1
|
De Marco G, Cristaldi A, Eliso MC, Oliveri Conti G, Galati M, Billè B, Terranova M, Parrino V, Cappello T, Ferrante M, Maisano M. Cellular pathway disturbances elicited by realistic dexamethasone concentrations in gills of mussel Mytilus galloprovincialis as assessed by a multi-biomarker approach. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 113:104598. [PMID: 39626850 DOI: 10.1016/j.etap.2024.104598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 12/08/2024]
Abstract
The growing usage of glucocorticoids for a variety of diseases raises concerns since these drugs, including the anti-inflammatory dexamethasone (DEX), are frequently found in the environment. The impact of DEX was evaluated on mussels Mytilus galloprovincialis (Lamarck, 1819) by exposure to environmental concentrations (C1: 4 ng/L; C2: 40 ng/L; C3: 400 ng/L; C4: 2000 ng/L), and sampling at 3 (T3), 6 (T6), and 12 (T12) days. A multi-biomarker approach was applied on gills, involved in gas exchange, feed filtering, and osmoregulation. A dose- and time-dependent uptake of DEX was recorded, besides haemocyte infiltration, increased neutral and acid mucopolysaccharides, and a general pro-oxidant effect witnessed by lipid peroxidation and altered antioxidant system. Metabolomics revealed rise in protein turnover and energy demand by fluctuations in free amino acids (alanine, glycine) and energy-related metabolites (succinate, ATP/ADP). It is necessary to reduce DEX dosage from the environment by recovery strategies and effective eco-pharmacovigilance programs.
Collapse
Affiliation(s)
- Giuseppe De Marco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | - Antonio Cristaldi
- Interdepartmental Research Center for the Implementation of Physical, Chemical and Biological Monitoring Processes in Aquaculture and Bioremediation Systems, Department of Medical, Surgical and Advanced Technologies, Hygiene and Public Health "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania 95123, Italy; Research Center in Nanomedicine and Pharmaceutical Nanotechnology (NANOMED), Department of Pharmaceutical and Health Sciences, University of Catania, Via Santa Sofia 87, Catania 95123, Italy
| | - Maria Concetta Eliso
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Villa Comunale, Naples 80121, Italy
| | - Gea Oliveri Conti
- Interdepartmental Research Center for the Implementation of Physical, Chemical and Biological Monitoring Processes in Aquaculture and Bioremediation Systems, Department of Medical, Surgical and Advanced Technologies, Hygiene and Public Health "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania 95123, Italy; Research Center in Nanomedicine and Pharmaceutical Nanotechnology (NANOMED), Department of Pharmaceutical and Health Sciences, University of Catania, Via Santa Sofia 87, Catania 95123, Italy; University Centre for the Protection and Management of Natural Environments and Agro-Ecosystems (CUTGANA), Via Santa Sofia 98, Catania 95123, Italy
| | - Mariachiara Galati
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | - Barbara Billè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | - Mery Terranova
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | - Vincenzo Parrino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy; University Centre for the Protection and Management of Natural Environments and Agro-Ecosystems (CUTGANA), Via Santa Sofia 98, Catania 95123, Italy
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy; University Centre for the Protection and Management of Natural Environments and Agro-Ecosystems (CUTGANA), Via Santa Sofia 98, Catania 95123, Italy; Universal Scientific Education and Research Network (USERN).
