-, and λ-neocarraoctose-saccharides. Two products of enzymatic hydrolysis, λ-COs-1 (degree of polymerization 2; DP2) and λ-COS-2 (DP8), showed excellent anti-inflammatory activity towards lipopolysaccharide-induced RAW264.7 macrophages. Treatment with λ-COs-1 (DP2) and λ-COS-2 (DP8) significantly inhibited the secretion of the pro-inflammatory factors TNF-α, IL-6, IL-1β, and NO by RAW264.7 macrophages, and stimulated the secretion of the anti-inflammatory factors TGF-β1 and IL-10. The anti-inflammatory activity of λ-COs-1 was stronger than that of λ-COS-2, and λ-COs-1 had a dose-dependent bioactive effect, whereas λ-COS-2 did not. Further analyses showed that these carrageenan oligomers stimulated an anti-inflammatory response by inhibiting the NF-κB signaling pathway. Car3193 has potential applications in industry because of its high activity and strong stability, and its ability to generate bioactive products.
Collapse
Affiliation(s)
- Zhiyan Wang
- Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Ao Zhang
- Chemical Engineering Institute, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Long Chen
- Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Jiang Li
- Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China.
| |
Collapse
|
3
|
Wang H, Zhu B. Directed preparation of algal oligosaccharides with specific structures by algal polysaccharide degrading enzymes. Int J Biol Macromol 2024; 277:134093. [PMID: 39053825 DOI: 10.1016/j.ijbiomac.2024.134093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/15/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
Seaweed polysaccharides have a wide range of sources and rich content, with various biological activities such as anti-inflammatory, anti-tumor, anticoagulant, and blood pressure lowering. They can be applied in fields such as food, agriculture, and medicine. However, the poor solubility of macromolecular seaweed polysaccharides limits their further application. Reports have shown that some biological activities of seaweed oligosaccharides are more extensive and superior to that of seaweed polysaccharides. Therefore, reducing the degree of polymerization of polysaccharides will be the key to the high value utilization of seaweed polysaccharide resources. There are three main methods for degrading algal polysaccharides into algal oligosaccharides, physical, chemical and enzymatic degradation. Among them, enzymatic degradation has been a hot research topic in recent years. Various types of algal polysaccharide hydrolases and related glycosidases are powerful tools for the preparation of algal oligosaccharides, including α-agarases, β-agaroses, α-neoagarose hydrolases and β-galactosidases that are related to agar, κ-carrageenases, ι-carrageenases and λ-carrageenases that are related to carrageenan, β-porphyranases that are related to porphyran, funoran hydrolases that are related to funoran, alginate lyases that are related to alginate and ulvan lyases related to ulvan. This paper describes the bioactivities of agar oligosaccharide, carrageenan oligosaccharide, porphyran oligosaccharide, funoran oligosaccharide, alginate oligosaccharide and ulvan oligosaccharide and provides a detailed review of the progress of research on the enzymatic preparation of these six oligosaccharides. At the same time, the problems and challenges faced are presented to guide and improve the preparation and application of algal oligosaccharides in the future.
Collapse
Affiliation(s)
- Hui Wang
- College of Food Science and Light Industry, Nanjing Tech University, 211086, China
| | - Benwei Zhu
- College of Food Science and Light Industry, Nanjing Tech University, 211086, China.
| |
Collapse
|
4
|
Zhong W, Agarwal V. Polymer degrading marine Microbulbifer bacteria: an un(der)utilized source of chemical and biocatalytic novelty. Beilstein J Org Chem 2024; 20:1635-1651. [PMID: 39076296 PMCID: PMC11285056 DOI: 10.3762/bjoc.20.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/02/2024] [Indexed: 07/31/2024] Open
Abstract
Microbulbifer is a genus of halophilic bacteria that are commonly detected in the commensal marine microbiomes. These bacteria have been recognized for their ability to degrade polysaccharides and other polymeric materials. Increasingly, Microbulbifer genomes indicate these bacteria to be an untapped reservoir for novel natural product discovery and biosynthetic novelty. In this review, we summarize the distribution of Microbulbifer bacteria, activities of the various polymer degrading enzymes that these bacteria produce, and an up-to-date summary of the natural products that have been isolated from Microbulbifer strains. We argue that these bacteria have been hiding in plain sight, and contemporary efforts into their genome and metabolome mining are going to lead to a proliferation of Microbulbifer-derived natural products in the future. We also describe, where possible, the ecological interactions of these bacteria in marine microbiomes.
Collapse
Affiliation(s)
- Weimao Zhong
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Vinayak Agarwal
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
5
|
Jiang C, Ma Y, Wang W, Sun J, Hao J, Mao X. Systematic review on carrageenolytic enzymes: From metabolic pathways to applications in biotechnology. Biotechnol Adv 2024; 73:108351. [PMID: 38582331 DOI: 10.1016/j.biotechadv.2024.108351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/21/2024] [Accepted: 03/30/2024] [Indexed: 04/08/2024]
Abstract
Carrageenan, the major carbohydrate component of some red algae, is an important renewable bioresource with very large annual outputs. Different types of carrageenolytic enzymes in the carrageenan metabolic pathway are potentially valuable for the production of carrageenan oligosaccharides, biofuel, and other chemicals obtained from carrageenan. However, these enzymes are not well-developed for oligosaccharide or biofuel production. For further application, comprehensive knowledge of carrageenolytic enzymes is essential. Therefore, in this review, we first summarize various carrageenolytic enzymes, including the recently discovered β-carrageenase, carrageenan-specific sulfatase, exo-α-3,6-anhydro-D-galactosidase (D-ADAGase), and exo-β-galactosidase (BGase), and describe their enzymatic characteristics. Subsequently, the carrageenan metabolic pathways are systematically presented and applications of carrageenases and carrageenan oligosaccharides are illustrated with examples. Finally, this paper discusses critical aspects that can aid researchers in constructing cascade catalytic systems and engineered microorganisms to efficiently produce carrageenan oligosaccharides or other value-added chemicals through the degradation of carrageenan. Overall, this paper offers a comprehensive overview of carrageenolytic enzymes, providing valuable insights for further exploration and application of these enzymes.
Collapse
Affiliation(s)
- Chengcheng Jiang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Byproducts, National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Yuqi Ma
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Byproducts, National Laboratory for Marine Science and Technology, Qingdao 266071, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116000, China
| | - Wei Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Byproducts, National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Jingjing Sun
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Byproducts, National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Jianhua Hao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Byproducts, National Laboratory for Marine Science and Technology, Qingdao 266071, China; Jiangsu Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resource, Lianyungang 222005, China.
