1
|
Santini S, Schenkelaars Q, Jourda C, Duchesne M, Belahbib H, Rocher C, Selva M, Riesgo A, Vervoort M, Leys SP, Kodjabachian L, Le Bivic A, Borchiellini C, Claverie JM, Renard E. The compact genome of the sponge Oopsacas minuta (Hexactinellida) is lacking key metazoan core genes. BMC Biol 2023; 21:139. [PMID: 37337252 DOI: 10.1186/s12915-023-01619-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 05/09/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Explaining the emergence of the hallmarks of bilaterians is a central focus of evolutionary developmental biology-evodevo-and evolutionary genomics. For this purpose, we must both expand and also refine our knowledge of non-bilaterian genomes, especially by studying early branching animals, in particular those in the metazoan phylum Porifera. RESULTS We present a comprehensive analysis of the first whole genome of a glass sponge, Oopsacas minuta, a member of the Hexactinellida. Studying this class of sponge is evolutionary relevant because it differs from the three other Porifera classes in terms of development, tissue organization, ecology, and physiology. Although O. minuta does not exhibit drastic body simplifications, its genome is among the smallest of animal genomes sequenced so far, and surprisingly lacks several metazoan core genes (including Wnt and several key transcription factors). Our study also provides the complete genome of a symbiotic Archaea dominating the associated microbial community: a new Thaumarchaeota species. CONCLUSIONS The genome of the glass sponge O. minuta differs from all other available sponge genomes by its compactness and smaller number of encoded proteins. The unexpected loss of numerous genes previously considered ancestral and pivotal for metazoan morphogenetic processes most likely reflects the peculiar syncytial tissue organization in this group. Our work further documents the importance of convergence during animal evolution, with multiple convergent evolution of septate-like junctions, electrical-signaling and multiciliated cells in metazoans.
Collapse
Affiliation(s)
- Sébastien Santini
- Aix Marseille Univ, CNRS, IGS, UMR 7256, IMM, IM2B, IOM, Marseille, France
| | - Quentin Schenkelaars
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France
- Institut Jacques Monod, CNRS, UMR 7592, Univ Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Cyril Jourda
- Aix Marseille Univ, CNRS, IGS, UMR 7256, IMM, IM2B, IOM, Marseille, France
- CIRAD, UMR PVBMT, La Réunion, France
| | - Marc Duchesne
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Hassiba Belahbib
- Aix Marseille Univ, CNRS, IGS, UMR 7256, IMM, IM2B, IOM, Marseille, France
| | - Caroline Rocher
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France
| | - Marjorie Selva
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France
| | - Ana Riesgo
- Department of Biodiversity and Evolutionary Biology, Madrid, Spain
- Department of Life Sciences, Natural History Museum of London, London, SW7 5BD, UK
| | - Michel Vervoort
- Institut Jacques Monod, CNRS, UMR 7592, Univ Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Sally P Leys
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Laurent Kodjabachian
- Aix Marseille Univ, CNRS, IBDM, UMR 7288, Turing Center for Living Systems, Marseille, France
| | - André Le Bivic
- Aix Marseille Univ, CNRS, IBDM, UMR 7288, Marseille, France
| | | | | | - Emmanuelle Renard
- Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Marseille, France.
- Aix Marseille Univ, CNRS, IBDM, UMR 7288, Marseille, France.
| |
Collapse
|
2
|
Maldonado M, López-Acosta M, Beazley L, Kenchington E, Koutsouveli V, Riesgo A. Cooperation between passive and active silicon transporters clarifies the ecophysiology and evolution of biosilicification in sponges. SCIENCE ADVANCES 2020; 6:eaba9322. [PMID: 32832609 PMCID: PMC7439455 DOI: 10.1126/sciadv.aba9322] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
The biological utilization of dissolved silicon (DSi) influences ocean ecology and biogeochemistry. In the deep sea, hexactinellid sponges are major DSi consumers that remain poorly understood. Their DSi consumption departs from the Michaelis-Menten kinetics of shallow-water demosponges and appears particularly maladapted to incorporating DSi from the modest concentrations typical of the modern ocean. Why did sponges not adapt to the shrinking DSi availability that followed diatom expansion some 100 to 65 million years ago? We propose that sponges incorporate DSi combining passive (aquaglyceroporins) and active (ArsB) transporters, while only active transporters (SITs) operate in diatoms and choanoflagellates. Evolution of greater silicon transport efficiency appears constrained by the additional role of aquaglyceroporins in transporting essential metalloids other than silicon. We discuss the possibility that lower energy costs may have driven replacement of ancestral SITs by less efficient aquaglyceroporins, and discuss the functional implications of conservation of aquaglyceroporin-mediated DSi utilization in vertebrates.
