1
|
Licata G, Galasso C, Palma Esposito F, Palumbo Piccionello A, Villanova V. Mixotrophy in Marine Microalgae to Enhance Their Bioactivity. Microorganisms 2025; 13:338. [PMID: 40005705 PMCID: PMC11858253 DOI: 10.3390/microorganisms13020338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Photosynthetic microorganisms, such as microalgae, are remarkable for their ability to harness sunlight, fix carbon dioxide, and produce a variety of bioactive compounds. These organisms are pivotal in climate mitigation strategies as they can absorb carbon dioxide while generating valuable biomolecules. Among the diverse cultivation approaches, mixotrophic growth combines light energy with both inorganic and organic carbon sources, offering a unique strategy to enhance biomass production and metabolic diversity in microalgae. Here, microalgal species such as Nannochloropsis granulata, Phaeodactylum tricornutum, and Chlorella sp. were investigated for their potential applications under different cultivation methods, including phototrophy and mixotrophy. Mixotrophic conditions significantly improved biomass production across all tested species. Among these, Phaeodactylum tricornutum, a marine diatom, emerged as a promising candidate for bioactive compound production, exhibiting higher antiproliferative activity against human melanoma cells and antibacterial effects against Staphylococcus aureus. Importantly, Chlorella sp. was also found to possess antibacterial activity against Staphylococcus aureus, broadening its potential applications. Additionally, metabolomics analysis was performed on Chlorella sp. and Phaeodactylum tricornutum to identify the compounds responsible for the observed bioactivity. This study highlights the value of mixotrophic cultivation in enhancing the productivity and bioactivity of microalgae, positioning them as versatile organisms for sustainable biotechnological applications.
Collapse
Affiliation(s)
- Gabriella Licata
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (G.L.); (A.P.P.)
| | - Christian Galasso
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, C. da Torre Spaccata, 87071 Amendolara, Italy;
| | - Fortunato Palma Esposito
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Acton 55, 80133 Naples, Italy;
| | - Antonio Palumbo Piccionello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (G.L.); (A.P.P.)
| | - Valeria Villanova
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (G.L.); (A.P.P.)
| |
Collapse
|
2
|
Greenhough H, Smith KF, Kenny NJ, Rolton A. Effects of the toxic dinoflagellate, Alexandrium pacificum, on the marine diatom, Chaetoceros muelleri, and mussel (Perna canaliculus) sperm and hemocytes. MARINE ENVIRONMENTAL RESEARCH 2024; 199:106630. [PMID: 38964247 DOI: 10.1016/j.marenvres.2024.106630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Harmful algal blooms (HABs) of Alexandrium pacificum have affected the Marlborough Sounds in New Zealand since 2010, posing a threat to green-lipped mussel (GLM, Perna canaliculus) farming. Previous studies have shown A. pacificum has negative effects GLM embryos and larvae. To further investigate these toxic mechanisms, in vitro bioassays were conducted on GLM spermatozoa, hemocytes, and the diatom, Chaetoceros muelleri. The three cell types were exposed to several treatments of A. pacificum for 2 h and responses were measured using flow cytometry and pulse amplitude-modulated fluorometry. Significant spermatozoa mortality was recorded in treatments containing A. pacificum cells or fragments, while hemocyte and C. muelleri mortality was recorded in cell-free treatments of A. pacificum which contained paralytic shellfish toxins (PSTs). Variation in sensitivity between cell types as well as the sublethal effects observed, emphasise the diverse toxic mechanisms of A. pacificum on co-occurring species in the environment.
Collapse
Affiliation(s)
- Hannah Greenhough
- Cawthron Institute, 98 Halifax Street East, Nelson, 7010, New Zealand; Department of Biochemistry Te Tari Matū Koiora, University of Otago, Dunedin, Aotearoa New Zealand.
| | - Kirsty F Smith
- Cawthron Institute, 98 Halifax Street East, Nelson, 7010, New Zealand
| | - Nathan J Kenny
- Department of Biochemistry Te Tari Matū Koiora, University of Otago, Dunedin, Aotearoa New Zealand
| | - Anne Rolton
- Cawthron Institute, 98 Halifax Street East, Nelson, 7010, New Zealand.