| | - Margherita Ferrante
- Interdepartmental Research Center for the Implementation of Physical, Chemical and Biological Monitoring Processes in Aquaculture and Bioremediation Systems, Department of Medical, Surgical and Advanced Technologies, Hygiene and Public Health "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, Catania 95123, Italy; Research Center in Nanomedicine and Pharmaceutical Nanotechnology (NANOMED), Department of Pharmaceutical and Health Sciences, University of Catania, Via Santa Sofia 87, Catania 95123, Italy; University Centre for the Protection and Management of Natural Environments and Agro-Ecosystems (CUTGANA), Via Santa Sofia 98, Catania 95123, Italy
| | - Maria Maisano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy; University Centre for the Protection and Management of Natural Environments and Agro-Ecosystems (CUTGANA), Via Santa Sofia 98, Catania 95123, Italy
| |
Collapse
|
2
|
Chowdhury A, Rahman MS. Molecular and biochemical biomarkers in the American oyster Crassostrea virginica exposed to herbicide Roundup® at high temperature. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:94757-94778. [PMID: 37540412 DOI: 10.1007/s11356-023-28862-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/14/2023] [Indexed: 08/05/2023]
Abstract
Aquatic organisms are frequently exposed to various environmental stressors. Thus, the effects of high temperatures and herbicides on aquatic organisms are a major subject of interest. In this study, we studied the effects of short-term exposure (1 week) to Roundup®, a glyphosate-based herbicide (concentrations: 0.5 and 5 µg/L), on the morphology of gills, digestive glands, and connective tissues, and the expression of heat shock protein-70 (HSP70, a chaperone protein), cytochrome P450 (CYP450, a biomarker of environmental contaminants), dinitrophenyl protein (DNP, a biomarker of protein oxidation), nitrotyrosine protein (NTP, a biomarker of protein nitration), antioxidant enzymes such as superoxidase dismutase (SOD) and catalase (CAT) in tissues of American oyster, Crassostrea virginica (Gmelin, 1791) maintained at high temperature (30 °C). Histological analyses showed an increase in mucous production in the gills and digestive glands, and in hemocyte aggregation in the connective tissues as well as a structural change of lumen in the digestive glands of oysters exposed to Roundup. Immunohistochemical and quantitative RT-PCR analyses showed significant (P < 0.05) increases in HSP70, CYP450, DNP, NTP, CAT, and SOD mRNA and protein expressions in the tissues of oysters exposed to Roundup. Taken together, these results suggest that exposure to Roundup at high temperature induces overproduction of reactive oxygen species/reactive nitrogen species which in turn leads to altered prooxidant-antioxidant activity in oyster tissues. Moreover, our results provide new information on protein oxidation/nitration and antioxidant-dependent mechanisms for HSP70 and CYP450 regulations in oysters exposed to Roundup at high temperature.
Collapse
Affiliation(s)
- Afsana Chowdhury
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Md Saydur Rahman
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA.
- School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, 1 West University Blvd, TX, 78520, Brownsville, USA.
| |
Collapse
|
3
|
Caliani I, De Marco G, Cappello T, Giannetto A, Mancini G, Ancora S, Maisano M, Parrino V, Cappello S, Bianchi N, Oliva S, Luciano A, Mauceri A, Leonzio C, Fasulo S. Assessment of the effectiveness of a novel BioFilm-Membrane BioReactor oil-polluted wastewater treatment technology by applying biomarkers in the mussel Mytilus galloprovincialis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 243:106059. [PMID: 34991045 DOI: 10.1016/j.aquatox.2021.106059] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 10/26/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Petrochemical industries and oil refineries are sources of hazardous chemicals into the aquatic environments, and often a leading cause of reduced oxygen availability, thus resulting in adverse effects in biota. This study is an expansion of our previous work on the assessment of the BioFilm-Membrane Bioreactor (BF-MBR) to mitigate the impact of oil-polluted wastewater on marine environments. Specifically, this study evaluated the reduction of selected chemical constituents (hydrocarbons and trace metals) and toxicity related to hypoxia and DNA damage to mussels Mytilus galloprovincialis, before and after treatment of oil-polluted wastewater with the BF-MBR. The application of a multidisciplinary approach provided evidence of the efficiency of BF-MBR to significantly reducing the pollutants load from oily contaminated seawaters. As result, the health status of mussels was preserved by a hypoxic condition due to oily pollutants, as evidenced by the modulation in the gene expression of HIF-1α and PHD and changes in the level of hypotaurine and taurine. Moreover, ameliorative effects in the energy metabolism were also found in mussel gills showing increased levels of glycogen, glucose and ATP, as well as a mitigated genotoxicity was revealed by the Micronucleus and Comet assays. Overall, findings from this study support the use of the BF-MBR as a promising treatment biotechnology to avoid or limiting the compromise of marine environments from oil pollution.
Collapse
Affiliation(s)
- Ilaria Caliani
- Department of Physics, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - Giuseppe De Marco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | - Alessia Giannetto
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | - Giuseppe Mancini
- Electric, Electronics and Computer Engineering Department, University of Catania, Catania, Italy
| | - Stefania Ancora
- Department of Physics, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - Maria Maisano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy.