Collapse
Affiliation(s)
- M. Maldonado
- Department of Marine Ecology, Center for Advanced Studies of Blanes (CEAB-CSIC), Acceso Cala St. Francesc 14, Blanes 17300, Girona, Spain
| | - M. López-Acosta
- Department of Marine Ecology, Center for Advanced Studies of Blanes (CEAB-CSIC), Acceso Cala St. Francesc 14, Blanes 17300, Girona, Spain
| | - L. Beazley
- Department of Fisheries and Oceans, Bedford Institute of Oceanography, 1 Challenger Dr., Dartmouth, NS, Canada
| | - E. Kenchington
- Department of Fisheries and Oceans, Bedford Institute of Oceanography, 1 Challenger Dr., Dartmouth, NS, Canada
| | - V. Koutsouveli
- Department of Life Sciences, The Natural History Museum of London, Cromwell Road, SW7 5BD London, UK
| | - A. Riesgo
- Department of Life Sciences, The Natural History Museum of London, Cromwell Road, SW7 5BD London, UK
| |
Collapse
|
3
|
Evolution of the main skeleton-forming genes in sponges (phylum Porifera) with special focus on the marine Haplosclerida (class Demospongiae). Mol Phylogenet Evol 2018; 131:245-253. [PMID: 30502904 DOI: 10.1016/j.ympev.2018.11.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/26/2018] [Accepted: 11/19/2018] [Indexed: 01/14/2023]
Abstract
The skeletons of sponges (Phylum Porifera) are comprised of collagen, often embedded with small siliceous structures (spicules) arranged in various forms to provide strength and flexibility. The main proteins responsible for the formation of the spicules in demosponges are the silicateins, which are related to the cathepsins L of other animals. While the silicatein active site, necessary for the formation of biosilica crystals, is characterized by the amino acids SHN, different variants of the silicatein genes have been found, some that retain SHN at the active site and some that don't. As part of an effort to further understand skeleton formation in marine sponges of the order Haplosclerida, a search for all silicatein variants were made in Irish species representing the main clades of this large sponge group. For this task, transcriptomes were sequenced and de novo assembled from Haliclona oculata, H. simulans and H. indistincta. Silicatein genes were identified from these and all available genomes and transcriptomes from Porifera. These were analysed along with all complete silicateins from GenBank. Silicateins were only found in species belonging to the class Demospongiae but excluding Keratosa and Verongimorpha and there was significant duplication and diversity of these genes. Silicateins showing SHN at the active site were polyphyletic. Indeed silicatein sequences were divided into six major clades (CHNI, CHNII, CHNIII, SHNI, SHNII and C/SQN). In those clades where haplosclerids were well represented the silicatein phylogeny reflected previous ribosomal and mitochondrial topologies. The most basal silicatein clade (CHNI) contained sequences only from marine haplosclerids and freshwater sponges while one silicatein from H. indistincta was more related to cathepsins L (outgroup) than to the overall silicatein clade indicating the presence of an old silicatein or an intermediary form. This data could suggest that marine haplosclerids were one of the first groups of extant demosponges to acquire silicatein genes. Furthermore, we suggest that the paucity of spicule types in this group may be due to their single copy of SHNI variants, and the lack of a silintaphin gene.