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
6
|
Krishna Perumal P, Dong CD, Chauhan AS, Anisha GS, Kadri MS, Chen CW, Singhania RR, Patel AK. Advances in oligosaccharides production from algal sources and potential applications. Biotechnol Adv 2023; 67:108195. [PMID: 37315876 DOI: 10.1016/j.biotechadv.2023.108195] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
In recent years, algal-derived glycans and oligosaccharides have become increasingly important in health applications due to higher bioactivities than plant-derived oligosaccharides. The marine organisms have complex, and highly branched glycans and more reactive groups to elicit greater bioactivities. However, complex and large molecules have limited use in broad commercial applications due to dissolution limitations. In comparison to these, oligosaccharides show better solubility and retain their bioactivities, hence, offering better applications opportunity. Accordingly, efforts are being made to develop a cost-effective method for enzymatic extraction of oligosaccharides from algal polysaccharides and algal biomass. Yet detailed structural characterization of algal-derived glycans is required to produce and characterize the potential biomolecules for improved bioactivity and commercial applications. Some macroalgae and microalgae are being evaluated as in vivo biofactories for efficient clinical trials, which could be very helpful in understanding the therapeutic responses. This review discusses the recent advancements in the production of oligosaccharides from microalgae. It also discusses the bottlenecks of the oligosaccharides research, technological limitations, and probable solutions to these problems. Furthermore, it presents the emerging bioactivities of algal oligosaccharides and their promising potential for possible biotherapeutic application.
Collapse
Affiliation(s)
- Pitchurajan Krishna Perumal
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Sustainable Environment Research Centre, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Ajeet Singh Chauhan
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Grace Sathyanesan Anisha
- Post-Graduate and Research Department of Zoology, Government College for Women, Thiruvananthapuram 695014, Kerala, India
| | - Mohammad Sibtain Kadri
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung City-804201, Taiwan
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Sustainable Environment Research Centre, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Reeta Rani Singhania
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India.
| |
Collapse
|
7
|
Ghattavi S, Homaei A. Marine enzymes: Classification and application in various industries. Int J Biol Macromol 2023; 230:123136. [PMID: 36621739 DOI: 10.1016/j.ijbiomac.2023.123136] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/23/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023]
Abstract
Oceans are regarded as a plentiful and sustainable source of biological compounds. Enzymes are a group of marine biomaterials that have recently drawn more attention because they are produced in harsh environmental conditions such as high salinity, extensive pH, a wide temperature range, and high pressure. Hence, marine-derived enzymes are capable of exhibiting remarkable properties due to their unique composition. In this review, we overviewed and discussed characteristics of marine enzymes as well as the sources of marine enzymes, ranging from primitive organisms to vertebrates, and presented the importance, advantages, and challenges of using marine enzymes with a summary of their applications in a variety of industries. Current biotechnological advancements need the study of novel marine enzymes that could be applied in a variety of ways. Resources of marine enzyme can benefit greatly for biotechnological applications duo to their biocompatible, ecofriendly and high effectiveness. It is beneficial to use the unique characteristics offered by marine enzymes to either develop new processes and products or improve existing ones. As a result, marine-derived enzymes have promising potential and are an excellent candidate for a variety of biotechnology applications and a future rise in the use of marine enzymes is to be anticipated.
Collapse
Affiliation(s)
- Saba Ghattavi
- Fisheries Department, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.
| |
Collapse
|
8
|
Yokoi Y, Kawabuchi Y, Zulmajdi AA, Tanaka R, Shibata T, Muraoka T, Mori T. Cell-Penetrating Peptide-Peptide Nucleic Acid Conjugates as a Tool for Protein Functional Elucidation in the Native Bacterium. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248944. [PMID: 36558072 PMCID: PMC9788395 DOI: 10.3390/molecules27248944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Approximately 30% or more of the total proteins annotated from sequenced bacteria genomes are annotated as hypothetical or uncharacterized proteins. However, elucidation on the function of these proteins is hindered by the lack of simple and rapid screening methods, particularly with novel or hard-to-transform bacteria. In this report, we employed cell-penetrating peptide (CPP) -peptide nucleotide acid (PNA) conjugates to elucidate the function of such uncharacterized proteins in vivo within the native bacterium. Paenibacillus, a hard-to-transform bacterial genus, was used as a model. Two hypothetical genes showing amino acid sequence similarity to ι-carrageenases, termed cgiA and cgiB, were identified from the draft genome of Paenibacillus sp. strain YYML68, and CPP-PNA probes targeting the mRNA of the acyl carrier protein gene, acpP, and the two ι-carrageenase candidate genes were synthesized. Upon direct incubation of CPP-PNA targeting the mRNA of the acpP gene, we successfully observed growth inhibition of strain YYML68 in a concentration-dependent manner. Similarly, both the function of the candidate ι-carrageenases were also inhibited using our CPP-PNA probes allowing for the confirmation and characterization of these hypothetical proteins. In summary, we believe that CPP-PNA conjugates can serve as a simple and efficient alternative approach to characterize proteins in the native bacterium.
Collapse
Affiliation(s)
- Yasuhito Yokoi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi 184-8588, Tokyo, Japan
| | - Yugo Kawabuchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi 184-8588, Tokyo, Japan
| | - Abdullah Adham Zulmajdi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi 184-8588, Tokyo, Japan
| | - Reiji Tanaka
- Department of Life Sciences, Graduate School of Bioresources, Mie University, 1577 Kurima-machiya-cho, Tsu-shi 514-8507, Mie, Japan
| | - Toshiyuki Shibata
- Department of Life Sciences, Graduate School of Bioresources, Mie University, 1577 Kurima-machiya-cho, Tsu-shi 514-8507, Mie, Japan
| | - Takahiro Muraoka
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi 184-8588, Tokyo, Japan
| | - Tetsushi Mori
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi 184-8588, Tokyo, Japan
- Correspondence:
| |
Collapse
|
9
|
Wang J, Jin L, Wang J, Chan Z, Zeng R, Wu J, Qu W. The first complete genome sequence of Microbulbifer celer KCTC12973T, a type strain with multiple polysaccharide degradation genes. Mar Genomics 2022; 62:100931. [DOI: 10.1016/j.margen.2022.100931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 10/19/2022]
|
10
|
Marine microbial enzymes for the production of algal oligosaccharides and its bioactive potential for application as nutritional supplements. Folia Microbiol (Praha) 2022; 67:175-191. [PMID: 34997524 DOI: 10.1007/s12223-021-00943-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/20/2021] [Indexed: 01/02/2023]
Abstract
Marine macroalgae have a very high carbohydrate content due to complex algal polysaccharides (APS) like agar, alginate, and ulvan in their cell wall. Despite numerous reports on their biomedical properties, their hydrocolloid nature limits their applications. Algal oligosaccharides (AOS), which are hydrolyzed forms of complex APS, are gaining importance due to their low molecular weight, biocompatibility, bioactivities, safety, and solubility in water that makes it a lucrative alternative. The AOS produced through enzymatic hydrolysis using microbial enzymes have far-reaching applications because of its stereospecific nature. Identification and characterization of novel microorganisms producing APS hydrolyzing enzymes are the major bottlenecks for the efficient production of AOS. This review will discuss the marine microbial enzymes identified for AOS production and the bioactive potential of enzymatically produced AOS. This can improve our understanding of the biotechnological potential of microbial enzymes for the production of AOS and facilitate the sustainable utilization of algal biomass. Enzymatically produced AOS are shown to have bioactivities such as antioxidant, antiglycemic, prebiotic, immunomodulation, antiobesity or antihypercholesterolemia, anti-inflammatory, anticancer, and antimicrobial activity. The myriad of health benefits provided by the AOS is the need of the hour as there is an alarming increase in physiological disorders among a wide range of the global population.