| | - Vincenzo Parrino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | - Simone Cappello
- Institute for Biological Resources and Marine Biotechnology (IRBIM)-National Research Center, Messina, Italy
| | - Nicola Bianchi
- Department of Physics, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - Sabrina Oliva
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | - Antonella Luciano
- Energy and Sustainable Economic Development - Department for Sustainability, ENEA - Italian National Agency for the New Technologies, Casaccia Research Centre, Rome, Italy
| | - Angela Mauceri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| | - Claudio Leonzio
- Department of Physics, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - Salvatore Fasulo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina 98166, Italy
| |
Collapse
|
4
|
Nguyen TV, Alfaro A, Frost E, Chen D, Beale DJ, Mundy C. Investigating the biochemical effects of heat stress and sample quenching approach on the metabolic profiling of abalone (Haliotis iris). Metabolomics 2021; 18:7. [PMID: 34958425 DOI: 10.1007/s11306-021-01862-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/07/2021] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Ocean temperatures have been consistently increasing due to climate change, and the frequency of heatwave events on shellfish quality is a growing concern worldwide. Typically, shellfish growing areas are in remote or difficult to access locations which makes in-field sampling and sample preservation of shellfish heat stress difficult. As such, there is a need to investigate in-field sampling approaches that facilitate the study of heat stress in shellfish. OBJECTIVES This study aims to apply a gas chromatography-mass spectrometry (GC-MS) based metabolomics approach to examine molecular mechanisms of heat stress responses in shellfish using abalone as a model, and compare the effects of different quenching protocols on abalone metabolic profiles. METHODS Twenty adult Haliotis iris abalone were exposed to two temperatures (14 °C and 24 °C) for 24 h. Then, haemolymph and muscle tissues of each animal were sampled and quenched with 4 different protocols (liquid nitrogen, dry ice, cold methanol solution and normal ice) which were analyzed via GC-MS for central carbon metabolites. RESULTS The effects of different quenching protocols were only observed in muscle tissues in which the cold methanol solution and normal ice caused some changes in the observed metabolic profiles, compared to dry ice and liquid nitrogen. Abalone muscle tissues were less affected by thermal stress than haemolymph. There were 10 and 46 compounds significantly influenced by thermal stress in muscle and haemolymph, respectively. The changes of these metabolite signatures indicate oxidative damage, disturbance of amino acid and fatty acid metabolism, and a shift from aerobic metabolism to anaerobic pathways. CONCLUSIONS The study provided insights into the heat response of abalone, which could be useful for understanding the effects of marine heatwaves and summer mortality events on abalone. Dry ice appeared to be a suitable protocol, and safer in-field alternative to liquid nitrogen, for quenching of abalone tissues.
Collapse
Affiliation(s)
- Thao V Nguyen
- Aquaculture Biotechnology Research Group, Faculty of Health and Environmental Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Andrea Alfaro
- Aquaculture Biotechnology Research Group, Faculty of Health and Environmental Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand.
| | - Emily Frost
- Aquaculture Biotechnology Research Group, Faculty of Health and Environmental Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Donglin Chen
- School of Science, Auckland University of Technology, Auckland, New Zealand
| | - David J Beale
- Land and Water, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Ecoscience Precinct, Dutton Park, QLD, Australia
| | - Craig Mundy
- IMAS Fisheries and Aquaculture Centre, College of Science and Engineering, University of Tasmania, Taroona, TAS, Australia
| |
Collapse
|
5
|
Application of Capillary Polypropylene Membranes for Microfiltration of Oily Wastewaters: Experiments and Modeling. FIBERS 2021. [DOI: 10.3390/fib9060035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Oily wastewaters are considered as one of the most dangerous types of environmental pollution. In the present study, the microfiltration (MF) process of model emulsions and real oily wastewaters was investigated. For this purpose, capillary polypropylene (PP) membranes were used. The experiments were conducted under transmembrane pressure (TMP) and feed flow rate (VF) equal to 0.05 MPa and 0.5 m/s, respectively. It was found that the used membranes ensured a high-quality permeate with turbidity equal to about 0.4 NTU and oil concentration of 7–15 mg/L. As expected, a significant decrease in the MF process performance was noted. However, it is shown that the initial decline of permeate flux could be slightly increased by increasing the feed temperature from 25 °C to 50 °C. Furthermore, Hermia’s models were used to interpret the fouling phenomenon occurring in studied experiments. It was determined that cake formation was the dominant fouling mechanism during filtration of both synthetic and real feeds. Through detailed studies, we present different efficient methods of membrane cleaning. Results, so far, are very encouraging and may have an important impact on increasing the use of polypropylene MF membranes in oily wastewater treatments.
