1
|
Gao Y, Chen H, Lian H, Cai X, Xie L, Ahmed RG, Lin X, Chen H, Dong W. The role of the ferroptosis pathway in the toxic mechanism of TCDD-induced liver damage in zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2025; 295:110213. [PMID: 40286831 DOI: 10.1016/j.cbpc.2025.110213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/27/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Dioxins, especially 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) are harmful environmental pollutants, which is known to accumulate in humans and animals through ingestion, drinking water, and direct contact, leading to severe liver steatosis and cell death. This study used zebrafish as an experimental model to explore whether TCDD affects the liver via the ferroptosis pathway. The study examined microscopic and ultrastructural characteristics, oxidative stress-related indicators, iron content, and related gene and protein expression in zebrafish larvae liver cells. The results showed that TCDD exposure led to a decrease in the number of hepatocytes in zebrafish larvae. However, pretreatment with the ferroptosis inhibitor ferrostatin-1 (fer-1) alleviated these TCDD-induced changes. The transmission electron microscopy showed that TCDD exposure led to mitochondrial damage in the liver cells, an elevated iron content, a decrease in the level of the ferroptosis-related enzyme glutathione, increased alanine aminotransferase and malondialdehyde enzyme activities, and decreased glutathione peroxidase 4 protein levels. These effects were alleviated by the fer-1 pretreatment. At the gene level, TCDD exposure induced the expression of ferroptosis-related genes (tf, tfr, tfr1b, and fpn), inflammatory factor-related genes (NF-kB, ptgs2a, and ptgs2b), and lipid degeneration and autophagy genes (atg5, ncoa4, and acox1), and inhibited the expression of oxidative stress-related genes (gpx4, slc7a11, and nrf2). The fer-1 pretreatment counteracted these gene expression changes induced by TCDD. These findings indicate that TCDD-induced liver fatty degeneration and cell death are closely related to the ferroptosis pathway.
Collapse
Affiliation(s)
- Yunqi Gao
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia 028000, China; Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, China
| | - Hongsong Chen
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia 028000, China; Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, China
| | - Hua Lian
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia 028000, China; Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, China
| | - Xiaoxu Cai
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia 028000, China; Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, China
| | - Lingtian Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - R G Ahmed
- Division of Anatomy and Embryology, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Xuguang Lin
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia 028000, China; Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, China
| | - Hongxing Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China.
| | - Wu Dong
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia 028000, China; Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, China.
| |
Collapse
|
2
|
Yan X, Chen W, Song X, Ma Y, Wang H, Yang T, Liang Y, Zeng H. Environmental concentrations of N-nitrosodiethylamine (NDEA) disturb the Ca 2 + and K + homeostasis in the gills and epidermis of mosquitofish (Gambusia affinis). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 294:118067. [PMID: 40147174 DOI: 10.1016/j.ecoenv.2025.118067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/04/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025]
Abstract
N-nitrosodiethylamine (NDEA), a nitrogenous disinfection by-product, is notorious for its ubiquitous presence in the environment and its carcinogenic properties. However, its impact on ion homeostasis in aquatic organisms remains underexplored. In the present study, we investigated the effects of NDEA on ion homeostasis in mosquitofish exposed to varying concentrations for 30 days. Calcium and potassium fluxes were monitored using noninvasive micro-test technology (NMT), and ATPase activities and gene expressions related to ion transport and immune responses were assessed. Principal component analysis was conducted to identify the organs most sensitive to different NDEA exposure levels. The results revealed that NDEA exposure inhibited transport enzyme activities and affected the expression of ion transport- and immune-related genes. Among all tested tissues, the gills exhibited the highest overall sensitivity (0.443) to NDEA exposure, underscoring their essential functions in ion transport and calcium regulation. These findings underscore the critical role of ion homeostasis in NDEA-induced toxicity and highlight the importance of understanding tissue-specific responses in assessing the ecological risks posed by N-nitrosamines in aquatic environments.
Collapse
Affiliation(s)
- Xiaoyu Yan
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, China
| | - Wenwen Chen
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
| | - Xiaohong Song
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China.
| | - Yun Ma
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, China
| | - Haiqin Wang
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, China
| | - Tao Yang
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, China
| | - Yanpeng Liang
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
| | - Honghu Zeng
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China; Key Laboratory of Carbon Emission and Pollutant Collaborative Control, Guilin University of Technology, Guilin 541006, China.