Collapse
|
4
|
Shimizu K, Morse DE. Silicatein: A Unique Silica-Synthesizing Catalytic Triad Hydrolase From Marine Sponge Skeletons and Its Multiple Applications. Methods Enzymol 2018; 605:429-455. [DOI: 10.1016/bs.mie.2018.02.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Shkryl YN, Bulgakov VP, Veremeichik GN, Kovalchuk SN, Kozhemyako VB, Kamenev DG, Semiletova IV, Timofeeva YO, Shchipunov YA, Kulchin YN. Bioinspired enzymatic synthesis of silica nanocrystals provided by recombinant silicatein from the marine sponge Latrunculia oparinae. Bioprocess Biosyst Eng 2016; 39:53-8. [PMID: 26494639 DOI: 10.1007/s00449-015-1488-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 10/08/2015] [Accepted: 10/12/2015] [Indexed: 11/24/2022]
Abstract
The process of silica formation in marine sponges is thought to be mediated by a family of catalytically active structure-directing enzymes called silicateins. It has been demonstrated in biomimicking syntheses that silicateins facilitated the formation of amorphous SiO2. Here, we present evidence that the silicatein LoSiLA1 from the marine sponge Latrunculia oparinae catalyzes the in vitro synthesis of hexa-tetrahedral SiO2 crystals of 200–300 nm. This was possible in the presence of the silica precursor tetrakis-(2-hydroxyethyl)-orthosilicate that is completely soluble in water and biocompatible, experiences hydrolysis–condensation at neutral pH and ambient conditions.
Collapse
|
6
|
Glassin, a histidine-rich protein from the siliceous skeletal system of the marine sponge Euplectella, directs silica polycondensation. Proc Natl Acad Sci U S A 2015; 112:11449-54. [PMID: 26261346 DOI: 10.1073/pnas.1506968112] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The hexactinellids are a diverse group of predominantly deep sea sponges that synthesize elaborate fibrous skeletal systems of amorphous hydrated silica. As a representative example, members of the genus Euplectella have proved to be useful model systems for investigating structure-function relationships in these hierarchically ordered siliceous network-like composites. Despite recent advances in understanding the mechanistic origins of damage tolerance in these complex skeletal systems, the details of their synthesis have remained largely unexplored. Here, we describe a previously unidentified protein, named "glassin," the main constituent in the water-soluble fraction of the demineralized skeletal elements of Euplectella. When combined with silicic acid solutions, glassin rapidly accelerates silica polycondensation over a pH range of 6-8. Glassin is characterized by high histidine content, and cDNA sequence analysis reveals that glassin shares no significant similarity with any other known proteins. The deduced amino acid sequence reveals that glassin consists of two similar histidine-rich domains and a connecting domain. Each of the histidine-rich domains is composed of three segments: an amino-terminal histidine and aspartic acid-rich sequence, a proline-rich sequence in the middle, and a histidine and threonine-rich sequence at the carboxyl terminus. Histidine always forms HX or HHX repeats, in which most of X positions are occupied by glycine, aspartic acid, or threonine. Recombinant glassin reproduces the silica precipitation activity observed in the native proteins. The highly modular composition of glassin, composed of imidazole, acidic, and hydroxyl residues, favors silica polycondensation and provides insights into the molecular mechanisms of skeletal formation in hexactinellid sponges.
Collapse
|
7
|
Riesgo A, Maldonado M, López-Legentil S, Giribet G. A Proposal for the Evolution of Cathepsin and Silicatein in Sponges. J Mol Evol 2015; 80:278-91. [DOI: 10.1007/s00239-015-9682-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 05/06/2015] [Indexed: 01/09/2023]
|
8
|
Arakaki A, Shimizu K, Oda M, Sakamoto T, Nishimura T, Kato T. Biomineralization-inspired synthesis of functional organic/inorganic hybrid materials: organic molecular control of self-organization of hybrids. Org Biomol Chem 2015; 13:974-89. [DOI: 10.1039/c4ob01796j] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Biomineralization-inspired synthesis of functional organic/inorganic hybrid materials. Molecularly controlled mechanisms of biomineralization and application of the processes towards future material synthesis are introduced.