Collapse
|
6
|
Cappello T, De Marco G, Oliveri Conti G, Giannetto A, Ferrante M, Mauceri A, Maisano M. Time-dependent metabolic disorders induced by short-term exposure to polystyrene microplastics in the Mediterranean mussel Mytilus galloprovincialis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111780. [PMID: 33352432 DOI: 10.1016/j.ecoenv.2020.111780] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/18/2020] [Accepted: 12/06/2020] [Indexed: 05/26/2023]
Abstract
In the modern society, plastic has achieved a crucial status in a myriad of applications because of its favourable properties. Despite the societal benefits, plastic has become a growing global concern due to it is persistence and bioavailability as microplastics (MPs) to aquatic biota. In order to provide mechanistic insights into the early toxicity effects of MPs on aquatic invertebrates, a short-term (up to 72 h) exposure to 3 µm red polystyrene MPs (50 particles/mL) was conducted on marine mussels Mytilus galloprovincialis, selected as model organism for their ability to ingest MPs and their commercial relevance. The use of protonic Nuclear Magnetic Resonance (1H NMR)-based metabolomics, combined with chemometrics, enabled a comprehensive exploration at fixed exposure time-points (T24, T48, T72) of the impact of MPs accumulated in mussel digestive glands, chosen as the major site for pollutants storage and detoxification processes. In detail, 1H NMR metabolic fingerprints of MP-treated mussels were clearly separated from control and grouped for experimental time-points by a Principal Component Analysis (PCA). Numerous metabolites, including amino acids, osmolytes, metabolites involved in energy metabolism, and antioxidants, participating in various metabolic pathways significantly changed over time in MP-exposed mussel digestive glands related to control, reflecting also the fluctuations in MPs accumulation and pointing out the occurrence of disorders in amino acid metabolism, osmotic equilibrium, antioxidant defense system and energy metabolism. Overall, the present work provides the first insights into the early mechanisms of toxicity of polystyrene MPs in marine invertebrates.
Collapse
Affiliation(s)
- Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Giuseppe De Marco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Gea Oliveri Conti
- Environmental and Food Hygiene (LIAA) of Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, 95123 Catania, Italy
| | - Alessia Giannetto
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Margherita Ferrante
- Environmental and Food Hygiene (LIAA) of Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 87, 95123 Catania, Italy
| | - Angela Mauceri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Maria Maisano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
7
|
Mearns AJ, Morrison AM, Arthur C, Rutherford N, Bissell M, Rempel-Hester MA. Effects of pollution on marine organisms. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1510-1532. [PMID: 32671886 DOI: 10.1002/wer.1400] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
This review covers selected 2019 articles on the biological effects of pollutants, including human physical disturbances, on marine and estuarine plants, animals, ecosystems, and habitats. The review, based largely on journal articles, covers field, and laboratory measurement activities (bioaccumulation of contaminants, field assessment surveys, toxicity testing, and biomarkers) as well as pollution issues of current interest including endocrine disrupters, emerging contaminants, wastewater discharges, marine debris, dredging, and disposal. Special emphasis is placed on effects of oil spills and marine debris due largely to the 2010 Deepwater Horizon oil blowout in the Gulf of Mexico and proliferation of data on the assimilation and effects of marine debris microparticulates. Several topical areas reviewed in the past (e.g., mass mortalities ocean acidification) were dropped this year. The focus of this review is on effects, not on pollutant sources, chemistry, fate, or transport. There is considerable overlap across subject areas (e.g., some bioaccumulation data may be appeared in other topical categories such as effects of wastewater discharges, or biomarker studies appearing in oil toxicity literature). Therefore, we strongly urge readers to use keyword searching of the text and references to locate related but distributed information. Although nearly 400 papers are cited, these now represent a fraction of the literature on these subjects. Use this review mainly as a starting point. And please consult the original papers before citing them.