| |
Collapse
|
3
|
Agrawal I, Lee AQ, Gong Z. Identifying Universal Fish Biomarker Genes in Response to PCB126 Exposure by Comparative Transcriptomic Analyses. Curr Issues Mol Biol 2024; 46:7862-7876. [PMID: 39194683 DOI: 10.3390/cimb46080466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/16/2024] [Accepted: 07/20/2024] [Indexed: 08/29/2024] Open
Abstract
Water pollution remains a major environmental concern, with increased toxic by-products being released into water bodies. Many of these chemical contaminants persist in the environment and bio-accumulate in aquatic organisms. At present, toxicological tests are mostly based on laboratory tests, and effective methods for monitoring wild aquatic environments remain lacking. In the present study, we used a well-characterized toxic chemical, 3,3',4,4',5-polychlorinated biphenyl (PCB126), as an example to try to identify common biomarker genes to be used for predictive toxicity of this toxic substance. First, we used two laboratory fish models, the zebrafish (Danio rerio) and medaka (Oryzias latipes), to expose PCB126 to obtain liver transcriptomic data by RNA-seq. Comparative transcriptomic analyses indicated generally conserved and concerted changes from the two species, thus validating the transcriptomic data for biomarker gene selection. Based on the common up- and downregulated genes in the two species, we selected nine biomarker genes to further test in other fish species. The first validation experiment was carried out using the third fish species, Mozambique tilapia (Oreochromis mossambicus), and essentially, all these biomarker genes were validated for consistent responses with the two laboratory fish models. Finally, to develop universal PCR primers suitable for potentially all teleost fish species, we designed degenerate primers and tested them in the three fish species as well as in another fish species without a genomic sequence available: guppy (Poecilia reticulata). We found all the biomarker genes showed consistent response to PCB126 exposure in at least 50% of the species. Thus, our study provides a promising strategy to identify common biomarker genes to be used for teleost fish analyses. By using degenerate PCR primers and analyzing multiple biomarker genes, it is possible to develop diagnostic PCR arrays to predict water contamination from any wild fish species sampled in different water bodies.
Collapse
Affiliation(s)
- Ira Agrawal
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
- Department of Physiology, National University of Singapore, Singapore 117593, Singapore
| | - Ai Qi Lee
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| |
Collapse
|
4
|
Ahmad MF, Ahmad FA, Alsayegh AA, Zeyaullah M, AlShahrani AM, Muzammil K, Saati AA, Wahab S, Elbendary EY, Kambal N, Abdelrahman MH, Hussain S. Pesticides impacts on human health and the environment with their mechanisms of action and possible countermeasures. Heliyon 2024; 10:e29128. [PMID: 38623208 PMCID: PMC11016626 DOI: 10.1016/j.heliyon.2024.e29128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/17/2024] Open
Abstract
Pesticides are chemical constituents used to prevent or control pests, including insects, rodents, fungi, weeds, and other unwanted organisms. Despite their advantages in crop production and disease management, the use of pesticides poses significant hazards to the environment and public health. Pesticide elements have now perpetually entered our atmosphere and subsequently contaminated water, food, and soil, leading to health threats ranging from acute to chronic toxicities. Pesticides can cause acute toxicity if a high dose is inhaled, ingested, or comes into contact with the skin or eyes, while prolonged or recurrent exposure to pesticides leads to chronic toxicity. Pesticides produce different types of toxicity, for instance, neurotoxicity, mutagenicity, carcinogenicity, teratogenicity, and endocrine disruption. The toxicity of a pesticide formulation may depend on the specific active ingredient and the presence of synergistic or inert compounds that can enhance or modify its toxicity. Safety concerns are the need of the hour to control contemporary pesticide-induced health hazards. The effectiveness and implementation of the current legislature in providing ample protection for human health and the environment are key concerns. This review explored a comprehensive summary of pesticides regarding their updated impacts on human health and advanced safety concerns with legislation. Implementing regulations, proper training, and education can help mitigate the negative impacts of pesticide use and promote safer and more sustainable agricultural practices.