| |
Collapse
|
3
|
Santaniello G, Falascina G, Ziaco M, Fioretto L, Sardo A, Carelli M, Conte M, Romano G, Cutignano A. Distribution and Level of Bioactive Monoacylglycerols in 12 Marine Microalgal Species. Mar Drugs 2024; 22:258. [PMID: 38921569 PMCID: PMC11205161 DOI: 10.3390/md22060258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Microalgae are currently considered an attractive source of highly valuable metabolites potentially exploitable as anticancer agents, nutraceuticals and cosmeceuticals and for bioenergy purposes. Their ease of culturing and their high growth rates further promote their use as raw material for the production of specialty products. In the present paper, we focused our attention on specific glycerol-based lipid compounds, monoacylglycerols (MAGs), which displayed in our previous studies a selective cytotoxic activity against the haematological U-937 and the colon HCT-116 cancer cell lines. Here, we performed a quali/quantitative analysis of MAGs and total fatty acids (FAs) along with a profiling of the main lipid classes in a panel of 12 microalgal species, including diatoms and dinoflagellates. Our results highlight an inter- and intraspecific variability of MAG profile in the selected strains. Among them, Skeletonema marinoi (strain FE7) has emerged as the most promising source for possible biotechnological production of MAGs.
Collapse
Affiliation(s)
- Giovanna Santaniello
- Stazione Zoologica Anton Dohrn, Ecosustainable Marine Biotechnology Department, via Acton 55, 80133 Naples, Italy; (G.S.); (A.S.)
- National Research Council (CNR), Institute of Biomolecular Chemistry (ICB), via Campi Flegrei 34, 80078 Pozzuoli, Italy; (G.F.); (M.Z.); (L.F.); (M.C.)
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico L. De Crecchio 7, 80138 Naples, Italy;
| | - Gianna Falascina
- National Research Council (CNR), Institute of Biomolecular Chemistry (ICB), via Campi Flegrei 34, 80078 Pozzuoli, Italy; (G.F.); (M.Z.); (L.F.); (M.C.)
| | - Marcello Ziaco
- National Research Council (CNR), Institute of Biomolecular Chemistry (ICB), via Campi Flegrei 34, 80078 Pozzuoli, Italy; (G.F.); (M.Z.); (L.F.); (M.C.)
| | - Laura Fioretto
- National Research Council (CNR), Institute of Biomolecular Chemistry (ICB), via Campi Flegrei 34, 80078 Pozzuoli, Italy; (G.F.); (M.Z.); (L.F.); (M.C.)
| | - Angela Sardo
- Stazione Zoologica Anton Dohrn, Ecosustainable Marine Biotechnology Department, via Acton 55, 80133 Naples, Italy; (G.S.); (A.S.)
| | - Martina Carelli
- National Research Council (CNR), Institute of Biomolecular Chemistry (ICB), via Campi Flegrei 34, 80078 Pozzuoli, Italy; (G.F.); (M.Z.); (L.F.); (M.C.)
| | - Mariarosaria Conte
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico L. De Crecchio 7, 80138 Naples, Italy;
| | - Giovanna Romano
- Stazione Zoologica Anton Dohrn, Ecosustainable Marine Biotechnology Department, via Acton 55, 80133 Naples, Italy; (G.S.); (A.S.)
| | - Adele Cutignano
- Stazione Zoologica Anton Dohrn, Ecosustainable Marine Biotechnology Department, via Acton 55, 80133 Naples, Italy; (G.S.); (A.S.)
- National Research Council (CNR), Institute of Biomolecular Chemistry (ICB), via Campi Flegrei 34, 80078 Pozzuoli, Italy; (G.F.); (M.Z.); (L.F.); (M.C.)