Collapse
Affiliation(s)
- Alan J Mearns
- Emergency Response Division, National Oceanic and Atmospheric Administration (NOAA), Seattle, Washington
| | | | | | - Nicolle Rutherford
- Emergency Response Division, National Oceanic and Atmospheric Administration (NOAA), Seattle, Washington
| | - Matt Bissell
- Emergency Response Division, National Oceanic and Atmospheric Administration (NOAA), Seattle, Washington
| | | |
Collapse
|
8
|
Parisi MG, Pirrera J, La Corte C, Dara M, Parrinello D, Cammarata M. Effects of organic mercury on Mytilus galloprovincialis hemocyte function and morphology. J Comp Physiol B 2020; 191:143-158. [PMID: 32979067 PMCID: PMC7819951 DOI: 10.1007/s00360-020-01306-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/26/2020] [Accepted: 09/09/2020] [Indexed: 01/01/2023]
Abstract
Abstract Filter-feeding organisms accumulate xenobiotics and other substances in their tissues. They can be useful as sentinel organisms in biomonitoring of the marine compartment. Bivalve cellular immunity is ensured by phagocytosis and cytotoxic reactions carried out by hemocytes in a network with humoral responses. These can be affected by chemical contaminants in water that can be immunosuppressors also at a low concentration increasing the sensibility to pathogens. This work is an attempt to individuate cellular markers for pollution detection, investigating the effect of methylmercury (CH3HgCl) at different concentrations on the activity and hemocyte morphology of the Mediterranean mussel, Mytilus galloprovincialis. We assessed the effect of three sub-lethal concentrations of the organometal on the cellular morphology, the efficacy of phagocytosis toward yeast cells, the alteration of the lysosomal membrane and the ability to release cytotoxic molecules. The results provide information on the alteration of hemocyte viability, modification of the morphological and cytoskeletal features and besides the cellular spreading, intrinsic ability of motile cells was used as a complementary investigation method. Exposure to the contaminant affected the percentage of phagocytosis and the phagocytosis index. Moreover, morphological and cytoskeleton alteration, caused by the pollutant, leads to reduced ability to incorporate the target and adhere to the substrate and the low ability of cells to retain neutral red could depend on the effects of methylmercury on membrane permeability. These results reinforce the use of the Mediterranean mussel as model for the evaluation of environmental quality in aquatic ecosystems integrating the novel information about hemocyte functions and morphology sensibility to organic mercury. Graphic abstract ![]()
Collapse
Affiliation(s)
- Maria Giovanna Parisi
- Marine Immunobiology Laboratory, Department of Earth and Marine Sciences, University of Palermo, Viale delle Scienze, Edificio 16, 90128, Palermo, Italy.
| | - Jessica Pirrera
- Marine Immunobiology Laboratory, Department of Earth and Marine Sciences, University of Palermo, Viale delle Scienze, Edificio 16, 90128, Palermo, Italy
| | - Claudia La Corte
- Marine Immunobiology Laboratory, Department of Earth and Marine Sciences, University of Palermo, Viale delle Scienze, Edificio 16, 90128, Palermo, Italy
| | - Mariano Dara
- Marine Immunobiology Laboratory, Department of Earth and Marine Sciences, University of Palermo, Viale delle Scienze, Edificio 16, 90128, Palermo, Italy
| | - Daniela Parrinello
- Marine Immunobiology Laboratory, Department of Earth and Marine Sciences, University of Palermo, Viale delle Scienze, Edificio 16, 90128, Palermo, Italy
| | - Matteo Cammarata
- Marine Immunobiology Laboratory, Department of Earth and Marine Sciences, University of Palermo, Viale delle Scienze, Edificio 16, 90128, Palermo, Italy
| |
Collapse
|
9
|
Ancora S, Rossi F, Borgese M, Pirrone C, Caliani I, Cappello S, Mancini G, Bianchi N, Leonzio C, Bernardini G, Gornati R. Assessing the Effect of Contaminated and Restored Marine Sediments in Different Experimental Mesocosms Using an Integrated Approach and Mytilus galloprovincialis as a Model. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:411-422. [PMID: 32240431 DOI: 10.1007/s10126-020-09961-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/26/2020] [Indexed: 06/11/2023]
Abstract
The research presented here was conducted to ascertain the effectiveness of recovery technologies in remediating a compromised marine environment. The multidisciplinary approach aims to integrate traditional chemical-physical analysis and to assess the biological parameters of Mytilus galloprovincialis within different experimental mesocosms (W, G, and B). In particular, this system was designed to reproduce sediment resuspension in a marine environment, which is thought to be one cause of contaminant release. The study combined morphological and ultrastructural observations with DNA damage assessment and mRNA expression of those genes involved in cellular stress responses. The tissues of mussels maintained in the polluted mesocosm showed a higher accumulation of Pb and Hg than in those maintained in restored mesocosm. This observation correlates well with mRNA expression of MT10 and data on DNA damage. The outcome of the biological evaluation consolidates the chemical characterization and supports the concept that the remediation method should be evaluated at an early stage, both to analytically determine the reduction of toxic components and to assess its ultimate impact on the biological system.