Collapse
|
11
|
Guo Z, Wei Y, Zhang Y, Xu Y, Zheng L, Zhu B, Yao Z. Carrageenan oligosaccharides: A comprehensive review of preparation, isolation, purification, structure, biological activities and applications. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102593] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Revealing the Potential of Xylanase from a New Halophilic Microbulbifer sp. CL37 with Paper De-Inking Ability. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-021-06400-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Optimization of Fermentation Conditions for Carrageenase Production by Cellulophaga Species: A Comparative Study. BIOLOGY 2021; 10:biology10100971. [PMID: 34681070 PMCID: PMC8533080 DOI: 10.3390/biology10100971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/14/2021] [Accepted: 09/23/2021] [Indexed: 11/22/2022]
Abstract
Simple Summary Cellulophaga species are rarely studied marine bacteria with the potential for carrageenase production. We examined the carrageenase secretion ability of six bacterial species from the Cellulophaga genus. Among them, C. algicola produced the maximum amount of ι-carrageenase. Most of the bacteria produced their highest quantity of enzymes at 25 °C after 48 h of incubation time. The maximum enzyme production was achieved with the fermentation medium composition of 30 g/L sea salt, 1.4 g/L furcellaran and 3 g/L yeast extract. In addition, the properties of the ultrafiltered ι-carrageenase extracted from C. algicola were studied. Abstract Carrageenases appear in various species of marine bacteria and are widely used for the degradation of carrageenans, the commercially significant sulphated polysaccharides. The carrageenase production ability of six different Cellulophaga species was identified, with ι-carrageenase being the most abundant carrageenolytic enzyme. C. algicola was the most potent strain, followed by C. fucicola and C. geojensis, whereas C. pacifica was the least effective carrageenase producer among the studied strains. The enzyme production was maximized using the one-factor-at-a-time optimization method. The optimal incubation temperature was identified as 25 °C and the incubation time was set as 48 h for all tested species. The optimal medium composition for Cellulophaga strains was determined as 30 g/L sea salt, 1.4 g/L furcellaran, and 3 g/L yeast extract. An ultrafiltered enzyme extracted from C. algicola had the highest activity at around 40 °C. The optimal pH for enzymatic degradation was determined as 7.8, and the enzyme was fairly stable at temperatures up to 40 °C.
Collapse
|
14
|
Jagtap AS, Manohar CS. Overview on Microbial Enzymatic Production of Algal Oligosaccharides for Nutraceutical Applications. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:159-176. [PMID: 33763808 DOI: 10.1007/s10126-021-10027-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Global requirement for algal foods is increasing, as they are progressively consumed for its nutrition and health. Macroalgae is a proven source of metabolites, proteins, pigments, bioactive compounds, and algal polysaccharides. The unique polysaccharides such as agar, carrageenan, porphyran, alginate, fucoidan, laminarin, and ulvan are known for its wide range of bioactivities and extensively used for applications from tissue engineering to drug delivery. However, there are few limitations due to its high molecular size, low compatibility, and hydrocolloid nature. Hence, the enzymatically produced algal oligosaccharides have drawn tremendous attention due to its green synthesis, solubility, and lower molecular size. They are reported to have bioactivities including antioxidant, antiglycemic, immunostimulatory, anti-inflammatory, and prebiotic activities, which can be used in the healthcare and nutraceutical industry for the manufacture of functional foods and dietary supplements. However, identification of potential microorganisms, producing polysaccharide hydrolyzing enzymes, remains a major bottle neck for efficient utilization of bioactive algal oligosaccharides. This review summarizes the recent developments in the identification and characterization of microbial enzymes for the production of bioactive algal oligosaccharides. This can improve our understanding of bioactive algal oligosaccharides and pave way for efficient utilization of macroalgae to prevent various chronic diseases.
Collapse
Affiliation(s)
- Ashok S Jagtap
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India
- School of Earth, Ocean and Atmospheric Sciences, Goa University, Taleigao Plateau, Goa, 403206, India
| | - Cathrine S Manohar
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India.
| |
Collapse
|
15
|
Fermentation optimization, purification and biochemical characterization of ι-carrageenase from marine bacterium Cellulophaga baltica. Int J Biol Macromol 2020; 166:789-797. [PMID: 33157133 DOI: 10.1016/j.ijbiomac.2020.10.236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/11/2020] [Accepted: 10/30/2020] [Indexed: 01/19/2023]
Abstract
The ι-carrageenan degrading marine bacterium, Cellulophaga baltica, was isolated from the surface of a filamentous red alga Vertebrata fucoides. Maximum ι-carrageenase production was optimized by single-factor experiments. Optimal fermentation conditions were 1.6 g/L furcellaran, 4 g/L yeast extract as carbon sources, 5 g/L sea salt, and 48 h of incubation time at 20 °C. Extracellular ι-carrageenase from the culture supernatant was purified by ultrafiltration, ammonium sulfate precipitation, and finally by anion-exchange chromatography, showed a 26-fold increase in specific activity as compared to that in the crude enzyme. According to the results from SDS-PAGE and HPLC-SEC, the molecular weight of the purified enzyme was estimated to be 31 kDa. The purified enzyme showed the maximum specific activity of 571 U/mg at 40 °C and pH 7.5-8.0. It maintained 73% of the total activity below 40 °C and 90% of its total activity at pH 7.2. Notably, the enzyme is a cold-adapted ι-carrageenase, which showed 33.4% of the maximum activity at 10 °C. The enzyme was stimulated by Na+, K+, and NH4+, whereas Ca2+, Mg2+, Fe3+, sea salt, and EDTA acted as enzyme inhibitors.