| |
Collapse
|
4
|
Montuori E, De Luca D, Penna A, Stalberga D, Lauritano C. Alexandrium spp.: From Toxicity to Potential Biotechnological Benefits. Mar Drugs 2023; 22:31. [PMID: 38248656 PMCID: PMC10821459 DOI: 10.3390/md22010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Many dinoflagellates of the genus Alexandrium are well known for being responsible for harmful algal blooms (HABs), producing potent toxins that cause damages to other marine organisms, aquaculture, fishery, tourism, as well as induce human intoxications and even death after consumption of contaminated shellfish or fish. In this review, we summarize potential bioprospecting associated to the genus Alexandrium, including which Alexandrium spp. produce metabolites with anticancer, antimicrobial, antiviral, as well as anti-Alzheimer applications. When available, we report their mechanisms of action and targets. We also discuss recent progress on the identification of secondary metabolites with biological properties favorable to human health and aquaculture. Altogether, this information highlights the importance of studying which culturing conditions induce the activation of enzymatic pathways responsible for the synthesis of bioactive metabolites. It also suggests considering and comparing clones collected in different locations for toxin monitoring and marine bioprospecting. This review can be of interest not only for the scientific community, but also for the entire population and industries.
Collapse
Affiliation(s)
- Eleonora Montuori
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy;
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Napoli, Italy
| | - Daniele De Luca
- Research Infrastructure for Marine Biological Resources Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
| | - Antonella Penna
- Department of Biomolecular Sciences, University of Urbino, Campus E. Mattei, 61029 Urbino, Italy;
| | - Darta Stalberga
- Department of Biomedical and Clinical Sciences, Division of Clinical Chemistry and Pharmacology, Linköping University, SE-58183 Linköping, Sweden;
| | - Chiara Lauritano
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Napoli, Italy
| |
Collapse
|
5
|
Sansone C, Pistelli L, Calabrone L, Del Mondo A, Fontana A, Festa M, Noonan DM, Albini A, Brunet C. The Carotenoid Diatoxanthin Modulates Inflammatory and Angiogenesis Pathways In Vitro in Prostate Cancer Cells. Antioxidants (Basel) 2023; 12:antiox12020359. [PMID: 36829917 PMCID: PMC9952135 DOI: 10.3390/antiox12020359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
Xanthophylls, a group of carotenoids, have attracted attention as human health benefit compounds thanks to their functionality and bioavailability. The great antioxidant and anti-inflammatory abilities of diatoxanthin (Dt), a photoprotective xanthophyll synthetized by diatoms, were recently documented. This study investigates the capacity of Dt to intercept prostate cancer progression in vitro on different human cell lines, exploring its role against cancer proliferation and angiogenesis. Our results highlighted the chemopreventive role of Dt already at low concentration (44.1 pM) and suggest that the Dt-induced cancer cell death occurred through oxidative stress mechanisms. This hypothesis was supported by variations on the expression of key genes and proteins. Oxidative stress cell deaths (e.g., ferroptosis) are recently described types of cell death that are closely related to the pathophysiological processes of many diseases, such as tumors. Nonetheless, the interest of Dt was further strengthened by its ability to inhibit angiogenesis. The results are discussed considering the actual progress and requirements in cancer therapy, notably for prostate cancer.
Collapse
Affiliation(s)
- Clementina Sansone
- Stazione Zoologica Anton Dohrn, Sede Molosiglio Marina Acton, 80133 Napoli, Italy
- Laboratory of Vascular Biology and Angiogenesis, IRCCS MultiMedica, 20138 Milan, Italy
- Correspondence: (C.S.); (C.B.)
| | - Luigi Pistelli
- Stazione Zoologica Anton Dohrn, Sede Molosiglio Marina Acton, 80133 Napoli, Italy
| | - Luana Calabrone
- Laboratory of Vascular Biology and Angiogenesis, IRCCS MultiMedica, 20138 Milan, Italy
| | - Angelo Del Mondo
- Stazione Zoologica Anton Dohrn, Sede Molosiglio Marina Acton, 80133 Napoli, Italy
| | - Angelo Fontana
- Institute of Biomolecular Chemistry, Italian National Research Council (CNR), 80078 Pozzuoli, Italy
| | - Marco Festa
- Laboratory of Vascular Biology and Angiogenesis, IRCCS MultiMedica, 20138 Milan, Italy
| | - Douglas M. Noonan
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
- Unit of Molecular Pathology, Biochemistry and Immunology, IRCCS MultiMedica, 20138 Milan, Italy
| | - Adriana Albini
- IRCSS European Institute of Oncology (IEO), 20141 Milan, Italy
| | - Christophe Brunet
- Stazione Zoologica Anton Dohrn, Sede Molosiglio Marina Acton, 80133 Napoli, Italy
- Correspondence: (C.S.); (C.B.)