Collapse
Affiliation(s)
- Atsushi Arakaki
- Division of Biotechnology and Life Science
- Institute of Engineering
- Tokyo University of Agriculture and Technology
- Japan
| | - Katsuhiko Shimizu
- Organization for Regional Industrial Academic Cooperation
- Tottori University
- Tottori 680-8550
- Japan
| | - Mayumi Oda
- Division of Biotechnology and Life Science
- Institute of Engineering
- Tokyo University of Agriculture and Technology
- Japan
| | - Takeshi Sakamoto
- Department of Chemistry and Biotechnology
- School of Engineering
- The University of Tokyo
- Tokyo 113-8656
- Japan
| | - Tatsuya Nishimura
- Department of Chemistry and Biotechnology
- School of Engineering
- The University of Tokyo
- Tokyo 113-8656
- Japan
| | - Takashi Kato
- Department of Chemistry and Biotechnology
- School of Engineering
- The University of Tokyo
- Tokyo 113-8656
- Japan
| |
Collapse
|
9
|
Müller WEG, Link T, Schröder HC, Korzhev M, Neufurth M, Brandt D, Wang X. Dissection of the structure-forming activity from the structure-guiding activity of silicatein: a biomimetic molecular approach to print optical fibers. J Mater Chem B 2014; 2:5368-5377. [DOI: 10.1039/c4tb00801d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The enzymatically inactive silicatein was used as the platform for the enzymatically active silicatein, which synthesized the silica waveguide.
Collapse
Affiliation(s)
- Werner E. G. Müller
- ERC Advanced Investigator Grant Research Group
- Institute for Physiological Chemistry
- University Medical Center of the Johannes Gutenberg University Mainz
- D-55128 Mainz, Germany
| | - Thorben Link
- ERC Advanced Investigator Grant Research Group
- Institute for Physiological Chemistry
- University Medical Center of the Johannes Gutenberg University Mainz
- D-55128 Mainz, Germany
| | - Heinz C. Schröder
- ERC Advanced Investigator Grant Research Group
- Institute for Physiological Chemistry
- University Medical Center of the Johannes Gutenberg University Mainz
- D-55128 Mainz, Germany
| | - Michael Korzhev
- ERC Advanced Investigator Grant Research Group
- Institute for Physiological Chemistry
- University Medical Center of the Johannes Gutenberg University Mainz
- D-55128 Mainz, Germany
| | - Meik Neufurth
- ERC Advanced Investigator Grant Research Group
- Institute for Physiological Chemistry
- University Medical Center of the Johannes Gutenberg University Mainz
- D-55128 Mainz, Germany
| | - David Brandt
- ERC Advanced Investigator Grant Research Group
- Institute for Physiological Chemistry
- University Medical Center of the Johannes Gutenberg University Mainz
- D-55128 Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group
- Institute for Physiological Chemistry
- University Medical Center of the Johannes Gutenberg University Mainz
- D-55128 Mainz, Germany
| |
Collapse
|
10
|
Ki MR, Jang EK, Pack SP. Hypothetical cathepsin-like protein from Nematostella vectensis and its silicatein-like cathepsin mutant for biosilica production. Process Biochem 2014. [DOI: 10.1016/j.procbio.2013.10.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Müller WEG, Schröder HC, Burghard Z, Pisignano D, Wang X. Silicateins--a novel paradigm in bioinorganic chemistry: enzymatic synthesis of inorganic polymeric silica. Chemistry 2013; 19:5790-5804. [PMID: 23512301 DOI: 10.1002/chem.201204412] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The inorganic matrix of the siliceous skeletal elements of sponges, that is, spicules, is formed of amorphous biosilica. Until a decade ago, it remained unclear how the hard biosilica monoliths of the spicules are formed in sponges that live in a silica-poor (<50 μM) aquatic environment. The following two discoveries caused a paradigm shift and allowed an elucidation of the processes underlying spicule formation; first the discovery that in the spicules only one major protein, silicatein, exists and second, that this protein displays a bio-catalytical, enzymatic function. These findings caused a paradigm shift, since silicatein is the first enzyme that catalyzes the formation of an inorganic polymer from an inorganic monomeric substrate. In the present review the successive steps, following the synthesis of the silicatein product, biosilica, and resulting in the formation of the hard monolithic spicules is given. The new insight is assumed to open new horizons in the field of biotechnology and also in biomedicine.