Collapse
|
16
|
Sun H, Gao L, Xue C, Mao X. Marine-polysaccharide degrading enzymes: Status and prospects. Compr Rev Food Sci Food Saf 2020; 19:2767-2796. [PMID: 33337030 DOI: 10.1111/1541-4337.12630] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/19/2022]
Abstract
Marine-polysaccharide degrading enzymes have recently been studied extensively. They are particularly interesting as they catalyze the cleavage of glycosidic bonds in polysaccharide macromolecules and produce oligosaccharides with low degrees of polymerization. Numerous findings have demonstrated that marine polysaccharides and their biotransformed products possess beneficial properties including antitumor, antiviral, anticoagulant, and anti-inflammatory activities, and they have great value in healthcare, cosmetics, the food industry, and agriculture. Exploitation of enzymes that can degrade marine polysaccharides is in the ascendant, and is important for high-value use of marine biomass resources. In this review, we describe research and prospects regarding the classification, biochemical properties, and catalytic mechanisms of the main types of marine-polysaccharide degrading enzymes, focusing on chitinase, chitosanase, alginate lyase, agarase, and carrageenase, and their product oligosaccharides. The state-of-the-art discussion of marine-polysaccharide degrading enzymes and their properties offers information that might enable more efficient production of marine oligosaccharides. We also highlight current problems in the field of marine-polysaccharide degrading enzymes and trends in their development. Understanding the properties, catalytic mechanisms, and modification of known enzymes will aid the identification of novel enzymes to degrade marine polysaccharides and facilitation of their use in various biotechnological processes.
Collapse
Affiliation(s)
- Huihui Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Department of Food Engineering and Nutrition, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Li Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
17
|
Pyeon HM, Lee YS, Choi YL. Cloning, purification, and characterization of GH3 β-glucosidase, MtBgl85, from Microbulbifer thermotolerans DAU221. PeerJ 2019; 7:e7106. [PMID: 31367479 PMCID: PMC6657685 DOI: 10.7717/peerj.7106] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/09/2019] [Indexed: 11/20/2022] Open
Abstract
Background β-Glucosidases have attracted considerable attention due to their important roles in various biotechnological processes such as cellulose degradation to make energy and hydrolysis of isoflavone. Microbulbifer thermotolerans (M. thermotolerans) is isolated from deep-sea sediment and has not been researched much yet. As a potential candidate for a variety of biotechnological industries, β-glucosidases from the novel bacterial species should be researched extensively. Methods β-Glucosidase, MtBgl85, from M. thermotolerans DAU221 was purified by His-tag affinity chromatography and confirmed by SDS-PAGE and zymogram. Its biochemical and physiological properties, such as effects of temperature, pH, metal ions, and organic solvents, substrate specificity, and isoflavone hydrolysis, were investigated. Results M. thermotolerans DAU221 showed β-glucosidase activity in a marine broth plate containing 0.1% esculin and 0.25% ammonium iron (III) citrate. The β-glucosidase gene, mtbgl85, was isolated from the whole genome sequence of M. thermotolerans DAU221. The β-glucosidase gene was 2,319 bp and encoded 772 amino acids. The deduced amino acid sequence had a 43% identity with OaBGL84 from Olleya aquimaris and 35% and 32% identity with to CfBgl3A and CfBgl3C from Cellulomonas fimi among bacterial glycosyl hydrolase family 3, respectively. The optimal temperature of MtBgl85 was 50 °C and the optimum pH was 7.0. MtBgl85 activity was strongly reduced in the presence of Hg2+ and Cu2+ ions. As a result of measuring the activity at various concentrations of NaCl, it was confirmed that the activity was maintained up to the concentration of 1 M, but gradually decreased with increasing concentration. MtBgl85 showed higher enzyme stability at non-polar solvents (high Log Pow) than polar solvents (low Log Pow). The hydrolyzed products of isoflavone glycosides and arbutin were analyzed by HPLC.
Collapse
Affiliation(s)
- Hyo-Min Pyeon
- Department of Biotechnology, Dong-A University, Busan, South Korea
| | - Yong-Suk Lee
- Department of Biotechnology, Dong-A University, Busan, South Korea
| | - Yong-Lark Choi
- Department of Biotechnology, Dong-A University, Busan, South Korea
| |
Collapse
|
18
|
Chen YP, Wu HT, Wang GH, Wu DY, Hwang IE, Chien MC, Pang HY, Kuo JT, Liaw LL. Inspecting the genome sequence and agarases of Microbulbifer pacificus LD25 from a saltwater hot spring. J Biosci Bioeng 2019; 127:403-410. [DOI: 10.1016/j.jbiosc.2018.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 09/29/2018] [Accepted: 10/02/2018] [Indexed: 12/27/2022]
|
19
|
Tian J, Zhu L, Wang W, Zhang L, Li Z, Zhao Q, Xing K, Feng Z, Peng X. Genomic Analysis of Microbulbifer sp. Strain A4B-17 and the Characterization of Its Metabolic Pathways for 4-Hydroxybenzoic Acid Synthesis. Front Microbiol 2019; 9:3115. [PMID: 30619190 PMCID: PMC6305291 DOI: 10.3389/fmicb.2018.03115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/03/2018] [Indexed: 11/21/2022] Open
Abstract
The marine bacterium Microbulbifer sp. A4B-17 produces secondary metabolites such as 4-hydroxybenzoic acid (4HBA) and esters of 4HBA (parabens). 4HBA is a useful material in the synthesis of the liquid crystal. Parabens are man-made compounds that have been extensively used since the 1920s in the cosmetic, pharmaceutical, and food industries for their effective antimicrobial activity. In this study, we completed the sequencing and annotation of the A4B-17 strain genome and found all genes for glucose utilization and 4HBA biosynthesis. Strain A4B-17 uses the Embden-Meyerhof-Parnas (EMP), hexose monophosphate (HMP), and Entner-Doudoroff (ED) pathways to utilize glucose. Other sugars such as fructose, sucrose, xylose, arabinose, galactose, mannitol, and glycerol supported cell growth and 4HBA synthesis. Reverse transcriptional analysis confirmed that the key genes involved in the glucose metabolism were functional. Paraben concentrations were proportionally increased by adding alcohols to the culture medium, indicating that strain A4B-17 synthesizes the 4HBA and the alcohols separately and an esterification reaction between them is responsible for the paraben synthesis. A gene that codes for a carboxylesterase was proposed to catalyze this reaction. The temperature and NaCl concentration for optimal growth were determined to be 35°C and 22.8 g/L.