| |
Collapse
|
6
|
Liu X, Liu Y, Chai Z, Hu Z, Tang YZ. A combined approach detected novel species diversity and distribution of dinoflagellate cysts in the Yellow Sea, China. MARINE POLLUTION BULLETIN 2023; 187:114567. [PMID: 36640495 DOI: 10.1016/j.marpolbul.2022.114567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Resting cysts of dinoflagellates seed harmful algal blooms (HABs) and their geographic expansion, which makes it fundamentally important to obtain comprehensive inventories of dinoflagellate resting cysts in HABs-prone regions. The Yellow Sea (YS) of China has observed numerous outbreaks of dinoflagellate HABs with some novel species recorded recently indicating an underestimated HABs-causing species diversity. We report our investigation of dinoflagellate cysts of YS via an approach combining metabarcoding sequencing and single-cyst morpho-molecular identification, which identified many novel cyst species and a significant controlling effect of the Yellow Sea Cold Water Mass on cyst composition. The metabarcoding and single cyst-based sequencing detected 11 cyst species never being unambiguously reported in China, 10 never reported as cyst producers, and 3 HABs-causing species never reported from YS. Our detections of many potentially toxic or HABs-causative, particularly novel, cysts and distribution pattern provide important insights into the risks and ecology of dinoflagellate HABs.
Collapse
Affiliation(s)
- Xiaohan Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuyang Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhaoyang Chai
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhangxi Hu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Ying Zhong Tang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
7
|
Natural Marine Products: Anti-Colorectal Cancer In Vitro and In Vivo. Mar Drugs 2022; 20:md20060349. [PMID: 35736152 PMCID: PMC9229715 DOI: 10.3390/md20060349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer, a malignant tumor with high mortality, has a poor prognosis due to drug resistance and toxicity in clinical surgery and chemotherapy. Thus, finding safer and more efficient drugs for clinical trials is vital and urgent. Natural marine compounds, with rich resources and original chemical structures, are applied widely in anticancer treatments. We provide a systematic overview of recently reported marine compounds such as alkaloids, peptides, terpenoids, polysaccharides, and carotenoids from in vitro, in vivo, and clinical studies. The in vitro studies summarized the marine origins and pharmacological mechanisms, including anti-proliferation, anti-angiogenesis, anti-migration, anti-invasion, the acceleration of cycle arrest, and the promotion of tumor apoptosis, of various compounds. The in vivo studies outlined the antitumor effects of marine compounds on colorectal cancer model mice and evaluated their efficacy in terms of tumor inhibition, hepatotoxicity, and nephrotoxicity. The clinical studies summarized the major chemical classifications and targets of action of the clinical drugs that have entered clinical approval and completed approval for marine anticancer. In summary, we present the current situation regarding the application of natural anti-colorectal cancer marine compounds and prospects for their clinical application.
Collapse
|
8
|
Miri MR, Zare A, Saberzadeh J, Baghban N, Nabipour I, Tamadon A. Anti-lung Cancer Marine Compounds: A Review. Ther Innov Regul Sci 2022; 56:191-205. [PMID: 35025082 DOI: 10.1007/s43441-022-00375-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/03/2022] [Indexed: 12/24/2022]
Abstract
Lung cancer is one of the most common and lethal cancers in human beings. Lung cancer has been divided into two major types: small cell lung cancer (SCLC) and non-small cell lung carcinoma (NSCLC). Current drugs suffer from various side effects, and the insufficient efficacy of present treatments creates a desire for better more efficient new drugs. This review compares the diversity of marine-derived bioactive compounds from different marine species. Some of the natural products from marine resources are in different stages of clinical trials. By the way, most of them have been studied in vitro and in vivo. Additionally, in this review, the mechanisms of action of marine-derived anti-lung cancer components on lung cancer cell lines have been reviewed. In addition, considering growing rate and the high costs of cancer research, attention must be paid to some aspects of targeting and developing anti-lung cancer drug. In better words, like the other therapeutic strategies that have their particular challenges and weak points, several challenges about marine-derived anti-lung cancer components which exist for scientists for doing research are explained. Moreover, as the attentions in the field of cancer therapy are focused on designing and developing new anticancer strategies for the treatment of cancer in the future, the application of marine-derived anti-lung cancer components in the field of future cancer therapy and their role in future anticancer strategies are briefly discussed.