Collapse
Affiliation(s)
- Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Fakhruddin Ali Ahmad
- Department of Basic and Applied Science, School of Engineering and Science, G.D Goenka University, Gururgram, Haryana, 122103, India
| | - Abdulrahman A. Alsayegh
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Md. Zeyaullah
- Department of Basic Medical Science, College of Applied Medical Sciences, Khamis Mushayt Campus, King Khalid University (KKU), Abha, Saudi Arabia
| | - Abdullah M. AlShahrani
- Department of Basic Medical Science, College of Applied Medical Sciences, Khamis Mushayt Campus, King Khalid University (KKU), Abha, Saudi Arabia
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushayt Campus, King Khalid University (KKU), Abha, Saudi Arabia
| | - Abdullah Ali Saati
- Department of Community Medicine & Pilgrims Healthcare, Faculty of Medicine, Umm Al-Qura University, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Ehab Y. Elbendary
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Nahla Kambal
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Mohamed H. Abdelrahman
- College of Applied Medical Sciences, Medical Laboratory Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| | - Sohail Hussain
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| |
Collapse
|
5
|
Koomson AA, Delaney P, Khan N, Sadler KC. Sustained effects of developmental exposure to inorganic arsenic on hepatic gsto2 expression and mating success in zebrafish. Biol Open 2024; 13:bio060094. [PMID: 38446164 PMCID: PMC10941348 DOI: 10.1242/bio.060094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/02/2024] [Indexed: 03/07/2024] Open
Abstract
The impacts of exposure to the pervasive environmental toxicant, inorganic arsenic (iAs), on human and fish health are well characterized and several lines of evidence suggest that some impacts can manifest years after exposure cessation. Using a developmental exposure protocol whereby zebrafish embryos were exposed to 0.5 and 1.5 mM iAs from 4-120 hours post fertilization (hpf) and then removed, we investigated the sustained effects of iAs on gene expression in the liver, survival, reproductive success, and susceptibility to iAs toxicity in the subsequent generation. Persistent exposure to iAs during development had substantial effects on the hepatic transcriptome, with 23% of all expressed genes significantly changed following developmental exposure. The gsto2 gene is involved in iAs metabolism and this gene was significantly downregulated in female livers 9 months after iAs was removed. Developmental exposure to 1.5 mM iAs, but not 0.5 mM, decreased survival by over 50% at 3 months of age. Adults that were developmentally exposed to 0.5 mM iAs had reduced mating success, but their offspring had no differences in observable aspects of development or their susceptibility to iAs toxicity. This demonstrates that developmental exposure of zebrafish to iAs reduces long-term survival, reproductive success and causes sustained changes to gsto2 expression in the liver.
Collapse
Affiliation(s)
- Abigail Ama Koomson
- Program in Biology, New York University Abu Dhabi, Saadiyat Island, United Arab Emirates
| | - Patrice Delaney
- Program in Biology, New York University Abu Dhabi, Saadiyat Island, United Arab Emirates
| | - Nouf Khan
- Program in Biology, New York University Abu Dhabi, Saadiyat Island, United Arab Emirates
| | - Kirsten C. Sadler
- Program in Biology, New York University Abu Dhabi, Saadiyat Island, United Arab Emirates
| |
Collapse
|
6
|
Magnani E, Nair AR, McBain I, Delaney P, Chu J, Sadler KC. Methods to Study Liver Disease Using Zebrafish Larvae. Methods Mol Biol 2024; 2707:43-69. [PMID: 37668904 DOI: 10.1007/978-1-0716-3401-1_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Liver disease affects millions of people worldwide, and the high morbidity and mortality is attributed in part to the paucity of treatment options. In many cases, liver injury self-resolves due to the remarkable regenerative capacity of the liver, but in cases when regeneration cannot compensate for the injury, inflammation and fibrosis occur, creating a setting for the emergence of liver cancer. Whole animal models are crucial for deciphering the basic biological underpinnings of liver biology and pathology and, importantly, for developing and testing new treatments for liver disease before it progresses to a terminal state. The cellular components and functions of the zebrafish liver are highly similar to mammals, and zebrafish develop many diseases that are observed in humans, including toxicant-induced liver injury, fatty liver, fibrosis, and cancer. Therefore, the widespread use of zebrafish larvae for studying the mechanisms of these pathologies and for developing potential treatments necessitates the optimization of experimental approaches to assess liver disease in this model. Here, we describe protocols using staining methods, imaging, and gene expression analysis to assess liver injury, fibrosis, and preneoplastic changes in the liver of larval zebrafish.
Collapse
Affiliation(s)
- Elena Magnani
- Program in Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Anjana Ramdas Nair
- Program in Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Ian McBain
- Program in Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Patrice Delaney
- Program in Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Jaime Chu
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kirsten C Sadler
- Program in Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
7
|
Kwiatkowska I, Hermanowicz JM, Iwinska Z, Kowalczuk K, Iwanowska J, Pawlak D. Zebrafish—An Optimal Model in Experimental Oncology. Molecules 2022; 27:molecules27134223. [PMID: 35807468 PMCID: PMC9268704 DOI: 10.3390/molecules27134223] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/10/2022] [Accepted: 06/28/2022] [Indexed: 02/02/2023] Open
Abstract
A thorough understanding of cancer pathogenesis is a necessary step in the development of more effective and safer therapy. However, due to the complexity of the process and intricate interactions, studying tumor development is an extremely difficult and challenging task. In bringing this issue closer, different scientific models with various advancement levels are helpful. Cell cultures is a system that is too simple and does not allow for multidirectional research. On the other hand, rodent models, although commonly used, are burdened with several limitations. For this reason, new model organisms that will allow for the studying of carcinogenesis stages and factors reliably involved in them are urgently sought after. Danio rerio, an inconspicuous fish endowed with unique features, is gaining in importance in the world of scientific research. Including it in oncological research brings solutions to many challenges afflicting modern medicine. This article aims to illustrate the usefulness of Danio rerio as a model organism which turns out to be a powerful and unique tool for studying the stages of carcinogenesis and solving the hitherto incomprehensible processes that lead to the development of the disease.