Collapse
Affiliation(s)
- Werner E G Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| | | | | | | | | |
Collapse
|
12
|
Wörheide G, Dohrmann M, Erpenbeck D, Larroux C, Maldonado M, Voigt O, Borchiellini C, Lavrov DV. Deep phylogeny and evolution of sponges (phylum Porifera). ADVANCES IN MARINE BIOLOGY 2012; 61:1-78. [PMID: 22560777 DOI: 10.1016/b978-0-12-387787-1.00007-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Sponges (phylum Porifera) are a diverse taxon of benthic aquatic animals of great ecological, commercial, and biopharmaceutical importance. They are arguably the earliest-branching metazoan taxon, and therefore, they have great significance in the reconstruction of early metazoan evolution. Yet, the phylogeny and systematics of sponges are to some extent still unresolved, and there is an on-going debate about the exact branching pattern of their main clades and their relationships to the other non-bilaterian animals. Here, we review the current state of the deep phylogeny of sponges. Several studies have suggested that sponges are paraphyletic. However, based on recent phylogenomic analyses, we suggest that the phylum Porifera could well be monophyletic, in accordance with cladistic analyses based on morphology. This finding has many implications for the evolutionary interpretation of early animal traits and sponge development. We further review the contribution that mitochondrial genes and genomes have made to sponge phylogenetics and explore the current state of the molecular phylogenies of the four main sponge lineages (Classes), that is, Demospongiae, Hexactinellida, Calcarea, and Homoscleromorpha, in detail. While classical systematic systems are largely congruent with molecular phylogenies in the class Hexactinellida and in certain parts of Demospongiae and Homoscleromorpha, the high degree of incongruence in the class Calcarea still represents a challenge. We highlight future areas of research to fill existing gaps in our knowledge. By reviewing sponge development in an evolutionary and phylogenetic context, we support previous suggestions that sponge larvae share traits and complexity with eumetazoans and that the simple sedentary adult lifestyle of sponges probably reflects some degree of secondary simplification. In summary, while deep sponge phylogenetics has made many advances in the past years, considerable efforts are still required to achieve a comprehensive understanding of the relationships among and within the main sponge lineages to fully appreciate the evolution of this extraordinary metazoan phylum.
Collapse
Affiliation(s)
- G Wörheide
- Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, München, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Otzen D. The role of proteins in biosilicification. SCIENTIFICA 2012; 2012:867562. [PMID: 24278750 PMCID: PMC3820600 DOI: 10.6064/2012/867562] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 09/24/2012] [Indexed: 05/19/2023]
Abstract
Although the use of silicon dioxide (silica) as a constituent of living organisms is mainly restricted to diatoms and sponges, the ways in which this process is controlled by nature continue to inspire and fascinate. Both diatoms and sponges carry out biosilificiation using an organic matrix but they adopt very different strategies. Diatoms use small and heavily modified peptides called silaffins, where the most characteristic feature is a modulation of charge by attaching long chain polyamines (LCPAs) to lysine groups. Free LCPAs can also cooperate with silaffins. Sponges use the enzyme silicatein which is homologous to the cysteine protease cathepsin. Both classes of proteins form higher-order structures which act both as structural templates and mechanistic catalysts for the polycondensation reaction. In both cases, additional proteins are continuously being discovered which modulate the process further. This paper concentrates on the role of these proteins in the biosilification process as well as in various applications, highlighting areas where focus on specific protein properties may provide further insight. The field of biosilification is a crossroads of different disciplines, where insight into the energetics and mechanisms of molecular self-assembly combine with fundamental biology, complex multicomponent colloidal systems, and an impressive array of potential technological applications.
Collapse
Affiliation(s)
- Daniel Otzen
- Interdisciplinary Nanoscience Center (iNANO), Center for Insoluble Protein Structures (inSPIN), and Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
- *Daniel Otzen:
| |
Collapse
|