Collapse
Affiliation(s)
- Mohammad Reza Miri
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Afshin Zare
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Jamileh Saberzadeh
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.,Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Baghban
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
| | | |
Collapse
|
9
|
Long M, Krock B, Castrec J, Tillmann U. Unknown Extracellular and Bioactive Metabolites of the Genus Alexandrium: A Review of Overlooked Toxins. Toxins (Basel) 2021; 13:905. [PMID: 34941742 PMCID: PMC8703713 DOI: 10.3390/toxins13120905] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 12/04/2022] Open
Abstract
Various species of Alexandrium can produce a number of bioactive compounds, e.g., paralytic shellfish toxins (PSTs), spirolides, gymnodimines, goniodomins, and also uncharacterised bioactive extracellular compounds (BECs). The latter metabolites are released into the environment and affect a large range of organisms (from protists to fishes and mammalian cell lines). These compounds mediate allelochemical interactions, have anti-grazing and anti-parasitic activities, and have a potentially strong structuring role for the dynamic of Alexandrium blooms. In many studies evaluating the effects of Alexandrium on marine organisms, only the classical toxins were reported and the involvement of BECs was not considered. A lack of information on the presence/absence of BECs in experimental strains is likely the cause of contrasting results in the literature that render impossible a distinction between PSTs and BECs effects. We review the knowledge on Alexandrium BEC, (i.e., producing species, target cells, physiological effects, detection methods and molecular candidates). Overall, we highlight the need to identify the nature of Alexandrium BECs and urge further research on the chemical interactions according to their ecological importance in the planktonic chemical warfare and due to their potential collateral damage to a wide range of organisms.
Collapse
Affiliation(s)
- Marc Long
- IFREMER, Centre de Brest, DYNECO Pelagos, 29280 Plouzané, France;
| | - Bernd Krock
- Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany;
| | - Justine Castrec
- University Brest, CNRS, IRD, Ifremer, LEMAR, 29280 Plouzané, France;
- Station de Recherches Sous-Marines et Océanographiques (STARESO), Punta Revellata, BP33, 20260 Calvi, France
| | - Urban Tillmann
- Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany;
| |
Collapse
|
10
|
In Vitro Evaluation of Antioxidant Potential of the Invasive Seagrass Halophila stipulacea. Mar Drugs 2021; 19:md19010037. [PMID: 33467094 PMCID: PMC7830009 DOI: 10.3390/md19010037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/13/2022] Open
Abstract
Marine organisms with fast growth rates and great biological adaptive capacity might have biotechnological interests, since ecological competitiveness might rely on enhanced physiological or biochemical processes’ capability promoting protection, defense, or repair intracellular damages. The invasive seagrass Halophila stipulacea, a non-indigenous species widespread in the Mediterranean Sea, belongs to this category. This is the premise to investigate the biotechnological interest of this species. In this study, we investigated the antioxidant activity in vitro, both in scavenging reactive oxygen species and in repairing damages from oxidative stress on the fibroblast human cell line WI-38. Together with the biochemical analysis, the antioxidant activity was characterized by the study of the expression of oxidative stress gene in WI-38 cells in presence or absence of the H. stipulacea extract. Concomitantly, the pigment pool of the extracts, as well as their macromolecular composition was characterized. This study was done separately on mature and young leaves. Results indicated that mature leaves exerted a great activity in scavenging reactive oxygen species and repairing damages from oxidative stress in the WI-38 cell line. This activity was paralleled to an enhanced carotenoids content in the mature leaf extracts and a higher carbohydrate contribution to organic matter. Our results suggest a potential of the old leaves of H. stipulacea as oxidative stress damage protecting or repair agents in fibroblast cell lines. This study paves the way to transmute the invasive H. stipulacea environmental threat in goods for human health.