Collapse
Affiliation(s)
- Iwona Kwiatkowska
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (Z.I.); (J.I.); (D.P.)
- Correspondence: ; Tel./Fax: +48-8574-856-01
| | - Justyna Magdalena Hermanowicz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (Z.I.); (J.I.); (D.P.)
- Department of Clinical Pharmacy, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland
| | - Zaneta Iwinska
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (Z.I.); (J.I.); (D.P.)
| | - Krystyna Kowalczuk
- Department of Integrated Medical Care, Medical University of Bialystok, ul. M Skłodowskiej-Curie 7A, 15-096 Bialystok, Poland;
| | - Jolanta Iwanowska
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (Z.I.); (J.I.); (D.P.)
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (Z.I.); (J.I.); (D.P.)
| |
Collapse
|
8
|
Chen L, Su B, Yu J, Wang J, Hu H, Ren HQ, Wu B. Combined effects of arsenic and 2,2-dichloroacetamide on different cell populations of zebrafish liver. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:152961. [PMID: 35031379 DOI: 10.1016/j.scitotenv.2022.152961] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Arsenic (As) and disinfection by-products are important health risk factors in the water environment. However, their combined effects on different cell populations in the liver are not well known. Here, zebrafish were exposed to 100 μg/L As, 300 μg/L 2,2-dichloroacetamide (DCAcAm), and their combination for 23 days. Then transcriptome profiles of cell populations in zebrafish liver were analyzed by single-cell RNA sequencing (scRNA-seq). A total of 13,563 cells were obtained, which were identified as hepatocytes, hepatic duct cells, endothelial cells and macrophages. Hepatocytes were the main target cell subtype of As and DCAcAm exposures. DCAcAm exposure induced higher toxicity in male hepatocytes, which specifically changed amino acid metabolism, response to hormone and cofactor metabolism. However, As exposure caused higher toxicity in female hepatocytes, which altered lipid metabolism, carbon metabolism, and peroxisome. Combined exposure to As and DCAcAm decreased toxicities in hepatocytes compared to each one alone. Female hepatocytes had higher tolerance to co-exposure of As and DCAcAm than male hepatocytes. Further, combined exposure to As and DCAcAm induced functional changes in macrophages similar to As alone groups, which mainly altered the transfer of sterol and cholesterol. Hepatic duct cells and endothelial cells were not influenced by exposures to As and DCAcAm. This study for the first time highlights the cell-specific combined responses of As and DCAcAm in zebrafish liver, which provide useful information for their health risk assessment in a co-exposure environment.
Collapse
Affiliation(s)
- Ling Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Bei Su
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Jing Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Jinfeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Haidong Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Hong-Qiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
9
|
Cascallar M, Alijas S, Pensado-López A, Vázquez-Ríos AJ, Sánchez L, Piñeiro R, de la Fuente M. What Zebrafish and Nanotechnology Can Offer for Cancer Treatments in the Age of Personalized Medicine. Cancers (Basel) 2022; 14:cancers14092238. [PMID: 35565373 PMCID: PMC9099873 DOI: 10.3390/cancers14092238] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer causes millions of deaths each year and thus urgently requires the development of new therapeutic strategies. Nanotechnology-based anticancer therapies are a promising approach, with several formulations already approved and in clinical use. The evaluation of these therapies requires efficient in vivo models to study their behavior and interaction with cancer cells, and to optimize their properties to ensure maximum efficacy and safety. In this way, zebrafish is an important candidate due to its high homology with the human genoma, its large offspring, and the ease in developing specific cancer models. The role of zebrafish as a model for anticancer therapy studies has been highly evidenced, allowing researchers not only to perform drug screenings but also to evaluate novel therapies such as immunotherapies and nanotherapies. Beyond that, zebrafish can be used as an “avatar” model for performing patient-derived xenografts for personalized medicine. These characteristics place zebrafish in an attractive position as a role model for evaluating novel therapies for cancer treatment, such as nanomedicine.
Collapse
Affiliation(s)
- María Cascallar
- Nano-Oncology and Translational Therapeutics Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, 15706 Santiago de Compostela, Spain; (M.C.); (S.A.); (A.J.V.-R.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain; (A.P.-L.); (L.S.)
| | - Sandra Alijas
- Nano-Oncology and Translational Therapeutics Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, 15706 Santiago de Compostela, Spain; (M.C.); (S.A.); (A.J.V.-R.)
| | - Alba Pensado-López
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain; (A.P.-L.); (L.S.)