Collapse
Affiliation(s)
- Jun Tian
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Li Zhu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Wenjun Wang
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Liping Zhang
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Zhi Li
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Qingyu Zhao
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Ke Xing
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Zhaozhong Feng
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Xue Peng
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
20
|
Xu Y, Mao W, Gao W, Chi Z, Chi Z, Liu G. Efficient production of a recombinant ι-carrageenase in Brevibacillus choshinensis using a new integrative vector for the preparation of ι-carrageenan oligosaccharides. Process Biochem 2019. [DOI: 10.1016/j.procbio.2018.09.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
Boncan DAT, David AME, Lluisma AO. A CAZyme-Rich Genome of a Taxonomically Novel Rhodophyte-Associated Carrageenolytic Marine Bacterium. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:685-705. [PMID: 29936557 DOI: 10.1007/s10126-018-9840-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/07/2018] [Indexed: 06/08/2023]
Abstract
Carbohydrate-active enzymes (CAZymes) have significant biotechnological potential as agents for degradation or modification of polysaccharides/glycans. As marine macroalgae are known to be rich in various types of polysaccharides, seaweed-associated bacteria are likely to be a good source of these CAZymes. A genomics approach can be used to explore CAZyme abundance and diversity, but it can also provide deep insights into the biology of CAZyme producers and, in particular, into molecular mechanisms that mediate their interaction with their hosts. In this study, a Gram-negative, aerobic, rod-shaped, carrageenolytic, and culturable marine bacterium designated as AOL6 was isolated from a diseased thallus of a carrageenan-producing farmed rhodophyte, Kappaphycus alvarezii (Gigartinales, Rhodophyta). The whole genome of this bacterium was sequenced and characterized. Sequence reads were assembled producing a high-quality genome assembly. The estimated genome size of the bacterium is 4.4 Mb and a G+C content of 52%. Molecular phylogenetic analysis based on a complete sequence of 16S rRNA, rpoB, and a set of 38 single-copy genes suggests that the bacterium is an unknown species and represents a novel genus in the family Cellvibrionaceae that is most closely related to the genera Teredinibacter and Saccharophagus. Genome comparison with T. turnerae T7901 and S. degradans 2-40 reveals several features shared by the three species, including a large number of CAZymes that comprised > 5% of the total number of protein-coding genes. The high proportion of CAZymes found in the AOL6 genome exceeds that of other known carbohydrate degraders, suggesting a significant capacity to degrade a range of polysaccharides including κ-carrageenan; 34% of these CAZymes have signal peptide sequences for secretion. Three putative κ-carrageenase-encoding genes were identified from the genome of the bacterium via in silico analysis, consistent with the results of the zymography assay (with κ-carrageenan as substrate). Genome analysis also indicated that AOL6 relies exclusively on type 2 secretion system (T2SS) for secreting proteins (possibly including glycoside hydrolases). In relation to T2SS, the product of the pilZ gene was predicted to be highly expressed, suggesting specialization for cell adhesion and secretion of virulence factors. The assignment of proteins to clusters of orthologous groups (COGs) revealed a pattern characteristic of r-strategists. Majority of two-component system proteins identified in the AOL6 genome were also predicted to be involved in chemotaxis and surface colonization. These genomic features suggest that AOL6 is an opportunistic pathogen, adapted to colonizing polysaccharide-rich hosts, including carrageenophytes.
Collapse
Affiliation(s)
- Delbert Almerick T Boncan
- Marine Science Institute, College of Science, University of the Philippines Diliman, 1101, Quezon City, Philippines
- National Institute of Molecular Biology and Biotechnology, College of Science, University of the Philippines Diliman, 1101, Quezon City, Philippines
| | - Anne Marjorie E David
- Marine Science Institute, College of Science, University of the Philippines Diliman, 1101, Quezon City, Philippines
- Institute of Biology, College of Science, University of the Philippines Diliman, 1101, Quezon City, Philippines
| | - Arturo O Lluisma
- Marine Science Institute, College of Science, University of the Philippines Diliman, 1101, Quezon City, Philippines.
| |
Collapse
|
22
|
Oligosaccharides Derived from Red Seaweed: Production, Properties, and Potential Health and Cosmetic Applications. Molecules 2018; 23:molecules23102451. [PMID: 30257445 PMCID: PMC6222765 DOI: 10.3390/molecules23102451] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/17/2018] [Accepted: 09/21/2018] [Indexed: 12/30/2022] Open
Abstract
Because of their potential use as functional ingredients in human nutrition, oligosaccharides derived from natural sources are receiving paramount consideration. Red seaweed, a proven rich source of agar and carrageenan, is one of the most abundantly present sources of such oligosaccharides. Agaro-oligosaccharides (AOS) and carrageenan-oligosaccharides (COS) are produced from agar and carrageenan, respectively, through chemical and enzymatic hydrolyses. Enzymatic hydrolysis of agar and carrageenan into oligosaccharides is preferred in industrial production because of certain problems associated with chemical hydrolysis, including the release of high amounts of monosaccharides and undesirable toxic products, such as furfural. AOS and COS possess many biological activities, including prebiotic, immuno-modulatory, anti-oxidant, and anti-tumor activities. These activities are related to their chemical structure, molecular weight, degree of polymerization, and the flexibility of the glycosidic linkages. Therefore, the structure–function relationship and the mechanisms occurring during the specific biological applications of AOS and COS are discussed herein. Moreover, the chromatographic separation, purification, and characterization of AOS and COS are also part of this review. This piece of writing strives to create a new perspective on the potential applications of AOS and COS in the functional food and pharmaceutical industry.