Collapse
|
11
|
Cuomo P, Papaianni M, Sansone C, Iannelli A, Iannelli D, Medaglia C, Paris D, Motta A, Capparelli R. An In Vitro Model to Investigate the Role of Helicobacter pylori in Type 2 Diabetes, Obesity, Alzheimer's Disease and Cardiometabolic Disease. Int J Mol Sci 2020; 21:ijms21218369. [PMID: 33171588 PMCID: PMC7664682 DOI: 10.3390/ijms21218369] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori (Hp) is a Gram-negative bacterium colonizing the human stomach. Nuclear Magnetic Resonance (NMR) analysis of intracellular human gastric carcinoma cells (MKN-28) incubated with the Hp cell filtrate (Hpcf) displays high levels of amino acids, including the branched chain amino acids (BCAA) isoleucine, leucine, and valine. Polymerase chain reaction (PCR) Array Technology shows upregulation of mammalian Target Of Rapamycin Complex 1 (mTORC1), inflammation, and mitochondrial dysfunction. The review of literature indicates that these traits are common to type 2 diabetes, obesity, Alzheimer’s diseases, and cardiometabolic disease. Here, we demonstrate how Hp may modulate these traits. Hp induces high levels of amino acids, which, in turn, activate mTORC1, which is the complex regulating the metabolism of the host. A high level of BCAA and upregulation of mTORC1 are, thus, directly regulated by Hp. Furthermore, Hp modulates inflammation, which is functional to the persistence of chronic infection and the asymptomatic state of the host. Finally, in order to induce autophagy and sustain bacterial colonization of gastric mucosa, the Hp toxin VacA localizes within mitochondria, causing fragmentation of these organelles, depletion of ATP, and oxidative stress. In conclusion, our in vitro disease model replicates the main traits common to the above four diseases and shows how Hp may potentially manipulate them.
Collapse
Affiliation(s)
- Paola Cuomo
- Department of Agriculture Sciences, University of Naples “Federico II”, via Università, 100-Portici, 80055 Naples, Italy; (P.C.); (M.P.)
| | - Marina Papaianni
- Department of Agriculture Sciences, University of Naples “Federico II”, via Università, 100-Portici, 80055 Naples, Italy; (P.C.); (M.P.)
| | - Clementina Sansone
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy;
| | - Antonio Iannelli
- Department of Digestive Surgery, Université Côte d’Azur, Campus Valrose, Batiment L, Avenue de Valrose, 28-CEDEX 2, 06108 Nice, France;
- Inserm, U1065, Team 8 “Hepatic Complications of Obesity and Alcohol”, Route Saint Antoine de Ginestière 151, BP 2 3194, CEDEX 3, 06204 Nice, France
| | - Domenico Iannelli
- Department of Agriculture Sciences, University of Naples “Federico II”, via Università, 100-Portici, 80055 Naples, Italy; (P.C.); (M.P.)
- Correspondence: (D.I.); (R.C.)
| | - Chiara Medaglia
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, rue du Général-Dufour, 1211 Genève, Switzerland;
| | - Debora Paris
- Institute of Biomolecular Chemistry, National Research Council, via Campi Flegrei, 34-Pozzuoli, 80078 Naples, Italy; (D.P.); (A.M.)
| | - Andrea Motta
- Institute of Biomolecular Chemistry, National Research Council, via Campi Flegrei, 34-Pozzuoli, 80078 Naples, Italy; (D.P.); (A.M.)
| | - Rosanna Capparelli
- Department of Agriculture Sciences, University of Naples “Federico II”, via Università, 100-Portici, 80055 Naples, Italy; (P.C.); (M.P.)
- Correspondence: (D.I.); (R.C.)
| |
Collapse
|
12
|
De novo Transcriptome of the Non-saxitoxin Producing Alexandrium tamutum Reveals New Insights on Harmful Dinoflagellates. Mar Drugs 2020; 18:md18080386. [PMID: 32722301 PMCID: PMC7460133 DOI: 10.3390/md18080386] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022] Open
Abstract
Many dinoflagellates species, especially of the Alexandrium genus, produce a series of toxins with tremendous impacts on human and environmental health, and tourism economies. Alexandrium tamutum was discovered for the first time in the Gulf of Naples, and it is not known to produce saxitoxins. However, a clone of A. tamutum from the same Gulf showed copepod reproduction impairment and antiproliferative activity. In this study, the full transcriptome of the dinoflagellate A. tamutum is presented in both control and phosphate starvation conditions. RNA-seq approach was used for in silico identification of transcripts that can be involved in the synthesis of toxic compounds. Phosphate starvation was selected because it is known to induce toxin production for other Alexandrium spp. Results showed the presence of three transcripts related to saxitoxin synthesis (sxtA, sxtG and sxtU), and others potentially related to the synthesis of additional toxic compounds (e.g., 44 transcripts annotated as "polyketide synthase"). These data suggest that even if this A. tamutum clone does not produce saxitoxins, it has the potential to produce toxic metabolites, in line with the previously observed activity. These data give new insights into toxic microalgae, toxin production and their potential applications for the treatment of human pathologies.