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Abi Judit Vázquez-Ríos
- Nano-Oncology and Translational Therapeutics Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, 15706 Santiago de Compostela, Spain; (M.C.); (S.A.); (A.J.V.-R.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
- DIVERSA Technologies S.L., 15782 Santiago de Compostela, Spain
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain; (A.P.-L.); (L.S.)
- Preclinical Animal Models Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Roberto Piñeiro
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela, Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - María de la Fuente
- Nano-Oncology and Translational Therapeutics Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, 15706 Santiago de Compostela, Spain; (M.C.); (S.A.); (A.J.V.-R.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain;
- DIVERSA Technologies S.L., 15782 Santiago de Compostela, Spain
- Correspondence: ; Tel.: +34-981-955-704
| |
Collapse
|
10
|
Lu JW, Lin LI, Sun Y, Liu D, Gong Z. Effect of Lipopolysaccharides on Liver Tumor Metastasis of twist1a/krasV12 Double Transgenic Zebrafish. Biomedicines 2022; 10:biomedicines10010095. [PMID: 35052775 PMCID: PMC8773574 DOI: 10.3390/biomedicines10010095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/23/2021] [Accepted: 12/30/2021] [Indexed: 12/24/2022] Open
Abstract
The poor prognosis of patients diagnosed with hepatocellular carcinoma (HCC) is directly associated with the multi-step process of tumor metastasis. TWIST1, a basic helix-loop-helix (bHLH) transcription factor, is the most important epithelial-mesenchymal transition (EMT) gene involved in embryonic development, tumor progression, and metastasis. However, the role that TWIST1 gene plays in the process of liver tumor metastasis in vivo is still not well understood. Zebrafish can serve as a powerful model for cancer research. Thus, in this study, we crossed twist1a+ and kras+ transgenic zebrafish, which, respectively, express hepatocyte-specific mCherry and enhanced green fluorescent protein (EGFP); they also drive overexpression of their respective transcription factors. This was found to exacerbate the development of metastatic HCC. Fluorescence of mCherry and EGFP-labeled hepatocytes revealed that approximately 37.5% to 45.5% of the twist1a+/kras+ double transgenic zebrafish exhibited spontaneous tumor metastasis from the liver to the abdomen and tail areas, respectively. We also investigated the inflammatory effects of lipopolysaccharides (LPS) on the hepatocyte-specific co-expression of twist1a+ and kras+ in double transgenic zebrafish. Following LPS exposure, co-expression of twist1a+ and kras+ was found to increase tumor metastasis by 57.8%, likely due to crosstalk with the EMT pathway. Our results confirm that twist1a and kras are important mediators in the development of metastatic HCC. Taken together, our in-vivo model demonstrated that co-expression of twist1a+/kras+ in conjunction with exposure to LPS enhanced metastatic HCC offers a useful platform for the study of tumor initiation and metastasis in liver cancer.
Collapse
Affiliation(s)
- Jeng-Wei Lu
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore;
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei 10048, Taiwan;
- Correspondence: (J.-W.L.); (Z.G.); Tel.: +65-6516-2860 (Z.G.)
| | - Liang-In Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei 10048, Taiwan;
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei 10048, Taiwan
| | - Yuxi Sun
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore;
- Brain Research Center, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China;
| | - Dong Liu
- Brain Research Center, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China;
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore;
- Correspondence: (J.-W.L.); (Z.G.); Tel.: +65-6516-2860 (Z.G.)
| |
Collapse
|
11
|
Lee AQ, Li Y, Gong Z. Inducible Liver Cancer Models in Transgenic Zebrafish to Investigate Cancer Biology. Cancers (Basel) 2021; 13:5148. [PMID: 34680297 PMCID: PMC8533791 DOI: 10.3390/cancers13205148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/20/2022] Open
Abstract
Primary liver cancer is one of the most prevalent and deadly cancers, which incidence continues to increase while treatment response remains poor; thus, in-depth understanding of tumour events is necessary to develop more effective therapies. Animal models for liver cancer are powerful tools to reach this goal. Over the past decade, our laboratory has established multiple oncogene transgenic zebrafish lines that can be robustly induced to develop liver cancer. Histological, transcriptomic and molecular analyses validate the use of these transgenic zebrafish as experimental models for liver cancer. In this review, we provide a comprehensive summary of our findings with these inducible zebrafish liver cancer models in tumour initiation, oncogene addiction, tumour microenvironment, gender disparity, cancer cachexia, drug screening and others. Induced oncogene expression causes a rapid change of the tumour microenvironment such as inflammatory responses, increased vascularisation and rapid hepatic growth. In several models, histologically-proven carcinoma can be induced within one week of chemical inducer administration. Interestingly, the induced liver tumours show the ability to regress when the transgenic oncogene is suppressed by the withdrawal of the chemical inducer. Like human liver cancer, there is a strong bias of liver cancer severity in male zebrafish. After long-term tumour progression, liver cancer-bearing zebrafish also show symptoms of cancer cachexia such as muscle-wasting. In addition, the zebrafish models have been used to screen for anti-metastasis drugs as well as to evaluate environmental toxicants in carcinogenesis. These findings demonstrated that these inducible zebrafish liver cancer models provide rapid and convenient experimental tools for further investigation of fundamental cancer biology, with the potential for the discovery of new therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore 119077, Singapore; (A.Q.L.); (Y.L.)