Collapse
|
23
|
Xiao A, Zeng J, Li J, Zhu Y, Xiao Q, Ni H. Molecular cloning, characterization, and heterologous expression of a new κ‐carrageenase gene from
Pseudoalteromonas carrageenovora
ASY5. J Food Biochem 2018. [DOI: 10.1111/jfbc.12677] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anfeng Xiao
- College of Food and Biological Engineering Jimei University Xiamen China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Xiamen China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food Xiamen China
- Research Center of Food Biotechnology of Xiamen City Xiamen China
| | - Jie Zeng
- College of Food and Biological Engineering Jimei University Xiamen China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Xiamen China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food Xiamen China
- Research Center of Food Biotechnology of Xiamen City Xiamen China
| | - Jiajia Li
- College of Food and Biological Engineering Jimei University Xiamen China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Xiamen China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food Xiamen China
- Research Center of Food Biotechnology of Xiamen City Xiamen China
| | - Yanbing Zhu
- College of Food and Biological Engineering Jimei University Xiamen China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Xiamen China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food Xiamen China
- Research Center of Food Biotechnology of Xiamen City Xiamen China
| | - Qiong Xiao
- College of Food and Biological Engineering Jimei University Xiamen China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Xiamen China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food Xiamen China
- Research Center of Food Biotechnology of Xiamen City Xiamen China
| | - Hui Ni
- College of Food and Biological Engineering Jimei University Xiamen China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Xiamen China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food Xiamen China
- Research Center of Food Biotechnology of Xiamen City Xiamen China
| |
Collapse
|
24
|
Zhu B, Ni F, Sun Y, Zhu X, Yin H, Yao Z, Du Y. Insight into carrageenases: major review of sources, category, property, purification method, structure, and applications. Crit Rev Biotechnol 2018; 38:1261-1276. [DOI: 10.1080/07388551.2018.1472550] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Benwei Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, PR China
| | - Fang Ni
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, PR China
| | - Yun Sun
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, PR China
| | - Xianyu Zhu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, PR China
| | - Heng Yin
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, PR China
| | - Zhong Yao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, PR China
| | - Yuguang Du
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
25
|
Xiao Q, Zhu Y, Li J, Wu C, Ni H, Xiao A. Fermentation optimization and enzyme characterization of a new ι-Carrageenase from Pseudoalteromonas carrageenovora ASY5. ELECTRON J BIOTECHN 2018. [DOI: 10.1016/j.ejbt.2017.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
26
|
Shen J, Chang Y, Dong S, Chen F. Cloning, expression and characterization of a ι-carrageenase from marine bacterium Wenyingzhuangia fucanilytica : A biocatalyst for producing ι-carrageenan oligosaccharides. J Biotechnol 2017; 259:103-109. [DOI: 10.1016/j.jbiotec.2017.07.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/27/2017] [Accepted: 07/27/2017] [Indexed: 01/24/2023]
|
27
|
Li S, Hao J, Sun M. Cloning and characterization of a new cold-adapted and thermo-tolerant ι-carrageenase from marine bacterium Flavobacterium sp. YS-80-122. Int J Biol Macromol 2017; 102:1059-1065. [PMID: 28435055 DOI: 10.1016/j.ijbiomac.2017.04.070] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/16/2017] [Accepted: 04/18/2017] [Indexed: 12/19/2022]
Abstract
ι-Carrageenases play a role in marine ι-carrageenan degradation, and their enzymatic hydrolysates are thought to be excellent antioxidants. In this study, we identified a new ι-carrageenase, encoded by cgiF, in psychrophilic bacterium Flavobacterium sp. YS-80-122. The deduced ι-carrageenase, CgiF, belongs to glycoside hydrolase family 82 and shows less than 40% amino acid identity with characterized ι-carrageenases. The activity of recombinant CgiF peaked at 30°C (1,207.8U/mg). Notably, CgiF is a cold-adapted ι-carrageenase, which showed 36.5% and 57% of the maximum activity at 10°C and 15°C, respectively. In addition, it is a thermo-tolerant enzyme that recovered 58.2% of its initial activity after heat shock. Furthermore, although the activity of CgiF was enhanced by NaCl, the enzyme is active in absence of NaCl. This study also shows that CgiF is an endo-type ι-carrageenase that hydrolyzes β-1,4-linkages of ι-carrageenan, yielding neo-ι-carratetraose as the main product. Its cold-adaptation, thermo-tolerance, NaCl independence and high neo-ι-carratetraose yield make CgiF an excellent candidate for industrial applications in production of ι-carrageen oligosaccharides from seaweed polysaccharides.
Collapse
Affiliation(s)
- Shangyong Li
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, PR China
| | - Jianhua Hao
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, PR China.
| | - Mi Sun
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, PR China.
| |
Collapse
|
28
|
Chauhan PS, Saxena A. Bacterial carrageenases: an overview of production and biotechnological applications. 3 Biotech 2016; 6:146. [PMID: 28330218 PMCID: PMC4919138 DOI: 10.1007/s13205-016-0461-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 06/10/2016] [Indexed: 12/19/2022] Open
Abstract
Carrageenan, one of the phycocolloids is a sulfated galactan made up of linear chains of galactose and 3,6-anhydrogalactose with alternating α-(1 → 3) and β-(1 → 4) linkages and further classified based on the number and the position of sulfated ester(s); κ-, ι- and λ-carrageenan. Enzymes which degrade carrageenans are called k-, ι-, and λ-carrageenases. They all are endohydrolases that cleave the internal β-(1-4) linkages of carrageenans yielding products of the oligo-carrageenans. These enzymes are produced only by bacteria specifically gram negative bacteria. Majority of the marine bacteria produce these enzymes extracellularly and their activity is in wide range of temperature. They have found potential applications in biomedical field, bioethanol production, textile industry, as a detergent additive and for isolation of protoplast of algae etc. A comprehensive information shall be helpful for the effective understanding and application of these enzymes. In this review exhaustive information of bacterial carrageenases reported till date has been done. All the aspects like sources, production conditions, characterization, cloning and- biotechnological applications are summarized.
Collapse
Affiliation(s)
- Prakram Singh Chauhan
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University Parkville Campus, 381, Royal Parade, Melbourne, VIC, 3052, Australia.
| | - Arunika Saxena
- Department of Chemistry, Samrat Prithviraj Chauhan Government College, Beawar Road, Ajmer, Rajasthan, India
| |
Collapse
|
29
|
Kravchenko AO, Anastyuk SD, Sokolova EV, Isakov VV, Glazunov VP, Helbert W, Yermak IM. Structural analysis and cytokine-induced activity of gelling sulfated polysaccharide from the cystocarpic plants of Ahnfeltiopsis flabelliformis. Carbohydr Polym 2016; 151:523-534. [DOI: 10.1016/j.carbpol.2016.05.086] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 05/18/2016] [Accepted: 05/23/2016] [Indexed: 10/21/2022]
|
30
|
Martin M, Vandermies M, Joyeux C, Martin R, Barbeyron T, Michel G, Vandenbol M. Discovering novel enzymes by functional screening of plurigenomic libraries from alga-associated Flavobacteriia and Gammaproteobacteria. Microbiol Res 2016; 186-187:52-61. [PMID: 27242143 DOI: 10.1016/j.micres.2016.03.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/17/2016] [Accepted: 03/22/2016] [Indexed: 11/22/2022]
Abstract
Alga-associated microorganisms, in the context of their numerous interactions with the host and the complexity of the marine environment, are known to produce diverse hydrolytic enzymes with original biochemistry. We recently isolated several macroalgal-polysaccharide-degrading bacteria from the surface of the brown alga Ascophyllum nodosum. These active isolates belong to two classes: the Flavobacteriia and the Gammaproteobacteria. In the present study, we constructed two "plurigenomic" (with multiple bacterial genomes) libraries with the 5 most interesting isolates (regarding their phylogeny and their enzymatic activities) of each class (Fv and Gm libraries). Both libraries were screened for diverse hydrolytic activities. Five activities, out of the 48 previously identified in the natural polysaccharolytic isolates, were recovered by functional screening: a xylanase (GmXyl7), a beta-glucosidase (GmBg1), an esterase (GmEst7) and two iota-carrageenases (Fvi2.5 and Gmi1.3). We discuss here the potential role of the used host-cell, the average DNA insert-sizes and the used restriction enzymes on the divergent screening yields obtained for both libraries and get deeper inside the "great screen anomaly". Interestingly, the discovered esterase probably stands for a novel family of homoserine o-acetyltransferase-like-esterases, while the two iota-carrageenases represent new members of the poorly known GH82 family (containing only 19 proteins since its description in 2000). These original results demonstrate the efficiency of our uncommon "plurigenomic" library approach and the underexplored potential of alga-associated cultivable microbiota for the identification of novel and algal-specific enzymes.