Collapse
|
13
|
Galasso C, Celentano S, Costantini M, D’Aniello S, Ianora A, Sansone C, Romano G. Diatom-Derived Polyunsaturated Aldehydes Activate Similar Cell Death Genes in Two Different Systems: Sea Urchin Embryos and Human Cells. Int J Mol Sci 2020; 21:ijms21155201. [PMID: 32708040 PMCID: PMC7439121 DOI: 10.3390/ijms21155201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 12/20/2022] Open
Abstract
Programmed cell death, such as apoptosis and autophagy, are key processes that are activated early on during development, leading to remodelling in embryos and homeostasis in adult organisms. Genomic conservation of death factors has been largely investigated in the animal and plant kingdoms. In this study, we analysed, for the first time, the expression profile of 11 genes involved in apoptosis (extrinsic and intrinsic pathways) and autophagy in sea urchin Paracentrotus lividus embryos exposed to antiproliferative polyunsaturated aldehydes (PUAs), and we compared these results with those obtained on the human cell line A549 treated with the same molecules. We found that sea urchins and human cells activated, at the gene level, a similar cell death response to these compounds. Despite the evolutionary distance between sea urchins and humans, we observed that the activation of apoptotic and autophagic genes in response to cytotoxic compounds is a conserved process. These results give first insight on death mechanisms of P. lividus death mechanisms, also providing additional information for the use of this marine organism as a useful in vitro model for the study of cell death signalling pathways activated in response to chemical compounds.
Collapse
Affiliation(s)
- Christian Galasso
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; (S.C.); (M.C.); (A.I.); (G.R.)
- Correspondence: (C.G.); (C.S.); Tel.: +(39)-0815833261 (C.G.); +(39)-0815833262 (C.S.)
| | - Susanna Celentano
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; (S.C.); (M.C.); (A.I.); (G.R.)
| | - Maria Costantini
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; (S.C.); (M.C.); (A.I.); (G.R.)
| | - Salvatore D’Aniello
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy;
| | - Adrianna Ianora
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; (S.C.); (M.C.); (A.I.); (G.R.)
| | - Clementina Sansone
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; (S.C.); (M.C.); (A.I.); (G.R.)
- Correspondence: (C.G.); (C.S.); Tel.: +(39)-0815833261 (C.G.); +(39)-0815833262 (C.S.)
| | - Giovanna Romano
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; (S.C.); (M.C.); (A.I.); (G.R.)
| |
Collapse
|
14
|
Galasso C, Gentile A, Orefice I, Ianora A, Bruno A, Noonan DM, Sansone C, Albini A, Brunet C. Microalgal Derivatives as Potential Nutraceutical and Food Supplements for Human Health: A Focus on Cancer Prevention and Interception. Nutrients 2019; 11:E1226. [PMID: 31146462 PMCID: PMC6627306 DOI: 10.3390/nu11061226] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 12/13/2022] Open
Abstract
Epidemiological studies are providing strong evidence on beneficial health effects from dietary measures, leading scientists to actively investigate which foods and which specific agents in the diet can prevent diseases. Public health officers and medical experts should collaborate toward the design of disease prevention diets for nutritional intervention. Functional foods are emerging as an instrument for dietary intervention in disease prevention. Functional food products are technologically developed ingredients with specific health benefits. Among promising sources of functional foods and chemopreventive diets of interest, microalgae are gaining worldwide attention, based on their richness in high-value products, including carotenoids, proteins, vitamins, essential amino acids, omega-rich oils and, in general, anti-inflammatory and antioxidant compounds. Beneficial effects of microalgae on human health and/or wellness could in the future be useful in preventing or delaying the onset of cancer and cardiovascular diseases. During the past decades, microalgal biomass was predominately used in the health food market, with more than 75% of the annual microalgal biomass production being employed for the manufacture of powders, tablets, capsules or pastilles. In this review, we report and discuss the present and future role of microalgae as marine sources of functional foods/beverages for human wellbeing, focusing on perspectives in chemoprevention. We dissected this topic by analyzing the different classes of microalgal compounds with health outputs (based on their potential chemoprevention activities), the biodiversity of microalgal species and how to improve their cultivation, exploring the perspective of sustainable food from the sea.