| |
Collapse
|
12
|
Exploring the most stable aptamer/target molecule complex by the stochastic tunnelling-basin hopping-discrete molecular dynamics method. Sci Rep 2021; 11:11406. [PMID: 34075115 PMCID: PMC8169667 DOI: 10.1038/s41598-021-90907-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 05/07/2021] [Indexed: 11/29/2022] Open
Abstract
The stochastic tunnelling-basin hopping-discrete molecular dynamics (STUN-BH-DMD) method was applied to the search for the most stable biomolecular complexes in water by using the MARTINI coarse-grained (CG) model. The epithelial cell adhesion molecule (EpCAM, PDB code: 4MZV) was used as an EpCAM adaptor for an EpA (AptEpA) benchmark target molecule. The effects of two adsorption positions on the EpCAM were analysed, and it is found that the AptEpA adsorption configuration located within the EpCAM pocket-like structure is more stable and the energy barrier is lower due to the interaction with water. By the root mean square deviation (RMSD), the configuration of EpCAM in water is more conservative when the AptEpA binds to EpCAM by attaching to the pocket space of the EpCAM dimer. For AptEpA, the root mean square fluctuation (RMSF) analysis result indicates Nucleobase 1 and Nucleobase 2 display higher flexibility during the CGMD simulation. Finally, from the binding energy contour maps and histogram plots of EpCAM and each AptEpA nucleobase, it is clear that the binding energy adsorbed to the pocket-like structure is more continuous than that energy not adsorbed to the pocket-like structure. This study has proposed a new numerical process for applying the STUN-BH-DMD with the CG model, which can reduce computational details and directly find a more stable AptEpA/EpCAM complex in water.
Collapse
|
13
|
Sajjad H, Imtiaz S, Noor T, Siddiqui YH, Sajjad A, Zia M. Cancer models in preclinical research: A chronicle review of advancement in effective cancer research. Animal Model Exp Med 2021; 4:87-103. [PMID: 34179717 PMCID: PMC8212826 DOI: 10.1002/ame2.12165] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/04/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer is a major stress for public well-being and is the most dreadful disease. The models used in the discovery of cancer treatment are continuously changing and extending toward advanced preclinical studies. Cancer models are either naturally existing or artificially prepared experimental systems that show similar features with human tumors though the heterogeneous nature of the tumor is very familiar. The choice of the most fitting model to best reflect the given tumor system is one of the real difficulties for cancer examination. Therefore, vast studies have been conducted on the cancer models for developing a better understanding of cancer invasion, progression, and early detection. These models give an insight into cancer etiology, molecular basis, host tumor interaction, the role of microenvironment, and tumor heterogeneity in tumor metastasis. These models are also used to predict novel cancer markers, targeted therapies, and are extremely helpful in drug development. In this review, the potential of cancer models to be used as a platform for drug screening and therapeutic discoveries are highlighted. Although none of the cancer models is regarded as ideal because each is associated with essential caveats that restraint its application yet by bridging the gap between preliminary cancer research and translational medicine. However, they promise a brighter future for cancer treatment.
Collapse
Affiliation(s)
- Humna Sajjad
- Department of BiotechnologyQuaid‐i‐Azam UniversityIslamabadPakistan
| | - Saiqa Imtiaz
- Department of BiotechnologyQuaid‐i‐Azam UniversityIslamabadPakistan
| | - Tayyaba Noor
- Department of BiotechnologyQuaid‐i‐Azam UniversityIslamabadPakistan
| | | | - Anila Sajjad
- Department of BiotechnologyQuaid‐i‐Azam UniversityIslamabadPakistan
| | - Muhammad Zia
- Department of BiotechnologyQuaid‐i‐Azam UniversityIslamabadPakistan
| |
Collapse
|
14
|
Lai KP, Gong Z, Tse WKF. Zebrafish as the toxicant screening model: Transgenic and omics approaches. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 234:105813. [PMID: 33812311 DOI: 10.1016/j.aquatox.2021.105813] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/04/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
The production of large amounts of synthetic industrial and biomedical compounds, together with environmental pollutants, poses a risk to our ecosystem and induces negative effects on the health of wildlife and human beings. With the emergence of the global problem of chemical contamination, the adverse biological effects of these chemicals are gaining attention among the scientific communities, industry, governments, and the public. Among these chemicals, endocrine disrupting chemicals (EDCs) are regarded as one of the major global issues that potentially affecting our health. There is an urgent need of understanding the potential hazards of such chemicals. Zebrafish have been widely used in the aquatic toxicology. In this review, we first discuss the strategy of transgenic lines that used in the toxicological studies, followed by summarizing the current omics approaches (transcriptomics, proteomics, metabolomics, and epigenomics) on toxicities of EDCs in this model. We will also discuss the possible transgenerational effects in zebrafish and future prospective of the integrated omics approaches with customized transgenic organism. To conclude, we summarize the current findings in the field, and provide our opinions on future environmental toxicity research in the zebrafish model.