Collapse
Affiliation(s)
- Marjolaine Martin
- Microbiology and Genomics Unit, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, 5030 Gembloux, Belgium.
| | - Marie Vandermies
- Microbial Processes and Interactions, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, 5030 Gembloux, Belgium
| | - Coline Joyeux
- Microbiology and Genomics Unit, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, 5030 Gembloux, Belgium
| | - Renée Martin
- Microbiology and Genomics Unit, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, 5030 Gembloux, Belgium
| | - Tristan Barbeyron
- Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff cedex, Bretagne, France
| | - Gurvan Michel
- Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff cedex, Bretagne, France
| | - Micheline Vandenbol
- Microbiology and Genomics Unit, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, 5030 Gembloux, Belgium
| |
Collapse
|
31
|
Préchoux A, Genicot S, Rogniaux H, Helbert W. Enzyme-Assisted Preparation of Furcellaran-Like κ-/β-Carrageenan. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2016; 18:133-143. [PMID: 26585588 DOI: 10.1007/s10126-015-9675-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 10/19/2015] [Indexed: 06/05/2023]
Abstract
Carrageenans are sulfated galactans that are widely used in industrial applications for their thickening and gelling properties, which vary according to the amount and distribution of ester sulfate groups along the galactan backbone. To determine and direct the sulfation of κ-carrageenan moieties, we purified an endo-κ-carrageenan sulfatase (Q15XH1 accession in UniprotKB) from Pseudoalteromonas atlantica T6c extracts. Based on sequence analyses and exploration of the genomic environment of Q15XH1, we discovered and characterized a second endo-κ-carrageenan sulfatase (Q15XG7 accession in UniprotKB). Both enzymes convert κ-carrageenan into a hybrid, furcellaran-like κ-/β-carrageenan. We compared the protein sequences of these two new κ-carrageenan sulfatases and that of a previously reported ι-carrageenan sulfatase with other predicted sulfatases in the P. atlantica genome, revealing the existence of additional new carrageenan sulfatases.
Collapse
Affiliation(s)
- Aurélie Préchoux
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, 29680, Roscoff, France
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, 29680, Roscoff, France
| | - Sabine Genicot
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, 29680, Roscoff, France
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, 29680, Roscoff, France
| | - Hélène Rogniaux
- INRA, Biopolymers Interactions Assemblies, 44316, Nantes, France
| | - William Helbert
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, 29680, Roscoff, France.
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, 29680, Roscoff, France.
- Centre de Recherches sur les Macromolécules Végétales (CERMAV, UPR-CNRS 5301), Affiliated with the Université Joseph Fourier (UJF), BP53, 38041, Grenoble Cedex 9, France.
- Institut de Chimie Moléculaire de Grenoble (ICMG, FR-CNRS 2607), Grenoble Cedex 9, France.
| |
Collapse
|
32
|
Characterization of maltotriose production by hydrolyzing of soluble starch with α-amylase from Microbulbifer thermotolerans DAU221. Appl Microbiol Biotechnol 2014; 99:3901-11. [DOI: 10.1007/s00253-014-6186-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/20/2014] [Accepted: 10/22/2014] [Indexed: 11/30/2022]
|
33
|
Konishi M, Nishi S, Fukuoka T, Kitamoto D, Watsuji TO, Nagano Y, Yabuki A, Nakagawa S, Hatada Y, Horiuchi JI. Deep-sea Rhodococcus sp. BS-15, lacking the phytopathogenic fas genes, produces a novel glucotriose lipid biosurfactant. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2014; 16:484-493. [PMID: 24510374 DOI: 10.1007/s10126-014-9568-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 01/21/2014] [Indexed: 06/03/2023]
Abstract
Glycolipid biosurfactant-producing bacteria were isolated from deep-sea sediment collected from the Okinawa Trough. Isolate BS15 produced the largest amount of the glycolipid, generating up to 6.31 ± 1.15 g l(-1) after 4 days at 20 °C. Glucose was identified in the hydrolysate of the purified major component of the biosurfactant glycolipid. According to gas chromatography/mass spectrometry analysis, the hydrophobic moieties in the major component were hexadecanoate, octadecanoate, 3-hydroxyhexadecanoate, 2-hydroxyoctanoate, and succinate. The molecular weight of the purified major glycolipid was calculated to be 1,211, while (1)H and (13)C nuclear magnetic resonance spectra confirmed that the major component consisted of 2 mol of α-glucoside and 1 mol of β-glucoside. The molecular structure was assigned as novel trisaccharide-type glycolipid biosurfactant, glucotriose lipids. The critical micelle concentration of the purified major glycolipid was 2.3 × 10(-6) M, with a surface tension of 29.5 mN m(-1). Phylogenetic analysis showed isolate BS15 was closely related to a Rhodococcus strains isolated from Antarctica, and to Rhodococcus fascians, a phytopathogen. PCR analysis showed that the fasA, fasB, fasC, fasD, fasE, and fasF genes, which are involved in phytohormone-like cytokinin production, were not present in the genome of BS15; however, analysis of a draft genome sequence of BS15 (5.5 Mb) identified regions with 31 %, 53 %, 46 %, 30 %, and 31 % DNA sequence identity to the fasA, fasB, fasC, and fasD genes, respectively.
Collapse
Affiliation(s)
- Masaaki Konishi
- Department of Biotechnology and Environmental Chemistry, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido, 090-8507, Japan,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Sun Y, Liu Y, Jiang K, Wang C, Wang Z, Huang L. Electrospray ionization mass spectrometric analysis of κ-carrageenan oligosaccharides obtained by degradation with κ-carrageenase from Pedobacter hainanensis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:2398-2405. [PMID: 24606162 DOI: 10.1021/jf500429r] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
κ-Carrageenan was degraded with a novel κ-carrageenase isolated from Pedobacter hainanensis, which was first isolated from seaside soil under the stacks of red algae in Hainan province of China. The κ-carrageenase was detected with a molecular weight of ∼55 kDa estimated from SDS-PAGE and yielded enzymatic activity of 700.53 units/mg of protein under the conditions of pH 7.0 and 40 °C. Analysis of the degradation products by TLC and HPLC indicated that the enzyme degraded κ-carrageenan to sulfated oligosaccharides with even-numbered degree of polymerization, of which the tetrasaccharide was the major product. All the degradation components during different time courses were analyzed by ESI-MS, and their structures were assigned. Structural analysis by CID MS/MS revealed that each carrageenan oligosaccharide was composed of An-G4S-type neocarrabiose units, which consisted of a 3,6-anhydro-α-d-galactose (An) residue in the nonreducing end and a β-d-galactose-4-sulfate (G4S) residue in the reducing end. These results demonstrated that the κ-carrageenase cleaved κ-carrageenan at the internal β-1,4 linkage of κ-carrageenan. This enzymatic degradation offers an alternative approach to prepare κ-carrageenan oligosaccharides, which could be used as a powerful tool for further study on biological activity-structure relationship and thorough industrial exploitation of κ-carrageenan.