Collapse
Affiliation(s)
- Stefania Ancora
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli, 4, 53100, Siena, Italy
| | - Federica Rossi
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100, Varese, Italy
| | - Marina Borgese
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100, Varese, Italy
| | - Cristina Pirrone
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100, Varese, Italy
| | - Ilaria Caliani
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli, 4, 53100, Siena, Italy
| | - Simone Cappello
- Institute for Biological Resources and Marine Biotechnology (IRBIM)-CNR of Messina, Via San Raineri 86, 98122, Messina, Italy
| | - Giuseppe Mancini
- Electric, Electronics and Computer Engineering Department, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Nicola Bianchi
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli, 4, 53100, Siena, Italy
| | - Claudio Leonzio
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli, 4, 53100, Siena, Italy
| | - Giovanni Bernardini
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100, Varese, Italy
| | - Rosalba Gornati
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100, Varese, Italy.
| |
Collapse
|
10
|
Mundo R, Matsunaka T, Iwai H, Ogiso S, Suzuki N, Tang N, Hayakawa K, Nagao S. Interannual Survey on Polycyclic Aromatic Hydrocarbons (PAHs) in Seawater of North Nanao Bay, Ishikawa, Japan, from 2015 to 2018: Sources, Pathways and Ecological Risk Assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17030904. [PMID: 32024093 PMCID: PMC7038190 DOI: 10.3390/ijerph17030904] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 11/16/2022]
Abstract
To improve the understanding of the emission sources and pathways of polycyclic aromatic hydrocarbons (PAHs) in the coastal environments of remote areas, their particulate and dissolved concentrations were analyzed on a monthly basis from 2015 to 2018 in surface waters of Nanao Bay, Japan. The concentration of the targeted 13 species of PAHs on the United States Environmental Protection Agency (USEPA) priority pollutant list in dissolved and particle phases were separately analyzed by high-performance liquid chromatography (HPLC) coupled to a fluorescence detector. Particulate and dissolved PAHs had average concentrations of 0.72 ng∙L-1 and 0.95 ng∙L-1, respectively. While most of the samples were lower than 1 ng∙L-1, abnormally high levels up to 10 ng∙L-1 were observed in the winter of 2017-2018 for particulate PAHs. Based on the isomer ratios of Flu to Flu plus Pyr, it was possible to determine that the pyrogenic loads were greater than the petrogenic loads in all but four out of 86 samples. The predominant environmental pathway for PAHs in winter was determined to be long-range atmospheric transportation fed by the East Asian winter monsoon, while for the summer, local sources were more relevant. By the risk quotients method, it was determined that PAHs in surface seawater presented a very low risk to marine life during the interannual survey.
Collapse
Affiliation(s)
- Rodrigo Mundo
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan; (R.M.); (S.N.)
| | - Tetsuya Matsunaka
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan; (R.M.); (S.N.)
- Low Level Radioactivity Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Nomi 923-1224, Japan; (H.I.); (K.H.)
- Correspondence: ; Tel.: +81-76-151-4440
| | - Hisanori Iwai
- Low Level Radioactivity Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Nomi 923-1224, Japan; (H.I.); (K.H.)
| | - Shouzo Ogiso
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Noto-cho 927-0553, Japan; (S.O.); (N.S.)
| | - Nobuo Suzuki
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Noto-cho 927-0553, Japan; (S.O.); (N.S.)
| | - Ning Tang
- Institute of Medical, Pharmaceutical and Health Science, Kanazawa University, Kanazawa 920-1192, Japan;
- Institute of Nature and Environmental Technology, Kanazawa University, 920-1192, Japan
| | - Kazuichi Hayakawa
- Low Level Radioactivity Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Nomi 923-1224, Japan; (H.I.); (K.H.)
| | - Seiya Nagao
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan; (R.M.); (S.N.)
- Low Level Radioactivity Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Nomi 923-1224, Japan; (H.I.); (K.H.)
| |
Collapse
|
11
|
Attaallah A, Marchionni S, El-Beltagy A, Abdelaziz K, Lorenzini A, Milani L. Cell cultures of the Manila clam and their possible use in biomonitoring and species preservation. THE EUROPEAN ZOOLOGICAL JOURNAL 2020. [DOI: 10.1080/24750263.2020.1827052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- A. Attaallah
- Department of Zoology, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - S. Marchionni
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - A. El-Beltagy
- Department of Zoology, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - K. Abdelaziz
- Department of Zoology, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - A. Lorenzini
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - L. Milani
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna, Italy
| |
Collapse
|