Collapse
Affiliation(s)
- Keng Po Lai
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin 541004, PR China; Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541004, PR China; Department of Chemistry, City University of Hong Kong, Hong Kong SAR, PR China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, PR China.
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, 117543, Singapore.
| | - William Ka Fai Tse
- Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan.
| |
Collapse
|
15
|
Li Z, Zheng W, Wang H, Cheng Y, Fang Y, Wu F, Sun G, Sun G, Lv C, Hui B. Application of Animal Models in Cancer Research: Recent Progress and Future Prospects. Cancer Manag Res 2021; 13:2455-2475. [PMID: 33758544 PMCID: PMC7979343 DOI: 10.2147/cmar.s302565] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/25/2021] [Indexed: 12/18/2022] Open
Abstract
Animal models refers to the animal experimental objects and related materials that can simulate human body established in medical research. As the second-largest disease in terms of morbidity and mortality after cardiovascular disease, cancer has always been the focus of human attention all over the world, which makes it a research hotspot in the medical field. At the same time, more and more animal models have been constructed and used in cancer research. With the deepening of research, the construction methods of cancer animal models are becoming more and more diverse, including chemical induction, xenotransplantation, gene programming, and so on. In recent years, patient-derived xenotransplantation (PDX) model has become a research hotspot because it can retain the microenvironment of the primary tumor and the basic characteristics of cells. Animal models can be used not only to study the biochemical and physiological processes of the occurrence and development of cancer in objects but also for the screening of cancer drugs and the exploration of gene therapy. In this paper, several main tumor animal models and the application progress of animal models in tumor research are systematically reviewed. Finally, combined with the latest progress and development trend in this field, the future research of tumor animal model was prospected.
Collapse
Affiliation(s)
- Zhitao Li
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Wubin Zheng
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Hanjin Wang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Ye Cheng
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yijiao Fang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Fan Wu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Guoqiang Sun
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Guangshun Sun
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Chengyu Lv
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Bingqing Hui
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
16
|
Chen X, Li Y, Yao T, Jia R. Benefits of Zebrafish Xenograft Models in Cancer Research. Front Cell Dev Biol 2021; 9:616551. [PMID: 33644052 PMCID: PMC7905065 DOI: 10.3389/fcell.2021.616551] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
As a promising in vivo tool for cancer research, zebrafish have been widely applied in various tumor studies. The zebrafish xenograft model is a low-cost, high-throughput tool for cancer research that can be established quickly and requires only a small sample size, which makes it favorite among researchers. Zebrafish patient-derived xenograft (zPDX) models provide promising evidence for short-term clinical treatment. In this review, we discuss the characteristics and advantages of zebrafish, such as their transparent and translucent features, the use of vascular fluorescence imaging, the establishment of metastatic and intracranial orthotopic models, individual pharmacokinetics measurements, and tumor microenvironment. Furthermore, we introduce how these characteristics and advantages are applied other in tumor studies. Finally, we discuss the future direction of the use of zebrafish in tumor studies and provide new ideas for the application of it.
Collapse
Affiliation(s)
- Xingyu Chen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yongyun Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Tengteng Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| |
Collapse
|
17
|
Arman S, İşisağ Üçüncü S. Cardiac toxicity of acrolein exposure in embryonic zebrafish (Danio rerio). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:22423-22433. [PMID: 32307682 DOI: 10.1007/s11356-020-08853-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Acrolein is a widely distributed pollutant produced from various sources such as industrial waste, organic combustion, and power plant emissions. It is also intentionally released into irrigation canals to control invasive aquatic plants. Zebrafish (Danio rerio) has a good reputation for being an attractive model organism for developmental and toxicological research. In this study, zebrafish embryos were exposed to acrolein to investigate the cardiotoxic effects. The 96-h LC50 (median lethal concentration) value of acrolein was determined as 654.385 μg/L. Then, the embryos were treated with the sublethal experimental concentrations of acrolein (1, 4, 16, 64, and 256 μg/L) for 96 h. Embryos were examined at 48, 72, and 96 h post-fertilization (hpf). Acrolein affected the cardiac morphology and function of the embryos. Sinus venosus-bulbus arteriosus (SV-BA) distance of 64 μg/L and 256 μg/L acrolein groups was elongated compared with the control samples. Immunostaining with MF20 antibody clearly exhibited that the atrium positioned posterior to the ventricle which indicated cardiac looping inhibition. Histological preparations also showed the mispositioning and the lumens of the chambers narrowed. Acrolein-induced increased heart rate was noted in the 4, 16, 64, and 256 μg/L treatment groups. Taken together, these results indicated that acrolein disrupted the heart development and cardiac function in zebrafish, suggesting that its water-borne risks should be considered seriously.