Collapse
Affiliation(s)
- Yujiao Sun
- Educational Ministry Key Laboratory of Resource Biology and Biotechnology in Western China, Life Science College, Northwest University , Xi'an 710069, P. R. China
| | | | | | | | | | | |
Collapse
|
35
|
Microorganisms living on macroalgae: diversity, interactions, and biotechnological applications. Appl Microbiol Biotechnol 2014; 98:2917-35. [PMID: 24562178 DOI: 10.1007/s00253-014-5557-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 01/17/2014] [Accepted: 01/20/2014] [Indexed: 01/02/2023]
Abstract
Marine microorganisms play key roles in every marine ecological process, hence the growing interest in studying their populations and functions. Microbial communities on algae remain underexplored, however, despite their huge biodiversity and the fact that they differ markedly from those living freely in seawater. The study of this microbiota and of its relationships with algal hosts should provide crucial information for ecological investigations on algae and aquatic ecosystems. Furthermore, because these microorganisms interact with algae in multiple, complex ways, they constitute an interesting source of novel bioactive compounds with biotechnological potential, such as dehalogenases, antimicrobials, and alga-specific polysaccharidases (e.g., agarases, carrageenases, and alginate lyases). Here, to demonstrate the huge potential of alga-associated organisms and their metabolites in developing future biotechnological applications, we first describe the immense diversity and density of these microbial biofilms. We further describe their complex interactions with algae, leading to the production of specific bioactive compounds and hydrolytic enzymes of biotechnological interest. We end with a glance at their potential use in medical and industrial applications.
Collapse
|
36
|
Koyama S, Konishi MA, Ohta Y, Miwa T, Hatada Y, Toyofuku T, Maruyama T, Nogi Y, Kato C, Tsubouchi T. Attachment and detachment of living microorganisms using a potential-controlled electrode. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2013; 15:461-75. [PMID: 23420537 PMCID: PMC3695320 DOI: 10.1007/s10126-013-9495-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 02/03/2013] [Indexed: 05/16/2023]
Abstract
We developed an electrical modulation method for attachment and detachment of microorganisms. Living microorganisms suspended in non-nutritive media such as PBS⁻ and artificial seawater were attracted by and selectively attached to indium tin oxide (ITO)/glass electrode regions to which a negative potential was applied. The microorganisms suspended in LB medium and glucose solution were not attracted to the ITO electrode. Dead microorganisms were not attracted to the ITO electrode. The living microorganisms were retrieved after detachment from the ITO electrode by application of a high-frequency triangular wave potential. When we applied this method to separate microorganisms from deep-sea sediment, bacteria belonging to 19 phyla and 23 classes were collected without undesirable high molecular weight contaminants such as humic acids. At the phylum and class level, respectively, 95 and 87 % of the phylotypes among electrically retrieved bacteria were common to the gene clones from the direct sediment DNA extraction. This technique is a novel useful method to prepare bacterial cells in a single population or a community for metagenomic analyses.
Collapse
Affiliation(s)
- Sumihiro Koyama
- Institute of Biogeosciences, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ma S, Duan G, Chai W, Geng C, Tan Y, Wang L, Le Sourd F, Michel G, Yu W, Han F. Purification, cloning, characterization and essential amino acid residues analysis of a new ι-carrageenase from Cellulophaga sp. QY3. PLoS One 2013; 8:e64666. [PMID: 23741363 PMCID: PMC3669377 DOI: 10.1371/journal.pone.0064666] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 04/16/2013] [Indexed: 11/27/2022] Open
Abstract
ι-Carrageenases belong to family 82 of glycoside hydrolases that degrade sulfated galactans in the red algae known as ι-carrageenans. The catalytic mechanism and some substrate-binding residues of family GH82 have been studied but the substrate recognition and binding mechanism of this family have not been fully elucidated. We report here the purification, cloning and characterization of a new ι-carrageenase CgiA_Ce from the marine bacterium Cellulophaga sp. QY3. CgiA_Ce was the most thermostable carrageenase described so far. It was most active at 50°C and pH 7.0 and retained more than 70% of the original activity after incubation at 50°C for 1 h at pH 7.0 or at pH 5.0–10.6 for 24 h. CgiA_Ce was an endo-type ι-carrageenase; it cleaved ι-carrageenan yielding neo-ι-carrabiose and neo-ι-carratetraose as the main end products, and neo-ι-carrahexaose was the minimum substrate. Sequence analysis and structure modeling showed that CgiA_Ce is indeed a new member of family GH82. Moreover, sequence analysis of ι-carrageenases revealed that the amino acid residues at subsites −1 and +1 were more conserved than those at other subsites. Site-directed mutagenesis followed by kinetic analysis identified three strictly conserved residues at subsites −1 and +1 of ι-carrageenases, G228, Y229 and R254 in CgiA_Ce, which played important roles for substrate binding. Furthermore, our results suggested that Y229 and R254 in CgiA_Ce interacted specifically with the sulfate groups of the sugar moieties located at subsites −1 and +1, shedding light on the mechanism of ι-carrageenan recognition in the family GH82.
Collapse
Affiliation(s)
- Su Ma
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, Ocean University of China, Qingdao, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao, China
- Laboratory of Glycobiology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Gaofei Duan
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, Ocean University of China, Qingdao, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao, China
- Laboratory of Glycobiology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Wengang Chai
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, Ocean University of China, Qingdao, China
- Glycosciences Laboratory, Department of Medicine, Imperial College, London, United Kingdom
| | - Cunliang Geng
- The State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Yulong Tan
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, Ocean University of China, Qingdao, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao, China
- Laboratory of Glycobiology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Lushan Wang
- The State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| | - Frédéric Le Sourd
- UPMC University Paris 6, Paris, France
- CNRS, UMR 7139 Marine Plants and Biomolecules, Station Biologique de Roscoff, Brittany, France
| | - Gurvan Michel
- UPMC University Paris 6, Paris, France
- CNRS, UMR 7139 Marine Plants and Biomolecules, Station Biologique de Roscoff, Brittany, France
| | - Wengong Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, Ocean University of China, Qingdao, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao, China
- Laboratory of Glycobiology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Feng Han
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, Ocean University of China, Qingdao, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Ocean University of China, Qingdao, China
- Laboratory of Glycobiology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- * E-mail:
| |
Collapse
|
38
|
Cloning, expression and characterization of a new ι-carrageenase from marine bacterium, Cellulophaga sp. Biotechnol Lett 2013; 35:1617-22. [DOI: 10.1007/s10529-013-1244-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 05/10/2013] [Indexed: 01/31/2023]
|