Collapse
Affiliation(s)
- Christian Galasso
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy.
| | - Antonio Gentile
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy.
| | - Ida Orefice
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy.
| | - Adrianna Ianora
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy.
| | - Antonino Bruno
- Laboratory of Vascular Biology and Angiogenesis, IRCCS MultiMedica, 20138 Milan, Italy.
| | - Douglas M Noonan
- Laboratory of Vascular Biology and Angiogenesis, IRCCS MultiMedica, 20138 Milan, Italy.
- Department of Biotechnology and Life Sciences, University of Insubria, 211000 Varese, Italy.
| | | | - Adriana Albini
- Laboratory of Vascular Biology and Angiogenesis, IRCCS MultiMedica, 20138 Milan, Italy.
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy.
| | - Christophe Brunet
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy.
| |
Collapse
|
15
|
The Marine Dinoflagellate Alexandrium minutum Activates a Mitophagic Pathway in Human Lung Cancer Cells. Mar Drugs 2018; 16:md16120502. [PMID: 30545093 PMCID: PMC6316568 DOI: 10.3390/md16120502] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 12/31/2022] Open
Abstract
Marine dinoflagellates are a valuable source of bioactive molecules. Many species produce cytotoxic compounds and some of these compounds have also been investigated for their anticancer potential. Here, we report the first investigation of the toxic dinoflagellate Alexandrium minutum as source of water-soluble compounds with antiproliferative activity against human lung cancer cells. A multi-step enrichment of the phenol–water extract yielded a bioactive fraction with specific antiproliferative effect (IC50 = 0.4 µg·mL−1) against the human lung adenocarcinoma cells (A549 cell line). Preliminary characterization of this material suggested the presence of glycoprotein with molecular weight above 20 kDa. Interestingly, this fraction did not exhibit any cytotoxicity against human normal lung fibroblasts (WI38). Differential gene expression analysis in A549 cancer cells suggested that the active fraction induces specific cell death, triggered by mitochondrial autophagy (mitophagy). In agreement with the cell viability results, gene expression data also showed that no mitophagic event was activated in normal cells WI38.
Collapse
|
16
|
Marine Microalgae: Promising Source for New Bioactive Compounds. Mar Drugs 2018; 16:md16090317. [PMID: 30200664 PMCID: PMC6164378 DOI: 10.3390/md16090317] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/23/2018] [Accepted: 09/04/2018] [Indexed: 02/06/2023] Open
Abstract
The study of marine natural products for their bioactive potential has gained strength in recent years. Oceans harbor a vast variety of organisms that offer a biological and chemical diversity with metabolic abilities unrivalled in terrestrial systems, which makes them an attractive target for bioprospecting as an almost untapped resource of biotechnological applications. Among them, there is no doubt that microalgae could become genuine “cell factories” for the biological synthesis of bioactive substances. Thus, in the course of inter-laboratory collaboration sponsored by the European Union (7th FP) into the MAREX Project focused on the discovery of novel bioactive compounds of marine origin for the European industry, a bioprospecting study on 33 microalgae strains was carried out. The strains were cultured at laboratory scale. Two extracts were prepared for each one (biomass and cell free culture medium) and, thus, screened to provide information on the antimicrobial, the anti-proliferative, and the apoptotic potential of the studied extracts. The outcome of this study provides additional scientific data for the selection of Alexandrium tamarensis WE, Gambierdiscus australes, Prorocentrum arenarium, Prorocentrum hoffmannianum, and Prorocentrum reticulatum (Pr-3) for further investigation and offers support for the continued research of new potential drugs for human therapeutics from cultured microalgae.
Collapse
|