Collapse
Affiliation(s)
- Sezgi Arman
- Department of Biology, Faculty of Arts and Sciences, Sakarya University, 54050, Serdivan, Sakarya, Turkey.
| | - Sema İşisağ Üçüncü
- Department of Biology, Faculty of Science, Ege University, 35100, Bornova, Izmir, Turkey
| |
Collapse
|
18
|
Chen S, Gong Z, Letcher RJ, Liu C. Promotion effect of liver tumor progression in male kras transgenic zebrafish induced by tris (1, 3-dichloro-2-propyl) phosphate. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 191:110220. [PMID: 31991394 DOI: 10.1016/j.ecoenv.2020.110220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
A previous study reported that exposure to tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) could promote the progression of hepatocellular carcinoma (HCC) in female HCC model zebrafish. Due to the existence of gender disparity in the development of HCC between females and males, whether the promotion effect of TDCIPP still exists in male HCC model zebrafish remains unclear. In this study, Tg(fabp10:rtTA2s-M2; TRE2:EGFP-krasG12V), referred as kras transgenic zebrafish which was shown to be an inducible liver tumor model, was applied as experimental model to assess the promotion potential of TDCIPP for HCC in males. In brief, kras males were exposed to 20 mg/L doxycycline (DOX), 0.3 mg/L TDCIPP and a binary mixture of 20 mg/L DOX with 0.3 mg/L TDCIPP, and after exposure liver size, histopathology and transcriptional profiles of liver from these treatments were examined. With the involvement of TDCIPP, the liver size was significantly increased and the lesion of hepatocyte became more aggressive. Furthermore, expressions of genes involved in DNA replication and inflammatory response were simultaneously up-regulated in the treatment of TDCIPP compared with the solvent control and in the treatment of the binary mixture of the two chemicals compared to the single DOX treatment. Overall, our results suggested that TDCIPP had promotion effect on the progression of liver tumor in kras males.
Collapse
Affiliation(s)
- Sheng Chen
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, 117543, Singapore
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario, K1A 0H3, Canada
| | - Chunsheng Liu
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
19
|
Chen S, Dang Y, Gong Z, Letcher RJ, Liu C. Progression of liver tumor was promoted by tris(1,3-dichloro-2-propyl) phosphate through the induction of inflammatory responses in kras V12 transgenic zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113315. [PMID: 31606661 DOI: 10.1016/j.envpol.2019.113315] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 09/19/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) has been detected in various environmental media and has been implicated as a weak mutagen or carcinogen, but whether TDCIPP can promote the progression of liver tumor remains unclear. In this study, krasV12 genetically modified zebrafish, Tg(fabp10:rtTA2s-M2; TRE2:EGFP-krasG12V), a model system in which liver tumors can be induced by doxycycline (DOX), was used to evaluate the liver tumor promotion potential of TDCIPP. Briefly, krasV12 transgenic females were exposed to 0.3 mg/L TDCIPP, 20 mg/L DOX or a binary mixture of 0.3 mg/L TDCIPP with 20 mg/L DOX, and liver size, histopathology, and transcriptional profiles of liver were determined. Treatment with TDCIPP resulted in increased liver size and caused more aggressive hepatocellular carcinoma (HCC). Compared with the exposure to DOX, TDCIPP in the presence of DOX up-regulated the expression of genes relevant with salmonella infection and the toll-like receptor signaling pathway. These results implied an occurrence of inflammatory reaction, which was sustained by the increase in the amount of infiltrated neutrophils in the liver of Tg(lyz:DsRed2) transgenic zebrafish larvae whose neutrophils were labelled by red fluorescent protein under the lysozyme C promoter. Furthermore, compared with the binary exposure of DOX and TDCIPP, treatment with a ternary mixture of TDCIPP, DOX and inflammatory response inhibitor (ketoprofen) significantly decrease the liver size and the amounts of neutrophils in the livers of kras and lyz double transgenic zebrafish larvae. Collectively, our results suggested that TDCIPP could promote the liver tumor progression by induction of hepatic inflammatory responses.
Collapse
Affiliation(s)
- Sheng Chen
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yao Dang
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, 117543, Singapore
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario, K1A 0H3, Canada
| | - Chunsheng Liu
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|